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Abstract

In this study, we attack the weighted adaptive minimum vari-
ance control for stochastic T-S fuzzy ARMAX models. From
the fuzzy ARMAX model, a fuzzy one-step ahead prediction
model is first developed. A stochastic gradient algorithm is
then proposed to identify the parameters of the related one-
step-ahead predictor. Under the direct adaptive control scheme,
the weighted minimum variance control is applied to find the
control law to make adaptive control system stable in the sense
of mean square stability. Stability of the adaptive stochastic
fuzzy control system is rigorously derived. Simulation study is
also made to verify the developed results.

Keywords: Fuzzy adaptive control, Stochastic T-S fuzzy AR-
MAX model
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Recently, based on the Takagi-Sugeno model, fuzzy modeling
for nonlinear dynamic systems and identification problem are
discussed in [1]-[3]. Meanwhile, fuzzy control scheme has been
employed for tracking control of nonlinear systems based on
the adaptive feedback linearization techniques [4]-[11]. In the
previously mentioned literature, the external disturbances or
noises are considered to be deterministic for the convenience
of control design. However, in many practical applications

[12][13], external noises are inevitable and are more adequately
described by random processes. In this situation, the systems
to be controlled are always modeled by stochastic systems. A
nonlinear stochastic system can be approximated by a fuzzy
stochastic system [14]-[19]. A stochastic adaptive control
scheme for the state-space T-S fuzzy model based on the LQG
control theory is proposed in [20]. Non-adaptive LQG fuzzy
controllers are also considered in [14] and [15]. On the other
hand, the NARMAX (nonlinear ARMAX) model has been pre-
sented for modeling nonlinear processes. The NARMAX model
can be reduced to a quasi-ARMAX system by linearization
or approximation. Fuzzy system identification and nonlinear
model predictive control based on the quasi-ARMAX model are
discussed in [16][17][18]. Besides the quasi-ARMAX model,
the fuzzy ARMAX model has been used to forecast the short-
term load of a power system in [19]. However, these results
proposed by the mentioned literature are given without vigorous
proofs. Solid proof of the stability and tracking performance of
the fuzzy ARX model for deterministic systems can be referred
to [21]. In the literature [29], the global stochastic stability and
tracking performance of the adaptive minimum variance control
for stochastic T-S fuzzy ARMAX models are attacked.

In this study, we shall further attack the weighted adaptive
minimum variance control for stochastic T-S fuzzy ARMAX
models. From the fuzzy ARMAX model, a fuzzy one-step
ahead prediction model is first developed. A stochastic gradient
algorithm is then proposed to identify the parameters of the
related one-step-ahead predictor. Under the direct adaptive
control scheme, the weighted minimum variance control is
applied to find the control law to make adaptive control system
stable in the sense of mean square stability. Stability of the
adaptive stochastic fuzzy control system is rigorously derived.
Simulation study is also made to verify the developed results.

Notations and Definitions

Let ||| be the Euclidean norm of a vector z. Let A(g~') be



n
a polynomial with A(¢g~!) = Zaiq_i. The companion matrix

i=0
Z4 associated with the polynomial A(q~!) is defined as
=, — O(n—l)xl In—l
=4 —@n  —p—1 —ay

=R iR B ARR
A. System modeling and problem formulation

A nonlinear stochastic system can be divided into several
local linear stochastic systems according to their operation
regions. Local linear systems using ARX, ARMAX, and NAR-
MAX models to approximate nonlinear stochastic systems can
be referred to [21][18][19][15]. A fuzzy stochastic model can
be employed to interpolate local linear stochastic systems for
a nonlinear stochastic system via the smoothing of fuzzy basis
functions. This fuzzy stochastic model is described by fuzzy if-
then rules and will be used here to deal with the stochastic
tracking problem of nonlinear stochastic systems. The :-th
rule of this fuzzy stochastic model for nonlinear discrete-time
stochastic systems is proposed as the following fuzzy ARMAX
form:

Plant Rule i:

If z1(k)is Fjy and ------ and zg, (k) is Fig,,

then A;(¢)y(k + 1) = Bi(q~ Hu(k) + Ci(q~)w(k + 1) :

(1

for i = 1, 2,..., L, where F}; is the fuzzy set, z1(k), z2(k),

-, 2, (k) are the premise variables, and L is the number of
if-then rules. Polynomials A;(¢™1), B;(¢™ '), and C;(¢™ ") are
defined, respectively, as follows

Ai(gY) = aio +ang t + ... + aing™ ", aip =1

Bi(q™") =bio + bing 4+ ... +bimq™ ™,

Ci(g™") =cio+cag ' +eing 4+ o +cag!, cio=1
2

for i = 1, 2,..., L where ¢~ ! denotes the delay operator, i.e.,
q'y(k) = y(k — 1). Without loss of generality, C;(¢g~*) can
be taken to have roots inside the unit circle [12][13]. y(k) is
the output measurement, u(k) the control input, and the noise
process w(k) will be taken to satisfy the following assumptions
[12][13]:

Elwk+1)] Fr] =0, a. s. 3)

Ew?*(k+1)| ] =02, a.s. “4)
1N

lim sup— w?(k) < K, < 00, a. s. 5

N%opN; (k) < ®)

where E denotes the expectation, f j; denotes the sub-o al-
gebra generated from the data set {y(s)}s<x. Note that F
is increasing, i.e., f i C F p+1. We also assume that u(k) is
F p—measurable. For the premise variables z;(k),1 < i < go,
we assume that they are f ,—measurable, i.e., z;(k) depends
on the data set {y(s),u(s)}s<x. Using the smoothing property
of the conditional mean [22], conditions (3) and (4) imply that
w(k) is also a white process with zero mean and variance o2,.
Note that condition (5) implies

N

1

~ > w?(k) < Ky, a.s., for N > N, (6)
k=1

where N, is a sufficiently large integer.

Given the input/output sequences {u(k)} and {y(k)}, the
stochastic fuzzy system (1) is equivalent to

L
y(k+1) = Z hi(z(k)) {(1 — Ai(g")y(k + 1)
+B;(q  u(k) + Ci(¢ Hw(k +1)} (7)

where z(k) = [21(k) z2(k) ... zg,(k)] and, for 1 < < L,

pi(z(k)) = H Fij(z;(k)) (8)
hi(z(k)) = — P EED 9
) = S )

Where the function Fj;(z;(k)) is the grade of membership of
zj(k) in Fj;. For (8) and (9), we assume that

(10)

The physical meaning of (7) is that the L local linear stochas-
tic subsystems are interpolated by the fuzzy basis functions
hi(z(k)), fori =1,2,..., L.

In the sequel, we shall first attack the identification problem
for estimating the parameters related to the fuzzy ARMAX
model (1). To attack this problem, we shall need some math-
ematical tools concerning the stochastic stability of the T-S
stochastic fuzzy system. After obtaining the estimates of the
parameters, the design objective for the stochastic fuzzy system
in (7) is to determine the adaptive control input u(k) so as to
bring the output y(k + 1) to optimally track a desired bounded
output command y*(k + 1), which is specified beforehand.
Based on the identified parameters, the control objective is to
choose the input u(k), as a function of {y(s),u(s — 1)} ., to
minimize

Ji(k+1) = B{ly(k + 1) — y*(k + D)* + M (K)|F 1} (11)

B. Stability of Stochastic T-S Fuzzy Systems

In order to deal with the identification problem of the T-S
stochastic fuzzy system, the stability issue of the stochastic
fuzzy system must be addressed first. The results will be
used in the sequel for analysis of the optimal predictor and
the identification algorithm for the stochastic fuzzy ARMAX
model. Since the fuzzy ARMAX model, such as in (7), can
be transformed into a state-space stochastic fuzzy model and
stability is easier to discuss from the state-space perspective,
we consider a forced T-S fuzzy system in the state-space form
as follows

w(k+1) = hi(z(k) Aiw(k) + v(k +1)

i=1

12)

where {v(k)} is the stochastic forced term. It is assumed that
{v(k)} is F p—measurable. Recall that z(k) is f ,—measurable,
ie, E{hi(z(k))|Fr} = hi(z(k)) as. Then z(k) is also



F —1—measurable. Also we make the assumption that v(k) is
a process with uniformly bounded average power

supE{Hv(k)||2} =52 < 00 (13)
k

Before deriving the stability result for the forced stochastic
fuzzy model (12), we need to first consider the following
unforced stochastic system

x(k+1) = A(k)x(k) (14)

where A (k) is f —measurable and the sequence {||A(k)||2}
is uniformly bounded. A sufficient conditions concerning the
stability of the unforced system in (14) is given below.

Theorem 1: 1If there exists a sequence of symmetric positive
definite matrices {P(k)} with 0 < \B"] < P(k) < \BaX] <
oo and P(k) being F j—measurable such that the matrix in-
equality

AP(k) — AT(R)E{P(k+1)|F 1} A(k) >0, V& (15)

holds for some A with 0 < A < 1, then the stochastic fuzzy
system (14) is mean square exponentially stable with

E{lah)?} < 2 Ammv “E {[latko)l’}, vk = ko (16)

where kg is an arbitrary initial time, z (ko) is an arbitrary initial
condition. Furthermore, it is also exponentially stable in the
sense that

lz(B)] < er (VA (ko)

for some positive almost surely bounded random variable ¢; >
0 and a sufficiently large integer K.

k> Ky, a.s. 17)

Proof: The proof is given in Appendix 4.1. |
Note that the following unforced system

Zh (k),

which is related to (12), is a spec1a1 case of (14) by identifying

L
= > i) A,

Hence we have the following corollary.

z(k+1) (18)

Corollary 1: 1f there exist symmetric positive definite matri-
ces P;,1 < i < L, such that the linear matrix inequalities
{ AP, ATP;

Pin Pj

= A

Zij =

}>0, 1<i, j<L (19

hold where X is a positive real number with 0 < A < 1, then
condition (15) is satisfied. Therefore, for the system in (18), the
stability properties in (16) and (17) hold.

Proof:
Since P; is positive definite, by Schur complement, condition
(19) is equivalent to

AP, — ATPjA; > 0

Zh P

F p—measurable and )\mmI < P(k) < AB3] where \Bin =

(20)

Define P(k) = It follows P(k) is

min (Amin(P;)) and NP> = 1r£1a<xL()\maX(PZ—)). Due to the

1<i<L <i<
properties of h;(+) in (10), we also have

L
E{h;j(z(k+1)[Fr} >0, > E{hj(z(k+1)|Fs} =1
j=1

Now applying the operation
ZZh ))E {h;j(z(k+1))|F »} to both sides of (20), we
i=1j5=1

have

AP (k) — AT(K)E{P(k+ 1)|F 1} A(k) > 0,Vk.
By using Theorem 1, the proof is completed. (]

In the following, we shall see that, provided the matrix
inequalities in (15) hold, the stochastic system in (14) behaves
like a linear time-varying system. With the system A(k), the
system response of the system in (14) can be described by

where ®(k+1, ko) can be regarded as the transition matrix [24]
and is defined as

O(k+1,ko) = A(k)A(k —1)--- A(ko) 1)

and ®(k, k) £ I. The following corollary directly follows from
the definition of the norm |||, . and inequality (16).

Corollary 2: If there exists a sequence of symmetric positive
definite matrices {P(k)} with 0 < XB"] < P(k) < \B™] <
oo and P(k) being F p—measurable such that the matrix in-
equality (15) hold for some A with 0 < A < 1, then the upper
bounds of the induced norm of ®(k, k) in the mean square
and almost sure senses are given by

)\max
1K, Fo)lms <4 S (VA5 VB 2 ko (22)
P
@k, ko)|| < ca(WVA)F %0 k> K, as.  (23)

for some positive almost surly bounded random variable cy and
a sufficiently large integer K.

Now consider the following stochastic system

w(k+1) = [Ak)z(k) + B(k)us(k)]
ys(k) = [C(k)z(k) + D(k)us(k)]

where the sequences {||A(k)||2}, {||B(k)||2}, {HC(k)||2},
and {||D(k)H2} are uniformly bounded.

Theorem 2: For the stochastic system in (24), there exists
a sequence of symmetric positive definite matrices {P(k)}
with 0 < ABR] < P(k) < ANB8%] < oo and P(k) being
F x—measurable such that the matrix inequality (15) hold for
some A with 0 < A < 1, then we have

1 N
NZ”ys(k' Z”us
k=1

for N > K; where K; is a sufficiently large number, 0 <
Ky < o0, and 0 < K3 < o0.
Proof: The proof is given in Appendix 4.2. [ ]

(24)

|17 —|— —, a.s., (25



Note that the following general T-S fuzzy state-space system
Zh
Zh

is a special case of the systems in (24) by identifying

z(k+1) x(k) + Bus(k)]
(26)

ys (k)

(k) + Dius(k)]

L L
A(k) = Zhi(z(k) = Zhi(z
2?1
C(k) = hi(2(k))Ci, D(k Zh

Therefore, by combining the results in Corollary 1, Corollary 2,
and Theorem 2, the following corollary can be easily obtained.

Corollary 3: 1If there exist symmetric positive definite matri-
ces P;,1 <4 < L, such that the matrix inequality (19) holds for
some A with 0 < A < 1, then, for the stochastic fuzzy system
(26), the inequality (25) holds.

Stability analysis of the state-space stochastic fuzzy system
(12) is very useful for the optimal tracking design of the fuzzy
ARMAX model in (7). For system identification based on the
prediction error method [26] for the fuzzy ARMAX model, the
optimal fuzzy prediction must be first established as in the next
section.

C. Optimal predictor of stochastic fuzzy systems

In this section, the prediction problem of the fuzzy ARMAX
model in (7) will be addressed. This will result in a fuzzy
predictor model which will be suitable for parameter estimation
and optimal tracking design of fuzzy ARMAX systems. The
optimal fuzzy predictor for the fuzzy ARMAX model has
been studied in [27]. The results in that reference are briefly
summarized in the following.

Assumption 1: Let Z¢ ; be the companion matrix associated
with the polynomial C;(¢~!). Assume that there exist symmet-
ric positive matrices Pc;, 1 < ¢ < L, such that the set of
matrix inequalities

=T
AePei  E¢iPe,;

¢ >0, 1<i, j<L
Pej=ci  Poy J

27)

is solvable for some A\¢ with 0 < A¢ < 1.

A fuzzy polynomial Y& hi(z(k))Ci(¢~") with Ci(g~1)
being manic and h;(-) satisfying (10) is stable if the LMI
condition (27) holds.

Let y°(k + 1|k) denote the conditional mean of y(k + 1)

)

given the data set {u(s), y(s)},cp i€, yO(k + 1] k) £
E{y(k+1)| F}. Define the polynomial a;(¢~1), 1 <i < L,
as
Ci(g™) = Ai(a™") =q " ou(g™) (28)
where
ai(q_l) =i +ang P+ q_(ﬁ_l), n = max(n, ()

Under Assumption 1 on the fuzzy ARMAX model (7), the
optimal one-step ahead predictor of y(k + 1) given the data set

{u(s), y(s)}.<. is y°(k + 1| k) which satisfies the following
equation B
L
yO(k+ 1]k) = Zh — Cilg™M)] O (k + 1K)
+ ai( Dy(k) + Bi(g~ " u(k)} (29)
with the prediction error
y(k+1) —y°(k + 1k) = w(k + 1) (30)

Equation (29) defines a unique one-step ahead fuzzy pre-
diction model corresponding to the fuzzy ARMAX model (7).
From human-operation point of view, the fuzzy prediction
model is more feasible than the fuzzy ARMAX model since we
can use the current and past measurement data {u(s), y(s)},,
to predict the future response y(k + 1) of the stochastic fuzzy
system; while using the fuzzy ARMAX model (7), the statistical
properties of the noise process w(k) should be specified in
advance.

D. Stochastic Gradient Algorithm

Following from the fuzzy prediction model represented by
(29), the stochastic gradient algorithm in [13] will be used to
identify the parameters. First, rearrange the prediction model
(29) as follows

L

Z hai(z(K))xq (

where, for 1 < i < L,

k4 1|k) = 0i0 = o5 (k)b (31)

xo(k) = [ (klk 1) = ¢ (k= 1+ 1}k =)
y(k) - y(k =7 +1) u(k) - -ulk —m)]"
Oio = [Cil TG ot Q(m—1) bio - - - bim]T
do(k) = [ha(z(k)xg (k) ha(z(k))xg ()
------ h (=(k))xE (k)]
0y = [91To 92TO ...... gfo]T

Note that (31) represents a pseudo linear regression form for the
fuzzy ARMAX prediction model (29) because the component
y'(k — i+ 1|k — i) in xo(k) depends on the true parameter
vector fy. According to the pseudo linear regression form (31),
the proposed stochastic gradient algorithm to identify the true
parameter vector 6 is given by, for k > 1,

T ¢(k5 -1
O(k)=0(k—1)+ Th=2) F T (k= ok = 1)
% [y(k) = o7 (k = DAk — 1)] (32)
where the regression vector ¢(k) and r (k — 1) are defined as
$(k) = [l (z(k))x" (k) ha(2(k))x" (k)
~~~~~~ A (z(k)X (k)] (33)
x(k) = [=y(k)--- =gk =1+ 1)
y(k) - y(b =7+ 1) ulk) ulk—m)]" (34)
g(k) = 6" (k = 1)A(k) (35)
r(k—1)=r(k—2)+¢" (k- 1)p(k — 1) (36)



~

For the initial conditions, #(0) can be arbitrarily chosen and
r(—1) must be a positive scalar. By its definition, the variable
7(k) can be regarded as a posterior estimate of y(k).

Before proceeding to analyze the stochastic gradient algo-
rithm, some useful definitions are made as follows

y(k) = ¢" (k —1)0(k — 1) (37)
e(k) = y(k) — y(k) (38)
n(k) = y(k) —y(k) (39)
s(k) = n(k) — w(k) (40)
(k) = 6(k) — 6o 1)
Bk) = —¢" (k — 1)0(k) 42)

The variables y(k) and y(k) are the a prior and the a posteriori
predictions of y(k), respectively. Accordingly, e(k) and n(k)
are termed as the a prior and the a posteriori prediction errors,
respectively. Using (30), the quantity ¢(k) can be rewritten as
(k) = y°(k|k—1)—7(k) and thus it accounts for the deviation
between the optimal prediction y°(k|k — 1) and the a posteriori
prediction F(k). In the extreme case, if (k) = 0, then ¢(k) =
¢o(k) and the pseudo linear regression form (31) becomes g(k+
1) = ¢T (k)fy which is a linear regression form.

Lemma 1: For the stochastic gradient algorithm in (32), we
have

e
(i) (k) = S et @

(iit) E{ﬁ(i)w(/ﬂ)l Fr1}
__¢ (kT(kl)_QSY)“ - 1)03), a. s 45)
(iv) ihi('z(k = 1)Ci(q™)s(k) = B(k)  (46)
Proof: Thelproof is given in Appendix 4.3. n

In addition to the results in Lemma 1, we shall need the
following assumptions in order to obtain the properties of the
parameter estimate 0(k).

Assumption 2 : For each i, 1 < i < L, system C;(q~ 1) is
input strictly passive (ISP) [13].

In (46), the signals ¢(k) and B(k) are related by the fuzzy
polynomial Ele hi(z(k —1))Ci(g™1). As shall be shown in
the next lemma, Assumption 2 implies a passivity condition
for that fuzzy polynomial.

Lemma 2: Consider the fuzzy system in (46). With Assump-
tion 2 that C;(g~!) is input strictly passive (ISP), we have

k
> _B(0)s() — es*(G) 2 0, for k=1 @7)
j=1
for some € > 0.
Proof: The proof is given in Appendix 4.4. [ |

Theorem 3: Under Assumption 2, for the stochastic gradi-
ent algorithm in (32)-(36), we have the parameter difference

convergence
N o . 2
Jim > He(k) — 0k - 1)” <00, a.s. (48
k=1
and the normalized prediction error convergence
N 2
, [e(k) — w(k)]
1 . 8. 4
N rk—1 o ®s “49)
k=1
Proof: The proof is given in Appendix 4.5. [ ]

With the property in (49), it is possible to attain further results
of the stochastic gradient algorithm by imposing an additional
key condition. The following stochastic key technical lemma is
quoted from [13].

Lemma 3: With the property in (49), if there exist positive
constants K,;, K42, and N such that, for N > N, a. s.

1 Kop o
a2 2
— 1)< —
NV - 1) < Ko+ = k; [e(k) —w(®)*,  (50)
then a. s.
N
2
(6) Jim — ; [e(k) —w(k)]" =0, (51)
(#9) limsup V-1 < 00, (52)
k—oo N
1
. ~ 2
(i) Jim 5 32 F {ly(k) = 5| Fra )
— 2. (53)
Proof: The proof is given in Appendix 4.6. [ ]

E. Adaptive Weighted Minimum Variance Control

With the stochastic gradient algorithm for identifying param-
eters in the stochastic fuzzy predictor model, we are ready
to propose an adaptive fuzzy controller. The objective of the
adaptive control system is to design « (k) to minimize the mean-
square error between the output y (k) and the desired output
command y* (k) at any time instance and at the same time to
keep the control law at suitable level, i.e., the cost function
in (11) is minimized. We shall construct a direct adaptive
control. Therefore, we shall first discuss the structure of the
weighted minimum variance controller by assuming that the
system parameters are given. For the fuzzy stochastic system
(7) having the optimal one-step ahead prediction form in (29),
the weighted minimum variance tracking control minimizing
the cost function Ji(k + 1) in (11) is given by [27] as quoted
below. First, let

Theorem 4: ([27]) For the fuzzy stochastic system (7) hav-
ing the optimal one-step-ahead prediction form in (29), the
weighted minimum variance control law minimizing the cost



function in (11) is given by

u(k)
L
{Z g ) =1y’ (k +1[k)
=
“(k+1) = > hi(z(k)ai(q (k)
. =1
= hi(2(k)[Bi(g™") = bio (k)} (54)

which is equivalent to

bo(k) [y°(k + 1|k) — y*(k + 1)] + Au(k) =0 (55)
The dynamics of the closed-loop system is governed by
ult) = 22 e 4 1) g+ )+ 1] G)
and
L
; hi(=(k) {Ai(q*) + Bz(q*)b(}(k)} y(k+1)
L
= S B 2y 4 1)
L
Ym0 Bl 2 Gl i+ )

(57)

Now suppose that the estimated parameters, &;;(k), b;;(k),
and ¢;;(k) are obtained by using the stochastic gradient algo-
rithm at time k. Accordingly, define the following polynomials

@-(k,q—l) = @ (k) + all(k) ...... + al(ﬁ_l)(k)q_(ﬁ_l),
Bik.q™) = bio(K) + bll( Y, + bi (k)™
Ci(k7q_1) =1 + éll(k) + 012(k> -2 —+ .. + éll(k)q l7

with cio = 1. Let bo(k) = 1, hi(2(k))bio(k). Based on the
above estimated polynomials, the weighted adaptive minimum
variance control law under the certainty equivalent principle is
given by

_ bo(k) [, Ay
u(k) = B2 (k) 1 {; hi(2(k))[Ci(q™") — 1]y(k + 1)
L
+yt(k+1) =) hi(z(k)d (g y(k)
=1
L
—th(z%))[ﬁi(q‘l) %}u(k)} (58)

~

()

oyt (k+ 1)} tuk)=0 (59

FE. Analysis of Stability

In this section, closed-loop stability of the proposed adaptive
stochastic fuzzy control system will be discussed. First, we
rewrite the equation concerning the adaptive control law in (59)
as

bo (k
u(k) = 0; ) e(k+1)+y"(k+1) —y(k+1)] (60)
Now applying the operator Zle hi(z(k))B;(q~1) to both sides

of the above equation and using the system equation (7), we
can obtain

L ~
> teth) |4~ + Ba™) P i+
L . bo(k)
- ;h g b \
X[y (k+1)+ek+1)—wk+1)]
. X
+;hl [ D+ Bi(g” )boik)]w(k—i—l)

(61)

To analyze the closed-loop response of y(k) from the above
equation, the estimated term E)O(k) imposes a difficult issue.
Therefore, as done in [28], we assume the following assump-
tion.

Assumption 3: (i) Assume that by ; is known for 1 <7 < L
in the fuzzy model and these exists positive number by i, and
bO,max such that 0 < bO,min < boﬂ‘ < bO,max and 0 < bO,min <
|b0(k)| S bO,max-

Based on Assumption 3, it is possible to find a constant g
such that

A
- < <1
O<3Fm2m S

Also, the closed-loop system equation in (61) becomes

(62)

L

S hi(=(k)

i=1

bo)(\k)] y(k+1)

[qul) LB

+elk+1)—wk+1)

b"ik)} w(k+ 1)

(63)

{Ci(q‘l) +Bi(g™")

Without loss of generality, assume that n = max(n,m). Then,
Ai(g71) and B;(¢~') will be regarded as polynomials of
degree n where the extra coefficients b;; for n > j > m are
identified as zeros. Let =7 be the companion matrix associated
with the polynomial A;(¢~!) & —v94;(¢~!) with degree n.
Corresponding to the polynomial B;(q~!) with degree n, define
a matrix Mz, as

Om—1)xm

M= =
B —Y0bin  —Y0bi(n—1)

—vobi1



Next we assume that the nonadaptive weighted minimum
variance controller defined in 54 is a stabilizing controller for
the stochastic T-S fuzzy model defined in (7).

Assumption 4: There exist symmetric positive definite ma-
trices P;,1 < i < L, of the form
—11
P, P, O(n—1)x1 64)
O1x(n-1) P

such that the matrix inequalities, for 1 <, 7 < L,

— b2 [P —
)\OPz: € o}igaxl :'i J Onxn
PiE5 P, PMy | >0 (69
Oan M%l j €In

hold for some ¢ > 0 and some \g with 0 < \g < 1.
Now, define the following time-varying matrices

L L
Za(k) = Zhi(z(k))EZi, Mg (k) = Zhi(z
L L

and let I'y(k) be a diagonal matrix with

bo(k —7) bo(k—7m+1) bo(k — 1)
A ) TN

Iy (k) = diag{ }
(66)
Note that by the properties of the membership functions in (10)

and the definitions of by (k) as well as by max, it follows that

b max
2] < 22

Moreover, from Lemma 7 in [27], we can conclude that

[Ea(k) + Mp(k)T2(k)]" Py (k) [Ea(k) + Mp(k)T2(k)]
< XoP(k)

(67)

(68)
Based on Assumptions 1-4, we have the following results
which will be used to prove stability of the adaptive control
system.
Lemma 4: Under Assumption 1-Assumption 4, there exist
finite positive constants Kg to Kj3 such that a.s.

1 Ks o
— 2 < 8 _ 2
() 5 D020 < 2D [elk) —w(k) + Ko, (69)
k=1 k=1
1 & Ko o
) 10 2
(i) 5 DTk < =7 D lelk) —w(k)]’ + Kir,  (70)
k=1 k=1
r(N=1) Koo
— a2 2
— K 1
(#it) N SN kzzjl [e(k) —w(k)]” + Ka1, (71)
for N > N where N is a sufficiently large number.
Proof: The proof is given in Appendix (4.7). [ |

Finally, with the above lemma, we have the following track-
ing performance and global convergence result.

Theorem 5: For the stochastic fuzzy system in (7) with As-
sumption 1-Assumption 43, the weighted adaptive minimum

variance control system is stable in the sense that

() limsup — Z y a. s. (72)
k—o0
(i4) hlrcn sup Z U a. s. (73)

Proof:
Since, with (71), the stochastic key technical lemma (Lemma
3) holds, we have

Moreover, we have

lim sup
k—oo

which implies (72) and (73). O

r(N —1)
N

G. Simulation Study

In this section, a simulation example is given to verify
the proposed adaptive weighted minimum variance control
algorithm.

Example 1: Adaptive control for T-S fuzzy systems
Consider the following stochastic fuzzy system:

If z(k) is F;, then

Ai(g y(k +1) = Bi(g u(k) + Ci(g~Hw(k + 1)
for i =1,2,---5 where
Ai(g7H)=1-027¢" 1 +0.011¢72,

As(q™

Cs(gH=1-0.18¢"1!

As(g™h) =1—-0.39¢7 4 0.035¢72,
Bay(¢™h) =1-0.5¢"1,

Cy(¢"H) =1-0.195¢""

As(g7) =1—0.44¢71 4+ 0.0468¢ 2,
Bs(¢"Y) =1-0.6¢"",

1 =1-022¢"",

and w(k) is a zero-mean Gaussian white noise with o, = 0.01.
The membership function for the fuzzy logic set F; is given in
Fig 1 and the premise variable z(k) is chosen as z(k) = y(k).
We choose y* (k + 1) = sin( %)+ 3sin () as the reference
signal. to estimation parameter and find the u (k) to yield
y(k+1) = y*(k+1). The weighting constant A is chosen
as A = 0.01.The simulation results are shown in Fig 2 and
Fig 3. Fig 2 shows the output y(k) and the prediction (k)
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2. Output y(¢) and its prediction F(t) of Example 1.

together with the estimation error. Fig 3 shows the output y(k)
and the desired output command y* (k). The estimated paramers
are shown in Fig. 4.

W, s

Adaptive weighted minimum variance control for stochastic
T-S fuzzy ARMAX model is addressed in this study. From
the fuzzy ARMAX model, a fuzzy one-step ahead prediction
model is first developed. A stochastic gradient algorithm is
then proposed to identify the parameters of the related one-
step-ahead predictor. Under the direct adaptive control scheme,
weighted minimum variance control is applied to find the
control law to make the output track a desired reference signal.
Stability of the adaptive stochastic fuzzy control system is
rigorously derived. Simulation study is also made to verify the
developed results.

y'(k) and y(k)
:

0
y(K)
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time(k)
Y-y (k)
5 T
0 0 ) o ot homyeopeensd o
5 . . . . . . . . .
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time(k)

3. The reference signal y*(¢) and the output y(¢) of Example 1 is shown
in the upper trace. The tracking error is shown in the lower trace.

Estimated parameters of the first local model
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time(k)

Estimated parameters of the third local model
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time(k)

The easimated parameters of the first and the third local models.

4.. APPENDIX

A. Proof of Theorem 1

Proof: First define a Lyapunov function as

V(w(k)) = 2" (k)P (k) (k) (74)
which is uniformly positive definite and
XE lo() 2 < V(a(k) < XB= (B (75)
With the definition of V' (x(k)), it follows that
V(z(k+1)) =z (k) [AT(K)P(k +1)A(k)] (k)  (76)
Note that the terms x(k), P(k), and A(k) are all

F ,—measurable. Now applying the conditional mean operator
E{- | Fi} to the both sides of (76) and using (15), we have,



almost surely,

E{V(z(k+1) | F}
zT (k) [AT(K)E {P(k+ 1)|F 1} A(k)] z(k)

)
(k

A

(
AV (z(k))

Note that as E{||A(k;)||2} and E{||P(k;)\|2}are uniformly
bounded, E{V(z(k+1))| Fr} and E{P(k+1)|F} are
well defined. Apply the conditional expectation operator
E{ | Fr_1} again to the both sides of (77) and recall that
the sequence of the o—algebra [ is increasing. With the
smoothing properties [13] of conditional mean and inequality
(77), it follows that almost surely

E{V(z(k+1) | Fr1} < NV(2(k—1))

Continuing this procedure by sequentially

E{"Fk'—Q}’ E{|Fk—3}’ ) E{|Fk0}7
obtain almost surely

applying
one can

E{V(x(k+1)) | Fr} < NPV (2(ke))  (78)

Now taking expectation of the last inequality to yield

E{V (x(k))} < NP BV (2(ko))}

Finally, using the fact of (75), inequality (16) is obtained.

Now we turn to prove the almost sure exponential stability
(17). Clearly, it is trivial if z(ky) = 0. Now assume that the
initial condition x (ko) is nonzero. By Chebyshev’s inequality
[22], for any € > 0, we have

Prob{‘”;( )H‘ > Gk}
(k)|
< p{lz®l }/ek (79)

= E{pipE{ls0I® 11}/

where Prob{.A} is the probability measure of the event .A. With
(75) and (78), one can get

max

AB
E{le®I” | Fro} < X el a.s
With the last inequality, (79) can be reduced to

|z(F) |l } L AP™ ek
Prob{ >epr < )\ 0

[l (ko)l & Apn
(k—Fko)/2

Now choose the sequence €, as €, = oA}
and A1 > A. Then inequality (80) implies that

S Prob { ()] > oA/ (o) |}

k=ko
1 \max e Ao
< 2 )\iin Z (T)k ho
€ A\p k=ko 1
As - <1, it follows that

Z Prob{||x )| > eoAlFFo)/2 IIa:(ko)Il} < oo

k=ko

(80)

forany eg > 0

and consequentially, by the Borel-Cantelli Lemma [22], we
obtain that

Prob {ukZKl {||x(k)H > eoAlFR0)/2 ||x(ko)||}} =0

for some sufficiently large K5, any €g > 0, and any A\; > A.
This means that for any sample path with bounded initial state
x(ko), we have

lz(B) < ex (VR Rz Ro)ll, k> K, aus.

for any initial condition x(kg), some positive bounded random
variable cq, and a sufficiently large integer K. This completes
the proof. [ ]

B. Proof of Theorem 2

Proof: Suppose that ||A(k)|| < AL, |B(k)]| < By,
|C(k)|| < Cf, and [|[D(k)|| < Dy, for all k. Using the def-
inition of the transition matrix defined in (21), the response of

the output y(k) of the fuzzy system in (26) can be represented
by

ys (k) = C(k)D(k, 0)a(0) + D (k)us (k)
k—1

k)Y @k, j + 1)B(j)us(j)
J=0

Applying the results in Corollary 2, for £ > K7, we have

k
s (k)| < CrLeaVA™ [|2(0)]| + Dy, [Jus (k)|
k—1
+CLBLY @k, + Dl lus()] 5 a. s.
§=0

By the Cauchy-Schwartz inequality, the last inequality leads to

lys ()1 < 3{CEEN" 2(0)* + D3 [l (k)]
2
k—1
+C} B} Z |@(k, j + D) flus ()]l
j=0
< 3\ 4+ 3D73 |lu, (k)|
k—1
+3CIBEY || ®(k,j+ 1)
j=0
k—1
x> @k, 5+ D us(G)1?, a. s. (81)
j=0

where ¢3 is defined as ¢3 = 3C%¢3||x(0)]|*. Considering the
change of index ¢ = k — j, the first summation term in the last
inequality can be rearranged as

k—1 k

Dok g+ =D @k k—i+1)]

=0 i=1

K1
= 1@k, k—i+ 1)
=1
k
+ > ek k—i+ 1)
i=K1+1

(82)



With the transition matrix defined in (21), it follows that

|®(k,k—i+1)|] < AT! for i < K;. On the other hand,

for i > K, inequality (23) ensures that | ®(k,k —i+1)| <
i—1

CQ\/X

hm ZH@ngrl ||<ZAlLl+cz Z \fl '

, a.s. and thus

i=K1+1
=c4 <00, a. S. (83)
where X
_1-Af 2
“4Ta- Ar @ 1=

Taking the summation operation % ij:l on both sides of (81)
and using (83), one can get

~ Z llys (k

,_.

IA
il w

D%E:W%

3C%B
N

+
/\

2

DR

(kyj+ 1) flus( )||2) . a.s. (84)

in which the double summation term can be rearranged as
follows

N k-1 N—-1 N

YoMk Dl a7 =Y D 2k, 5+ Dl hus ()11

k=1 5=0 7=0 k=j+1

With the same argument made from (82) to (83), it is easy to
see that

N e’}
Yok i+ DI< Y Bk, + 1) < <00, as
k=j+1 k=j+1

(85)
Therefore, following from (84) and (85), inequality (25) can be
attained with

Ky = i+ 303 B3] ||us (0))?
2
= 303 (5 120 + B33 us(0))
K, = max (3D%, 3C?Bic3)

C. Proof of Lemma 1
Proof: (i) Using (36), we can get

¢T o(k=1) ~rlk—=1)—r(k-2)
Z r(k—2) _;; r(k—1)r(k—2)
T~
= (k-2) r(k-1)

<oo forr(—=1)=m,

<1
— (=)

Therefore, condition (43) is valid.
(i1) From equation (32) and using (37), we can obtain

. ok~ 1) .
o) = = G sy oG- Dotk — 1) Y™

Then multiply ¢* (k — 1) to both sides of the above equation
and use (38) to get
¢T (k—1) o(k —1)

D) = D01+ e ()

Subtracting y (k) from both sides of the above equation, we

have
T — p—
MMyww—MM§@>¢(@@Qﬁf De (k)

Using (36) and (38), we can get the following equation

o7 (k— 1) 6(k — 1)
(1‘ k- 1) )““

y(k)]

o7 (k — o7 (k —

n (k)
_r(k=2)
r(k—1) e (k)
This completes the proof.
(iii) From (32), (36), and (37), we can get
S — A Pk —1)
0k)=0(k—-1)+ (k= 1)

Subtracting 6, from (86) and multiplying by w (k) ¢* (k — 1)
give

w (k) ¢" (k= 1)0 (k)

e (k) (86)

—w (k)67 (k— 1) 8 (k — 1)
o7 (k— 1) o(k — 1)
+< r(k—1)
X [e (k) — w (k) + w (k)] w (k)
(87)

Now taking the conditional mean F{- | F ;_1} on (87), we have
E{=Bk)w (k) | F -}
= B{w®)¢" (k=10 (k~1) | Fi )

k—1)

r(k—
—w(k)+w

+F

x [e (k) (B)Jw (k)| Fr1}

(88)

Particularly, by (38), the term e (k)
as

—w (k) can be represented

(89)



From (89), the term e (k) —w (k) is F x—1 —measurable. There-
fore, by properties of the noise w(k) in (3) and (4), it follows
that (45) is concluded.

(iv) Rewrite (7) to get

=1
(90)
Substituting (28) into (90), we have
L
> hi(z(k = 1)[Cila™) — g el H]y(k)
i=1

) [Bilg™)u(k - 1)

L
= Z hi(z(k —

1=1
+B;(q~ u(k — 1)]
From (39) and (40), we subtract Zle hi(z(k —

1))Ci(¢ 1 )y(k) from both sides of the above equation
to get

g™k + Bilg ™ ulk 1)
and thus
L
> hilz(k = 1)Ci(g s (k)
i=1
L
=3 hite(k = 1) [(Cita™) = (k)
+q 'ai(g N y(k) + Bilg u(k — 1) — (k)]
Using (34), we can get the following equation
L
> hilz(k = 1)Cila™)s(k)
L
=3 haa(k — D)X (k — Dbio — (k)
i=1
= &7 (k= 1)00 — 6" (k = DA(k) = —6" (k — 1)0(k)
= pB(k)
This completes the proof. ]

6(k), we have

Now define a quadratic function V (k) =
equation (95) can be rewritten as

D. Proof of Lemma 2

Proof: First define 3;(k) = C;(¢')s(k) for 1 <4 < L.
With the fuzzy system (46) we have

Zh

) is ISP [13], for any i, there is a positive number

k—1))8i(k) oD

As Ci(q_l
€; such that

k
> <(i)Bild) — €s*(4) = 0 92)
j=1
Taking the operation Zh (k — 1)) on both side of (92)
=1
gives

> { St

j=1

mmﬁ—qéuﬂ}zo (93)

Using equation (91) and letting € = 1r<n_i<nLel-, we can see that
K2

inequality (93) implies the desired property in inequality (47).

E. Proof of Theorem 3

Proof: With (32), (44), and the definitions of e(k) and

Bk ~ S = (k) = (k1 o4
which leads to
10 + 220y D g
=0T(k—1)8(k —1) (95)

67 (k)6(k). Thus

25 (k)

Vk) =V —1) = —5yi(k)
_¢>T(kr—( ;)f(zk) — U 2k
= V(- 1) - 2T
25((:)10;1;) o7 ( r2(k)¢(2k) Y 2k)
=VE-1)- (k:(k)Q) - r(glj(k)Q) -
B oDt

(96)

where g1(k) = 2(8(k)<(k) — 3<*(k)) and g2(k) = ¢*(k). In
order to make the last equation into a recursive form, we make
the following definitions

Sik) = Timi) >0
k 2
Salk) = iy >0

Sy(k) = Yoh_, U= () > 0

o7



Note that the fact that S; (k) > 0 for all k& follows from Lemma
2 under Assumption 2. With the above notations, the second
term on the right hand side of (96) can be represented as

gl(k) _ Sl(k) - Sl(k’ - 1)
r(k—2) r(k —2) ©8)
and the third one can be represented by
g2(k) _
=z~ k) = Sak—1) (99)
and the final one can be represented by
T (k—D)pk—1) 5\
By using (97)-(100), inequality (96) implies
X(k)=(X(k—-1)+51(k—-1) (101)
[ 1 _ 1 ]- 25(k)w(k))
r(k—=2) r(k-3) r(k —2)
26(k)w(k)
X(k)gX(k—l)—W (102)
where the nonnegative process X (k) is defined as
S
X(k) =V(k) + T(kl( )2) + Sz (k) + S3(k) (103)

Now taking the conditional mean E{- | f p_1} on (102) and
using (45), we have

T(f — _
Dok -1 b
r(k—1Dr(k—2)
(104)
With inequality (43), we can invoke the martingale convergence
theorem [13] to obtain that

klim X (k)

E{X(E)| Fr} <X(k—1)+2

=X <o0, a.s. (105)

Almost sure convergence of the nonnegative process X (k) to a
bounded nonnegative random variable X implies

N

) s2(k)
ngnoo; "k —2) < 00, G. S. (106)
N T _ _
Jim ¢ (krz(;)ib(;) 1)7]2(I<;) <00, a.s.  (107)
k=

Now following from (94), we have
(k—1)
—=n(k
(k=) n(k)
¢T(k—D)p(k—1) ,
= k

P2y k)<
Therefore, by using (107), inequality (48) can be ensured.
—w(k)

Hé(k) k- 1)”2 :

After multiplying ¢7 (k — 1) to and subtracting y(k)
from (94), we can get

T _
. (kr(kl)_(bg; o =t )

By Cauchy-Schwartz inequality, it follows

o0 (k —

s(k) +

Dok — 1)]?

k) —wlk)? < 26%(K) + 25 2 P

n*(k)

and hence

n* (k)

(k) Y [T (k — Dok — 1))
-1) +2Z r(k—1)r2(k —2)

T -1 9
Z¢ r2( k:) 2) )7] (k)

Therefore, using (106) and (107), the last inequality leads to
(49). The completes the proof. [ ]

F. Proof of Lemma 3

Proof: (i) Assume r(k — 1) < kg < oo, then (49) implies
N

le(k) — w(k)]” < oo
k=1

a.s. (108)

With (108), we can apply Kronecker’s Lemma in appendix
D of [13] to get

N

1 2
lim — — = .S.
i Nkz_lk [e(k) —w(k)]"=0 a.s
which implies (51).

On the other hand, if r(k — 1) is unbounded. By applying
Kronecker’s Lemma again, we obtain

N 2
. e(k) — w(k)]
m r(N — 1);7’(]“ -b r(k—1)
1Y )
= lim_ oD N; le(k) —w(k)]> =0 a.s
(109)
Substituting of (50) into (109) gives
N
%Z le(k) —
Jim_ L =0 a.s (110)
K, > le(k) = w(k))?
k=1
From (110), we can easily get (51).
(i1) Substituting (51) into (50), we can get (52).
(>iii) For the left hand side of (53), we have
E{ly(k) — 50 | Far}
= B{ly (k) = 5 (k) — w(k) + wk)]® | Fro1}
= E{ly(k) - 5(k) — w(k))”
+2[y(k) — y(k) —w(k)]w(k)
+w?(k) | Fr-1} a.s. (111)

Since y(k) — w(k) and y(k) are Fj_,—measurable and
E{w(k) | F x—1} = 0, we can obtain

E{w@»—a@nﬂrmA}

= [e(k) —w(k)* + E{w?(k) | Fr-1} a.s. (112)



From (51) and (4),we can easily derive (53).
@iv) Applying (51), (3), (4), (??), and Lemma D.5.2 in
Appendix D of [13], we have

lim ii [y(k) — @\(k)F
N=eo Ni—
LN

- ]\;gnoc N; ly (k) — 7 (k) — w(k) + w(k)]

=1 Ly k B2

- NEHOON; le(k) — w(k)]

1 & L

— a + hm NZ k)] w(k) a13)

In (113), define a process w(k) = [e(k) — w(k)] w(k). Then

its is easy to see that £ {w(k) | F x—1} = 0 and from (49), (4),
and (52), we have

ZkQE{w

Using Lemma D.5.1 in [13], we have

‘Fk 1}<OO

N
Jim Nkz_l le(k) — w(k)] w(k) =0 (114)
Substituting (114) into (113), we get (53). [ |

G. Proof of Lemma 4
Before presenting the proof of Lemma 4, we shall need a
lemma which is quoted from [27].

Lemma 5: Let P be a m X m symmetric positive definite
matrix which is partitioned as

P Ppo
P =
e

where Pj; and Pss are (m — 1) x (m —1) and 1 x 1 matrices,
respectively. Also let I be a matrix defined by

= |: L1 0(m—1)><1
le(m—l) r

Then I'" PT" — P is negative semi-definite if and only if Py =

},O<r|§1

O(m—1)x1-

Proof of Lemma 4:
(i) The equation for the signal y(k+1) in (63) can be rewritten
as

%%(k)y(k +1)
L n
= _Zhi( Zaijy(k+1 —J)| +vs(k+1)
i=1 j=1
- —~, bo(k—j) ,
=D ala(k) |3 b=k +1-5) | (119)
i=1 j=1

where the signal vs(k + 1) is defined as
Ug(k + ].)

L —1,bo(k)

+§Zh 0) [Bla) 2 4 Gl i+ 1)
(116)
Now define a process (k) as
A 1
A = X0
With the definition of ~q in (62), it follows
0 < (k) <1 (117)

To analyze the property of the signal y(k), the dynamic
equation (115) will be transformed into a state-space form. By
constructing a state vector z, (k) as

wy(k) = [yl +1—n) y(k—n+2) y(k) 1",
the system defined by equation (115) can be expressed by
2y (k4 1) = A(k)xy (k) + v, (k + 1) (118)

where

AR = TimAR)

A(k) = Ea(k)+ Mp(k )Fa(k)

vy(k+1) = | Oix@-1) >\+b2 mus(k+1) }T

nw = |t O(ZZZ))XI }

Since, by assumption, there exist symmetric positive definite
matrices P;,1 < ¢ < L, of the form in (64) such that the
matrix inequalities (65) hold for some € > 0 and some Ao with
0 < Ao < 1, and that

A (k)P4 (k)A(k) < AP (k)

for all k£ > 0. Since the matrix P; is chosen with the special
form shown in (64), we have

KT(k)E(k)A(k)
Zh (k+1)) (k:)Pil“l(k:)] A(k)

Zh

&P (A

< XP(k)
by using Lemma 5 and (119). Therefore, by applying Theorem
2, we have

1Y 1
NZ ly(k)|* < NZ |y (k)]
k=1 k=1

N
K, 2 K3
szluvs( i +W’

(119)

(k+1))P; | A(k)

IN

s., for N > K,



where K is a sufficiently large number. Next, by the definition
of v3(k),the boundedness of y*(k), and the mean-square bound-
edness of w(k) given in (5), it follows that there are constants
Kg and Kg such that

1 & Ks &
¥ D k) < 52 lelk) — w(k) + Ko, a.s., for N > K,
k=1

(ii) Using (43) anZ (44), equation (39) gives

T0) = €lb) +3°(8) =
TSI
- S ) - wi)

o7 (k — 1)o(k— 1) :
) )

< le(k) —w(k)] + w(k) +y" (k) (120)

By Cauchy-Schwartz inequality, it follows
7 (k) < Ble(k) —w(k))” + 3w (k) + 3y™ (k)

Similar to the proof in part (i), inequality (70) can be
concluded.

(iii) First, note that from the equation concerning the adaptive
control law u(k) defined in (60), we have

(k) = 28 (ol 1) 4y 1) — gk + 1)
_ bOA(’“) le(k+ 1) —w(k +1) + w(k + 1)

+y (k+1) —ylk+1)]

which implies that

N N
% S (k) < % S (k) —w(k) + % SO U2 (k) + Ko, a5,
k=1

i N

7 2

=~ > le(k) = w(k)]* + Kra (121)
In (36) with £k = N, we have

r(N —1)

Il
=
=
_|_
= Z
i™Mr
-
/-ﬁ
>
|
=
5
=
|
=

N-1 L

r(0) + D> hilz(k)X" (k)x (k)
k=11i=1
N-1

=7(0)+ > x"(k)x(k) (122)

k=1

By the definition of x (k) in (34), it follows from (121), (69),
and (70) that, for N > N,

IA

=

-1

2 lelh) — wlk) + Koo

1

=

ol
Il
—

for some positive numbers K,o and K,;. This completes the
proof. (]
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