FREFATAELR gL HF LV E S 54842

LERE 2B RIH A AR P h e RS R

ol B LR S
* F % 5. 1 NSC 97-2221-E-216-029-

#HoF HORF 97TE082 01 px98&E07T? 3P
7T HE P EAFFTRIRE

S E LA ERE

FEFEAR LS A iz —‘5 e 4p
Eﬁ:l_f_{l?ﬁ;i 4 - izpsbzm TR %‘X

F 2 it #or AR gvilﬂi“l"fﬂ’z*;]}\zxpm



RE

HFI RO E O FRA T AR OFE 22 AP R RF A RFE T 2T ER %\q*
MEER > T AP bh & R R 8 O A e b S AAAIGR P T E 2 R g kT
IR DR ERPE O 2L R LA R R 2 g A i S e iR 2 gl ke F - BERA iy
HES - BEEEHE L H S BT 5 eRSHL S L ARG RS SRR 1 &
PR YIRS E AR B R R AR R AR Y EAE FRREREY
PRBRSEEV A NS D RREEEY Y RIY RREEY N 2 P A GRRT B A LR R R4
SBREREY R BT AR - B ER WS AR R o R BT Y BRI LB IR
TR E D 2 BV E P kTR R Sl Aot TR R AR o Bl ARFRIFETER O E
MR GG ek RRE AE AT RETRG RIS TR PP I S%EL (TR G A RRA DS
ko @ AR BT BRI
WEIST REA T F LA ERTR N2 HI BT ET
Mate® o 2 RETE A IR R SRRt RREHEE Y RRIESFY C RRT S

EN

BORRE AR AT - 59 MATLAB W3R iR d B #ir

17 4 g o

Abstract

Vehicle and highway automation is believed to reduce the risk of accidents, improve safety, increase capacity,
reduce fuel consumption and enhance overall comfort and performance for drivers. This project proposes an
intelligent car-following control (ICFC) system. The proposed ICFC system is comprised of a neural controller and a
robust controller. The neural controller using an asymmetric self-organizing fuzzy neural network (ASOFNN) is
designed to mimic an ideal controller, and the robust controller is designed to compensate for the approximation error
between the neural controller and the ideal controller. The structure of the ASOFNN can online grown or prune. The
proposed structure learning algorithm not only can create the new fuzzy rules online if the approximation
performance is inappropriate, but can also prune the insignificant fuzzy rules online. Moreover, the adaptation laws
of the ICFC system are derived in the sense of Lyapunov stability theorem, thus the stability of the closed-loop
control system can be guaranteed. Finally, in order to verify the effectiveness of the proposed ICFC system, a real-car
experimental setup should be applied. There must have spent much time, manpower and money to build or to
conserve the equipment. This project utilizes the virtual-reality (VR) technique to solve the all above problem.
Experimental results demonstrate the proposed ICFC system can achieve favorable performance and the VR
simulation is comparatively good.

Keyword: car-following control, adaptive control, neural control, structure learning, parameter learning,

virtual-reality

I. INTRODUCTION

Transportation technology is one of the most influential areas in the human life. The traffic congestion is a global
problem. Vehicle and highway automation is believed to reduce the risk of accidents, improve safety, increase
capacity, reduce fuel consumption and enhance overall comfort and performance for drivers. There has been enough
reason to assume that more automated automobiles relieve the driver from many undesirable routines of driving task
[1]. Automated highway systems by not only a free agent but also a platoon have been demonstrated over the past
several years [2-4]. In a model-based controller design, if exact model of controlled system’s dynamic is well known,
there exists an ideal controller scheme to achieve favorable control performance by canceling all the system
dynamics [5]. A tradeoff between system performance and model accuracy is necessary for the ideal controller

design.



Recently, the fuzzy-neural-network-based control techniques have been used as an alternative design method for
identification and control of dynamic systems [6-8]. The key element of the fuzzy neural network is the capability of
approximating mapping through choosing adequately learning method. Though the control performances in [6-8] are
acceptable, the learning algorithm only includes the parameter learning phase, and they have not considered the
structure learning phase of the neural network. If the number of the fuzzy rules is chosen too large, the computation
loading is heavy so that they are not suitable for online practical applications. If the number of the fuzzy rules is
chosen too small, the learning performance may be not good enough to achieve desired control performance.

To solve this problem, several self-organizing fuzzy neural networks (SOFNNs) have been developed [9]. The
self- organizing approach demonstrates the property of automatically generating rules of fuzzy neural networks
without the preliminary knowledge. In general, a new membership function is generated when a new input signal is
too far away from the current clusters, and an existing rule is canceled when the fuzzy rule is insignificant [9].
Recently, the SOFNNs have been adopted widely for the control of complex dynamic systems [10-12]. Some of
them use the gradient descent method to derive the parameter learning algorithms [10]; however, stability analysis
has not been performed yet. Some of them use the Lyapunov function to derive the parameter learning algorithms;
however, the complex design procedure is not suitable for practical applications [11, 12].

In order to verify the effectiveness of the proposed control system, a real-car experimental setup should be applied.
However, there must have spent much time, manpower and money to build or to conserve the equipment. The
virtual-reality (VR) technique can solve the all above problem [13]. The VR technology is applied to make the
operators believe they are in a different geographic location with different velocity and orientation than they have in
the real world [13].

This project describes the technologies for a flexible automated platoon. First, this project proposed an
asymmetric self-organizing fuzzy neural network (ASOFNN) with the asymmetric Gaussian membership functions.
The structure adaptation is described as follows. A new rule of ASOFNN is generated when a new input signal is too
far from the current clusters. If the fuzzy rule of ASOFNN is insignificant, it will be removed to reduce the
computation load. Thus, the ASOFNN can self- organizing the fuzzy rules online to achieve an optimal network
structure. Then, an intelligent car-following control (ICFC) system is proposed. The adaptation laws of the ICFC
system are derived in the sense of Lyapunov stability theorem, thus the stability of the closed-loop control system
can be guaranteed. Finally, two simulation scenarios (one-vehicle following scenario and multi-vehicles following
scenario) are examined to verify the effectiveness of the proposed ICFC system though Matlab and VR simulation,

respectively.

II. PROBLEM FORMULATION

Figure 1 describes a platoon of N vehicles following a lead vehicle on a straight lane of highway. The position of
the rear bumper of the ith vehicle with respect to a fixed reference point O on the road is denoted by x, . The
position of the lead vehicle’s rear bumper with respect to the same fixed reference point is denoted by x,. From the

platoon configuration, the spacing error e, can be written as [1]

@

.- X, —X —H, fori=1

S x,-x—-H' fori=23..,N"
where H, denotes the safety spacing of the ith vehicle in the platoon. In the following, the variables and parameters
are assumed to be associated with the ith vehicle, unless subscripts indicate otherwise. The dynamics of the car

following system for the vehicle in a platoon are modeled as follows [1]
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where ¢ denotes the driving force produced by the vehicle engine; r denotes the engine time lag to the vehicle;
u denotes the throttle command input to the vehicle’s engine (if u>0, then it represents a throttle input and if
u<0, it represents a brake input); m denotes the mass of the vehicle; K, denotes the aerodynamic drag
coefficient for the vehicle; and d_ denotes the vehicle’s mechanical drag. Equation (2) represents the vehicle’s
engine dynamics, and (3) represents Newtons’s second law applied to the vehicle modeled as a particle of mass.
Differentiating both sides of (3) with respect to time and substituting the expression for £ interm of v and a,
yields
a=f(v,a)+gu (@)

where f(v,a):'—l{aJrﬁvwd—m}—ZLva is a nonlinear function, g:i is a positive constant, v denotes the
T m m m mr

velocity of the vehicle, and a denotes the acceleration of the vehicle.

The control objective is to design a control system such that the tracking error can be driven to zero. Assume that
the parameters of the platoon system in (4) are well known, an ideal controller of the following vehicle can be
constructed as [5]

U =g*(-f+x¥ +kE+ke+ke). (5)
Substituting (5) into (4), gives the following equation

e® +kE+ke+ke=0. (6)
If k., k, and k, are chosen to correspond to the coefficients of a Hurwitz polynomial, then it implies lime=0
[5]. However, the system dynamics f and g always cannot be precisely obtained in the real-time practical

applications, thus the ideal controller u™ in (5) is always unachievable.
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Fig. 1. Configuration of car-following platoon.

III. DESCRIPTION OF ASOFNN
A. Structure of ASOFNN

Figure 2 shows the configuration of the proposed ASOFNN which is composed of the input, the membership, the
rule, and the output layers. The output of the ASOFNN with N existing fuzzy rules is given as [8]

V. = (0 Q

in which w, is the output action strength associated with the k-th rule and ¢, is the response of the firing weight

for an input vector x =[x, x,---x_ ]" and composed of membership function defined as

EXP(—(%_—T%), if —oo<x <m,
Oij

eXp(—(%_—rnl"r)z), if m; <x <o
Oij

é’lj: j:1,2,...,|\/| (8)



where M is the total number of membership functions with respect to the respective input node and m., o, and

ij? ij !
o, are the mean, left-side variance, and right-side variance of the asymmetric Gaussian function in the j-th term of

the i-th input linguistic variable x; , respectively. And, the associated fuzzy rule can be obtain as

M
¢ = Hé,jk : ©)
j=1
For ease of notation, define vectors m, ¢, and o, collecting all parameters of ASOFNN as
m = [mu s My My e My oo My =My, ]T (10)
o, = [Ulll Ull_l O-llz Ull_z """ O-1IM T O-II_M ' (11)
c, = [O-lrl o 0-[1 0_er O{z """ O-lrM e O-I':M i (12)

Then, the output of the ASOFNN can be represented in a vector form as
Y, =w'o(x,m,c,,0,) (13)

where w=[w, w, ---w,]" and o=1[¢ ¢, - 4,]".
B. Structure Learning

In the structure growing process, the mathematical description of the existing rules can be expressed as a cluster.
Each cluster in the product space of the input-output data represents a rule in the rule base. The firing strength of a
rule for each incoming data X, can be represented as the degree that the incoming data belong to the cluster [9]. If
the value of firing strength is too small, it represents that the input value is on the edge of range of the existing
membership functions. Under this situation, the output will cause an unsatisfactory performance. Therefore, a new
membership function and a new fuzzy rule should be generated to improve the performance. According to the above
mention, the firing strength obtained from (9) is used as the degree measure

B.=d, k=12,.,N(t) (14)
where N(t) isthe number of the existing fuzzy rules at the time t. Find the maximum degree 3 _  defined as

max

B = Max f,. (15)

1<k<N (1)

It can be observed that the maximum degree S

max

is small when the incoming data is far away from the universe of

discourse of fuzzy rules. If g _ <G

max th

is satisfied, where G, €(0,1) is a pre-given threshold, a new membership
function is generated. The mean and the standard deviation of the new membership function and the fuzzy rule are

selected as follows

m™ = X, (16)
o™ =0, a7
o™ =0, (18)
w™ =0 (19)
where x; is the new incoming data and o, is a pre-specified constant. The number N(t) is incremented
N+ =N()+1. (20)

To avoid the unbounded growing of network structure and the overload computation load, the structure pruning
algorithm is developed to eliminate irrelevant fuzzy rules. When the r-th firing strength S is smaller than the

threshold value P

., it means that the relationship becomes weak between the input and the r-th rule, then the

significant index of r-th fuzzy rules will be decayed. When the r-th firing strength 4. is larger than the threshold

value P

%, » it means that the incoming inputs fall into the range of the r-th fuzzy rule under this situation, then the

significant index of r-th fuzzy rules will be risen. The significance index is determined for the importance of the r-th

rules can be given as



1 (t)-exp(-r,), if B <P
Ir(t+1):{'() PCn) : % " or=12-,N(t) (21)
I @®)-2-expl-7,0-1, ) if =P,
where 1, is the significant index of the r-th rule and its initial value is 1, P, is the pruning threshold value, and

7, and 7, are the designed constant. If | <1, is satisfied, where 1, is another pre-given threshold, the r-th

th
fuzzy rule will canceled. For the real-time implemented, if the computation loading is the important issue for
practical implement, the P, can be chosen as a large value so that more fuzzy rules can be pruned. Hence, the

computation load should be decreased.
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Fig. 2. Asymmetric self-organizing fuzzy neural network.
C. Approximation of ASOFNN

By the universal approximation theorem, an optimal SOFNN can be designed to approximate the controlled

system dynamics, such that [8]

u=u.+A=w'e(x,m,6,,6.)+A=w"¢@ +A (22)
where A denotes the approximation error; w™ and ¢  are the optimal parameters of w and ¢, respectively,
and m", o, and o, are the optimal parameters of m, o, and o,, respectively. In fact, the optimal parameter
vectors that are needed to best approximate a given nonlinear function are difficult to determine. Then, an estimation
neural controller will be introduced to mimic the ideal controller as

u, =we(x,mo,6)=wo (23)
where w and ¢ are the optimal parameters of w and ¢, respectively, and m, o,, 6, are the estimated
vectorsof m, o, and o,, respectively. Define an approximation error, U, as

U=U—-U, =Wo+Wo+Wp+A (24)

where W=w —Ww and (T) = (p* - (f) . In the following, the linearization technique is employed to transform the
nonlinear fuzzy function into a partially linear form so that the expansion (]3 can be expressed as [8]



¢=¢,m+9;6,+¢, 0 +h (25)
where h is a vector of higher-order terms, m=m"-m, ¢, =6, -6, and o, =6, —¢,. Substituting (25) into
(24), (24) can be rewritten as

U=wo+w (p,m+9.6,+¢.6, +h)+Wo+A

T

Il
|
E=}

+m'Q W+6/Q W+6 ¢ W+e (26)

where m'o, Ww=w'g,m, 6/¢ W=w'¢.6,, 60 W=Ww¢@.6,,and s=wh+Wo+A.

1IV. ICFC SYSTEM DESIGN

The proposed ICFC system is comprised of a neural controller and a robust controller as shown in Fig. 3, where a

tracking error index is defined as
s=g+kerkerk [edr. 27)

The neural controller using the ASOFNN is designed to mimic an ideal controller, and the robust controller is
designed to compensate for the approximation error between the neural controller and the ideal controller. The
control law of the intelligent car-following control (ICFC) system is taken as

u=u_+u, (28)
where u_ is the neural controller and u_ is the robust controller. Substituting (28) into (4) and using (5) and (27),
yields

$=g(U -u,-u,). (29)
From (26), the error equation can be rewritten as

S=Wo+m'Q W+6/Q WHG Q W+s—U, . (30)
To dispel the effect of minimum approximation error &, the robust controller is chosen as

u, = E+xs (31)
where E is the estimated value of ¢,and x isa positive constant. To guarantee the stability of the ICFC system,

the Lyapunov function candidate is defined as

) — — e —— ~

T 2
V:s?+ww+mm+crlc,+crrcr+E (32)

2n, 2n, 2n, 2n, 2

where 7, 7,, 7., 1,, 1. are the positive-constant learning rates and E=¢-E. Differentiating (32) with
respect to time and using (30), yields

S WY
V =s5+ + +

— W(Sh+ W)+ (W + i) + 6] (s, Wt —5))

+57(sg, W+ 5,)+S(e—U,) b (33)
o, E
Choose the adaptive laws as
W =W =-7,5¢ (34)
m=-m-= —1,5Q, W (35)
;I = _&| =1, S(PG,VAV (36)



G, =-0, = ~1, 50, W (37)
and

.S (38)

then (19) can be rewritten as

V =—ks*<0. (39)
By Barbalat’s lemma [5], it can be concluded that s(t) >0 as t— oo. In summary, the ICFC system is presented
in (28), where u_ is given in (23) with the parameters adjusted by (34)~(37); u, is given in (31) with the
parameters E adjusted by (38). By applying this online tuning law, the ICFC system can be guaranteed to be stable
in the Lyapunov sense.
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Fig. 3. The block diagram of intelligent car-following control system.

V. SIMULATION RESULTS

A. Matlab Simulation

To investigate the effectiveness of the proposed intelligent longitudinal control system, two simulation scenarios
are carried out. The specific constants of the vehicle parameters used in this paper are chosen as 7=0.2, m=916kg,
K, =0.44Ns’/m* and d_ =67.7 Nm [1]. In scenario 1, assumes that one following vehicle (FV) follows the leading
vehicle (LV). The safety spacing is initialized with H, =10m first, and after the 15th, 30th, 45th, 60th, and 75th
seconds the safety space is changed between H =5m and H,=10m, respectively. The initial values of the LV and
FV are chosen as v,(0)=20m/sec, a (0)=0m/sec*, v,(0)=20m/sec and a (0)=0m/sec’ and the LV in the platoon
has no acceleration. In scenario 2, assumes that the FVs follow the LV with the safety space H,=5m. The vehicle
acceleration and velocity of the LV are shown in Fig. 4(a) and 4(b), respectively. For numerical simulations, the
initial values of the vehicle following system are chosen as v,(0)=20m/sec, a (0)=0m/sec’, v,(0)=20m/sec and

a,(0) =0m/sec”.
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Fig. 4. LV’s acceleration and velocity time profile for scenario 2.

For both scenarios (scenario 1 and scenario 2), the control parameters of the ICFC system are selected as k, =2,
k,=5, k=4, 7,=1000, n,=n,=n, =10, p.=1, o0,=10, G,=05, R =01, r,=7,=001 and
I, =0.01. These parameters are chosen through some trials to achieve satisfactory transient control performance. The
simulation results of scenario 1 are shown in Fig. 5. From the simulation results, it can be seen that the proposed the
ICFC system can achieve satisfactory performance for the one-vehicle following system even in the change of the
safety spacing command. The simulation results of scenario 2 are shown in Fig. 6. From the simulation results, it can

be seen that the proposed the ICFC system can also achieve satisfactory performance even in the changes of
acceleration and velocity of the LV.
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B. VR Simulation

A visual system is the most significant part in a simulator, because the operators on board recognize driving
environments with their eyes. Therefore, graphic scenes with high resolution are needed to realistically feel the
virtual driving environments. In the virtual driving environments development, we use the 3DS-max [14] software to
create the 3D models, and use the WorldToolKit (WTK) library [15] to program the VR scenes. The 3DS-max
software is popular graphic software to create 3D model. The WTK library is an advanced cross-platform
development environment for high-performance and 3D graphics applications. To possess a realistic driving feeling,
the virtual driving environment must be very similar to the real world. However, since it is very difficult to process
this environment in real-time, the virtual driving environment is set by compromising between a realistic driving
feeling and real-time ability. The development flow of the VR scene is shown in Fig. 7. First, we use 3DS-max to
accurately build 3D models for a true system (such as car, boat, tree and terrain, etc.) and define the parameters of
each model (such as length and width of the car, and radius of the wheel, etc.). Then, we use C program including the
WTK library and call its library function to move the 3D models. For VR dynamic simulation system can virtually
capture the behavior of the true system, a system dynamic equation is used to describe the system’s dynamic

behavior.

WTK Library

Visual C++
A

O it e Dynamic
Model Parameter Equation

Fig. 7. Development flow of the VR scene.

VI. CONCLUSIONS

This paper has successfully developed an asymmetric self-organizing fuzzy neural network (ASOFNN). And, an
intelligent car-following control (ICFC) system with adaptive control approach for the vehicle-following system is
proposed. In the ASOFNN design, a dynamic rule generating/pruning mechanism is developed to cope with the
tradeoff between the approximation accuracy and computational loading. In the ICFC design, the on-line adaptation
laws are derived based on the Lyapunov stability theorem to guarantee the closed-loop controller’s stability. Finally,
the Matlab simulation and the virtual-reality (VR) technique are applied to show the effectiveness of the proposed

ICFC system, respectively.
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