1. Solve the Bernoulli differential equation. (15%)

$$x\frac{dy}{dx} - (1+x)y = xy^2$$

- 2. (a) Given the differential equation  $x^2 y'' 2y = 0$ , it is known that  $y_1 = \frac{1}{x}$  is a solution. Find the second linearly independent solution,  $y_2$ , using the method of reduction of order. (10%)
  - (b) If  $x^2y'' 2y = x^5$ , find  $y_p$ , the particular solution. (10%)
- 3. Solve the eigenvalue problem (15%)

$$y'' + (\lambda + 1)y = 0, \quad y'(0) = 0, \quad y'(2) = 0$$

4. Use Laplace transform to solve the initial-value problem (16%)

$$y'' + 9y = e^t$$
,  $y(0) = 0$ ,  $y'(0) = 0$ 

for y(t).

- 5. For the matrix  $\mathbf{A} = \begin{bmatrix} 5 & 6 \\ 3 & -2 \end{bmatrix}$ , find a matrix  $\mathbf{Q}$ , that diagonalizes  $\mathbf{A}$ , and the diagonal matrix  $\mathbf{D}$  such that  $\mathbf{D} = \mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}$ . (16%)
- 6. Evaluate  $\int_C xy^2 ds$  on the quarter-circle *C* defined by  $x = 4 \cos t$ ,  $y = 4 \sin t$ ,  $0 \le t \le \pi/2$ .(18%)

