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Abstract—In the field of adaptive fuzzy control, there
has been a severe deficiency by assuming the premise
variables will usually stay within the universe of dis-
course in the derivation of stability of the adaptive
control system. To overcome this deficiency, we develop
a switching adaptive control scheme using only essential
qualitative information of the plant to attain asymptotical
stability of the adaptive control system for a typical first-
order nonlinear system without imposing the mentioned
severe assumption. The switching adaptive control system
consists of an adaptive VSS controller for coarse control,
an adaptive fuzzy controller for fine control, and a
hysteresis switching mechanism. An adaptive VSS control
scheme is proposed to force the state to enter the universe
of discourse in finite time. While the premise variable is
within the universe of discourse, an adaptive fuzzy control
is proposed to learn the capability to stabilize the plant.
At the boundary of the universe of discourse, a hysteresis
switching scheme between the two controllers will be
proposed. We show that after finite times of switching, the
premise variables of the fuzzy system will remain within
the universe of discourse and stability of the closed-
loop system can be attained by applying Lyapunov direct
method.

In the current year, we focus on robust adaptive
control for deterministic nonlinear systems. Based on the
developed results, we shall attack the same problem for
nonlinear stochstic systems in the next year.

Index Terms: Adaptive fuzzy control, switching
control, T-S fuzzy model

I. INTRODUCTION

There are many deterministic fuzzy adaptive control
systems which are proposed in the literature since
2000. Generally speaking, the main difficulty for adap-
tive fuzzy control systems arises from system uncer-
tainty and disturbances. In the presence of these two
uncertain terms, the first problem is how to guarantee
uniform boundedness of parameter estimates, and the
second one is how to design adaptive control law so
as to guarantee system stability. In [1], it is assumed
that the uncertainty term, which is also a function of
plant input and system states, has an known upper
bound to design a stabilizing control law. However,
this assumption is unreasonable due to the following
two problems.
P1. First, it is unreasonable to impose an upper

bound of uncertainty term since plant input and

system states may diverge before guaranteeing
system stability. Especially, the upper bound is
hard to know in an adaptive control scenario.

P2. Second, we can not guarantee that the premise
variables will be confined in a compact universe
of discourse so that the uniform approximation
property holds in the analysis of the stability of
the adaptive fuzzy control system.

In [2], where an adaptive control of time delay
nonlinear systems is considered, problems P1 and P2
also occurred. The same situation also took place in [3]
and [4]. In [5], [6], and [7], problem P1 is avoided, but
problem P2 is also not considered in the analysis of the
closed-loop system stability.

In [8], fuzzy systems are introduced to approximate
system nonlinear functions and Lyapunov-based design
techniques are employed to design stabilizing adaptive
controllers to attain asymptotical stability of the state
and the boundedness of the estimated parameters for
regulation control problem. In their adaptive fuzzy
control schemes, an essential deficiency is that the
universe of discourse should depends on unknown
system parameters, which is hard to define in advance.
Basically, problem P2 is also not overcome in this
literature.

Based on the literature survey discussed above, in
this study, we shall construct a robust fuzzy adap-
tive control for nonlinear affine systems to overcome
problems P1 and P2. We shall only use minimum
information about modeling error of system uncertain
terms, because adaptive controller should have the
ability to learn the information of the modeling error
by itself. We shall not assume that the trajectory of
premise variables is limited to the universe of discourse
of the fuzzy system. Without this assumption, it will
be more difficult to design an stabilizing adaptive
controller.

To attain our goals, we shall develop a switching
adaptive control scheme to attain stability of the adap-
tive control system for a typical first-order nonlinear
system. We shall only make some essential qualitative
assumptions of the plant, instead of requiring some
quantitative information of the plant, to construct an
adaptive controller. The proposed switching adaptive



control system consists of an adaptive VSS controller
for coarse control, an adaptive fuzzy controller for
fine control, and a hysteresis switching mechanism
for switching of the previous two controllers. The
adaptive VSS controller is used to force the premise
variable to enter the universe of discourse in finite time.
While the premise variable is kept within the universe
of discourse, the adaptive fuzzy controller will tune
its parameters and gradually learn the capability to
stabilize the plant. At the boundary of the universe
of discourse, a hysteresis switching scheme between
the adaptive VSS control law and the adaptive fuzzy
control law will be proposed. We shall show that after
finite times of switching, the premise variable of the
fuzzy system will remain in the universe of discourse
and stability of the adaptive control system will be
attained by applying the Lyapunov direct method.

The remainder of this work is organized as fol-
lows. The problem to be attacked and the hysteresis
switching adaptive control scheme are described in
Section 2. The adaptive VSS controller is proposed and
analyzed in Section 3. Then, the considered adaptive
fuzzy control is presented in Section 4. Analysis of the
switching control system is made in Section 5 together
with a simulation example. Finally, conclusions and
discussions are given in Section 6.

Notations

For a vector x = [ x1 x2 · · · xn ]
T , the asso-

ciated swap operation is defined as

swap(x) = [ xn xn−1 · · · x1 ]
T

For a vector x, we write x ≥ 0 if every entry of x is
greater than or equal to zero.

II. PROBLEM FORMULATION AND THE
HYSTERESIS SWITCHING ADAPTIVE CONTROL

Consider the plant

ẋ = f(x) + u (1)

where f(x) is a scalar nonlinear continuous function
of the scalar variable x and u ∈ R1 is the input. For
the nonlinear continuous function f(x), we make the
following assumptions.

Assumption 1: f(x) is a continuous function and
admits its maximum fmax on the compact connected
set Ωx with

fmax = max
x∈Ωx

|f(x)| (2)

where fmax is an unknown positive number.
Assumption 2: The function f(x) satisfies¯̄̄̄

df(x)

dx

¯̄̄̄
≤ κf (3)

for x ∈ Ωx where κf is an unknown positive number.
Assumption 3: For x /∈ Ωx, there is a least upper

bound ψ(x) of f(x) satisfying

|f(x)| ≤ c∗1 |x|+ c∗2 |x|2 = ψ(x) for x /∈ Ωx (4)

VSSuVSSu
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x

1 h−(1 )h− −1− 1

Fig. 1. Illustration of the hysteresis switching control.

where c∗1 and c∗2 are unknown positive parameters.
Assumption 4: We assume that½

xf(x) > 0, if x 6= 0
f(x) = 0, if x = 0 (5)

and f(x) is a convex function for x ∈ Ωx. Also to
simplify system analysis, we shall assume f(x) is an
odd function, i.e.,

f(−x) = −f(x) (6)

An example of such a function f(x) is given by

f(x) = �∗x |x|+ μ∗x (7)

with �∗ > 0 and μ∗ > 0 under which the equilibrium
point 0 of the system dynamics (1) is unstable. In this
study, we shall consider the case that the nonlinear
function f(x) is unknown and a fuzzy approximator
F (x|θ) will be used to approximate an ideal nonadap-
tive stabilizing controller in the universe of discourse
Ωx = [−1, 1] where x is the only premise variable.
Basically, when the state trajectory x(t) is outside the
universe of discourse Ωx, by utilizing the structure
information of f(x) given in (4) in Assumption 3,
we shall develop an adaptive VSS control uV SS(t) to
force the state trajectory entering Ωx. On the other
hand, if the state trajectory x(t) is staying within Ωx,
an adaptive fuzzy control ufuzzy(t) will be applied
to further ensure that the system will be ultimately as-
ymptotically stable. Since switching between these two
control laws with infinite frequency at the boundary of
the region Ωx may happen, we shall use a hysteresis
switching control as described in the following to
avoid this problem. Let h, with 0 < h < 1, be the
hysteresis size and define the hysteresis zone Ωh as
Ωh = {x| 1− h ≤ |x| ≤ 1}. The hysteresis switching
control structure, as shown in Fig. 1, is described as
follows. At t = 0, the control structure is defined as

u(0) =

½
uV SS(0), if |x(0)| > 1− h
ufuzzy(0), if |x(0)| ≤ 1− h

(8)

For t > 0, while x(t) is outside the hysteresis zone
Ωh, the control input u(t) is defined as

u(t) =

½
uV SS(t), if |x(t)| > 1
ufuzzy(t), if |x(t)| < 1− h

(9)

and on the contrary, while x(t) is inside the hysteresis
zone Ωh, u(t) is defined as

u(t) =

½
uV SS(t), if u(t−) = uV SS(t−)
ufuzzy(t), if u(t−) = ufuzzy(t−)

(10)



We note that while applying the adaptive VSS control
law uV SS , the tuning parameters in the adaptive fuzzy
controller will be kept invariant. On the other hand,
while applying the adaptive fuzzy control law ufuzzy ,
the tuning parameters in the adaptive VSS controller
will be frozen.

The problem to be attacked is formulated as follows.
For the plant in (1) under assumptions Assumption 1-
Assumption 4, we shall construct an adaptive VSS
controller and an adaptive fuzzy controller together
with the above hysteresis switching mechanism so that
the tuning parameters in the two adaptive controllers
are bounded and x(t)→ 0 as t→∞.

III. DESIGN AND ANALYSIS OF THE ADAPTIVE VSS
CONTROL

In this section, an adaptive VSS control will be
proposed and the system behavior will be analyzed.
Recall that the system function f(x) has an least
upper bound ψ(x) with the structural information as
indicated in (4) for x /∈ Ωx. Here, we shall develop
an adaptive VSS control uV SS(t) to force the state
trajectory entering Ωx when the state trajectory is
outside the region Ωx. To attain this goal, we shall
construct estimates ĉ1 and ĉ2 of c∗1 and c∗2, respectively,
so that the following inequality

|f(x)| ≤ ĉ1 |x|+ ĉ2 |x|2 for x /∈ Ωx
can be attained. Based on the estimates ĉ1 and ĉ2, the
proposed adaptive VSS control law will be defined as

uV SS = −(ĉ1 |x|+ ĉ2 |x|2 + r |x|)sign(x) (11)

where r is a given positive constant. The tuning laws
of ĉ1 and ĉ2 are given as

.

ĉ1 = Γ1 |x|2 , ĉ1(0) = 0 (12)
.

ĉ2 = Γ1 |x|3 , ĉ2(0) = 0 (13)

To analyze the system response when applying the
adaptive VSS control law defined in (11), (12), and
(13), we consider the Lyapunov function candidate

Va =
1

2
x2 +

1

2
Γ−11 c̃21 +

1

2
Γ−11 c̃22

where

c̃1 = ĉ1 − c∗1
c̃2 = ĉ2 − c∗2

The following lemma, adopted from [8], is required for
further analysis.

Lemma 1: If V (t, x) is positive definite and V̇ ≤
−k1V + k2 where k1 > 0 and k2 ≥ 0 are bounded
constants, then

V (t, x) ≤ k2
k1
+ (V (0)− k2

k1
)e−k1t

for all t. Also it is obvious that

lim
t→∞V (t, x) ≤

k2
k1

Lemma 2: Consider the adaptive VSS control sys-
tem defined by (1), (11), (12), and (13). The trajectories
of x(t), ĉ1(t), and ĉ2(t) are bounded over the time
interval (t0,∞) where t0 is an arbitrary initial time,
and x(t) converges to the origin. Moreover, there is a
finite time t1 such that x(t1) = 1−h if x(t0) > 1−h
or x(t1) = −(1− h) if x(t0) < −(1− h) where t1 is
a time instant with t1 ≤ t0 + T1 and

T1 =
Va(t0)

r(1− h)2
(14)

Proof: The time derivative of Va along the system
trajectory of the adaptive VSS control system can be
evaluated as

.
V a

= x[f(x) + uV SS ] + c̃1 |x|2 + c̃2 |x|3
= xf(x)− ψ(x) |x|+ (c∗1 |x|+ c∗2 |x|2) |x|
−(ĉ1 |x|+ ĉ2 |x|2 + r |x|) |x|+ c̃1 |x|2 + c̃2 |x|3

≤ −r |x|2 ≤ 0 (15)

The above inequality implies that the trajectories of
x(t), ĉ1(t), and ĉ2(t) are bounded over the time
interval (t0,∞) and Va(t) is a non-increasing function
of t. From (12) and (13), it is obvious that both ĉ1(t)
and ĉ2(t) are non-decreasing functions of t. Therefore
ĉ1(t) and ĉ2(t) both converge to some finite values as
t→∞. On the other hand, we have
..

ĉ1 = 2Γ1x
h
f(x)− (ĉ1 |x|+ ĉ2 |x|2 + r |x|)sign(x)

i
which is bounded, and we have ċ1 is uniformly con-
tinuous. Then, Barbalat’s lemma [9], we have

lim
t→∞ċ1(t) = 0

Consequentially, with ċ1 = Γ1 |x|2 defined in (12), we
can conclude

lim
t→∞x(t) = 0

From (15), there exists a positive function Z(t) ≥ 0
such that

.

V a + Z = −r |x|2

Integrating the last differential equation, one can get

Va(t) = Va(t0) +

Z t

t0

[−Z(τ)− r |x|2 (τ)]dτ

= Va(t0)− r

Z t

t0

|x|2 (τ)dτ −
Z t

t0

Z(τ)dτ

which implies

1/2x2 ≤ Va(t) ≤ Va(t0)− r

Z t

t0

|x|2 (τ)dτ (16)

Now define a function y(t) as

y(t) =

Z t

t0

|x|2 (τ)dτ
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Fig. 2. A typical case of the fuzzy sets in the rule base.

which is equivalent to the following differential equa-
tion

dy/dt = x2(t), y(t0) = 0

Then, from (16), we have

ẏ + 2ry ≤ 2Va(t0)
By Lemma 1, we can conclude that

y(t) ≤ 2Va(t0)

Z t

t0

e−2r(t−τ)dτ

= (
1− e−2r(t−t0)

r
)Va(t0)

and thusZ t

t0

x2(τ)dτ ≤ (1− e−2r(t−t0)

r
)Va(t0) <

Va(t0)

r
(17)

If x(t0) > 1 − h, we can show that there is a finite
time t1 such that x(t1) = 1 − h with t1 − t0 ≤ T1
where T1 is defined in (14). By contradiction, assume
that x(t) > 1− h > 0 for t ∈ [t0, t0 + T1] . Then, we
have

Z t0+T1

t0

x2(τ)dτ > (1− h)2T1 =
Va(t0)

r

which contradicts inequality (17). This verifies the
assertion. Similarly, if x(t0) < −(1 − h), there is
a finite time t1 such that x(t1) = −(1 − h) with
t1 − t0 ≤ T1. This ends the proof. ¥

IV. DESIGN OF THE ADAPTIVE FUZZY CONTROL

For the plant in (1), the only premise variable of the
fuzzy system is x and the universe of discourse Ωx is
chosen as Ωx = [−1, 1]. The rule base of the T-S fuzzy
system is defined as: for 1 ≤ l ≤ L,

Rule l : If x is Fl, then y = θl.

where Fl is the fuzzy set with membership function
μFl(x) and θl is the value specified in the antecedent

part of the l−th rule. The number L, which is the total
number of rules, will be chosen as an odd number. A
typical case is shown in Fig. 2 where the set of IF-
THEN rules is complete, consistent, and continuous
[10]. Based on the above rule base, the T-S fuzzy sys-
tem, consisting of the singleton fuzzyifier, the product
inference engine, and the center average defuzzifier
[10], can be expressed as

F (x, θ) = ξT (x)θ (18)

where

θ = [θ1, ..., θL]
T ,

ξl(x) =
μFl(x)
LP
i
μFl(x)

,

ξ(x) = [ξ1(x), ..., ξL(x)]
T (19)

From Fig. 2, we can observe that
LX
i

μFl(x) = 1,

for any x ∈ Ωx and

ξ(x) =
£
μF1(x), ..., μFL(x)

¤T (20)

with L = 5. From the triangular membership functions
shown in Fig. 2, we have, for any x ∈ Ωx,

kξ(x)k2 = μ2Fi(x) + μ2Fi+1(x) (21)

for 1 ≤ i ≤ L− 1 and

μFi(x) + μFi+1(x) = 1 (22)

From (21) and (22), it is obvious that
1

2
≤ kξ(x)k2 ≤ 1 (23)

Note that since Ωx = [−1, 1] is symmetric with respect
to the origin, the rule base will be chosen to symmetric
in the sense that

ξ(−x) = ξ̄(x) (24)

where ξ̄(x) =swap(ξ(x)).
Now let Ai, for 1 ≤ i ≤ L, be the support of the

membership function μFi(x), i.e.,

Ai =
©
x ∈ Ωx

¯̄
μFi(x) > 0

ª
Denote di as the center of the membership function

μFi(x) for 1 ≤ i ≤ L and γi as the point such
that μFi(γi) = μFi+1(γi) for 1 ≤ i ≤ L − 1. For
the convenience of further analysis, now partition the
universe of discourse Ωx as Ωx = ∪2L−2i=1 Ωx,i where

Ωx,2i−1 = [di, γi), for 1 ≤ i ≤ L− 1
2

Ωx,2i = [γi, di+1), for 1 ≤ i ≤ L− 1
2
− 1

Ωx,2i−1 = (di, γi], for
L+ 3

2
≤ i ≤ L− 1

Ωx,2i = (γi, di+1], for
L+ 1

2
≤ i ≤ L− 1



and

Ωx,L−1 = [γ L−1
2
, dL+1

2
)

Ωx,L = [dL+1
2
, γ L+1

2
]

We make a final note that the fuzzy system F (x, θ)
in (18) admits a linear approximator structure with
respect to the parameter vector θ and

F (x, θ1)− F (x, θ2) = ξT (x)(θ1 − θ2) (25)

For x ∈ Ωx, we can approximate the system function
f(x) by the fuzzy system F (x, θ) = ξT (x)θ so that

min
θ
kf(x)− F (x, θ)k∞ =W

for some W > 0 due to the universal approximation
property of the constructed fuzzy system [10] and the
infinite norm is defined as

kg(x)k∞ = sup
x∈Ωx

|g(x)|

Let’s denote a best fitted parameter θ∗ as

θ∗ ∈ argmin
θ
kf(x)− F (x, θ)k∞

For x ∈ Ωx, we then have

|f(x)− F (x, θ∗)| ≤W (26)

Finally, with respect to the membership functions
shown in Fig. 2, the hysteresis size h defined in (9)
will be chosen such that

0 < h ≤ 1
4
− εh (27)

where εh is a small positive constant.
With the above definitin of the fuzzy system, the

adaptive controller is defined as
.

θ̂ = Γ2ξx (28)

u(t) = −θ̂T ξ(x) (29)

V. A HYSTERESIS SWITCHING ROBUST FUZZY
ADAPTIVE CONTROL

Based on the adaptive VSS controller and the adap-
tive fuzzy controller, we shall study the proposed hys-
teresis switching robust adaptive control defined as in
(9) and (10). While applying adaptive VSS controller,
the closed-loop dynamics is given⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ = f(x)− (ĉ1 |x|+ ĉ2 |x|2 + r |x|)sign(x),
.

ĉ1 = Γ1 |x|2 , c1(0) = 0,
.

ĉ2 = Γ1 |x|3 , c2(0) = 0
.

θ̂ = 0,
(30)

On the other hand, by letting Γ2 = I in (28), the
closed-loop dynamics adaptive fuzzy control system is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ = f(x)− θ̂
T
ξ(x)

.

θ̂ = ξx, θ̂(0) = 0
.

ĉ1 = 0
.

ĉ1 = 0

(31)

Note that the value of the fuzzy approximator is given
by

F (x|θ̂) = θ̂
T
ξ(x)

According to the tuning law of θ̂ defined in (??) and
the definition of the vector ξ(x) in (20), some further
properties of θ̂ can be discovered.

Lemma 3: Due to the structure of the fuzzy system
and the tuning law of θ̂(t) defined in (31), we have
the following results. (i) If Ai ⊂ [0, 1], then θ̂i(t) ≥ 0
and θ̂i(t) is a monotone increasing function of time.
On the other hand, if Ai ⊂ [−1, 0], then θ̂i(t) ≤ 0
and θ̂i(t) is a monotone decreasing function of time.
(ii) For Ai ⊂ [0, 1] or Ai ⊂ [−1, 0], if there is time
t0 such that x(t0) ∈ Ai, then θ̂i(t) > 0 for t ≥ t0.
Similarly, if there is time t0 such that x(t0) ∈ Ai,
then θ̂i(t) < 0 for t ≥ t0. (iii) If x(t) ∈ [1 − h, 1],
then θ̂

T
(t)ξ(x(t)) ≥ 0. On the other hand, if x(t) ∈

[−1,−(1− h)], then θ̂
T
(t)ξ(x(t)) ≤ 0.

Proof: (i) Denote Ai be the closure of Ai. If x ∈
Ai ∩ Ai+1 ⊂ [0, 1], only θ̂i and θ̂i+1 will be updated
according to

.

θ̂i = μFi(x)x ≥ 0 (32)
.

θ̂i+1 = μFi+1(x)x ≥ 0 (33)

and θ̂j will be kept fixed for j 6= i and j 6= i+ 1. On
the contrary, if x ∈ Ai ∩ Ai+1 ⊂ [−1, 0], only θ̂i and
θ̂i+1 will be updated according to

.

θ̂i = μFi(x)x ≤ 0 (34)
.

θ̂i+1 = μFi+1(x)x ≤ 0 (35)

and θ̂j will be kept fixed for j 6= i and j 6= i +
1. Similarly, Since the initial guest of θ̂ is chosen as
θ̂(0) = 0, equations (34)-(33) imply that if Ai ⊂ [0, 1]
(Ai ⊂ [−1, 0]), then θ̂i ≥ 0 and θ̂i(t) is monotone
increasing (θ̂i(t) ≤ 0 and θ̂i(t) is monotone decreasing
). In summary, if Ai ⊂ [−1, 0] or Ai ⊂ [0, 1], then¯̄̄
θ̂i(t)

¯̄̄
is monotone increasing.

(ii) If there is a time t0 such that x(t0) ∈ Ai ⊂ [0, 1],
then, due to the continuity of the trajectory while using
the adaptive control law, there is an interval (ta, tb)
with t0 ∈ (ta, tb) such that x(t) > 0 and μFi(x(t)) >

0 for t0 ∈ (ta, tb) . By (32), we have
.

θ̂i(t) > 0 for
t0 ∈ (ta, tb) and thus θ̂i(t) > 0 for t ≥ t0. Proof of
the similar case for Ai ⊂ [−1, 0] is omitted.

(iii) If x(t) ∈ [1−h, 1], then x(t) ∈ A4∩A5 ⊂ [0, 1]
and

θ̂
T
(t)ξ(x(t)) = μF4(x(t))θ̂4(t) + μF5(x)θ̂5(t) ≥ 0

On the other hand, x(t) ∈ [−1,−(1−h)], then x(t) ∈
A1 ∩A2 ⊂ [−1, 0] and

θ̂
T
(t)ξ(x(t)) = μF1(x(t))θ̂1(t) + μF2(x)θ̂2(t) ≤ 0

This completes the proof. ¥



Remark 1: Suppose that the membership functions
are specified as shown in Fig. 2. Then, according to
Lemma 3, we have both θ̂1(t) and θ̂2(t) are of non-
positive values and monotone decreasing. On the other
hand, θ̂4(t) and θ̂5(t) are of non-negative values and
monotone increasing.

Lemma 4: The response x(t) of the hysteresis
switching robust adaptive control defined as in (9),
(10), (??), and (??) is symmetric in the sense that ifn
x(t), θ̂(t)

o
and

©
y(t), θ̌(t)

ª
are the system responses

corresponding to the initial states x(0) and −x(0),
respectively, then y(t) = −x(t) and θ̌(t) = −θ̄(t)
where θ̄(t) =swap(θ̂(t)).

Proof : (i) First, we shall show that the response of
the adaptive VSS control system is symmetric. Since
both f(x) and (ĉ1 |x|+ ĉ2 |x|2+ r |x|)sign(x) are odd
functions of x, so is their sum. Let y(t) = −x(t). Then,
by multiplying -1 to both sides of the first equation in
(30), we have

−ẋ = −f(x) + (ĉ1 |x|+ ĉ2 |x|2 + r |x|)sign(x)
= f(−x)− (ĉ1 |x|+ ĉ2 |x|2 + r |x|)sign(−x)

where we have used the property that f(x) is an odd
function, i.e., f(−x) = −f(x). The above differential
equation implies that y(t) = −x(t) is the solution
to the closed-loop dynamics defined as, with y(0) =
−x(0)⎧⎨⎩

ẏ = f(y)− (ĉ1 |y|+ ĉ2 |y|2 + r |y|)sign(y)
ċ1 = Γ1 |x|2 , c1(0) = 0
ċ2 = Γ1 |x|3 , c2(0) = 0

(36)
Note that the trajectories c1(t) and c2(t) are the same
for the systems in (30) and (36).

(ii) Next, we shall show that the response of the
adaptive fuzzy system defined in (31) is symmetric.
Now define θ̄ =swap(θ̂) and ξ̄ =swap(ξ). Then it
follows that

θ̄
T
ξ̄(x) = θ̂

T
ξ(x)

Note that due to the symmetric structure of the fuzzy
sets in the rule base, we have

ξ̄(x) = ξ(−x)
Let y(t) = −x(t) and θ̌ = −θ̄. Then, by multiplying
-1 to both sides of the first equation in (31), we get

−ẋ = −f(x) + θ̂
T
ξ(x)

= f(−x) + θ̂
T
ξ(x)

which implies

ẏ = f(y) + θ̄
T
ξ̄(x)

= f(y) + θ̄
T
ξ(−x)

= f(y)− θ̌
T
ξ(y)

Similarly, by the swapping operation and the symmet-
ric property of the vector ξ(x) in (24), the second

equation in (31) can be expressed as
.

θ̄ = ξ̄(x)(x) = ξ(−x)(x)
Now multiplying -1 to both sides of the last equation,
one has

−
.

θ̄ = ξ(−x)(−x) = ξ(y)(y)

and by the definition of the vector θ̌, it can be con-
cluded that .

θ̌ = ξ(y)(y)

Therefore, the responses y(t) = −x(t) and θ̌ = −θ̄
consist of the solution to the closed-loop dynamics of
the adaptive fuzzy control system in (31)(

ẏ = f(y)− θ̌
T
ξ(y), y(0) = −x(0)

.

θ̌ = ξ(y)(y), θ̌(0) = 0
(37)

(iii) Finally, we note that the switching mechanism
defined in (9) and (10) is symmetric to the origin
x = 0.

By combining the results in parts (i), (ii), and (iii),
the assertion can be concluded. This completes the
proof. ¥

Due to the symmetry of the responses of the switch-
ing control system as described in Lemma 4, we shall
assume x(0) > 0 in the analysis of the dynamics of
the switching control system. If x(0) > 1 − h, then
the adaptive VSS control law in (30) will ensure that
there is a finite time t1 such that x(t1) = 1 − h and
x(t) > 1 − h for t ∈ [0, t1). At t = t1, the adaptive
fuzzy control law in (31) will then be applied.

A. Analysis of switching behavior
In this section, we shall focus on discuss switching

behavior of the switching control law at the boundaries
of the hysteresis zone Ωh = [1− h, 1]∪[−1,−(1−h)].
For further analysis, we shall need some definitions.

Definition 1: We say that continuous switching of
N times at the positive boundary x = 1 − h happens
at t = ti for 1 ≤ i ≤ N with ti < ti+1 if there are
finite time instants tN+1 and t̄i with ti < t̄i < ti+1
for 1 ≤ i ≤ N such that (i) the adaptive VSS
controller is applied in (t0, t1) for some t0 < t1, (ii)
the adaptive fuzzy controller is used for t ∈ [ti, t̄i]
with x(t) ∈ [1− h, 1] for 1 ≤ i ≤ N , (iii) the adaptive
VSS controller is applied within the interval (t̄i, ti+1)
for 1 ≤ i ≤ N , and (iv) the adaptive fuzzy control law
is used after t = tN+1 such that there is no time instant
t̄N+1 such that {x(t) |tN+1 ≤ t ≤ t̄N+1 } ⊂ [1− h, 1],
x(t̄N+1) = 1, and the adaptive VSS control law is
applied after t = t̄N+1. For the above situation, we
also say that continuous switching of N times at the
positive boundary x = 1− h happens since t = t1. If
N = 1, we say a switching at the positive boundary
x = 1 − h happens at t = t1. Similarly, we may
let N → ∞, in this case we shall say continuous
switching of infinite times at the positive boundary
x = 1 − h happens at t = ti for 1 ≤ i < ∞ with



ti < ti+1 or continuous switching of infinite times at
the positive boundary x = 1−h happens since t = t1.

By the switching mechanism defined in (9) and (10),
if a continuous switching of N times at the positive
boundary x = 1− h happens at t = ti for 1 ≤ i ≤ N ,
then we should have x(ti) = 1 − h, x(t̄i) = 1, and
x(t) ∈ [1− h, 1] for t ∈ [ti, t̄i] for 1 ≤ i ≤ N .

Definition 2: We say that continuous switching of
N times at the positive boundary x = −(1 − h)
happens at t = ti for 1 ≤ i ≤ N with ti < ti+1
if there are finite time instants tN+1 and t̄i with
ti < t̄i < ti+1 for 1 ≤ i ≤ N such that (i)
the adaptive VSS control is applied in (t0, t1) for
some t0 < t1, (ii) the adaptive fuzzy control law is
used for t ∈ [ti, t̄i] with x(t) ∈ [−1,−(1− h)] for
1 ≤ i ≤ N , (iii) the adaptive VSS control law is
applied within the interval (t̄i, ti+1) for 1 ≤ i ≤ N ,
and (iv) the adaptive fuzzy control law is used after
t = tN+1 such that there is no time instant t̄N+1
such that {x(t) |tN+1 ≤ t ≤ t̄N+1 } ⊂ [−1,−(1− h)],
x(t̄N+1) = −1, and the adaptive VSS control law is
applied after t = t̄N+1. For the above situation, we
also say that continuous switching of N times at the
positive boundary x = −(1−h) happens since t = t1.
If N = 1, we say a switching at the positive boundary
x = −(1 − h) happens at t = t1. Similarly, we may
let N → ∞, in this case we shall say continuous
switching of infinite times at the positive boundary
x = −(1− h) happens at t = ti for 1 ≤ i < ∞ with
ti < ti+1 or continuous switching of infinite times at
the positive boundary x = −(1 − h) happens since
t = t1.

Definition 3: We say that a switch at the positive
boundary x = 1 − h (at the negative boundary x =
−(1 − h)) happens N times at t = ti for 1 ≤ i ≤ N
with ti < ti+1 if a switching at the positive boundary
x = 1 − h (or at the negative boundary x = −(1 −
h)) happens at t = ti for 1 ≤ i ≤ N. Similarly, as
N →∞, we shall say a switch at the positive boundary
x = 1−h (or at the negative boundary x = −(1−h))
happens infinite times at t = ti for 1 ≤ i < ∞ with
ti < ti+1 or a switch at the positive boundary x = 1−h
(or at the negative boundary x = −(1 − h)) happens
infinite times since t = t1.

Definition 4: We say that there is no switching at
the boundary x = 1 − h (or at the boundary x =
−(1−h)) happened since t = t1 if (i) the adaptive VSS
control is applied in (t0, t1) for some t0 < t1, (ii) the
adaptive fuzzy control law is applied after t = t1, and
(iii) there is not a switching at the boundary x = 1−h
(or at the boundary x = −(1− h)) happens at t = t01
fro any t01 ≥ t1.

Since the system response is symmetric as stated in
Lemma 4, we shall focus on analyzing the switching
property at the boundary x = 1− h.

Lemma 5: Assume that there is no switching hap-
pened at the boundary x = 1 − h since t = t1. Then
it is impossible that {x(t) |t ≥ t1 } ⊂ [1− h, 1] .

Proof: By contradiction, assume that we have
x(t1) = 1−h and the adaptive fuzzy control law in (31)
is applied for t ≥ t1 and {x(t) |t ≥ t1 } ⊂ [1− h, 1] .
From Lemma 3, we have θ̂4(t1) ≥ 0 and θ̂5(t1) ≥ 0.
Note also that for x(t) ∈ [1− h, 1], we have 0 ≤
μF4(x(t)) ≤ 1

2 and 1
2 ≤ μF5(1− h) ≤ μF5(x(t)) ≤ 1.

Then, by the tuning law of θ̂, we have

θ̂4(t) = θ̂4(t1) +

Z t

t1

μF4(x(τ))x(τ)dτ ≥ 0 (38)

and

θ̂5(t) = θ̂5(t1) +

Z t

t1

μF5(x(τ))x(τ)dτ

≥ (t− t1)μF5(1− h)(1− h) (39)

With (38) and (39), the value of θ̂
T
(t)ξ(x(t)) can be

evaluated as

θ̂
T
(t)ξ(x(t)) = θ̂4(t)μF4(x(t)) + θ̂5(t)μF5(x(t))

≥ (t− t1) (1− h)μ2F5(1− h)

Now define a constant tM to satisfy

tM >
2fmax

(1− h)μ2F5(1− h)
(40)

Then from the first equation of the closed-loop dynam-
ics of the adaptive fuzzy system in (31), we have

x(t1 + tM )

≤ 1− h+ fmaxtM − 1
2
(1− h)μ2F5(1− h)t2M

By the definition of tM given in (40), we lead to a
contradiction that

x(t1 + tM ) < 1− h

Therefore, the assumed situation is impossible. ¥
In the following, we shall first investigate the learn-

ing capability of the adaptive tuning law when a
switching at the boundary happens.

Lemma 6: Suppose that a switching at the boundary
x = 1 − h happens at t = t1 and the adaptive fuzzy
control is applied during the interval [t1, t̄1]. Let t2
be the next time when the adaptive fuzzy control law
is applied. Then, the time difference t̄1 − t1 can be
estimated as

t̄1 − t1 ≥ h

fmax
(41)

Moreover, we have

F (x(t2), θ̂(t2))

≥ F (x(t1), θ̂(t1)) +∆F (42)

where
∆F =

1

2

h(1− h)

fmax

Similarly, if a switching at the boundary x = −(1−h)
happens at t = t1, then we have

F (x(t2), θ̂(t2)) ≤ F (x(t1), θ̂(t1))−∆F (43)



Proof: Since a switching at the boundary x = 1−h
happens at t = t1, by Definition 1, we have x(t2) =
x(t1) = 1 − h, x(t̄1) = 1, x(t) ∈ [1− h, 1] for t ∈
[t1, t̄1], and the adaptive control law is applied during
the interval [t1, t̄1]. From the switching control law
defined in (30) and (31), we see that the parameter
vector θ̂(t) is frozen during the interval (t̄1, t2) and
thus according to the second equation of (31), we have

θ̂(t2) = θ̂(t̄1) = θ̂(t1) +

Z t̄1

t1

ξ(x(τ))x(τ)d(τ) (44)

The value of the fuzzy approximator F (x(t), θ̂(t))
evaluated at t = t2 is given by

F (x(t2), θ̂(t2)) = ξT (x(t2))θ̂(t2) = ξT (x(t1))θ̂(t̄1)

Now, by applying (44), we get

F (x(t2), θ̂(t2))

= ξT (x(t1))

"
θ̂(t1) +

Z t̄1

t1

ξ(x(τ))x(τ)d(τ)

#
= F (x(t1), θ̂(t1))

+

Z t̄1

t1

ξT (t1) [ξ(x(τ))− ξ(x(t1))]x(τ)d(τ)

+ξT (x(t1))ξ(x(t1))

Z t̄1

t1

x(τ)d(τ) (45)

Since x(t) ∈ [1− h, 1] for t ∈ [t1, t̄1], from the
membership functions defined in Fig. 2, we have

ξ(x) =
£
0 0 0 2− 2x 2x− 1 ¤T

and

ξ(x(τ))− ξ(x(t1))

=
£
0 0 0 −2 2

¤T
(x(τ)− x(t1))

for t ∈ [t1, t̄1] . Note that x(t1) = 1− h. Therefore, it
follows from inequality (27) that

ξT (x(t1)) [ξ(x(τ))− ξ(x(t1))]

= [8(1− h)− 6] (x(τ)− x(t1))

≥ 0

where the fact x(τ)− x(t1) = x(τ)− (1− h) ≥ 0 for
t ∈ [t1, t̄1] has been used. Using (45) and (23), we can
obtain

F (x(t2), θ̂(t2))

≥ F (x(t1), θ̂(t1)) + ξT (x(t1))ξ(x(t1))

Z t̄1

t1

x(τ)d(τ)

≥ F (x(t1), θ̂(t1)) +
1

2
(1− h)(t̄1 − t1)

Since x(t) ∈ [1− h, 1] for t ∈ [t1, t̄1] , following from
Lemma 3, we have

ẋ(t) = f(x(t))− θ̂
T
(t)ξ(x(t)) ≤ fmax

Therefore, with x(t1) = 1−h and x(t̄1) = 1, we have

t̄1 − t1 ≥ h

fmax

This shows inequality (42). Analysis of the case x =
−(1− h) is omitted. ¥

Remark 2: We shall note that when the adaptive
control law is applied beginning from t = t1, we have

ẋ(t1) = f(x(t1))− θ̂
T
(t1)ξ(x(t1))

= f(1− h)− θ̂
T
(t1)ξ(x(t1))

Therefore, if f(1 − h) is greatly larger than
θ̂
T
(t1)ξ(x(t1)), then a switch of control law at x =

1 − h may happens due to instability of the adaptive
control system under the current parameter setting. To
avoid continuous switching behavior at x = 1−h, the
only way is to increase the value of F (x(t), θ̂(t)) =
θ̂
T
(t)ξ(x(t)). Lemma 6 shows that if the adaptive

control law is applied beginning from t = t2 just after
a switch of control law at x = 1−h happened at t = t1,

then with the learning capability of θ̂
T
(t), ẋ(t1) will

be decreased by an amount ∆F as indicated in (42) so
that the adaptive control system at t = t2 has a better
chance to avoid continuous switching at the boundary
x = 1− h.

Remark 3: Since we shall spend at least h
fmax

time
length to complete a switching, this implies that if
continuous switching of infinite times at the positive
boundary x = 1 − h happens since t = t1, then such
a infinite-times switching can not be completed in a
finite interval.

Lemma 7: Suppose that a switching at the boundary
x = 1 − h happens at t = t1 and the adaptive fuzzy
control is applied during the interval [t1, t̄1]. In this
case, θ̂5(t)− θ̂4(t) is a monotone increasing function
of t in the intervals [t1, t̄1] . Particularly, at t = t̄1, we
have

θ̂5(t̄1)−θ̂4(t̄1) ≥ θ̂5(t1)−θ̂4(t1)+ 4εh(1− h)h

fmax
(46)

Moreover, if θ̂5(t1) ≥ θ̂4(t1), then θ̂5(t) ≥ θ̂4(t) for
t ∈ [t1, t̄1] and

F (ξ(x(t)), θ̂(t)) ≥ F (ξ(x(t1)), θ̂(t1) (47)

for t ∈ [t1, t̄1]. In addition, if x(t) is also non-
decreasing, then F (ξ(x(t)), θ̂(t)) is a monotone in-
creasing function of t in the intervals [t1, t̄1] .

Proof: For t ∈ [t1, t̄1], we have

θ̂5(t) = θ̂5(t1) +

Z t

t1

μF5(x(τ))x(τ)dτ

= θ̂5(t1) +

Z t

ti

[2x(τ)− 1]x(τ)dτ (48)



and

θ̂4(t) = θ̂4(t1) +

Z t

t1

μF4(x(τ))x(τ)dτ

= θ̂4(t1) +

Z t

t1

[2− 2x(τ)]x(τ)dτ (49)

Therefore, the difference θ̂5(t)−θ̂4(t) can be evaluated
as

θ̂5(t)−θ̂4(t) = θ̂5(t1)−θ̂4(t1)+
Z t

ti

[4x(τ)− 3]x(τ)dτ
(50)

Since x(t) ∈ [1− h, 1] for t ∈ [t1, t̄1] and 0 < h ≤
1
4 − εh as defined in (27), the integrand of the integral
in (50) is greater than zero. Therefore, θ̂5(t)−θ̂4(t) is a
monotone increasing function for t ∈ [t1, t̄1]. Actually,
a lower bound of θ̂5(t)− θ̂4(t) can be evaluated as

θ̂5(t)− θ̂4(t) ≥ θ̂5(t1)− θ̂4(t1) + 4εh(1− h)(t− t1)
(51)

Particularly, at t = t̄1, with (41), one can lead to

θ̂5(t̄1)− θ̂4(t̄1)

≥ θ̂5(t1)− θ̂4(t1) + 4εh(1− h)(t̄1 − t1)

≥ θ̂5(t1)− θ̂4(t1) +
4εh(1− h)h

fmax

Moreover, from (51), it follows that if θ̂5(t1) ≥ θ̂4(t1),
then θ̂5(t) ≥ θ̂4(t) for any t ∈ [t1, t̄1] .

Now we show that F (ξ(x(t)), θ̂(t)) is a monotone
increasing function of t in the intervals [t1, t̄1] . Using
the definitions of the membership functions in (??), we
can get

θ̂
T
(t)ξ(x(t))

= [2x(t)− 1]
h
θ̂5(t)− θ̂4(t)

i
+ θ̂4(t)

Since both θ̂5(t)− θ̂4(t) as well as θ̂4(t) are monotone
increasing under the assumption θ̂5(t1) ≥ θ̂4(t1) and
x(t) ≥ x(t1) = 1 − h, it follows that inequality (47)
holds. In addition, if x(t) is also non-decreasing, then
F (ξ(x(t)), θ̂(t)) is a monotone increasing function of
t in the intervals [t1, t̄1] . This completes the proof. ¥

Lemma 8: Assume that a continuous switching of
infinite times at the positive boundary x = 1 − h
happens since a finite time t = t1. Then there is an
index I1 such that θ̂5(t) ≥ θ̂4(t) for t ≥ tI1 .

Proof: Assume that there are two time sequences
{ti}∞i=1 and {t̄i}∞i=1 with ti < t̄i < ti+1 such that
the adaptive fuzzy control law is used for t ∈ [ti, t̄i]
with x(t) ∈ [1− h, 1]. It is noted that x(ti) = 1 − h
and x(t̄i) = 1 for any i. While keeping switching at
the boundary x = 1 − h, we shall repeatedly use the
result in Lemma 7 and we shall show that there is
a time instant tI1 such that θ̂5(tI1) ≥ θ̂4(tI1). In the
following, we shall identify t̄0 as t1. By using (46) for

t ∈ [ti, t̄i], we have

θ̂5(t̄i)− θ̂4(t̄i)

≥ θ̂5(ti)− θ̂4(ti) +
4εh(1− h)h

fmax

= θ̂5(t̄i−1)− θ̂4(t̄i−1) +
4εh(1− h)h

fmax
(52)

for i ≥ 1. By using the recursive inequality (52), one
can get

θ̂5(tN+1)− θ̂4(tN+1)

= θ̂5(t̄N )− θ̂4(t̄N )

≥ θ̂5(t1)− θ̂4(t1) +N4εh(1− h)
h

fmax
(53)

Therefore, if we choose

N =

⎡⎢⎢⎢
max

³
0, θ̂4(t1)− θ̂5(t1)

´
fmax

4εh(1− h)h

⎤⎥⎥⎥
where dxe is the smallest integer with x ≤ dxe, then,
following from (53), θ̂5(tI1) ≥ θ̂4(tI1) where we
define I1 = N + 1. Consequentially, from (52), we
θ̂5(ti) ≥ θ̂4(ti) for i ≥ I1. Therefore, by repeatedly
using Lemma 7, we can conclude that θ̂5(t) ≥ θ̂4(t)
for t ≥ tI1 . Note that if θ̂4(t1) ≤ θ̂5(t1), then I1 = 1.

Lemma 9: It is impossible that a continuous switch-
ing of infinite times at the positive boundary x = 1−h
happens since a finite time t = t1.

Proof: By contradiction, assume that a continuous
switching of infinite times at the positive boundary x =
1−h happens since a time instant t = t1. By Lemma
8, there is an index I1 such that θ̂5(ti) ≥ θ̂4(ti) for
i ≥ I1. Then, by inequality (47) in Lemma 7, we have
F (x(t), θ̂(t)) = θ̂

T
(t)ξ(x(t)) ≥ F (x(ti), θ̂(ti)) for t ∈

[ti, t̄i] with i ≥ I1. Therefore, for any positive integer
N , we have

x(t̄N+I1)

= x(tN+I1) +

Z t̄N+I1

tN+I1

h
f(x(τ))− θ̂

T
(τ)ξ(x(τ))

i
dτ

≤ 1− h

+

Z t̄N+I1

tN+I1

h
fmax − θ̂

T
(tN+I1)ξ(x(tN+I1))

i
dτ(54)

Now, following from inequality (42) in Lemma 6 and
inequality (41), for any positive integer N , we have

F (x(tN+I1), θ̂(tN+I1))

≥ F (x(tI1), θ̂(tI1)) +N∆F

≥ N∆F

and thus inequality (54) implies

x(t̄N+I1)

≤ 1− h+

Z t̄N+I1

tN+I1

[fmax −N∆F ] dτ (55)

= 1− h+ (fmax −N∆F ) (t̄N+I1 − tN+I1)

(56)



Suppose that we choose N such that

N >

»
fmax
∆F

¼
and thus fmax−N∆F < 0. Then, following from (41)
and (56), we have

x(t̄N+I1) ≤ 1− h+ (fmax −N∆F )
h

fmax
< 1− h

However, the above inequality contradicts the assump-
tion that a continuous switching of infinite times at the
positive boundary x = 1−h happens since t = t1. This
completes the proof. ¥

Lemma 10: It is impossible that a switching at the
positive boundary x = 1 − h (or at the negative
boundary x = −(1− h)) happens infinite times since
any finite time t = t1.

Proof: By contradiction, assume that a switch at
the positive boundary x = 1 − h (or at the negative
boundary x = −(1− h)) happens infinite times at t =
ti for 1 ≤ i < ∞ with ti < ti+1. Denote a time
sequence t̄i for 1 ≤ i < ∞ with ti < t̄i < ti+1 such
that the adaptive fuzzy control law is applied in [ti, t̄i] .
Also define a time sequence ťi for 1 ≤ i <∞ such that
the adaptive VSS control law is applied in

¡
t̄i, ťi

¢
and

ti < t̄i < ťi ≤ ti+1 for 1 ≤ i < ∞. Then, since the
adaptive fuzzy control is applied in [ti, t̄i], following
from Lemma 6, we have

θ̂5(t̄i)− θ̂5(ti) =

Z t̄i

ti

μF5(x(τ))x(τ)dτ

≥ μF5(1− h)(1− h) (t̄i − ti)

≥ μF5(1− h)(1− h)
h

fmax

Since θ̂5(t) is monotone increasing, i.e., θ̂5(ti+1) ≥
θ̂5(t̄i) as ti+1 ≥ t̄i, we have

θ̂5(ti+1)− θ̂5(ti) ≥ θ̂5(t̄i)− θ̂5(ti)

≥ μF5(1− h)(1− h)
h

fmax

Therefore, recursively using the above inequality, one
can obtain

θ̂5(tN+1) ≥ θ̂5(t1) +NμF5(1− h)(1− h)
h

fmax

Since μF5(x) is monotone increasing in the interval
[1− h, 1], for t ∈ [tN+1, t̄N+1] , we have

θ̂
T
(t)ξ(x(t))

= θ̂4(t)μF4(x(t)) + θ̂5(t)μF5(x(t))

≥ θ̂5(t)μF5(x(t))

≥ θ̂5(tN+1)μF5(1− h)

≥ μF5(1− h)

∙
θ̂5(t1) + (1− h)

h

fmax
NμF5(1− h)

¸
Suppose that we choose N such that

N >

⎡⎢⎢⎢
fmax

μF5 (1−h)
− θ̂5(t1)

h(1− h)μF5(1− h)
fmax

⎤⎥⎥⎥

and thus

fmax < μF5(1−h)
∙
θ̂5(t1) +NμF5(1− h)(1− h)

h

fmax

¸
Then one can lead to

x(t̄N+1)

= x(tN+1) +

Z t̄N+1

tN+1

h
f(x(τ))− θ̂

T
(τ)ξ(x(τ))

i
dτ

< 1− h

However, the above inequality contradicts the assump-
tion that a switching at the positive boundary x = 1−h
happens infinite times since t = t1. This completes the
proof. ¥

Lemma 11: Under the specified switching mecha-
nism in (8)-(10) including the adaptive VSS control in
(30) and the adaptive fuzzy control in (31), we have
the following results.

(i) there is a finite time tf0 such that x(t) ∈ Ωx and
the adaptive fuzzy control is used for t ≥ tf0
and

(ii) the parameters ĉ1(t) and ĉ2(t) in the adaptive
VSS control are bounded for t ∈ [0,∞).

Proof: (Part i) Suppose that x(0) > 1−h. Then the
adaptive VSS control in (30) will ensure that there is
a finite time t1 such that x(t1) = 1 − h and x(t) >
1− h for t ∈ [0, t1) as stated in Lemma 2. At t = t1,
the adaptive fuzzy control law in (31) will then be
applied. When applying the adaptive fuzzy control law
at some time instant t = ts, the case that a continuous
switching of infinite times at the positive boundary x =
1 − h since t = ts has been excluded by Lemma 9.
Therefore, there are three possible cases at t = ts.
(A1) There is no control law switching happened at

the boundary x = 1 − h since t = ts, i.e.,
{x(t) |t ≥ ts } ⊂ Ωx = [−1, 1].

(A2) There is no control law switching happened at
the boundary x = 1− h at t = ts and there are
switching operations after t = ts.

(A3) A continuous switching of finite times happens
at the positive boundary x = 1− h since t = ts.

The above three cases are also applied to the situ-
ation that x(0) < −(1 − h). If |x(0)| ≤ 1 − h, then
the adaptive fuzzy control will be applied at t = 0 and
there are two possible cases.
(B1) There is no switching of control laws for t ≥ 0,

i.e., {x(t) |t ≥ 0} ⊂ Ωx = [−1, 1].
(B2) There are switching operations after t = 0.

Combining the situations (A1)-(A3) and (B1)-(B2),
we can conclude that there are two possibilities for the
trajectory {x(t), t ≥ 0} .
(C1) There is a finite time tf0 such that x(t) ∈ Ωx and

the adaptive fuzzy control is used for t ≥ tf0 .
(C2) A switching of control law at either x = 1 − h

or x = −(1− h) happens infinite times.
Note that Cases (C1) and (C2) are mutually exclu-

sive, since the time to complete a switching is greater



than or equal to a constant h/fmax as indicated in
Lemma 6. However, Case (C2) is excluded by Lemma
10 and thus the result in part (i) is confirmed.

(Part ii) Note that a switching at either x = 1 − h
or x = −(1 − h) can only happen for finite times
following from part (i). Define a set of time intervals©¡
t̄i, ťi

¢ªNV

i=1
where NV is a finite positive integer,PNV

i=1

¡
ťi − t̄i

¢
< ∞, and the adaptive VSS control

is only applied in
¡
t̄i, ťi

¢
for 1 ≤ i ≤ NV . Then,

following from (12) and (13), we have

ĉ1(ťi)− ĉ1(t̄i) =

Z ťi

t̄i

Γ1 |x(t)|2 dt
≤ Γ1x

2
i,max(ťi − t̄i)

ĉ2(ťi)− ĉ2(t̄i) =

Z ťi

t̄i

Γ1 |x(t)|3 dt
≤ Γ1x

3
i,max(ťi − t̄i)

where
xi,max = sup

t∈(t̄i,ťi)
|x(t)|

Since ĉ1(t) and ĉ2(t) are kept invariant when the
adaptive fuzzy control law is applied, we have

ĉ1(t̄i) = ĉ1(ťi−1)
ĉ2(t̄i) = ĉ2(ťi−1)

and thus

ĉ1(ťNV )

≤ ĉ1(t̄1) + Γ1

µ
max

1≤i≤NV

x2i,max

¶ NVX
i=1

(ťi − t̄i)

< ∞
amd

ĉ2(ťNV )

≤ ĉ2(t̄1) + Γ1

µ
max

1≤i≤NV

x3i,max

¶ NVX
i=1

(ťi − t̄i)

< ∞
Since the adaptive fuzzy control is applied for t ≥ ťNV ,
we have ĉ1(t) = ĉ1(ťNV ) and ĉ2(t) = ĉ2(ťNV ) for
t ≥ ťNV . This completes the proof. ¥

B. Convergence analysis
Following from Lemma 11, the adaptive fuzzy con-

trol is applied for t ≥ tf0 where tf0 is a finite time and
x(t) ∈ Ωx for t ≥ tf0 . Recall that {Ωx,i}2L−2i=1 is a
partition of the universe of discourse Ωx. Particularly,
let Ωx,0 = Ωx,L−1 ∪ Ωx,L =

h
γ L−1

2
, γ L+1

2

i
and thus

0 ∈ Ωx,0. Now define sets Si for 1 ≤ i ≤ 2L− 2 such
that

Si = {t |x(t) ∈ Ωx,i, t ≥ tf0 }
and denote the time length σ (Si) as the Borel measure
of the set Si.

Lemma 12: The the time length σ (Si) is finite for
1 ≤ i ≤ L − 3 and L + 2 ≤ i ≤ 2L − 2.Therefore
there is a finite time tf with tf ≥ tf0 such that x(t) ∈
Ωx,0 = ∪L+1i=L−2Ωx,i and the adaptive control is used
for t ≥ tf .

Proof: (Part i: for i = 1 and i = 2L − 2) First,
by contradiction, assume that σ (S2L−2) =∞. In this
case, there are two possibilities: (i) there is a finite
time ta such that x(t) ∈ Ωx,2L−2 for t ≥ ta ≥ tf0
and (ii) the trajectory x(t) keeps visiting the connected
region Ωx,2L−2 in infinite disjoined time intervals.
We can use the same methodology as done in the
proof of Lemma 5 to verify that the first possibility
is impossible. In the following, we shall also show
that the second possibility is impossible and thus
σ (S2L−2) < ∞. For the second possibility, since
x(t) is a continuous function of t, there is a subset
∪∞i=1(ti, t̄i) ⊂ S2L−2 such that tf0 ≤ ti < t̄i ≤ ti+1,
x(ti) = γL−1, and

P∞
i=1 (t̄i − ti) =∞. Note that for

any x(t) ∈ Ωx,2L−2, only the (L−1)−th and the L−th
rules of the fuzzy system will be fired and thus

θ̂
T
(t)ξ(x(t)) = θ̂L−1(t)μFL−1(x(t))+θ̂L(t)μFL(x(t))

Also as Ωx,2L−2 ⊂ [0, 1] , following from Lemma 3,
we have θ̂L−1(t) ≥ 0, θ̂L(t) ≥ 0, and both θ̂L−1(t) as
well as θ̂L(t) are monotone increasing functions of t.
Moreover, for x(t) ∈ Ωx,2L−2, i.e., γL−1 < x(t) ≤
dL, we have μFL−1(x(t)) is monotone decreasing with
0 ≤ μFL−1(x(t)) < 1

2 and μFL(x(t)) is monotone
increasing with 1

2 < μFL(x(t)) ≤ 1. Now for [ti, t̄i] ,,
we have

θ̂L(t̄i)− θ̂L(ti) =

Z t̄i

ti

μFL(x(τ))x(τ)dτ

≥ μFL(γL−1)γL−1 (t̄i − ti)

Since θ̂L(t) is monotone increasing, i.e., θ̂L(ti+1) ≥
θ̂L(t̄i) as ti+1 ≥ t̄i, we have

θ̂L(ti+1)− θ̂L(ti) ≥ θ̂L(t̄i)− θ̂L(ti)

≥ μFL(γL−1)γL−1 (t̄i − ti)

Therefore, recursively using the above inequality, one
can obtain

θ̂L(tN+1) ≥ θ̂L(t1) + μFL(γL−1)γL−1
NX
i=1

(t̄i − ti)

Since μFL(x) is monotone increasing in the interval£
γL−1, dL

¤
, for t ∈ [tN+1, t̄N+1] , we have

θ̂
T
(t)ξ(x(t))

= θ̂L−1(t)μFL−1(x(t)) + θ̂L(t)μFL(x(t))

≥ θ̂L(t)μFL(x(t))

≥ θ̂L(tN+1)μFL(γL−1)

≥ μFL(γL−1)
h
θ̂L(t1)

+μFL(γL−1)γL−1
NX
i=1

(t̄i − ti)

#



Suppose that we choose N such that

NX
i=1

(t̄i − ti) >

fmax
μFL

(γL−1)
− θ̂L(t1)

μFL(γL−1)γL−1

Then one can lead to

x(t̄N+1)

= x(tN+1) +

Z t̄N+1

tN+1

h
f(x(τ))− θ̂

T
(τ)ξ(x(τ))

i
dτ

≤ γL−1 +
Z t̄N+I1

tN+I1

n
fmax − μFL(γL−1)

h
θ̂L(t1)

+μFL(γL−1)γL−1
NX
i=1

(t̄i − ti)

#)
dτ

< γL−1

which contradicts the assumption that x(t̄N+1) ≥
γL−1. Therefore, we have σ (S2L−2) <∞. The above
analysis can be also applied to the case i = 1 to show
that σ (S1) <∞.

(Part ii: for i = 2 and i = 2L− 3)
First, by contradiction, assume that σ (S2L−3) =∞.

In this case, there are two possibilities: (i) there is
a finite time ta such that x(t) ∈ Ωx,2L−3 for t ≥
ta ≥ tf0 and (ii) the trajectory x(t) keeps visiting
the connected region Ωx,2L−3 in infinite disjoined
time intervals. We can use the same methodology as
done in the proof of Lemma 5 to verify that the first
possibility is impossible. In the following, we shall
also show that the second possibility is impossible and
thus σ (S2L−3) <∞. For the second possibility, since
x(t) is a continuous function of t, there is a subset
∪∞i=1(ti, t̄i) ⊂ S2L−3 such that tf ≤ ti < t̄i ≤ ti+1,
x(ti) = dL−1, and

P∞
i=1 (t̄i − ti) =∞. Note that for

any x(t) ∈ Ωx,2L−3, only the (L−1)−th and the L−th
rules of the fuzzy system will be fired and thus

θ̂
T
(t)ξ(x(t)) = θ̂L−1(t)μFL−1(x(t))+θ̂L(t)μFL(x(t))

Also as Ωx,2L−3 ⊂ [0, 1] , following from Lemma 3,
we have θ̂L−1(t) ≥ 0, θ̂L(t) ≥ 0, and both θ̂L−1(t) as
well as θ̂L(t) are monotone increasing function of t.
Moreover, for x(t) ∈ Ωx,2L−3, i.e., dL−1 < x(t) ≤
γL−1, we have μFL−1(x(t)) is monotone decreasing
with 1

2 ≤ μFL−1(x(t)) < 1 and μFL(x(t)) is monotone
increasing with 0 < μFL(x(t)) ≤ 1

2 . Now for [ti, t̄i] ,,
we have

θ̂L−1(t̄i)− θ̂L−1(ti) =

Z t̄i

ti

μFL−1(x(τ))x(τ)dτ

≥ μFL−1(γL−1)dL−1 (t̄i − ti)

Since θ̂L−1(t) is monotone increasing, i.e.,
θ̂L−1(ti+1) ≥ θ̂L−1(t̄i) as ti+1 ≥ t̄i, we have

θ̂L−1(ti+1)− θ̂L−1(ti) ≥ θ̂L−1(t̄i)− θ̂L−1(ti)
≥ μFL−1(γL−1)dL−1 (t̄i − ti)

Therefore, recursively using the above inequality, one
can obtain

θ̂L−1(tN+1)

≥ θ̂L−1(t1) + μFL−1(γL−1)dL−1
NX
i=1

(t̄i − ti)

Since μFL−1(x) is monotone decreasing in the interval£
dL−1, γL−1

¤
, for t ∈ [tN+1, t̄N+1] , we have

θ̂
T
(t)ξ(x(t))

= θ̂L−1(t)μFL−1(x(t)) + θ̂L(t)μFL(x(t))

≥ θ̂L−1(t)μFL−1(x(t))

≥ θ̂L−1(tN+1)μFL−1(γL−1)

≥ μFL(γL−1)
h
θ̂L−1(t1)

+μFL−1(γL−1)dL−1
NX
i=1

(t̄i − ti)

#
Suppose that we choose N such that

NX
i=1

(t̄i − ti) >

fmax
μFL−1 (γL−1)

− θ̂L−1(t1)

μFL−1(γL−1)dL−1

Then one can lead to

x(t̄N+1)

= x(tN+1) +

Z t̄N+1

tN+1

h
f(x(τ))− θ̂

T
(τ)ξ(x(τ))

i
dτ

≤ dL−1 +
Z t̄N+I1

tN+I1

n
fmax − μFL−1(γL−1)

h
θ̂L−1(t1)

+μFL−1(γL−1)dL−1
NX
i=1

(t̄i − ti)

#)
dτ

< dL−1

which contradicts the assumption that x(t̄N+1) ≥
dL−1. Therefore, we have σ (S2L−3) <∞. The above
analysis can be also applied to the case i = 2 to show
that σ (S2) <∞.

(Part iii, the other cases) The other cases can be
treated by the same methods as done in the previous
two parts except for the cases i = L − 1 and i = L.
This completes the proof. ¥

Theorem 5: Assume that f(x) is a convex function
in [0, 1] and a concave function in [−1, 0]. Then
lim
t→∞x(t) = 0 and θ̂(t) is bounded over [0,∞) .

Proof: Note that if the fuzzy system F (x, θ) consists
of a fuzzy singleton, Mamdani product inference en-
gine, center average defuzzifier, and triangular member
ship functions, then θ∗i = f(di) for 1 ≤ i ≤ L,
F (di, θ

∗) = f(di) for 1 ≤ i ≤ L, F (x, θ) is a
piecewise linear approximator of f(x) in Ωx [10]. If
f(x) is a convex function in [0, 1] , then

f(x)− ξT (x)θ∗ ≤ 0, for x ∈ [0, 1] (57)



On the other hand, if f(x) is a concave function in
[−1, 0], then

f(x)− ξT (x)θ∗ ≥ 0, for x ∈ [−1, 0] (58)

Now consider the following positive definite function

Va =
1

2
x2 +

1

2
θ̃
T
θ̃

By applying the closed-loop dynamic equation (31),
we get

.

V a = x
h
f(x)− θ̂

T
ξ(x)

i
+ θ̃

T
.

θ̃

= x
h
f(x)− ξT (x)θ∗ − ξT (x)θ̃

i
+ θ̃

T
[ξx]

= x
h
f(x)− ξT (x)θ∗

i
≤ 0 (59)

where we have invoked inequalities (57) and (58). In-
equality (59) implies that θ̂(t) is bounded over [tf ,∞).
Note that θ̂(t) is also bounded over [0, tf ).

Now we consider another positive definite function

V2 =
1

2
x2 +

1

2
θ̂
T
θ̂ (60)

The time derivative of V2 along the system trajectory
of the closed-loop system dynamics defined in (31) is
given by

V̇2 =
1

2
xẋ+

1

2
θ̂
T
.

θ̂

= x
h
f(x)− θ̂

T
ξ(x)

i
+ θ̂

T
ξx

= xf(x) ≥ 0
By the symmetric property of f(x) in (5), we have½

V̇2 > 0, if x 6= 0
V̇2 = 0, if x = 0

which implies that V2(t) is non-decreasing for t ≥ tf .
Since θ̂(t) and x(t) are bounded over [tf ,∞), V2(t)
converges to a finite positive limit . If V2(t) converges
to a finite positive limit, i.e.,

lim
t→∞V2(t) = CV2

then, by the monotone increasing property of V2(t),
we have

1

2
x2(t) +

1

2
θ̂(t)T θ̂(t) ≤ CV2

and thus

|x(t)| ≤
p
2CV2°°°θ̂(t)°°° ≤ p
2CV2

Now compute the second-order differential of V2(t) as
the follows

..

V 2(t) = ẋf(x) + x
df(x)

dx
ẋ

=

µ
f(x) + x

df(x)

dx

¶³
f(x)− ξT (x)θ̂

´

It is easy to see that
..

V 2(t) is a bounded function of t
from the following inequality¯̄̄ ..

V 2(t)
¯̄̄

≤
¯̄̄̄
f(x) + x

df(x)

dx

¯̄̄̄ ¯̄̄
f(x)− ξT (x)θ̂

¯̄̄
≤

µ
|f(x)|+ |x|

¯̄̄̄
df(x)

dx

¯̄̄̄¶ ³
|f(x)|+

¯̄̄
ξT (x)θ̂

¯̄̄´
≤ (fmax + κf )

³
fmax +

°°°θ̂(t)°°° kξ(x)k´
≤ (fmax + κf )

³
fmax +

p
2CV2

´
and thus V̇2(t) is uniformly continuous. Then, by
Barbalat’s lemma [9], we get

lim
t→∞V̇2(t) = 0

which is equivalent to

lim
t→∞x(t)f(x(t)) = 0

Since, by (5), xf(x) = 0 if and only if x = 0, the
above equation implies that

lim
t→∞x(t) = 0

This completes the proof. ¥
Example 1: In the example, we consider the case

f(x) = 2x+ 2x |x| (61)

and thus £
c∗1 c∗2

¤
=
£
2 2

¤
We note that the plant in this example is a highly unsta-
ble system. Therefore, with the initial state x(0) = 5,
the state x(t) usually bursts within very short time
interval without a proper feedback control. The settings
of the adaptive VSS controller are given as

r = 1

ĉ1(0) = 0

ĉ2(0) = 0

and those of the adaptive fuzzy controller are given as

θ̂(0) = 0

Γ2 = 10I

Note that in the derivation of the main result, the
learning rate matrix Γ2 is set as I . Actually, the main
results hold for any positive definite matrix Γ2. The
hysteresis size h is given as 1

5 such that 1 − h = 4
5 .

The responses of x(t), ĉi(t), u(t) are shown in Fig.
3, Fig. 4, and Fig. 5, respectively. For a very short
time period after t = 0 before ĉ1(t) and ĉ2(t) are
large enough, the closed-loop system is unstable and
the state x(t) bursts faster and faster. However, such
a high amplitude of x(t) will also rapidly increase the
values of ĉ1(t) and ĉ2(t) as shown in Fig. 4. This also
results in a high peak of u(t) as shown in Fig. 5, which
in turns tends to stabilizes the system. When ĉ1(t) and
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Fig. 3. The evolution of the state x(t) in Example 1 with x(0) = 5.

ĉ2(t) are large enough such that ẋ(tp) < 0 at some
time tp, with tp < 0.1 seconds, then x(t) and thus
u(t) begin to decrease and the growth of ĉ1(t) and
ĉ2(t) will slow down. At some time t1 with t1 = 0.21
seconds, x(t) hits the switching boundary x = 1− h.

After t = t1, the adaptive fuzzy controller will take
over the system. However, since the parameter vector
θ̂ is not well trained yet, the system remains unstable
and the state x(t) still tries to escape away from the
switching boundary. However, when x(t̄1) = 1 at some
time t̄1, the adaptive VSS controller will be in charge
of the system and x(t) will be forced back to x(t2) = 1
at some time t2. Until the parameter vector θ̂, actually
θ̂4 and mainly θ̂5, is well trained as shown in Fig. 6,
there is a continuous switching of 18 times occurred
at the boundary x = 1 − h, as observed in Fig. 3.
Within the time period of this continuous switching, the
value of the fuzzy system F (x, θ̂) evaluated at t = ti
when a switching occurs increases as i increases. When
f(x(ti))−F (x(ti), θ̂(ti)) is too large, then a switching
t = ti will be inevitable. At the end of this continuous
switching, the adaptive fuzzy control is applied again at
t = t19 = 1.85. At some time tq after t = t19, we have
f(x(tq)) < F (x(tq), θ̂(tq)) and x(t) begins to decay to
zero. When x(t) = 0, F (x(t), θ̂(t)) is still larger than
zero. Since f(x) < 0 for x < 0 in this example, and θ̂1
as well as θ̂2 have not been well trained until now, x(t)
will be pass through x = 0 and reach another boundary
x = −1. Then, adaptive VSS control takes over the
system again and another continuous switching of finite
time at x = −(1 − h) happens. After the second
continuous switching, there is no switching any more
and x(t) converges to zero asymptotically. From Fig.
5, we see that the amplitude of the control signal u(t)
of the adaptive fuzzy controller is much smaller than
that of the adaptive VSS controller. That is why we say
that the adaptive VSS control is for coarse control and
the adaptive fuzzy control is suitable for fine control.
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Fig. 4. The responses of ĉ1and ĉ2 in Example 1 with ĉ1(0) = 0
and ĉ2(0) = 0.
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Fig. 5. The evolution of the control input u(t) in Example 1.
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Fig. 6. The responses of θ̂1(t), θ̂2(t), θ̂3(t), θ̂4(t) and θ̂5(t) in
Example 1 with θ̂(0) = 0.



VI. CONCLUSION AND DISCUSSION

In the field of adaptive fuzzy control, there has been
a severe deficiency by assuming the premise variables
will usually stay within the universe of discourse in the
derivation of stability of the adaptive control system.
To overcome this deficiency, we develop a switching
adaptive control scheme using only essential qualitative
information of the plant to attain asymptotical stability
of the adaptive control system for a typical first-order
nonlinear system without imposing the mentioned se-
vere assumption. The switching adaptive control sys-
tem consists of an adaptive VSS controller for coarse
control, an adaptive fuzzy controller for fine control,
and a hysteresis switching mechanism. An adaptive
VSS control scheme is proposed to force the state to
enter the universe of discourse in finite time. While the
premise variable is within the universe of discourse,
an adaptive fuzzy control is proposed to learn the
capability to stabilize the plant. At the boundary of the
universe of discourse, a hysteresis switching scheme
between the two controllers will be proposed. We
show that after finite times of switching, the premise
variables of the fuzzy system will remain within the
universe of discourse and stability of the closed-loop
system can be attained by applying Lyapunov direct
method.

Future studies of this work are described as follows.
(i) Extension of the proposed scheme to nonlinear

systems with strict feedback form
(ii) Extension to framework of stochastic control

systems.
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一、 參加會議經過: 
    此次2010年機器學習與人工頭腦學國際研討會(2010 International Conference on
Machine Learning and Cybernetics ，ICMLC 2010)，由河北大學、華南理工大學、IEEE

SMC (System, Man, and Cybernetics) 協會等單位聯合主辦，於 98 年 7 月 11 日到 98
年 7 月 14 日，在中國山東青島市之海信洲際酒店舉行。台灣的學者參與此研討會非常

踴躍。 
此次研討會所有論文都列入 IEEE Explorer 之資料庫，都屬於 EI Index。研討會之網

路首頁為 http://www.icmlc.com/，整個研討會包含二個 Plenary Talk： 
[1] Multiple Kernel Learning and Feature Space Denoising, Speaker: Professor Josef Kittler, 
Director of the Centre for Vision, Speech and Signal Processing, Faculty of Engineering and 
Physical Sciences, University of Surrey, UK.   
[2] Incompleteness in Data for Decision Making, Speaker: Professor Bryan Scotney, Professor 
of Informatics and Director of the Computer Science Research Institute, University of Ulster, 
UK.   
以及一個 Panel Discussion，題目為 Teach an Old Dog to Do New Tricks -- Learning and 
Recognizing a World of Problems。另外有兩個 Tutorials： 

[1] Multiple Classifier Systems, Speaker: Prof. Fabio Roli. 
[2] How to disseminate your research results: essentials of effective publishing, Speaker: Prof. 
Witold Pedrycz. 
此次研討會之主題包含： 
1. Adaptive systems              
2. Business intelligence      
3. Biometrics            
4. Bioinformatics          
5. Data and web mining       
6. Intelligent agent        
7. Financial engineering      
8. Inductive learning        
9. Geoinformatics          
10. Pattern Recognition       
11. Logistics            
12. Intelligent control       
13. Media computing         
14. Neural net and support vector machine         
15. Hybrid and nonlinear system                   
16. Fuzzy set theory, fuzzy control and system    
17. Knowledge management                          
18. Information retrieval                         
19. Intelligent and knowledge based system        
20. Rough and fuzzy rough set 
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21. Networking and information security           
22. Evolutionary computation                      
23. Ensemble method                               
24. Information fusion                            
25. Visual information processing                 
26. Computational life science   
 
二、與會心得 

(1) 從此次研討會所安排之主題來看，比較偏向人工智能於資訊工程之研究，

各國有關人工智慧理論都有顯著的研究成果，幾個比較新的主題如 Media 
computing、Bioinformatics、Computational life science、Business 
intelligence，非常值得國內學界注意其發展。 

(2) 除了認識許多中國之學者外，也認識了很多來自全世界各地的菁英學者，

對於將來推動國際學術交流，有相當大的幫助。 

(3) 大陸在人工智能領域之研究成果亦有長足之進步，在 IEEE SMC Society
之影響力也已超過台灣相關學界，國內應該即起直追。 

三、考察參觀活動(無是項活動者省略)  
7 月 13 日上午，應青島大學自動化學院邀請，由元智大學電機工程系系主任陳永

盛教授帶隊的臺灣學術代表團到青島大學參觀訪問。 

應青島大學自動化學院負責人向臺灣代表團介紹了學院的基本情況，其中自動化學

院之發展重點為控制理論與電力電子；臺灣代表團各位教授也分別介紹了各自學校及所

在學院的基本情況，。隨後代表團首先參觀了青島大學自動化學院的國家級電工自動化

學院，此實驗室包含基本電工實驗室、電力實驗室、電子實驗室、PLC 控制實驗室，學

生於畢業前須通過相當多之實驗課程，為學生實作能力打下深厚之基礎，臺灣學術代表

團並與實驗室師生進行了學術交流，就共同感興趣的學術問題進行了有益的探討。 

 

四、建議 
台灣應該多爭取舉辦國際研討會，使得全世界各地的菁英學者，能夠共聚ㄧ堂。

大陸學術界的國際化，已經逐步生根，同時以此為基礎邁向國際之競爭，台灣學

術界的國際化還有待大家的努力。 
  

五、攜回資料名稱及內容 
(1) 完整論文光碟片。 

 

六、其他 
無。 
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韌性適應控制。我們將克服之問題主要有二﹕ 
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    我們適應控制器設計理念為切換式控制器，依前提變數的位置將控制器 

設計分為二個情況：前提變數屬於與不屬於模糊系統之論域。當前提變數不 

屬於模糊系統之論域時，採用 VSS 型態之控制器，使得前提變數回到論域內 

；當前提變數屬於模糊系統之論域時，採用韌性控制器，使得狀態回到零點 

。我們利用隨機李亞普諾夫方法，證明韌性適應控制系統的穩定度。 

    對於命定性一階非線性系統，在不假設前提變數之軌跡均落於模糊系統 

之論域情況下，本年度計畫已成功地證明切換式適應控制系統之穩定度。未 

來將朝向命定性高階非線性系統與隨機系統作相關探討。 



 


