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Ⅰ.中文摘要 
關鍵詞：數值模擬MacCormack、Godunov 方
法; 三度空間剪切混合層 ; 光學 
本論文之研究是以數值模擬方法來分析

剪切混合層之流場，研究剪切層之物理性質

如密度分佈、混合層成長率及渦漩結構現

象。數值模擬是交互使用二階準確、顯式之

MacCormack方法和 Godunov 方法，來解 3D 
Navier-Stokes 方程式，比較此剪切混合層的
基本特性與實驗數據及其他數值研究者的結

果均相符。研究發現共平面光通過成長率是

零的剪切層，其光學性質最佳，像差最小。

Strehl比最高。 
英文摘要 
Keyword：MacCormack Method , Godunov 
Method , Strehl Ratio 

Three-dimensional Navier-Stokes in 
conserveation law form are solved directly 
using the second-order, explicit, MacCormack 
predictorcorrector and Godunov methods 
alternately for the simulation of spatially   
developing free and forced shear Layer. The 
optical effects of coherent structures in the 
mixing layer are identified. As expected, the 
far-field optical quality of a laser beam is 
degraded the most when laser beam passes 
through the edge of the large eddies. Optical 
performance can be improved significantly by 
controlling of the coherent structures in the 
mixing layer. The shear layer perturbed by 
periodic forcing with appropriate amplitude is 
characterized by a region within which the 
growth rate of the shear layer is zero. It is 

found that the Strehl ratio ,SR is, the highest in 
this “non-growth” region of forced situation. 
 
II. Introduction 
  The plane free shear layer generated by 
the mixing of co-flowing fluid streams is 
geometrically simple and is illustrated in 
Figure1. This simple flow configuration is 
important in mixing processes and is 
encountered in many other engineering 
applications. The extraction of power from 
high-power gas lasers, for example,  

often involves passing the beam through 
interface between gases of different indices of 
refraction. Shear layers can produce random 
phase errors in the beam that can substantially 
reduce the maximum intensity to which the 
beam can be focused. Propagation of a laser 
beam through the atmosphere and aero-optical 
degradation are two other examples which 
involve interaction between a mixing layer and 
a laser beam.The main purpose of this research 
is to understand the factors which influence 
optical degradation and to make useful 
predictions or correlation with respect to the 
flow parameters. The optical properties of shear 
layers is a topic of research with applications in 
high power lasers and optical imaging system. 
In recent years, it has been shown that large 
scale structures are intrinsic features in a plane 
turbulent mixing layer. While there has been 
some research on the effects of turbulence on 
laser beams, there has been no study of the 
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optical effect of large-scale structures as they 
exist in shear layer development, nor how these 
effects may be controlled. We are studying the 
optical effects of large scale structures in forced 
and unforced situations using periodic motion 
of a small flap at the trailing edge of the splitter 
plate. 

In order to understand the optical properties of 
the shear layers, it is necessary to understand 
their basic fluid mechanics. Many recent 
experiments have confirmed that large-scale 
coherent structures are indeed intrinsic features 
of a plane mixing layer over a wide range of 
Reynolds numbers [1,2]. The plane mixing 
layer consists of an array of large eddies of 
concentrated span wise vorticity. These 
quasi-two-dimensional large eddies are 
responsible for the transport of mass and 
momentum. In the past, the investigation of 
shear layer optical properties were based on the 
assumptions of homogeneous turbulence. There 
has been no study of the optical effects of 
large-scale structures which exist during the 
course of shear layer development. One 
purpose of this work is to identify the optical 
effects of coherent structures. It is also known 
from experiments that the shear layer flow 
pattern can be altered easily by introducing 
external perturbations near the point of initial 
mixing [3,4]. Since the spreading rate and the 
density profile (related to the index of 
refraction distribution) can be changed 
drastically by perturbing at a particular 
frequency with appropriate amplitude, another 
purpose of this research is to seek out the 
method of improving optical performance in 
the far-field by controlling of the mixing layer. 

The basic vortex dynamics in a shear layer are 
essentially inviscid. However, to simulate a 

free or forced shear layer numerically, 3-D 
Navier-Stokes equations are solved by 
alternating the MacCormack explicit, predictor- 

corrector and Godunov scheme [5,6]. The 3-D 
Navier-Stokes equations can be solved directly 
and the density fields obtained are used for 
shear layer optical property studies. 
 
III. Governing Equation and Numerical 

Schemes 
  Based on the assumptions that there are no 
external heat addition and body forces, the 
compressible Navier-Stokes equations in 3-D 
Cartesian coordinates can be written as  
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Here x is the streamwise coordinate, y is the 
cross-stream coordinate and z is in the 
spanwise direction (see Fig.2). The equations 
written are in conservation law form represent 
the conservation of mass, momentum and total 
energy of fluid motions. The variables u,, ρρ  

wv, ρρ and e are mass, streamwise momentum, 
cross-stream momentum, spanwise momentum 
and total energy respectively, all per unit 
volume. P is the pressure. For an ideal gas, the 
pressure is related to the equation of state 

ρεγ 1)-(p = , where ε  is the specific internal 
energy and γ  is the ratio of the specific heats, 
i.e., ./cc vp=γ  Throughout this paper the value of 
γ  is taken as 1.40. 

The numerical code used in the current work is 
intended for the direct simulations of the 3-D 
compressible Navier-Stokes equations with no 
subgrid scale turbulence model. The code uses 
finite volume techniques which involves 
alternating in time the second-order, explicit 
MacCormack scheme has a lagging phase error 
and the Godunov scheme has a leading phase 
error [7], considerable reduction in the phase 
error can be achieved by temporal switching of 
these two schemes[8]. The state variables ρ , u , 
v , w , and e are calculated at the center of each 
computational cell, which is a cubic mech. A 
grid system at resolution for 3232182 ××  is 
adopted, and cm 0.02zyx =∆=∆=∆ . Note that to 
calculate the flux terms, second-order 
extrapolation are made of the primitive 
variables ( ρ , u , v , w , e) from the cell centers 
to the cell boundaries to give extrapolated 

values on the two sides of all cell boundaries. 
On the predictor step, values extrapolated from 
the left or the bottom or the back side of the 
cell boundaries are used; on the corrector step, 
values extrapolated from the right or the top or 
the front side of the cell boundaries are used. 
To achieve numerical stability, a simple 
limiting technique is applied, that is, all 
extrapolated values of the primitive variables at 
the cell boundaries must lie between the cell 
center values at the two adjacent cell centers. If 
any extrapolated value of a primitive variables 
does not satisfy this condition, it is replaced by 
the cell center value which is more closer to it 
[9]. 

Two low speed air streams are modeled, each 
with different enthalpy, so that the density 
ration is 1.1 at a velocity ratio of 0.5. The two 
free stream velocities are 3

1 107.04U ×=  cm/sec 
(M=0.2) and 3

2 103.52U ×= cm/sec; the densities 
are -3

1 101.2019×=ρ g/cm3, and 12 1.1ρρ = . A 
hyperbolic-tangent velocity profile is adopted 
for the initial streamwise velocity distribution 
at the splitter plate such that the initial 
momentum thickness of the shear layer is 
0.02cm. However, in the initial density profile 
there is a discontinuity at the contact surface. 
The pressure everywhere is 1 atm, the y- 
component, and the z component of the 
velocity are zero initially. 

Both mass flux and energy flux are kept 
constant as the inflow boundary conditions. 
Based on the hypothesis that the top, bottom, 
back and front boundaries are streamlines, the 
numerical boundary conditions used there are 

0
z
qand  0

y
q  0, w0,v =

∂
∂

=
∂
∂

== , where q is ρ , or u , 

or e. For the outflow boundary condition, the 
pressure is assumed to be constant. 
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It has been shown that in order to resolve the 
large-scale structures in a mixing layer, 
unsteady boundary conditions must be applied 
[10]. In this case, at the inlet plane, a periodic 
forcing is introduced to simulate the “natural” 
mixing layer. The forcing frequencies consist 
of the fundamental frequency and the first three 
subharmonics of the shear layer. The 
fundamental frequency satisfies the Strothal 
number criterion which is derived from 
Rayleigh’s inviscid, linear stability theory [11]. 
In this case, the fundamental frequency is 
4.227KHZ. Furthermore, the forcing is 
modified by incorporating random phases to 
the Rayleigh modes to simulate random pairing 
of two neighboring vortices [12]. 

To advance the code in one time step t∆ , the 
numerical stability condition must be applied 
[5,6]. During this time interval, t∆ , waves 
from neighboring Riemann problems will not 
interact with each other. In our calculations, 

y ,x ∆∆ , and z∆  are of the order of millimeter, 
t∆  is therefore of the order of microsecond to 

satisfy the stability condition. Generally, the 
statistical stationary fluid dynamical results can 
be obtained after 10,000 time steps. To 
calculate the time averaged fluid dynamical 
variables, a time interval of 5,000 time steps is 
needed. 
 
Ⅳ. Results and Discussions 
Figure 3 shows the instantaneous isodensity 
plot of a 3D free shear layer at velocity ratio 
0.5 and density ratio 1.1. Examining this figure 
carefully, the adjacent structures are connected 
by braids which are regions of low vorticity 
and highly strained. The center of the shear 
layer moves towards the low-speed side. There 
are more fluid particles entrained from the 
high-speed side than that from the low-speed 

side in the mixing region. Entrainment 
asymmetry is an important feature of the spatial 
shear layer and this result is consistent with the 
experimental evidence [13, 14] and other 
numerical simulations [15]. Figure 4 shows a 
sequence of instantaneous flow visualization of 
the density field for the natural shear layer. 
These figures clearly show the pairing 
phenomenon between two vortices. This vortex 
amalgamation process occurs randomly in 
space and time and it is responsible for the 
linear growth rate of shear layer. In the fully 
developed region, statistics of the fluid 
dynamical variables such as streamwise 
velocity, rms u-fluctuations, v-fluctuations, and 
w-fluctuations as well as the Reynolds stress 
distribution show that the flow is self-similar 
which are not shown due to limited space. 
Figure 5 and Figure 6 are plots of isodensity 
field for the shear layer under fundamental 
frequency and first subharmonic frequency 
perturation respectively. Forcing with 
fundamental or subharmonic frequency 
produces controlled coherent structures where 
the growth rate of the forced shear layer is zero. 
In the non-growing region of the shear layer, 
amalgamation of neighboring vortices are 
inhibited and the mixing layer consists of an 
array of large eddies in the lateral direction 
with no interactions.. The trends of all fluid 
dymical results obtained are consistent with 
experimental and numerical results of others  
[16, 17] lend full confidence that the code has 
been validated satisfactorily. The density field 
then can be used for shear layer optical 
property studies. 

The phase distortation of a coherent light beam 
plays a very important role in determing the 
far-field properties of the beam. Coherent 
structures of the shear layer generate phase 
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errors in the laser beam passing through it. 
Basically, the far-field intensity profile is the 
modulus square of the Fourier transform of the 
aperture function [18]. The optical effects of 
the shear layer are calculated by passing a laser 
beam through it with circular aperture and 
uniform phase. The far-field focal plane 
intensity distributions measure the optical 
quality of the shear layer. The Strehl ratio, SR, 
which is defined as the ratio of the maximum 
light intensity of the diffraction pattern to that 
of the same optical system without aberrations, 
will be used to evaluate the optical quality 
quantitatively [19, 20, 21, 22]. Figure 7 gives a 
typical example plot of the instantaneous Strehl 
ratio for the natural shear layer. The beam size 
is larger than that of the flow structure, wide 
angle scattering due to these fluid fluctuations 
removes optical energy from the beam and 
spreads the intensity profile in the far-field. The 
Strehl ratio is 0.585, more than 40% of peak 
energy is removed. However if laser beam 
passing through the non-growing region of the 
forced shear layer where the large eddies are 
equal in size, results in the amplitude of the 
phase variation being small, which in turn 
improves the optical performance in the 
far-field. Figure 8 demonstrates this effect. 
When laser beam passing rough the non-growth 
region of the shear layer, the lobes in the 
far-field pattern disappear which is due to 
partial compensation for the phase errors in this 
region. The Strehl ratio is 0.921, a significant 
recovery of SR value. 

 
Ⅴ. Conclusions 

1. The simplest and most natural way of 
modifying the mixing layer is to perturb the 
layer by external, periodic disturbances. 

2. If beam performance improvement is needed 
in the region near the point of mixing, the 
method of fundamental frequency forcing 
should be applied; otherwise the method of 
subharmonic forcing may be used. 

For a forced shear layer in the region of zero 
growth rate, the optical performance of the 
shear layer in the far-field is improved 
significantly. But the thickness of the shear 
layer in this region is not a important factor 
controlling the optical quality of the shear 
layer. 
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Fig.1 Example of free shear layer. 
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Fig.2 Schematic of a planar wave front propagating 

through a shear layer. 
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Fig.3 Isodensity plot of a 3D free shear layer at velocity 

ratio 0.5 and density ratio 1.1. 
 
 

 

 

 

 

 
Fig.4 Instantaneous isodensity plot of a shear layer at 

z=0. 
 
 
 
 
 
 

 
 
Fig.5  Isodensity plot for a forced shear layer by 

fundamental frequency. 

 
 Fig.6  Isodensity plot for a forced shear layer by first 

subharmonic frequency. 
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Fig.7  Far field intensity contour with aberrations. 
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Fig.8 Far field intensity contour produced by the forced 

shear layer. 


