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Abstract

High quality, embedded, variable rate image
compression can be achieved by decomposing an
image into subbands of different sizes, modeling
with one significant AM-FM component as well
as encoding with a distinct procedure for each
subband. An adaptive subband decomposition
using the modulated wavelet packet transform
has been developed, where the modulating
frequencies adaptation is based on the energy
spectral density in a scale recursive manner. In
addition, the extended SPIHT coder has also
been developed to code each complex-valued
subband. Experimental results demonstrate that
the modulated wavelet subband image coding is
much preferable to both the wavelet coding and
the JPEG standard.

Keywords: Image compression; Modulated
wavelet (packet) transform; SPIHT extension;
Adaptive modulating frequencies

I. Introduction

The main obstacle to image applications
such as storage and transmission over a
band-limited channel is the huge amount of data
required to represent an image directly. There
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has been increasing demand for image

compression with the rapid growth in modern
communications and computer technologies; this
is a natural trend. State of the art techniques can
compress typical images by factors of 10 to 50
without significantly degrading the image quality,
depending on the specific application and
encoder/decoder complexity [1]-[4]. The Joint
Photographic Experts Group (JPEG) [5] shows
good performance at moderate to high bit rates of
compression measured in bits per pixel (bpp).
Multiresolution representation is well suited to
the properties of Human Visual System (HVS);
thus, the wavelet subband coding has shown
promising results at low to moderate bit rates [6].
Wavelet transform provides many advantages
such as multiresolution analysis, joint
spatial-spectral localization, fast de-correlation
with compact energy distribution in the wavelet
domain, and exact reconstruction, which are
beneficial to the image compression task [7].
Many competitive wavelet coders including
embedded zero-tree wavelets (EZW) of Shapiro
[8], set partitioning in hierarchical trees (SPIHT)
of Said and Pearlman [9], morphological
representation of wavelet data (MRWD) of
Servetto et a. [10], and group testing for
wavelets (GTW) of Hong and Ladner [11] have
been developed. In addition, wavelet based
coding techniques have been adopted as the
underlying methods to implement the JPEG 2000
standard [12]. Wavelet transform analyzes an
image with a decomposition procedure, which is
recursively performed on the low frequency
component only; on the other hand, wavelet
packet transform applies the decomposition
procedure to both the low and high frequency
components to generate a larger family of
subband components [13]-[14]. Recently, the
modulated wavelet transform acting as an
extension of wavelet transform had been
proposed [15]. Images can be represented by



using the modulated wavel et transform to gain an
adaptable zooming in the frequency regions of
importance depending on the energy spectral
density (ESD), instead of being constrained in
the fixed low frequency region centered at zero
frequencies. As a result, the modulate wavelet
transform provides aflexible as well as adaptable
representation framework that can open a broad
range of image applications. This paper extends
the previous work in [16], where the modulated
wavelet subband coding with a fixed Gabor
filterbank was introduced. Specifically, an
adaptable  rather than  fixed  subband
decomposition is proposed to improve the coding
performance; and, a simplified version of the
extended SPHIT algorithm is developed to
encode the complex valued modulated wavelet
coefficients.

1. Modulated Wavelet (Packet) Transform
Wavelet theory provides an efficient
multiresolution analysis. The 1-D discrete

wavelet transform (DWT) of signal S,(n) at

resolution 2 isgiven by
S..(n) =Y S (k) h(2n k)
k

D,.a(M =25,k g(2n-k)

where S,,;(n) is its approximation at the next

D

coarser resolution 2, D,,(n) is the detail
information between resolutions: 2° and 27,
£ is the resolution index with larger meaning
coarser, h(n)=<¢,¢, >, 9(N)=<y,d, >,
<-.-> is an inner product operator, v is a
(mother) wavelet, ¢ is the corresponding
scaling function, and ¢, () =2"?¢(2't—n).
By using the inverse DWT (IDWT), which is
defined below, S(n) can be reconstructed form
S..(n) and D,,(n).

S(M)=3S.(K h(n-20+>D,,(K) §h-2) (2)

where h(n)=h(-n) and g(n)=g(-n).

As a large class of signals with
quasi-periodic patterns can be well represented
by using the non-linear amplitude modulating
-frequency modulating (AM-FM) functions of

theform S,(n) 2Y"[17], the following discrete

modulated wavelet transform (DMWT) had been
proposed in [15].

S/+1(n) ejZV+1Un :Zsz(k) ej2[U|( h/(zn_k)
e g ®
D“l(n)elZ*Un :Zsf(k)eJZ ngz(zn_k)
k

where h(n)=hn)e”"", g,(n)=g(ne "
and U is the modulating frequency.
S,(n)e'?Y" can be exactly reconstructed

from its approximation S,,(n) Z"V" at the
next coarser resolution 2" and the detail
D,.,(n) 2" between resolutions: 2 and
2! by using the inverse DMWT (IDMWT):

SN =Y, (Ke? n,(n-2)+> D.,(Ke? g, .(-2K) (4)

where I‘Lrl(n):hﬁrl(_n) and g/ﬂ(”) :g/:+l(_n) .

Both DMWT and DWT provide the
perfect reconstruction property, which is a
reguirement for image synthesis. DWT analyzes
signals with a successive zooming in the low
frequency region only. However, DMWT
provides a successive zooming in the frequency
region centered at selectable modulating
frequencies. Thus, DMWT acting as an
extension of DWT may improve the analysis
and synthesis tasks by selecting suitable
modulating frequencies.

As the discrete wavelet packet transform
(DWPT) obtained by applying DWT to both the
low and high frequency components, the discrete
modulated wavelet packet transform (DMWPT)
can be obtained in a similar way. It is noted that
the widely used, efficient, pyramid- (tree-)
structured algorithms for implementing DWT
(DWPT) ae dso applicable to DMWT
(DMWPT) provided that the associated filters
are modulated accordingly. The 2-D DMWT
(DMWPT) can be obtained by using the tensor
product of tow 1-D DMWT (DMWPT) with a
pair of modulating frequencies; one is in the
horizontal direction and the other is in the
vertical direction.

I11. Modulated Wavelet Subband Coding
Wavelet transform is focused on the low
frequency decomposition only, which may not be
suitable for natural images with alarge portion of
textures consisting of middle/high frequency
components. Modulated wavelet transform,
which is derived from a combination of AM-FM
modeling and wavel et transform together with all
the advantages of both techniques is suitable for
the aforesaid images. Motivated by the AM-FM



representation [17], in which a filterbank with
frequency and orientation selectivity had been
utilized, an adaptive modulated wavelet subband
image coder is proposed.

The analytic image obtained by adding an
imaginary part viathe 2-D Hilbert transform [18]
is utilized for the compression task. Specifically,
the anaytic image t(x,y) and the
corresponding real valued image S(X,y) are

uniquely refated by t(xy)=s(xy)+H[S(x )],
where H[:] denotes the 2-D Hilbert transform

acting in the, say, €=[10]" direction; the
Fourier transforms of s(X,y) and H[S(X,Y)]

are related by F{Hs(xy)j=—jsgn¥ &F(sx )}
the spectrum of t(X,y) is supported only in
quadrants | and IV of the frequency plane:
Q=[uv]"; and the spectra redundancy of
S(X,y) can be removed. Multicomponent
AM-FM modeling represents the analytic image
as sums of nonlinear functions, each of the form
f(xy)exp[jU(x,y)] , where f(Xx,y) and
VU(X,y) (i.e thegradientof U(X,Y)) arethe

amplitude and frequency modulating functions,
respectively. As a flexible decomposition
without excessive side information to describe
the resulting structure, the DMWPT-based
subband decomposition algorithm is presented
below.

Step 1. For a rea vaued image,
remove the DC component, perform the
Hilbert transform, and form the analytic
image. Specificaly, if the Hilbert transform
is performed horizontally, subbands with

negative horizontal frequencies are all zeros,

which can be ignored by down sampling the
analytic image by 2 in the horizontal
direction for the rest of the compression
task; and, the data size of the (critically
down sampled) analytic image is equal to
that of the original real valued image.

Step 2: Compute energy spectral
density (ESD) of the analytic image, find
the position of the maximum ESD (in the
frequency plane), take it as the modulating
frequency, and perform DMWT to generate
four subbands.

Step 3: For each subband, compute the
respective ESD and decide whether to
decompose it further or not. Specifically, let
M be the global maximum of the ESD, if
there is a local maximum that is greater
than a M (a <1) with a distance (from

the global maximum) greater than a given
threshold f3, then the subband needs to be

further decomposed into four smaller

subbands by DMWT with adapted

modulating frequency according to the

position of the global maximumM .

Step 4: Repeat Step 3 until thereis no
subband with more than one significant
local maximum in the ESD, or the subband
size reaches to the minimum size given a
priori.

The above decomposition scheme leads to
an adaptive DMWPT with a quadtree structure.
The side information describing the resulting
decomposition structure can be encoded by
scanning the tree-node symbols from left to right,
top to bottom. Two symbols: 1 and O are used,
where symbol 1 means the corresponding
subband is to be decomposed further and symbol
0 means no need for further decomposition. As
an example shown in Fig. 1, where the analytic
image is decomposed into subbands: a ~ m, the
corresponding side information by raster
scanning the node symbols is ‘101010000010000
00’. It is noted that the nodes on the bottom level
called leaves are not decomposed further, thus
the symbols of leaves that are al zeros can be
omitted.

Since the subbands of images obtained by
using the adaptive DMWPT are complex valued,
the original SPIHT algorithm developed by Said
et al. needs to be extended to encode these
subbands in the hierarchical modulated wavelet
domain. Fig. 2 shows a 3-level DMWT with
indexing for the transform coefficients, based on
which the transform coefficients are encoded in a
specific order. Four symbols are used to identify
the status of transform coefficients: IP, NP, SP
and ZT, which stand for insignificant pixel,
newly significant pixel, significant pixel and zero
tree, respectively. Initially, all the modulated
scaling and wavelet coefficients at the coarsest
resolution are set IP and ZT, respectively. The
complex value is represented by the magnitude
and angle (i.e. in the polar form). The magnitude
of complex valued transform coefficients is used
for the comparison with a given sequence of
successively smaller threshold values to sort out
the significant coefficients in the status check
pass. The sequence of threshold values can be
obtained by using the recursive equation:

T, =T,.,/2, wheretheinitial value T, must be

greater than or equal to half the maximum
magnitude of the transform coefficients.

After an image is decomposed into



subbands of different sizes by using the adaptive
DMWZPT, each subband is encoded uniquely by
using the extended SPIHT agorithm with a

global initial threshold value T, in the

hierarchicd modulated wavelet trees. The
resulting bit stream could be formulated as
shown in Fig. 3, where the header portion is
composed of the side information about the
adaptive DMWPT based subband decomposition
structure, the number of DMWT decomposition
levels, the associated modulating fregquencies,

and the initial threshold: T, .

V. Experimental Results

The proposed, modulated wavelet subband
coding (MWSC) system with extended SPIHT
algorithm has been evaluated on several 512 x
512 gray scale images, including Barbara,
fingerprints, and a SAR image. The performance
is compared with the wavelet-based SPIHT and
the JPEG standard. In MWSC, the critically
down sampled anaytic image, which is
constructed via the use of the 2-D Hilbert
transform in the horizonta direction, is
decomposed into subbands using the adaptive
DMWPT; the adaptability strategy is based on
the respective ESD with parameters. o = 0.5,
[ =1 radian, and the minimum size of

subbands is: 64 x 32; the coding sequence of the
decomposed subbands is in a zigzag order: from
low-to-high frequency subbands, the angle
quantity of the complex valued transform
coefficients represented in the modulated
wavelet trees is uniformly quantized with 6-bit
resolution; the number of bits representing the
initial angle information of the newly significant
pixelsis 3. The number of decomposition levels
in both wavelet and modulated wavelet
transforms is 4. Daubechies orthogona wavelet
D2 is used. The sequence of successively smaller
threshold values in the original SPIHT as well as

its extension is obtained by T, =0.5T,, ;
k=12,..., with theinitial T, equa to half the

maximum  amplitude of the transform
coefficients. The compression distortion is
measured by the peak signal to noise ratio (PSNR)
in dB. The compression rates measured in bits
per pixel (bpp) and PSNR values are plotted as
the rate distortion curve for performance
comparison.

Fig. 4 shows the comparison on natural
Barbara image at different bit rates. Part of the
decoded images from the JPEG standard,

wavelet-based SPIHT, and MWSC at 0.2 bpp are
shown in Fig. 4(a)-(c), respectively. By
comparing visualy, MWSC improves the
reconstruction result on the textured regions with
significant stripes in specific directions. Their
respective rate distortion curves shown in Fig.
4(d) demonstrate that MWSC is preferable for
images with large portions of textures.

The compression of fingerprints image is
one of the most important issues, which demands
the best solution. Without any compression, the
storage of digitized fingerprints of a person may
be in the order of mega bytes. Fig. 5 shows the
comparison on a fingerprints image. By
comparing the decoded images shown in Fig.
5(a)-(c), and the rate distortion curves shown in
Fig. 5(d), wavelet-based SPIHT outperforms
JPEG at low to moderate bit rates (< 1 bpp); and
MWSC is the superior for this kind of images.

Finally, the comparison on a SAR image
containing large portions of irregular textures is
presented in Fig. 6. Part of the origina and
decoded images is shown in Fig. 6(a)-(d). The
rate distortion curves shown in Fig. 6(e)
demonstrate that wavelet-based SPIHT isinferior
to JPEG at low to moderate bit rates, and vice
versa at moderate to high bit rates; however,
MWSC is dtill the superior in terms of the rate
distortion curves as well as visual comparison.

The residual correlation can be exploited
further by using arithmetic coding. In our
experiments, the use of arithmetic coding
improves the performance with a gain of about
0.2-04 dB over the non-arithmetic coded
versions of both the wavelet-based SPIHT and
MWSC; nevertheless, MWSC till outperforms
the wavelet-based SPIHT with similar rate
distortion curve improvements like Fig. 4(d), 5(d)
and 6(e).

V.33 3%

An adaptive subband image coding system
based on the modulated wavelet packet and
modulated wavelet transforms is presented. It
consists of three stages: adaptive subband
decomposition, adaptive modulated wavelet
transform, and embedded coding in the
modulated wavelet trees. In the first stage, the
analytic image is decomposed into subbands via
the adaptive modulated wavelet transform in a
resolution recursive manner, which leads to the
adaptive modulated wavelet packet transform
with a top-down quadtree structure; In the second
stage, each of the decomposed subbands



containing one significant AM-FM component is
represented in the modulated wavelet tree; the
associated modulating frequencies in the first
two stages are adapted based on the respective
energy spectral densities; In the last stage, a
simplified version of the extended SPIHT
agorithm is proposed to encode the transform
coefficients. Experimental results demonstrate
that the modulated wavelet based subband
coding system is preferable to both the wavelet
based and the JPEG standard for images with
significant energies in the middle-high frequency
regions, in terms of the rate distortion curves and
visual comparisons. Moreover, it is a highly
parallel processing, which is a substantial
advantage for the hardware implementation; and
there is no the so-called blocking effects that are
usually to be found on the decoded JPEG images
with compression at low bit rates.
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Fig. 1. Example of the adaptive DMWPT subband decomposition; (a) subbands: a ~ m; (b) the
representative quad-tree with node symbols.

22431217 5 1011 2 7(ZT) 12 17

23|28(44149|13|14[18|19
33|38[54[59(15(16|20|21
24125(29|30(45]46|50|51
26|27|31|32|4748|52|53

[ J [ J
36[37141]42|57|58)| 62|63 3 45 6 8 9 10 11 13 14 15 16 18 19 20 21

€Y (b)

Fig. 2. (4): 3-level DMWT with indexing for the transform coefficients; (b): one of the hierarchical,
modul ated wavel et trees with the corresponding indices.

Subband 1 Subband 2 Subband 1 Subband 1
Header SC/R codes SC/R codes SC/R codes SC/R codes
mEn mEn mEn
|
< wrt. T, <= wrt. T, — >[<wrdtother T,

Fig. 3. Bit stream structure (SC/R: status check/refinement).
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Fig. 4. (8) ~ (c): Part of the decoded Barbaraimage at 0.2 bpp using the JPEG standard (PSNR=24.6
dB), the wavelet based SPIHT without arithmetic coding (26.4 dB), and the proposed MWSC (26.9
dB), respectively; (d): the corresponding rate distortion curves (dashed: JPEG, dotted: wavelet based
SPIHT, solid: the proposed method).
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Fig. 5. (@) ~ (c): Part of the decoded fingerprintsimage at 0.25 bpp using the JPEG standard
(PSNR=21.6 dB), the wavelet based SPIHT without arithmetic coding (25.4 dB), and the proposed
MWSC (25.9 dB), respectively; (d): the corresponding rate distortion curves (dashed: JPEG, dotted:

wavelet based SPIHT, solid: the proposed method).
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Fig. 6. (8) ~ (d): Part of the original SAR image, decoded image at 0.2 bpp using the JPEG standard
(PSNR=18.7 dB), the wavelet based SPIHT without arithmetic coding (17.8 dB), and the proposed
MWSC (19.1 dB), respectively; (€): the corresponding rate distortion curves (dashed: JPEG, dotted:

wavelet based SPIHT, solid: the proposed method).



