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Abstract

Adaptive minimum variance control for stochastic T-S fuzzy
ARMAX model is addressed in this study. From the fuzzy
ARMAX model, a fuzzy one-step ahead prediction model is first
introduced. A stochastic gradient algorithm is then proposed to
identify the parameters of the related one-step-ahead predictor.
Under the direct adaptive control scheme, minimum variance
control is applied to find the control law to make the output
track a desired reference signal. Stability and performance of the
adaptive stochastic fuzzy control system are rigorously derived.
Simulation study is also made to verify the developed results.

Keywords: Fuzzy adaptive control, Stochastic T-S fuzzy AR-
MAX model
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Recently, based on the Takagi-Sugeno model, fuzzy modeling
for nonlinear dynamic systems and identification problem are
discussed in [1]-[3]. Meanwhile, fuzzy control scheme has been
employed for tracking control of nonlinear systems based on
the adaptive feedback linearization techniques [4]-[8]. In the
previously mentioned literature, the external disturbances or
noises are considered to be deterministic for the convenience
of control design. However, in many practical applications
[9][10], external noises are inevitable and are more adequately
described by random processes. In this situation, the systems
to be controlled are always modeled by stochastic systems. A

nonlinear stochastic system can be approximated by a fuzzy
stochastic system [11]-[16]. However, it is more difficult to
design a control law to achieve the optimal tracking of fuzzy
stochastic systems because the membership functions of the
fuzzy stochastic system are also functions of the random
premise variables. This will make the identification problem
and the control design of the stochastic fuzzy systems more
difficult and complicated.

Up to date, the stochastic fuzzy modeling and adaptive con-
trol issues are seldom addressed in the literature. A stochastic
adaptive control scheme for the state-space T-S fuzzy model
based on the LQG control theory is proposed in [17]. Non-
adaptive LQG fuzzy controllers are also considered in [11] and
[12]. On the other hand, the NARMAX (nonlinear ARMAX)
model has been presented for modeling nonlinear processes.
The NARMAX model can be reduced to a quasi-ARMAX
system by linearization or approximation. Fuzzy system iden-
tification and nonlinear model predictive control based on the
quasi-ARMAX model are discussed in [13][14][15]. Besides
the quasi-ARMAX model, the fuzzy ARMAX model has been
used to forecast the short-term load of a power system in [16].
However, these algorithms proposed by the above mentioned
literature are given without vigorous proofs.

Adaptive minimum variance control for stochastic T-S fuzzy
ARMAX model will be addressed in this study. From the fuzzy
ARMAX model, a fuzzy one-step ahead prediction model will
be first introduced. A stochastic gradient algorithm will then
be proposed to identify the parameters of the related one-
step-ahead predictor. Under the direct adaptive control scheme,
minimum variance control will be applied to find the control
law to make the output track a desired reference signal. Stability
and performance of the adaptive stochastic fuzzy control system
will be rigorously derived.

The remainder of this study is organized as follows. System
description and problem formulation for the identification of
the fuzzy ARMAX model are described in Section 3.1. General
stochastic stability results of the T-S fuzzy model are attacked
in Section 3.2. Then the one-step ahead predictor for the fuzzy
ARMAX model is introduced in Section 3.3. Based on the



developed predictor, a stochastic gradient algorithm, together
with the parameter convergence properties, for identifying the
parameters of the optimal one-step ahead predictor are given
in Section 3.4. Adaptive minimum variance control design is
discussed in Section 3.5. Stability and tracking performance of
the adaptive minimum variance fuzzy control system are proved
in Section 3.6. Simulation study is discussed in Section 3.7.
Conclusions and discussions are given in Section ??.

Notations and Definitions
Let ||z|| be the Euclidean norm of a vector z. Let A(q~!) be
n

a polynomial with A(¢g~!) = Zaiq_i. The companion matrix

i=0
Z 4 associated with the polynomial A(q~!) is defined as

:‘A _ In—l
= PRI _al

=R R AR
A. System modeling and problem formulation

O(n—l)xl
—Qp  —0np-1

The i-th rule of the considered stochastic fuzzy T-S ARMAX
model is given by:

Plant Rule ::
If Zl(k}) is Fil and ZQ(k) is FiQ
and ------ and zg, (k) is Fig, (1
Ailg " y(k+1)

Then = B~ VJu(k) + Cilg ™ w(k +1)

for i = 1, 2,..., L, where F}; is the fuzzy set, z1(k), z2(k),

-, z,, (k) are the premise variables, and L is the number of
if-then rules. Polynomials A;(¢~!), B;(¢™'), and C;(¢~ 1) are
defined, respectively, as follows

Ai(q_l) = a0 + aﬂq_l —+ .. + aing™ ", a;0 =1

Bi(q7') = bio + bingt + ... + bimqg™ ™,

Cilg ) =cio+eng  +eng?+ ... +cuqt cio= 12
()

fori=1,2,..., L, where ¢—! denotes the delay operator, i.e.,
q ty(k) = y(k — 1). Without loss of generality, C;(¢~!) can
be taken to have roots inside the unit circle [9][10]. y(k) is
the output measurement, u(k) the control input, and the noise
process w(k) will be taken to satisfy the following assumptions
[91[10]:

Elwk+1)] Fr] =0, a. s. 3)

Elw?(k+1)| Fi] =02, a. s. 4)
X

lim sup— w?(k) < K, < o0, a. s. 5

NWPN; (k) < 5)

where E denotes the expectation, [ ; denotes the sub-o alge-
bra generated from the data set {y(s)}s<k. Note that fj is
increasing, i.e., Fr C F k4+1. We shall demand that u(k) is
F ,—measurable. For the premise variables z;(k),1 < i < go,
we assume that they are f p—measurable, i.e., z;(k) depends
on the data set {y(s),u(s)}s<x. Using the smoothing property
of the conditional mean [18], conditions (3) and (4) imply that

2

w*

w(k) is also a white process with zero mean and variance o
Note that condition (5) implies

N
1
v Zuﬂ(k) < Ky, a.s., for N > N, (6)
k=1
where NNV, is a sufficiently large integer.

Given the input/output sequences {u(k)} and {y(k)}, the
stochastic fuzzy system (1) is equivalent to

L
y(k+1) = > hi(z(k){(1 = As(g™"))y(k + 1)
i=1

+Bi(g Hu(k) + Ci(g Hw(k+ 1)} ()
where z(k) = [z1(k) 2z2(k) ... z4,(k)] and, for 1 <4 < L,

pi(z(k)) = HFij(zj(k)) (8)
hi(a(k)) = —EED) 9
CE) =S ) )

where the function Fj;(z;(k)) is the grade of membership of
zj(k) in F;;. For (8) and (9), we assume that

L
hi(2(k) =0, > hi(z(k)) =1 (10)
i=1
The physical meaning of (7) is that the L local linear stochas-
tic subsystems are interpolated by the fuzzy basis functions
hi(z(k)), fori=1,2,...,L.

In the sequel, we shall first attack the identification problem
for estimating the parameters of the optimal predictor related to
the fuzzy ARMAX model (1). After obtaining the estimates of
the parameters, the design objective is to determine the adaptive
control input u(k), as a function of {y(s),u(s —1)},., to
minimize the mean square error [10]

Jilk+1) =E{[y(k+1) —y*(k + DP°|Fx} (1D

between the the output y(k + 1) and the bounded reference
signal y*(k + 1).

B. Stability of Stochastic T-S Fuzzy Systems

In order to deal with the adaptive control problem of the
stochastic T-S fuzzy ARMAX model, the stability issue of the
stochastic fuzzy system must be addressed first. Since the fuzzy
ARMAX model, such as in (7), can be transformed into a state-
space stochastic fuzzy model and stability is easier to discuss
from the state-space perspective, we consider a forced T-S fuzzy
system in the state-space form as follows

z(k+1) = [A(K)z(k) + B(k)us(k)]
ys (k) [C(k)a(k) + D(k)us (k)]

where the sequences {||A(k)||2}, {HB(k)||2}, {HC(]C)HQ},
and {||D(k) |* 4 are uniformly bounded. It is also assumed that
A(k), B(k), C(k), and D(k) are all f —measurable.

Theorem 1: If there exists a sequence of symmetric positive
definite matrices {P(k)} with 0 < AB] < P(k) < ABaX[ <

12)



oo and P(k) being F ;—measurable such that the matrix in-
equality

AP(k) — AT(K)E{P(k+1)|F 1} A(k) >0, V& (13)

holds for some A with 0 < A < 1, then the stochastic fuzzy
system

x(k+1) = A(k)x(k) 14)
is exponentially stable in the sense that
lz(R)l| < ex(VIETR ko)l k= Ky, as. (15)

for some positive almost surely bounded random variable ¢; >
0 and a sufficiently large integer K.
Proof: For the convenience of review process, the proof is
given in Appendix A. [ ]
Corollary 1: With the same condition given in Theorem 1,
the transition matrix ®(k + 1, ko), defined as

Ok + 1, ko) 2 A(k)A(k — 1) - A(ko) (16)

with ®(k, k) = I, has an upper bound of the induced norm of
®(k, ko) in the almost sure sense as

@ (k, ko)l < ca(VA)EHo, (17)

for some positive almost surly bounded random variable c; and
a sufficiently large integer K.

k> Kq, a.s.

With the help of the above theorem, we can obtain the
main stability result for further analysis of global stability and
tracking performance of the proposed adaptive fuzzy minimum
variance control system.

Theorem 2: For the stochastic system in (12), there exists
a sequence of symmetric positive definite matrices {P(k)}
with 0 < AXB"] < P(k) < MB™] < oo and P(k) being
F —measurable such that the matrix inequality (13) hold for
some A with 0 < A < 1, then we have, for N > Ky,

N N
1 5 Ko s  Ks
< —= —_ . S.
pIACIES DINCIES L

where K is a sufficiently large number, 0 < Ko < oo, and
0< K3 < o0.
Proof: The proof is given in Appendix B. ]

(18)

C. Optimal predictor of stochastic fuzzy systems

In this section, the prediction problem of the fuzzy ARMAX
model in (7) will be discussed. This will result in a fuzzy predic-
tor model which will be suitable for parameter estimation and
direct adaptive tracking control design for the fuzzy ARMAX
model. The optimal fuzzy predictor for the fuzzy ARMAX
model has been studied in our previous study [19]. Some related
results in that reference are briefly summarized in the following.

Assumption 1: Let = ; be the companion matrix associated
with the polynomial C;(g~!). Assume that there exist symmet-
ric positive matrices Pc;, 1 < ¢ < L, such that the set of
matrix inequalities

AcPei
Pc ;Ec

=T )
“C,iPCJ

>0,
Fe,;

1<, j<L (19

is solvable for some A\ with 0 < A¢ < 1.

Let y°(k + 1|k) denote the conditional mean of y(k +
given the data set {u(s), y(s)},<p i€, y°(k + 1] k)
E{y(k + 1)| F 1} . Define the polynomial a;;(¢~1), 1 <4 <
as

1)
L
Ailg ) =q 'auilg™)

Cilg™) - (20)

where
+ qf(ﬁfl), n=

ai(¢™) = aio +ang 4+ max(n, 1)

Under Assumption 1 on the fuzzy ARMAX model (7), the
optimal one-step ahead predictor of y(k + 1) given the data set

{u(s), y(s)}.<p is y°(k + 1| k) which satisfies the following
equation -
L
YO (k+ 1|k) = Zh — Ci(g™H] v (k + 1]k)
=1
+alg k) + Bila (b)) @1
with the prediction error
y(k+1) —y°(k + 1k) = w(k + 1) (22)

Equation (21) defines a unique fuzzy prediction model corre-
sponding to the fuzzy ARMAX model (7).

D. Stochastic Gradient Algorithm

Following from the fuzzy prediction model represented by
(21), the stochastic gradient algorithm in [10] will be used to
identify the parameters. First, rearrange the prediction model
(21) as follows

L
YOk +1|k) = Zhi(z(k))xg(k)ei() = ¢ (k)bo (23)
i=1
where
xo(k) = [y (klk = 1) —°(k — 1+ 1]k = 1)
y(k) - y(k =7+ 1) u(k) - ulk —m)]"
Oi0 = [cin -+ e o+ Q1) biO"'bim]T, 1<i<L
¢o(k) = [h1(z(k))xg (k) ha(z(k)xg ()
------ hr (2 (k)8 (F)]
oo=[0%, 0% 6% (24)

Note that (23) represents a pseudo linear regression form for the
fuzzy ARMAX prediction model (21) because the component
yY(k — i+ 1|k — i) in xo(k) depends on the true parameter
vector fy. According to the pseudo linear regression form (23),
the proposed stochastic gradient algorithm to identify the true
parameter vector 0y is given by, for £ > 1,

o ok — 1)
o) = O = ) G )+ 6T (k= Dok — 1)
< [ylk) = 67 (k = Dk~ 1)] ©25)



where the regression vector ¢(k) and the function r (k) are
defined as

¢(k) = [ha(2(k))x" (k) ha(z(k))x" (k)
...... hL(Z(k))XT(k)]T 26)
x(k) = [~g(k) - =gk — 1+ 1) y(k) - y(k =7+ 1)
u(k) -+~ u(k —m)]" 27)
g(k) = o7 (k —1)0(k) (28)
r(k—1)=r(k —2)+¢" (k- 1ok — 1) (29

For the initial conditions, (’9\(0) can be arbitrarily chosen and
r(—1) must be a positive scalar. By its definition, the variable
7(k) can be regarded as a posterior estimate of y(k).

Before proceeding to analyze the stochastic gradient algo-
rithm, some useful definitions are made as follows

(k) = ¢" (k= 1)f(k — 1) (30)
e(k) = y(k) — (k) 31)
n(k) = y(k) —y(k) (32)
s(k) =n(k) —w(k) (33)
0(k) = 0(k) — b (34)
Blk) = —¢" (k- 1)0(k) (35)

Some general properties of the stochastic gradient algorithm
can be extracted from Lemma 8.5.1 in [10] as follows.

B 7‘(/4: — 2)
n(k) = me(k) 37
E{Bk)w(k)| Fr-1} =
STk Dek—1) 8

k= 1) Oy Q. 8

Lemma 1: For the stochastic gradient algorithm in (25)-(27),
we have
L
> hiz(k = 1)Ci(g " )s(k) = B(k) 39)
i=1
Proof: The proof is given in Appendix C. [ |

In addition to the results in Lemma 1, we shall need the
following assumptions in order to obtain some properties of
the parameter estimate H(k)

Assumption 2 : For each i, 1 < i < L, system C;(g™*
input strictly passive (ISP) [10].

In (39), the signals ¢(k) and (k) are related by the fuzzy
polynomial ZiLzl hi(z(k —1))Ci(g™1). As shall be shown in
the next lemma, Assumption 2 implies a passivity condition
for that fuzzy polynomial.

) is

Lemma 2: Consider the fuzzy system in (39). With Assump-
tion 2 that C’-( ~1) is input strictly passive (ISP), we have

Zﬁ

for some ¢ > 0.

§) —e?(j) >0, fork>1 (40)

Bi(g™'), and Cy(q™!

Proof: The proof is given in Appendix D. [ ]

Theorem 3: Under Assumption 2, for the stochastic gradi-
ent algorithm in (25)-(29), we have the parameter difference
convergence

ngnooz Ha ) — 0k — 1)” <o, a.s. (41
and the normalized prediction error convergence
N 2
: le(k) — w(k)]
| 42
Ninook:l rk—1 o ®s (42)

Proof: With the help of previous lemmas, the results can
be conducted along the same line made in Theorem 8.5.1 in
[10]. Therefore the proof is omitted. |

E. Adaptive Minimum Variance Control

To propose a direct adaptive fuzzy minimum variance con-
troller, we shall first discuss the structure of the non-adaptive
minimum variance controller by assuming that the system
parameters are given. For the fuzzy stochastic system (7)
having the optimal one-step ahead prediction form in (21),
the minimum variance tracking control minimizing the cost
function J1(k + 1) in (11) is given by [19]

1 L _
u(k) = %0 {— ;hi(z(k)) Bi(q

+3 hiz(k) [Cilg Dy (k+1) — ai(g "y (k)] }

i=1

1) - biO] U(k)

(43)

where by (k) = Zle hi(z(k))bio. The effect of the control law
in (43) is to give
vk +1k) = y* (k+1)

= ¢" (k)bo, (44)

i.e., the predicted output is forced to be equal to the desired out-
put. Now suppose that the estimated parameters, &;; (k), by; (k),
and ¢;;(k) are obtained by using the stochastic gradient algo-
rithm at time k. Accordingly, denote &;(k,q~ "), Bi(k,q™ "),
and C;(k,q™') be the estimates of the polynomials cv;(¢~ '),
) at time index k, respectively. Also let
bo(k) = Zle hi(z(k))bio(k). Based on the above estimated
polynomials, the adaptive minimum variance control law is
given by

) = =3 ) { = [Bulkaa ™) — o (0] it

bo (k) i=1
+ [@(k, q Ny (k+1) —ailk, q‘l)y(k)} }
(45)

in which the control law is derived from the following equation

~

y*(k+1) = ¢" (k)0 (k) (46)



F. Analysis of Stability And Tracking Performance

In this section, stability and tracking performance of the
proposed adaptive stochastic fuzzy control system will be
discussed. As the output y(k) is demanded to track arbitrary
bounded reference signal y*(k), some minimum-phase-like
property of the stochastic fuzzy system in (7) is required in
order to ensure internal stability of the adaptive control system.
Therefore, we make the following assumption.

Assumption 3: (i) Assume that these exists a positive
number by min such that 0 < bgmin < bp; and thus 0 <
bomin < |bo(k)|. (ii) Let Z5, be the companion matrix
associated with the polynomial B;(¢~!) which is defined as

Ez(q_l) %ﬂ) Assume that there exist m X m symmetric
positive definite matrices Py ,, for 1 <4 < L, of the form
11
= O(m—1)x1
Pg;= b 22 47
B, [ 01 (m—1) Py

such that the matrix inequalities

~ =T -
)\BPB ) “E,iPBJ
P

B =B Pg;

]>0, 1<i, j<L (48)

hold for some Az with 0 < Az < 1.

Based on Assumption 3, we have the following results which
will be used to prove stability of the adaptive control system.

Lemma 3: Under Assumption 3, for the stochastic fuzzy
system in (7), we have, for N > N,
N+1

1 N-1
7 2 ol < Z l(

where 0 < K¢ < 00, 0 < K7 < 00, and N is a sufficient large
number.

24 K7, as. 49)

Proof: The proof is given in Appendix E. [ ]

Lemma 4: Under Assumption 1-Assumption 3, there exist
finite positive constants Kg to K11, K41 , and K49 such that

T K
N 2 V) < > le(k) —w(k) + Ko a5 (50)
k=1 k=1
1 Ko o
= S 7R (k) < % > fe(k) — w(k)] + Kip,a.s. (51)
k=1 k=1
N
T(N — 1) Kag 2
< — Ko, a.s. 2
N <N ; [e(k) — w(k)]” + Ka1,a.5 (52)
for N > N.
Proof: The proof is given in Appendix F. [ ]

Based on the property in (42) and the last lemma, we can
attain of the following stochastic key technical lemma.

Lemma 5: With the property in (42), if there exist positive
constants K 1, K42, and N such that

N

1

k=1
(33)

Ko 2 — _
N Z [e(k) —w(k)]”, a.s., for N >N then Ai(q

then we have
(54

(74) limsup ! (55)

k—oo N
| X
2 _ 2
(u31) A}EHOON; { y(E)" | Fk_1} =0y, Q. S.
(56)

If, in addition, condition (5) is strengthened to the following
ergodic condition

E{w ) F - 1}<ooas (57)
then the property in (56) can be also strengthened to
1N
m Z =02 a.s.  (58)

k=1

Proof: The proof can be made along the same line as the
proof of Lemma 8.5.3 in [10]. |

With the above lemma, we have the following tracking
performance and global stability results.

Theorem 4: For the stochastic fuzzy system in (7) with
Assumption 1-Assumption 3, the adaptive minimum variance
control algorithm is internally stable with tracking performance
as

(7) hin sup — Z y=( a. s. (59)
—00
) hin Sup — Z U a. s. (60)

lim

NWN; {l

(4i1)

—y (k)]? | Fk_1} =02 a. s
(61)

Furthermore, if (57) holds, then the result (61) is strengthened
to

(k) =02 a.s. (62)

(v) lim 2

N
NHOONXI:

G. Simulation Study

In this section, a simulation example is given to verify the
proposed adaptive minimum variance control algorithm.

Example 1: Consider the following stochastic fuzzy system:
If z(k) is F;

Dylk+1) =
fori=1,2,.---5

Bi(qg Yu(k) + Ci(g Hw(k + 1)



where

A7) =1-0.27¢"1 +0.011¢72

As(gh) =1-0.33¢" " +0.023¢2

As(qg™') =1—0.36¢"" +0.0288¢ 2

As(g™h) =1-0.39¢"" 4 0.035¢2

As(g™h) =1 —0.44¢™" 4 0.0468¢ 2
Bi(g')=1-02¢7", Ci(qg7")=1-0.135¢""
By(qg~ ') =1—-03¢7", Co(g ") =1—0.165¢"
Bs(g7Y) =1-04¢7", C5(¢7)=1-0.18¢7"!
By(g ) =1-05¢"", Culg") =1—-0.195¢"
Bs(g')=1-06¢"", C5(¢7") =1-022¢"

and w(k) is a zero-mean Gaussian white noise with o2, = 0.01.
The membership function for the fuzzy logic set F; is given in
Fig 1 and the premise variable z(k) is chosen as z(k) = y(k).
We choose y* (k+ 1) = sin(22%) + 3sin ($2%) as the refer-
ence signal. In Fig. 2, the adaptive minimum variance control
u(k) is shown in the upper trace, while the output y(k) and
the reference signal y*(k) are compared in the lower trace.
Obviously, a usual transient phase of the adaptive control can
be observed. Fig. 2 verifies that the internal stability and the
tracking performance of the closed-loop system. The standard
deviation of the tracking error during the steady state is 0.1058,
which is very close to the standard deviation o, = 0.1 of w(k)
as guaranteed in Theorem 4.

Adaptive minimum variance control for stochastic T-S fuzzy
ARMAX model is addressed in this study. From the fuzzy
ARMAX model, a fuzzy one-step ahead prediction model
is first developed. A stochastic gradient algorithm is then
proposed to identify the parameters of the related one-step-
ahead predictor. Under the direct adaptive control scheme, the
minimum variance control is applied to make the output track
a desired reference signal. Stability and tracking performance
of the adaptive stochastic fuzzy control system are rigorously
derived and verified by simulation study.
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APPENDIX

A. Proof of Theorem 1

Proof: First define a Lyapunov function as

V(x(k)) = x" (k) P(k)x(k) (A1)
which is uniformly positive definite and
B (k)] < V(e(k) < B ()P (A2)
With the definition of V' (z(k)), it follows that
V(z(k+1)) =2" (k) [AT(k)P(k + 1)A(k)] z(k) (A.3)
Note that the terms xz(k), P(k), and A(k) are all

F —measurable. Now applying the conditional mean operator
E{-| Fi} to the both sides of (A.3) and using (13), we have,
almost surely,

E{V;Tﬁl O DI} A 6

= + DIF x

< (k)P >x<k> ' S
= WV (k)

Note that as E{||A(l<:)||2 and E{HP(k)HQ}aIe uniformly
bounded, E{V(x(k+1)) | Fr} and E{P(k+1)|F} are
well defined. Apply the conditional expectation operator
E{ | Fr-1} again to the both sides of (A.4) and recall that
the sequence of the o—algebra [ is increasing. With the
smoothing properties [10] of conditional mean and inequality
(A.4), it follows that almost surely

E{V(z(k+1) | Fra} < NV(x(k—1))

Continuing  this procedure by sequentially applying
E{-| Fr—}, E{|Fr=s}, -+, E{|Fg}, one can
obtain almost surely

E{V(a(k+1)) | Fro} < A0V (ko)) (A.5)

Now we turn to prove the almost sure exponential stability
(15). Clearly, it is trivial if z(kyo) = 0. Now assume that the
initial condition z (ko) is nonzero. By Chebyshev’s inequality
[18], for any €; > 0, we have

lz(k) le (B \ /2
P“’b{|\w<ko>||>€k} < uz(kom?}/ek
_ 1
= Te (ko)
2
<E{lle(k)> | F o }} /€3

(A.6)
where Prob{.A} is the probability measure of the event .A. With
(A.2) and (A.S), one can get

AP
E{I " | F1u} < SEEA lalho)l s

With the last inequality, (A.6) can be reduced to

[z (%)l } L AE™
Prob > e b < =22 0 (A7)
{ (| (ko) |l e NB™

k—ko)/2
Now choose the sequence ¢y, as ¢, = eo,\§ o)/

and A\; > A. Then inequality (A.7) implies that
3 prob {la()] > e (i) |}
k=kqo
o~ A k—ko
> (5
k=ko
As )\% < 1, it follows that

5 Prob { )] > X2 (ko) } < o0

k=kq

for any eg > 0

)\max

"2 ymin
€ Ap

and consequentially, by the Borel-Cantelli Lemma [18], we
obtain that

Prob {uszl {||x(k)H > eoAlFRo)/2 ||:L’(ko)||}} _0

for some sufficiently large K, any ¢p > 0, and any A\; > A.
This means that for any sample path with bounded initial state
x(ko), we have

lz(k)I| < ex(VRETR lz(Ro)ll, k= K1, aus.

for any initial condition x(kg), some positive bounded random
variable c1, and a sufficiently large integer /1. This completes
the proof. [ ]

B. Proof of Theorem 2

Proof: Suppose that ||A(k)|] < A, ||B(k)|] < By,
IC(E)|| < CL,and |D(k)|| < Dy, forall k. Using the definition
of the transition matrix defined in (16), the response of the
output y, (k) of the fuzzy system in (12) can be represented by

vek) = O(k)2(k,0)2(0) + Dlk)us (k)
k)Y ®(k, 5+ 1)B(j)us(j)
j=0

Applying the results in Corollary 1, for £ > K, we have

k
lys ()| < CreaVA™ ||2(0)]| + Dy [|us (k)]
k—1
+CLBLY 1@k, j+ D lus()], a. s.
j=0

By the Cauchy-Schwartz inequality, the last inequality leads to

lys(B)1* < 3{CESA* 2(0)” + D llus(k)|*

2
k—1

+Ci B} ZII@(MH)II lus()II| }, a- s
=0
< c3\F +3D% |Ju, (k)|
k—1
+3CEBEY @k, j+ 1)
j=0
k—1

< 3@k, 5+ D lus (DI, a .

=0

(B.1)



where ¢ is defined as c5 = 3C2¢2||z(0)]|* . Considering the
change of index @ = k — j, the first summation term in the last
inequality can be rearranged as

k—1 k
SoN®k i+ D =D 1@k k—i+1)]
j=0 i=1

K;
= @k, k—i+ 1)
i=1
k
+ > @k k—i+ 1)
i=K1+1
(B.2)
With the transition matrix defined in (16), it follows that
|®(k,k—i+1)|] < AT" for i < K;. On the other hand,
for i > K, inequality (17) ensures that ||®(k,k —i+1)|| <

02\&171, a.s. and thus
k—1 K fe’e] i1
i ; i—1 L
Jdim 3 @(kj+ DI <A +e 3 VA
7=0 i=1 i=K1+1
=c4 < 00, Q. S. (B.3)
where K
1— Al N VoN
Ccy = c
YT - AL 1V

Taking the summation operation % Zszl on both sides of (B.1)
and using (B.3), one can get

N
C3 3D% 2
*Zl\ys STyt e
3C%B%C4
TN
N k-1
- 12
XY > Nk G+ Dl lus(D)*s  a s
k=1 35=0

(B.4)

in which the double summation term can be rearranged as
follows

N k-1
12
SN Nk, 5+ D flus ()]l
k:lj:O
N
(12
= Z [®(K, 5 + )| llus (5]
=0 k=j+1

With the same argument made from (B.2) to (B.3), it is easy
to see that
N o)

S etk i+ DIE D @0+ DI e <00, as.
k=j+1 k=j+1

(B.5)
Therefore, following from (B.4) and (B.5), inequality (18) can
be attained with

Ky = & + 3C% B2 ¢ ||us(0 )”2

= 30%(H ()1 + B3} llus (0)]%)
Ky = max(3D%7 30%3%0421)

C. Proof of Lemma 1
Proof: Rewrite (7) to get

L
> hiz(k -

1) Ai(q~ " y(k)

L
= Z hi(z(k — [B,»(qil)u(k -1+ C’i(qfl)w(k:)]
B (C.1)
Substituting (20) into (C.1), we have
L
D hi(z(k=1)[Cilg™) — ¢ ailg H]y(k)
i=1
L
= th<z(k; - 1)) [Bz(q_l) (k; - 1)
+Ci(g~ " w(k)]
which leads to
L
Z hi(z(k = 1)Ci(q My (k) — w(k)]
L
> b ) [a aila™ My (k)
=1
+Bi(q~ u(k —1)]
From (32) and (33), we subtract Zle hi(z(k —

1))Ci(¢~)y(k) from both sides of the above equation
to get

and thus

“Hy(k) + Bi(g™ ulk — 1) = 5(k)]

Using (27), we can get the following equation

L
S hi(z(k — 1)Cilg s (k)

i=1

(k —1)0i0 —y(k)

1)0(k) =

L
hi(z(k — 1))XT
i=1

¢ (k — 1) — ¢" (k —
(k)

—¢"(k — 1)(k)

B This completes the proof. [ ]



D. Proof of Lemma 2

Proof: First define 3;(k) = Ci(q~!
With the fuzzy system (39), we have

)s(k) for 1 < i < L.

L

B(k) = hi(z(k = 1))Bi(k)

=1

D.1)

As Ci(q~
€; such that

1) is ISP [10], for any i, there is a positive number

k
> _s()Bil) = es(7) = 0 D2)

L
Taking the operation Zhl(z(k

i=1

— 1)) on both side of (D.2)

gives

; L
> {Zhi(z(k =) [s())B: () — ei&(j)]} >0 (D3)

j=1

Using equation (D.1) and letting ¢ = 11221L6i, we can see
that inequality (D.3) implies the desired property in inequality

(40). |

E. Proof of Lemma 3

Before presenting the proof of Lemma 3, we shall need a
lemma which is quoted from [19].

Lemma 6: Let P be a m X m symmetric positive definite
matrix which is partitioned as

P:[PH

Pis ]
Pl

Pss

where Pi; and Pag are (m — 1) x (m — 1) and 1 x 1 matrices,
respectively. Also let I' be a matrix defined by

L1 Opn-1)x1

I'= ,0< <1
|: O1><(m—1) r :| ‘T| -

Then I'" PT" — P is negative semi-definite if and only if Py =
O(m—1)x1-
The proof of Lemma 3 is given in the following.
Proof: First define a function V; (k) as

L
Vi(k+1) =Y hi(z(k){Ai(q Yy(k+1)—Ci(q " w(k+1)}
=1

(E.1)
so that from the stochastic fuzzy system in (7), we have

> hi(z(k)biou(k) = > {hi(z(k)) [b
k=1

k=1 =
+Vi(k+1)}

i0 — Bi(g™")] u(k)

(E2)

which can be expressed as

o= s e P
?ﬁ%mmwuﬁ
- 450(@;{}“ ibo -~
+ Eo(k)v;(;c +1)} _ (E.3)
where ~
oy - Dy ®

Note that |bo (k)| > bo min and thus bo(k) is well defined with
0< bO,min S ‘bO(k)
as

< 1. By constructing a state vector x, (k)

zu (k) = u(k —1)]"

equation (E.3) can be transformed into a state-space form as

wulk+1) = A5 (k)xy (k) + Vi (k + 1)

[u(k—m) u(lk—m+1) ----

(E.5)

where

(

A (k) =T(k)Ap (k)
_ L1 Om-1)x1
L(k) = [ O1x(m—=1)  bo(k) ]

~ T
Valk+1) = [ Oregmony Do(B)Valk +1) |
For the system (E.5), consider a Lyapunov function V' (z(k)) =
L

= Zhi(z(k))Pé

i=1
structure defined in (47), by applying Lemma 6, it follows that
7 (k)P(k + 1)I'(k)

2T (k) Py (k)z(k) where P(k) ;- With the

[
M=

hi(=(k + 1) (k) Pg T (k)
< P(k+1)

.
Il

On the other hand, under Assumption 3, the matrix condition
(48) implies

AgP(k) — AL(K)E{P(k +1)|F 1} Ag(k) > 0, V&

for some Az with 0 < Az < 1. Therefore, as I'(k) is
F ,—measurable, we have

AL (R)E{P(k + 1)|F 1} A5 (k)

= AL(k)E{TT (k)P (k+ 1)L (k)|F 1} Ap (k)

< AL(R)E{P(k+1)|F 1} Ag(k)

< ApP(k) (E.6)



which implies that for the system in (E.5), it follows from
Theorem 2 that

1 N
2

NZ [EMW]

k=1

KQ N Kd
SWZHV(kH)H + s., for N > K,

k=1
(E.7)

For the left hand side of (E.7), by the definition of the vector
x4, (k), it follows

N-1 1 N
2 2
2 | < ﬁz |7 (k) (E.8)
k=1 k=1

For the left hand side of (E.7), by the definition of V,,(k + 1),
we have

NACESY]&
E (k/’) L 2
- {b(? th( (K)) (0%, by (k +1) — 08, du(k + ))}
;min 75
where
9Ai = [ 1 ;1 am] }T
Oc,=[1 cu Cil) ]T
¢y(k+1)=[yk+1) y(k) yk+1-n) 1"
Pu(k+1)=[ wk+1) wk) wk+1-1)]"
Let Cac = max{ o, 10, ma, loe.] . A5 0 <
Do,min < ]%(k)‘ < 1, it follows

20316‘ 2 2
< oy (k+ DI +[dw(k + D7) (E9)

0,min

Vi (ke + 1)1

Meanwhile, similar to (E.8), one can obtain

1 N N+1

T lloy(k+ DI < (n+ 1) Zy (E.10)
k=

1 N1 N+1

NZH%(kH)H (I+1)= Zw (E.11)
k=1

Therefore, by (E.7)-(E.11) and (5), we have, for N > N,

N-1 N+1

<K6><*Z||Z/

where N = max{N,,, K1}

| + K7
k=1

205K (n +1) 205K Ku(l+1)
b2 P BT b2

0,min 0,min

Kg =

This completes the proof. ]

E. Proof of Lemma 4
Proof: (i) The proof can be referred to part (iii) of Lemma
11.3.1 in [10].

(ii) The proof can be referred to part (iv) of Lemma 11.3.1
in [10].

(iii) In (29) with £ = N, we have

r(N—1)
N—-1

=7(0)+ Y ¢"(N —1)p(N — 1) (F1)
N1z

=r(0)+ > > R (k)X (k)x(k) (F2)
J]:}illzil

<r(0)+ D0 “hiz(k)x" (k)x (k) (F3)
1]:/:_111:1

=r(0)+ > _x"(k)x(k) (F4)
k=1

By the definition of
and (51) that, for N >

( ) in (27), it follows from (49),(50),

N 1

1
— K

N ( + al

k=1

for some positive numbers K,o and K,;. This completes the
proof. [ ]
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