Chung-Hua University Repository:Item 987654321/31731
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 8557/14866 (58%)
Visitors : 1423019      Online Users : 1281
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://chur.chu.edu.tw/handle/987654321/31731


    Title: Drowsiness Recognition Using the Least Correlated LBPH
    Authors: 連振昌
    Lien, Cheng-Chang
    Contributors: 資訊工程學系
    Computer Science & Information Engineering
    Keywords: 瞌睡偵測;眼睛狀態;最低相關局部二值化圖樣統計直方圖(Least Correlated LPBH);獨立成分分析(ICA);支持向量機(SVM)
    drowsiness recognition;eye state;LC-LBPH;ICA;support vector machine
    Date: 2012
    Issue Date: 2014-06-27 01:36:07 (UTC+8)
    Abstract: 近年來,瞌睡偵測研究廣泛應用於駕駛瞌睡偵測與遠距教學系統中,而其中眼睛狀態的辨識是建立瞌睡偵測研究裡不可或缺的基礎。然而,然而,傳統之眼睛狀態辨識很容易受光照變化或頭髮/眼鏡遮蔽的干擾。因此本計劃提出一項創新之影像特徵,稱為最低相關之LBPH紋理特徵(Least Correlated LPBH),能夠在光照變化及穿戴眼鏡情形下正確的辨識眼睛狀態。接著將此影像紋理特徵使用獨立成分分析方法(Independent Component Analysis) 獲得低維度且具統計獨立特性之特徵向量,最後依具此新特徵向
    In recent years, the drowsiness detection is widely applied to the driver alerting or distance learning. The drowsiness recognition system is constructed on the basis of the recognition of eye states. The conventional methods for recognizing the eye state
    Appears in Collections:[Department of Computer Science and Information Engineering] Seminar Papers

    Files in This Item:

    File Description SizeFormat
    s_e331_0299.pdf28KbAdobe PDF135View/Open


    All items in CHUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback