Chung-Hua University Repository:Item 987654321/30908
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 8557/14866 (58%)
Visitors : 1404125      Online Users : 2161
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://chur.chu.edu.tw/handle/987654321/30908


    Title: Customer Cluster Analysis Using SOM-A Case Study of SMS Company Customer Service以SOM 進行顧客群集分析之研究-以簡訊業者客戶服務為例
    Authors: 許良僑
    Sheu, Liang-Chyau
    Contributors: 科技管理學系
    Technology Management
    Keywords: 顧客分群;行銷策略;自組織映射圖網路;資料探勘
    Customer Clustering;Marketing Strategy;Self-Organizing Map;Data Mining
    Date: 2010
    Issue Date: 2014-06-27 01:15:13 (UTC+8)
    Abstract: 本研究以簡訊業者為案例,首先將顧客過去的消費行為,包括購買行為、發送行為、發送對象以及業務拓展,建立特徵擷取與正規化,採用類神經網路中資料分群之方法一自組織映射網路(Self-Organizing Map,SOM),找到顧客群組樣本類型,再將群組狀態分析,找出顧客類型分類後,再依顧客類型制定行銷手法。第二階段利用SOM回想技術,針對分群結果將近期顧客於群組落點分類判斷,再次以SOM回想技術判別屬何種顧客,易於企業將新顧客分類,再選擇對企業適當的行銷策略,亦即可有助於企業獲取更高的報酬,及提升顧客之保留率。
    In this paper, a Self-Organizing Map (SOM) is used to cluster consumers based on customer data of a short message service (SMS) company. First, raw data are quantified and normalized for the learning phase of SOM. The clusters found by the SOM are then us
    Appears in Collections:[Department of Technology Management] Seminar Papers

    Files in This Item:

    File Description SizeFormat
    s_m530_0593.pdf35KbAdobe PDF168View/Open


    All items in CHUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback