本研究旨在探討當二個變數在空間下的採樣點位置不同時,如何建構其因果迴歸模型。本研究採用克利金法與AASN神經網路做為建構空間內插模型的工具。本研究採用三組個案的七個因果關係來比較各法的優劣性,研究結果顯示:(1)AASN神經網路所建立的空間內插模型遠比克利金法準確,(2)AASN神經網路所建立的異空間分佈數據的因果迴歸模型遠比克利金法準確。 The purpose of this paper is to explore, when the spatial positions of sampling points of two variables are different, how to construct their cause-and-effect regression model. This research used the kriging method and the AASN neural networks as the tool