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一、中文摘要 

 

原計畫書推導電場頻率分量之耦合聯

立方程式，以描述在光放大器與光波長轉

換器中前向與反向光波之非線性交互作

用，例如包括四波混合，拉曼效應，與布

里安效應。所提出的方法可以完整描述前

向與反向行進光波的頻率域與時域之行

為，突破緩變包絡近似之限制。但要付出

很耗數值模擬時間的代價，因此需要使用

電腦叢集做平行運算，使計算時間在可以

接受的範圍內。由於核定之儀器設備費幾

乎全部遭刪除，很難進行數值模擬計算。

因此本計畫改為進行基於光功率耦合方程

式之研究，使數值模擬計算時間可以接

受，但已更改原計畫之目標。儘管如此，

更改後之計畫研究成果已刊登於 Optics 
Express 與 Optics Communications 各一篇，

以及投稿 Journal of Optical Society of 
America B 一篇。已刊登之論文內容請參考

期刊論文全文，本報告只說明已投稿但尚

未刊登之論文內容。 

本論文提出一個擾動方法分析信號

光，幫浦光，與亞穩態鉺離子密度之間的

交互作用，以研究在摻鉺光纖放大器中之

快速光。探討幫浦光時域變化對快速光的

影響，其中幫浦光時域變化是幫浦光功率

對亞穩態粒子密度時域變化的響應。由於

做了微小信號光功率的假設，這個問題在

文獻中通常被忽略。本論文發現若不考慮

這個效應，會低估負群速度與高估增益係

數。本論文也一併研究由於光場與鉺離子

的交互作用所產生的高階色散對快速光的

作用。 

 

關鍵詞：摻鉺光纖放大器，色散，快速光。 

 

Abstract 
The project proposal derived the 

coupled equations of forward and backward 
spectral field components to describe the 
nonlinear interaction between the forward 
and backward waves in optical amplifiers 
and wavelength converters, e.g. four-wave 
mixing, Raman effect, and Brillouin effect. 
The proposed method is able to completely 
describe the forward and backward waves 
both in spectral and temporal domains 
beyond the slowly varying envelope 
approximation at the expense of time- 
consuming numerical simulation. Therefore, 
the use of PC cluster for parallel computing 
is necessarily for reducing computing time to 
tolerable level. However, the equipment 
budget of this project is pruned almost all. As 
it is hard for simulation, this project studies 
the optical amplifiers based on power 
coupled equations instead so that simulation 
time is tolerable but the original project 
objective is changed. Nevertheless, this 
project has published two papers in Optics 
Express and Optics Communications and 
submitted a paper to Journal of Optical 
Society of America B. This report only gives 
the technical content of the submitted paper 
but not yet published paper. 

A perturbation method is used to study 
the interaction among signal, pump, and 
metastable population density for the fast 
light in an erbium-doped fiber amplifier. The 
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impact of temporal pump depletion (TPD) on 
the fast light is investigated, in which TPD is 
the response of pump power to the temporal 
variation of metastable population density. 
The effect of TPD was neglected in the 
conventional perturbation method shown in 
literatures because of small signal power 
assumption. It is found that negative group 
velocity is under estimated and gain 
coefficient is over estimated without 
considering the TPD. The effects of high 
order dispersions, which are induced by the 
interaction of the optical fields and erbium 
ions, on the fast light are also shown. 
 
Keywords: Erbium-doped fiber amplifiers, 

Dispersion, Fast light 
 
二、緣由與目的 

 

The propagation of the optical pulse in 
the highly dispersive medium with slow or 
fast light was interested [1-10]. Several 
experimental techniques were developed to 
show such interesting phenomena. It was 
reported that the slow and fast light can be 
easily observed by using the effect of 
coherent population oscillation (CPO) in an 
erbium-doped fiber amplifier (EDFA) [9,10]. 
Through the interaction between the fields 
and erbium ions in an erbium-doped fiber 
(EDF), there is the spectral absorption dip of 
narrow bandwidth when pump power is not 
enough to provide gain. On the contrary, 
when pump power is high enough, there is 
the spectral gain dip of narrow bandwidth. 
According to Kramers-Kronig relations, the 
EDF becomes a highly dispersive medium 
for the pulse in the presence of either spectral 
absorption or gain dip. The spectral 
absorption and gain dips result in slow and 
fast light, respectively. Reference [10] 
showed the case with 9-m EDF strongly 
pumped by a 980-nm semiconductor laser 
diode. The 1550-nm input pulse of 0.5 ms 
width and 0.5 mW power superimposing on a 
strong continuous wave (CW) control beam 
of the same wavelength was launched into 
the pumped EDF. Pulse back-propagation 

owing to fast group velocity was reported to 
be experimentally observed and the group 
index is estimated to be about -4,000. 

Because the interested pulse width is 
much longer than polarization de-phasing 
time, the interaction of the pulse and the 
population of doped erbium ions in an EDF 
can be described by the coupled equations of 
wave equation and rate equation. Reference 
[9] used a perturbation method to derive the 
time delay and gain (loss) coefficient of a 
sinusoidal modulated wave. This method 
linearizes the coupled equations by assuming 
that the power of the sinusoidal modulated 
wave is much less than that of control beam. 
Under this assumption, the temporal 
variation of ground level population density 
corresponding to the sinusoidal modulated 
wave can also be assumed to be much less 
than the steady state population density of 
ground level corresponding to the control 
beam. From the linearized coupled equations, 
the group velocity and gain coefficient of the 
sinusoidal modulated wave can be obtained. 
However, in this paper, we show that this 
perturbation method is not accurate in an 
EDFA even for the case that the assumption 
of perturbation is valid. The results 
numerically solved from the complete 
coupled equations without linearlization 
show that the gain coefficient and the 
absolute value of group velocity are over 
estimated and under estimated, respectively. 

We find that the inaccuracy is due to the 
temporal pump depletion (TPD) that is not 
included in the above perturbation method. 
The pump power depleted by the control 
beam is not time varying. Pulse depletes 
metastable population density. Pump power 
is absorbed more when metastable 
population density is depleted. The TPD is 
the pump power temporal variation 
responding to the temporal variation of the 
metastable population density absorbed by an 
optical pulse. In this paper, we develop the 
perturbation method including the TPD 
effect. It is shown that our method is accurate 
compared with the results directly solved 
from the complete coupled equations. The 
impact of the TPD on gain coefficient and 
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group velocity is shown. In addition, the 
pulse delay time and pulse shape distortion 
resulting from high order dispersions induced 
by CPO in an EDFA are also studied. 
 

三、結果與討論 

 

The energy levels of an EDFA can be 
approximated as a three-level system. 
However the decay rate from upper level to 
metastable level is much faster than the 
decay rate from metastable level to ground 
level. Because the population density of 
upper level is negligible, the signal and pump 
powers in an EDFA can be described by the 
following equations [11] 

gss snP P
z c t

∂ ∂
+ =

∂ ∂
 

( ) ( ) 2s ls s gs ls sP N Pα α α α− + + + , (1) 

p gp pP n P
z c t

∂ ∂
+ =

∂ ∂
 

( ) ( ) 2p lp p gp lp pP N Pα α α α− + + + , (2) 
where Ps is the signal power including pulse 
power and control beam power; Pp is forward 
pump power; ngs and ngp are the group 
indexes of signal and pump in the absence of 
doped erbium ions, respectively; c is the light 
velocity in vacuum; sα   and pα  are the 
intrinsic fiber loss coefficients at signal and 
pump wavelengths, respectively; lsα   and 

lpα  are the absorption coefficients at signal 
and pump wavelengths, respectively, which 
are due to doped erbium ions when 
population is completely in ground level; 

gsα  and gpα  are the gain coefficients at 
signal and pump wavelengths, respectively, 
which are due to doped erbium ions when 
population is completely in metastable level. 
In Eqs.(1) and (2), 2 2 / tN n n=  is the 
normalized metastable population density, in 
which n2 and nt are the population density of 
the metastable level and doping density, 
respectively. 

The normalized metastable population 
density can be described by the rate equation 
[11] 

2 1 ps
th th

s p

PPdN
dt P Pτ

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
 

2
1 1 ps

is is
s p

PP N
P Pτ

⎛ ⎞
− + +⎜ ⎟⎜ ⎟

⎝ ⎠
,  (3) 

where τ  is the life time of metastable level 
and 

th e k t
k

lk

A h nP ν
α τ

= ,    (4a) 

( )
is e k t

k
gk lk

A h nP ν
α α τ

=
+

,    (4b) 

where k= s and p; hvs and hvp are the photon 
energies of signal and pump, respectively; 
and Ae  is the effective doping area. 

Equations (1)-(3) are the coupled 
equations that describe the interaction of the 
optical fields and doped erbium ions. The 
coupled equations can be numerically solved 
with the initial conditions 

0 0( 0, ) ( )s c aP z t P P t= = + ,  (5) 

0( 0, )p pP z t P= = ,    (6) 
where Pc0 is the input control beam power; 
Pa0(t) is the input pulse power envelope; and 
Pp0 is the input forward pump power. In this 
paper, we will consider the Gaussian input 
pulse 

( )2
0 0 0( ) exp /a sP t P t T⎡ ⎤= −⎣ ⎦ ,  (7) 

where Ps0 is the pulse peak power and the 
FWHM pulse width 1/ 2

02[ln(2)]wT T= . 
For the considered EDF, τ = 10.5 ms, 

Ae= 3.14 2mμ , and the EDF length L= 10 m. 
The delay time contributed from the group 
index ng in an EDFA is /gLn c = 50 ns for ng 
= 1.5. As the delay time is much less than the 
interested millisecond pulse width, the terms 
with ngs and ngp in Eqs.(1) and (2), 
respectively, are negligible. The other 
numerical parameters of the EDF are: at 980 
nm wavelength, pα = 1.7 dB/km, lpα = 1.04 
m-1, and gpα =0; at 1550 nm wavelength, 

sα = 0.4 dB/km, lsα = 0.716 m-1, and gsα = 



 4

0.845 m-1. We take pulse width Tw= 0.5 ms 
and pump power Pp0= 180 mW to show 
numerical results in section 4, where the 
control beam power Pc0 and peak power Ps0 
are varied. 

For CPO effect, it requires pulse power 
Pa(z,t) be much less than control beam power 
Pc(z) [12]. Under this requirement, we may 
take the assumption of small pulse power for 
linearizing Eqs.(1)-(3), i.e., the power 

( , ) ( ) ( , )s c aP z t P z P z t= + , in which ( )cP z >>  
( , )aP z t . For simplicity the z dependence of 

all variables will not be shown in the 
following, unless they are specified. The 
normalized metastable population density 
can be written as 2 ( ) ( )c aN t N N t= + , where 
Nc and Na(t) are the normalized metastable 
population densities corresponding to Pc and 
Pa(t), respectively, hence ( )c aN N t>> . 
Signal power depletes pump power through 
metastable population density. The 
corresponding pump power can be written as 

( ) ( )p pc paP t P P t= + , where Ppc and Ppa(t) are 
pump powers corresponding to Nc and Na(t), 
respectively, hence ( )pc paP P t>> . 

The powers and normalized metastable 
population density can be written as 

( ) ( ) exp( )s c aP t P P i t d= + Ω − Ω Ω∫ ,   (8) 

( ) ( ) exp( )p pc paP t P P i t d= + Ω − Ω Ω∫ , (9) 

2 ( ) ( ) exp( )c aN t N N i t d= + Ω − Ω Ω∫ ,(10) 

where ( )aP Ω , ( )paP Ω , and ( )aN Ω  are the 
Fourier transforms of Pa(t), Ppa(t), and Na(t), 
respectively. 

Substituting Eqs.(8)-(10) into Eq.(3) and 
equating the terms of the same order of 
magnitude, we have 

( ) 1pcc
c cth th

s p

PPN
P P

ω τ −⎛ ⎞
= +⎜ ⎟⎜ ⎟
⎝ ⎠

,  (11) 

( ) 1( )a cN iω τ τ −Ω = − Ω ,  

pa paa a
cth th is is

s p s p

P PP P N
P P P P

⎡ ⎤⎛ ⎞ ⎛ ⎞
× + − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (12) 

where cω is the resonant angular frequency 
defined according to [9] and 

11 pcc
c is is

s p

PP
P P

ω τ −
⎛ ⎞

= + +⎜ ⎟⎜ ⎟
⎝ ⎠

.   (13) 

Substituting Eqs.(8)-(12) into Eqs.(1) 
and (2), and equating the terms of the same 
order of magnitude, we have the coupled 
equations 

( )c
s ls c

dP P
dz

α α= − +  

( )gs ls c cN Pα α+ + ,   (14) 

( )pc
p lp pc

dP
P

dz
α α= − +  

( )gp lp c pcN Pα α+ + ,   (15) 

( ) ( ) ( )a
ss a sp pa

dP c P c P
dz
Ω

= Ω + Ω , (16) 

( )
( ) ( )pa

pp pa ps a

dP
c P c P

dz
Ω

= Ω + Ω , (17) 

where the coefficients 

( ) ( )gs
ss s ls gs ls

n
c i

c
α α α α= Ω− + + + ,  

( ) 1c c
c c cth is

s s

P PN N i
P P

ω τ τ −⎡ ⎤⎛ ⎞
× + − − Ω⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
,(18) 

( )sp gs lsc α α= +   

( ) 1c c
c cth is

p p

P P N i
P P

ω τ τ −⎛ ⎞
× − − Ω⎜ ⎟⎜ ⎟
⎝ ⎠

, (19) 

( ) ( )gp
pp p lp gp lp

n
c i

c
α α α α= Ω− + + +   

( ) 1pc pc
c c cth is

p p

P P
N N i

P P
ω τ τ −⎡ ⎤⎛ ⎞

× + − − Ω⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
,(20) 

( )ps gp lpc α α= +  

( ) 1pc pc
c cth is

s s

P P
N i

P P
ω τ τ −⎛ ⎞

× − − Ω⎜ ⎟
⎝ ⎠

.  (21) 

For the case without TPD, the gain 
coefficient and propagation constant of 

( )aP Ω are the real and imaginary parts of css, 
respectively. The terminology “propagation 
constant” usually refers to electric field. But 
for the present analysis, it refers to power 
envelope. The group index of Pa(t) can be 
obtained from the derivative of the 
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propagation constant with respect to Ω  at 
Ω =0. However, TPD always exists. Thus, 
gain coefficient and propagation constant of 

( )aP Ω  must be solved from the coupled 
equations Eqs.(14)-(17). The following 
shows the numerical solving procedures. 

 
Step 1:  
The CW powers Pc and Ppc along the EDF 
are solved from Eqs.(14) and (15) with the 
boundary conditions Pc(z=0)= Pc0 and Ppc 
(z=0)= Pp0, in which Nc is given by Eq.(11). 
Note that Eqs.(14) and (15) are independent 
of Eqs.(16) and (17). 

 
Step 2: 

( , )aP z Ω  and ( , )paP z Ω are solved from 
Eqs.(16) and (17) with the boundary 
conditions ( 0, ) 1aP z = Ω = and 

( 0, ) 0paP z = Ω = . Note that the coefficients 
given by Eqs.(18)-(21) along the EDF 
require the CW powers Pc and Ppc solved in 
Step 1. 

 
Step 3: 
The transmittance of pulse envelope spectral 
component of angular frequency Ω at z is 
( ),T z Ω = ( , )aP z Ω , which can be written as 

( ) ( ), , exp[ ( , )]T z T z i zθΩ = Ω Ω  and 

( ),zθ Ω  is the phase of ( ),T z Ω . The gain 
coefficient ( , )ag z Ω and propagation 
constant ( , )a zβ Ω of the spectral component 
of pulse envelope are  

( ),ag z Ω =  

( ) ( )ln( , ) ln( , )T z z T z
z

+ Δ Ω − Ω

Δ
 , (22) 

( ) ( ) ( ), ,
,a

z z z
z

z
θ θ

β
+ Δ Ω − Ω

Ω =
Δ

.(23) 

At the output of the EDFA, the 
accumulated gain ( )aγ Ω and phase shift 

( )aφ Ω  are 

( )( ) ln( , )a T z Lγ Ω = = Ω ,  (24) 

( )( ) ,a z Lφ θΩ = = Ω .   (25) 

The group delay time along the EDF 
evaluated at Ω =0 can be calculated as 

0 ( )dT z =  

0

( , ) ( , )
2

z a az z dzβ β′ ′ΔΩ − −ΔΩ ′
ΔΩ∫ .  (26) 

However, we will show in the next section 
that actual pulse delay time is significantly 
influenced by high order dispersions. The 
approximate solution of output pulse shape is 

( , )aP z L t= =  

0 ( ) exp[ ( ) ( ) ]a a aP i i t dγ φΩ Ω + Ω − Ω Ω∫ , (27) 

where 0 ( )aP Ω is the Fourier transform of 
input pulse envelope Pa0(t). Because the 
boundary condition ( 0, )aP z = Ω is set to be 
unit, the approximate solution of temporal 
pump power variation is 
    ( , )paP z L t= =  

0 ( ) ( ) exp( )a paP T i t dΩ Ω − Ω Ω∫ ,  (28) 

where ( ) ( , )pa paT P z LΩ = = Ω  is the 
spectrum solved in Step 2. The integration in 
Eqs.(27) and (28) can be numerically 
calculated with an inverse fast Fourier 
transform (FFT) routine. 

Gain coefficient and propagation 
constant are even and odd functions, 
respectively, for the CPO in a two-level 
system [12]. In the next section, it is shown 
that the accumulated gain ( )aγ Ω and phase 
shift ( )aφ Ω defined in Eq.(24) and (25) are 
also even and odd functions, respectively. 
Thus we may expand them as 

( ) ( )a aiγ φΩ + Ω =  

0 1
: :

1 1
! !

Q Q
k k

ak ak
k k
k even k odd

i
k k
γ φ

= =

Ω + Ω∑ ∑ .  (29) 

where Q is an integer; akγ  and akφ  are the 
coefficients obtained by numerically fitting 

( )aγ Ω and ( )aφ Ω  with Eq.(29). For the 
cases considered in this paper, we take Q= 11. 

akγ  and akφ  represent dispersion 
coefficients that are the derivatives of 

( )aγ Ω and ( )aφ Ω  at Ω =0, respectively. 
From Eq.(26), 1 0 ( )a dT z Lφ = = . In Eq.(29), 
the even order and odd order terms can be 
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called the gain dispersion and phase shift 
dispersion, respectively. For studying the 
effect of dispersion induced by CPO on pulse 
shape, we define the partial accumulated gain 
and phase shift as 

( ) ( )( ) ( )M M
a aiγ φΩ + Ω =  

0 1
: :

1 1
! !

M M
k k

ak ak
k k
k even k odd

i
k k
γ φ

= =

Ω + Ω∑ ∑ ,  (30) 

where M is an integer not larger than Q; akγ  
and akφ  are given by Eq.(29). Replacing 

( ) ( )a aiγ φΩ + Ω  in Eq.(27) by 
( ) ( )( ) ( )M M
a aiγ φΩ + Ω , we have the output pulse 

shape ( ) ( )M
aP t which results from the partial 

accumulated gain and phase shift. 
For the case without TPD, we may solve 

Eqs.(14) and (16) with the coefficient csp=0. 
From the solutions, the output pulse shape, 
gain coefficient, and propagation constant 
can be calculated with similar methods 
shown above. 

It is found that the approximate solutions 
solved from Eqs.(14)-(17) are nearly the 
same as the exact solutions solved from 
Eqs.(1)-(3) when the control beam power Pc0 
is about one hundred times larger than the 
peak pulse power Ps0. In this section, we take 
the ratio 0 0/ 10c sP P =  [10], which will 
result in slight discrepancy between the 
approximate solution and the exact solution. 
The propagation characteristics of the fast 
light with 0 0/c sP P = 10 and 100 are similar. 
The cases with Pc0 = 0.5 mW, 0.1 mW, and 
2.5 mW are considered in the following three 
sub-sections. 

(i) Pc0= 0.5 mW 
Figs. 1(a)-1(f) show the numerical results 

with Pc0= 0.5 mW. Fig. 1(a) shows the input 
and output pulse shapes, in which the input 
pulse shape is enlarged one hundred times so 
that it can be clearly shown. The approximate 
solutions with and without TPD are also 
shown in Fig. 1(a). One can see that, without 
TPD, pulse gain is over estimated and pulse 
delay time is under estimated. The 
discrepancy between the exact solution and 

the approximate solution with TPD is due to 
the pulse peak power that is not small enough 
compared with control beam power. Fig. 1(b) 
shows the pump power temporal variation 
and normalized metastable population 
density at EDF output end, in which the 
approximate solutions Ppa(t) and Na(t) are 
also shown. Ppa(t) and Na(t) are calculated 
from Eqs. (28) and (12), respectively.  For 
the case without TPD, paP = 0 in Eq.(12). 
One can clearly see that the depletion of 
metastable population density is under 
estimated for the case without considering 
TPD, which leads to the under estimation of 
CPO effect. Figs. 1(c) and 1(d) show the gain 
coefficient and propagation constant spectra, 
respectively, at several distances. In Figs. 1(c) 
and 1(d), the approximate solutions with and 
without TPD are shown. At 2.5 m distance, 
the gain coefficient spectra for the cases with 
and without TPD are about the same because 
TPD is not yet significantly built up, so are 
the propagation constant spectra. After about 
5 m distance, for the case without TPD, the 
gain coefficient and the negative slope of the 
propagation constant at Ω =0 are over 
estimated and under estimated, respectively. 
Thus the pulse gain and negative group 
velocity are over and under estimated, 
respectively. Figs. 2(a) and 2(b) show the 
accumulated gain and phase shift, 
respectively, for the approximate solutions 
with and without TPD. From the results, we 
study the effect of gain dispersion and phase 
shift dispersion on pulse propagation in the 
following. 

For the case with TPD shown in Fig. 2(a), 
the gain dip of narrow bandwidth will result 
in serious high order dispersions. First order 
dispersion accelerates fast light without pulse 
distortion. Higher order dispersion not only 
distorts pulse shape as is shown in Fig. 1(a), 
but also delays pulse and slows down fast 
light. Fig. 1(e) shows the pulse peak power 
delay time Tpeak, the group delay time Td0 
calculated from Eq.(26) with TPD, and the 
group delay time Td0 calculated for the case 
without TPD. One can see that, |Td0| of the 
case with TPD is much larger than that of the 
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case without TPD.  In Fig. 1(e), Tpeak is only 
about a half of Td0 with TPD. Average group 
index can be calculated as navg = cTd /L, in 
which Td  is delay time. navg= -3443,    
-6176, and -1093 for Td = Tpeak, Td0 with TPD, 
and Td0 without TPD, respectively. Fig. 1(f) 
shows the output pulse shapes Pa

(M)(t) with 
partial high order dispersions, in which the 
cases with M= 0, 1, 2, 3, 5, 9, and 11 are 
shown. In Fig. 1(f), the approximate solution 
with TPD calculated from Eq.(27) without 
dispersion expansion is also shown for 
comparison.  From Fig. 1(f), one can see 
how the combined effect of high odd order 
dispersions slows down fast light. The peak 
power delay time of Pa

(1)(t) is 1aφ which 
agrees with Td0 calculated from Eq.(26). The 
third order dispersion increases pulse delay 
time and slows down fast light. Thus the 
absolute value of peak power delay time is 
decreased. The fifth order dispersion 
accelerates fast light but it is not able to 
recover the slow down resulting from the 
third order dispersion. The dispersions of 
order larger than fifth further slightly 
increase pulse delay time and slow down fast 
light. Including up to the eleventh order 
dispersion, Pa

(11)(t) is about the same as the 
pulse shape calculated from Eq.(27). 
Therefore, the group velocity of fast light 
cannot be defined as the velocity derived 
from the slope of propagation constant at 
Ω =0. From Figs. 1(e) and 1(f), one can see 
the significant modification of group velocity 
by high order dispersions. 

It is interesting to note that, comparing 
Pa

(2)(t) with Pa
(1)(t) shown in Fig. 1(f), one 

can see that the second order gain dispersion 
significantly narrows pulse width. It can be 
easily derived that if there only exists the 
second order gain dispersion, the output 
FWHM pulse width of the Gaussian input 
pulse given by Eq.(7) is 

1/ 22
2 0 22 ln(2) 2w aT T γ⎡ ⎤= −⎣ ⎦ .  (31) 

If 2aγ < 2
0T /2, pulse width is narrowed; 

otherwise, it is broadened. For the case 
shown in Fig. 1(f), T0= 0.3 ms (Tw= 0.5 ms) 

and 2aγ = 0.0417 ms2, we have Tw2= 0.137 
ms and the pulse is significantly compressed. 
The compressed pulse width enhances the 
un-symmetric pulse shape distortion due to 
the third order dispersion, in which 3aφ = 
0.0133 ms3. The dispersions of order higher 
than three smooth out the oscillating tail of 
Pa

(3)(t). The resulting FWHM pulse width is 
0.42 ms. In general pulse width may be 
broadened or narrowed depending on system 
parameters, such as pulse width, control 
beam power, and pump power [13] Under 
small signal assumption, dispersion 
coefficients change with control beam power 
and pump power. 

(ii) Pc0= 0.1 mW 
With lower Pc0, pump power depletion 

by amplified control beam power is less and 
metastable population density (gain) 
recovery is better. This effect results in less 
pulse shape distortion but slowing down fast 
light induced by CPO. Figs. 3(a)-3(f) show 
the numerical results the same as Figs. 
1(a)-1(f), respectively, except that Pc0= 0.1 
mW and input pulse shape is enlarged five 
hundred times in Fig. 3(a). Comparing Fig. 
3(a) with Fig. 1(a), one can see that the 
output pulse shape maintains better and the 
absolute value of pulse peak power delay 
time is decreased as expected. Comparing 
Fig. 3(b) with Fig. 1(b), one can see that the 
depletions of pump power and metastable 
population density are larger because of 
higher pulse gain and output pulse power. 
From Fig. 3(c), at 2.5 m and 5 m distances, 
the gain coefficients for the cases with and 
without TPD are about the same because 
pulse power is still low and TPD is not yet 
significantly built up, so are the propagation 
constant spectra shown in Fig. 3(d). At 7.5 m 
distance, TPD is high enough so that the 
difference between the cases with and 
without TPC becomes apparent. From Fig. 
3(e), we have average group indexes navg= 
-1794, -2223, and -877 for the pulse peak 
power delay time Tpeak, Td0 with TPD, and 
Td0 without TPD, respectively. 
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Figs. 2(a) and 2(b) also show the 
accumulated gain and phase shift, 
respectively, for the case with Pc0= 0.1 mW. 
The wide bandwidth of the gain dip for this 
case decreases high order dispersions so that 
pulse shape maintains better. For this case, 

2aγ = 0.0101 ms2, we have Tw2= 0.44 ms 
from Eq.(31) and pulse compression owing 
to 2aγ  is slight. From Fig. 3(f), one can see 
that, including only up to the fourth order 
dispersion, Pa

(4)(t) is about the same as the 
pulse shape calculated from Eq.(27). The 
resulting FWHM pulse width is slightly 
narrowed and is 0.472 ms. The fast light 
slowed down due to the third order 
dispersion is less significant than the case 
with Pc0= 0.5 mW. 

(iii) Pc0= 2.5 mW 
From the results shown above, it seems 

that we may enhance average negative group 
index and increases the absolute value of 
pulse delay time by increasing Pc0. However 
the increase of input control beam power not 
only enhances the first order dispersion 
coefficient 1aφ , but also higher order 
dispersion coefficients akφ (k>1). The 
enhanced higher order dispersion coefficients 
may result in serious pulse shape distortion 
and slowing down fast light. For example, 
Figs. 4(a) and 4(b) show the same case as 
Figs. 1(a) and 1(f), respectively, except that 
Pc0= 2.5 mW and input pulse shape is 
enlarged twenty times in Fig. 4(a). One can 
see that 1aφ =   -0.41 ms, which is about 
80% pulse width, but the combined effect of 
higher order dispersions decreases pulse peak 
power delay time to be -0.144 ms (-4320 
average group index) and seriously distorts 
pulse shape. From Fig. 4(b), Pa

(11)(t) is not 
able to approximate the pulse shape 
calculated from Eq.(27). The inclusion of 
more high order terms is required. It is 
noticed that Pa

(2)(t) is slightly broadened 
instead of narrowing. For this case, 2aγ  = 
0.0918 ms2, which is large enough to 
broaden pulse width. From Eq.(31), Tw2= 
0.509 ms. Because Tw2 is close to 0.5 ms 

input pulse width, Pa
(2)(t) almost overlaps 

Pa
(1)(t) in Fig. 4(f). Careful system parameter 

optimization is able to improve the absolute 
value of peak power delay time under a 
certain constraint of pulse shape distortion 
[13]. However, as the first order dispersion is 
enhanced, higher order dispersions are 
usually enhanced accordingly. The 
optimization should compromise between the 
first order dispersion and higher order 
dispersions. 

 
四、計畫成果自評 

 

Fast light can be realized by utilizing the 
CPO effect in an EDFA, in which a pulse 
superimposing on a strong CW control beam 
is launched into the EDFA. Pulse depletes 
metastable population density. Pump power 
is absorbed more when metastable 
population density is depleted. In literatures, 
the perturbation method analyzing the fast 
light in an EDFA did not consider this pump 
power depletion. Thus the CPO effect is 
under estimated and the derived gain 
coefficient and propagation constant are 
inaccurate. We have developed the 
perturbation method for solving the time 
varying parts of the signal power, pump 
power, and metastable population density. 
The coupled equations of the spectral 
components of the signal power, pump power, 
and metastable population density are 
derived. From the coupled equations, we can 
accurately solve the gain coefficient and 
propagation constant of the fast light in an 
EDFA. It is found that pulse gain and 
negative group velocity are over and under 
estimated, respectively, if temporal pump 
depletion is not considered. From the solved 
gain coefficient and propagation constant, we 
also study the pulse delay time and shape 
distortion resulting from high order 
dispersions induced by CPO. The gain 
dispersion resulting from accumulated gain is 
shown. Accumulated gain is the integration 
of gain coefficient along an EDF, which is an 
even function of frequency. The second order 
gain dispersion may symmetrically broaden 
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or compress pulse depending on the value of 
its coefficient. The changes of pulse shape by 
higher even order gain dispersions are 
complicated because of the combined effect 
with high odd order phase shift dispersions. 
The phase shift dispersion results from the 
accumulated phase shift, which is the 
integration of propagation constant along an 
EDF and is an odd function of frequency. 
The first order phase shift dispersion 
un-distortedly leads to negative pulse delay 
time. Higher odd order phase shift 
dispersions un-symmetrically distort pulse 
shape and change pulse delay time. For the 
shown examples, the third order and fifth 
order dispersions result in slowing down and 
accelerating fast light, respectively. Thus the 
group velocity of fast light cannot be simply 
defined as the velocity derived from the first 
derivative of propagation constant. The 
presented perturbation method can also be 
applied to analyzing the fast light in the other 
resonant medium with optical pumping. 

The technical content shown above has 
been submitted to Journal of Optical Society 
of America B [14]. In addition, this project 
has published two papers regarding the 
designs of Raman fiber amplifiers in Optics 
Express and Optics Communications [15,16]. 
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六、圖表 

 

 
 

 

 

 

 

 
Figure 1: With input control beam power Pc0= 0.5 
mW, (a) input and output pulse shapes, (b) pump 
power temporal variation and normalized metastable 
population density at EDF output end, (c) gain 
coefficient spectra at several distances, (d) 
propagation constant spectra at several distances, (e) 
pulse peak power delay time Tpeak and the group delay 
time Td0 along EDF evaluated at Ω =0, and (f) output 
pulse shapes Pa

(M)(t) synthesized up to several M 
dispersion orders and the approximate solution with 
TPD calculated from Eq.(27) without dispersion 
expansion. The exact solution is solved from 
Eqs.(1)-(3). The approximate solutions with and 
without TPD are shown in figures (a)-(e) for 
comparison. 
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Figure 2: (a) Accumulated gain spectra and (b) 

accumulated phase shift spectra for the cases with 
Pc0= 0.1 mW, 0.5 mW, and 2.5mW. 

 

 

 

 

 

 
Figure 3: The same as Fig. 1 except that input control 
beam power Pc0= 0.1 mW. 
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Figure 4: With input control beam power Pc0= 2.5 
mW, (a) input and output pulse shapes, and (b) output 
pulse shapes Pa

(M)(t) synthesized up to several M 
dispersion orders and the approximate solution with 
TPD calculated from Eq.(27) without dispersion 
expansion. In figure (b), the corresponding values of 
M are also indicated by arrows. The exact solution is 
solved from Eqs.(1)-(3). The approximate solutions 
with and without TPD are shown in figure (a) for 
comparison. 


