行政院國家科學委員會專題研究計畫 成果報告

Ka 頻段艦載行動衛星通信之追蹤控制系統設計研析 研究成果報告(完整版)

計 畫 類 別 : 個別型 計 畫 編 號 : NSC 95-2623-7-216-001-D 執 行 期 間 : 95年01月01日至95年12月31日 執 行 單 位 : 中華大學機械工程學系

計畫主持人:林君明

計畫參與人員:碩士班研究生-兼任助理:黃安槿

處理方式:本計畫可公開查詢

中華民國 96年04月18日

行政院國家科學委員會補助專題研究計畫 ■成果報告

Ka頻段艦載行動衛星通信之追蹤控制系統設計研析

- 計畫類別:■ 個別型計畫 □ 整合型計畫 計畫編號:NSC-95-2623-7-216-001-D 執行期間: 95年 1月 1日至 95年 12月 31日
- 計畫主持人:林君明
- 共同主持人:
- 計畫參與人員: 黃安槿

成果報告類型(依經費核定清單規定繳交):□精簡報告 ■完整報告

- 本成果報告包括以下應繳交之附件:
- □赴國外出差或研習心得報告一份
- □赴大陸地區出差或研習心得報告一份
- Ш出席國際學術會議心得報告及發表之論文各一份
- □國際合作研究計畫國外研究報告書一份

處理方式:除產學合作研究計畫、提升產業技術及人才培育研究計 畫、列管計畫及下列情形者外,得立即公開查詢

□涉及專利或其他智慧財產權,□一年□二年後可公開 查詢

執行單位:中華大學

中華民國 96 年 4 月 2 日 _{附件} 可供推廣之研發成果資料表

🗌 可申請專利 🛛 🗖 可技術移轉

日期: 96年 4月2

日

國科會補助計畫	計畫名稱:Ka 頻段艦載行動衛星通信之追蹤控制系統設計研析 計畫主持人:林君明
	計畫編號:NSC-95-2623-7-216-001-D 學門領域:國防科技研究計畫
技術/創作名稱	Ka 頻段艦載行動衛星通信之追蹤控制系統設計研析
發明人/創作人	林君明

	本研究第一部分是進行天線追蹤系統模擬方塊圖之推導,以
	利將來進行Ka頻段天線,追蹤衛星之六自由度的模擬及分析。其中
	包括推導天線俯仰及偏航頻道,追蹤及穩定迴路方塊圖, Gimbal
	Rate公式之證明,與載具俯仰,偏航,及滾轉角速率的耦合效應
	(Body Angular Rate Cross-Coupling Effects)。第二部份是進行衛星追
	蹤及穩定迴路,頻域(Frequency-Domain)及時域(Time-Domain) 性
	能分析。原理運用簡化的模式,進行分析,以掌握關鍵參數。其中
	穩定迴路是以只用積分,及再整合比例積分(Proportion and
	Integeration, PI)補償器,等兩種情況,來進行設計。而後利用
	Simulink模擬,以便比較兩種補償器之性能,可知運用PI補償器的
	系統,無論是頻域及時域的性能都較好。 第三部份是四元素法簡
	介,以四元素法為基礎,四元素法為採用四個變量,而得到較簡化
	之姿態修正方程式,可運用於導航座標的轉換,而不會有奇異值
	(Singular Value)產生的問題,所以非常方便可靠。第四部份是說明
	系統模擬程式設計的原理,本研究中模擬方塊圖是由多個
	Subsystem所組成。首先分別建立俯仰及偏航兩頻道之追蹤及穩定
	迴路,將其輸入、輸出端定義為in及out,再分別將俯仰及偏航頻道
	定義為兩個Subsystem,利用各Subsystem所定義之in及out端子,建
技術說明	立兩頻道之聯結。完成兩頻道之連結後,再將此兩頻道定義為新的
42-119 00-91	Subsystem,再由最上層之系統作為統一的輸出及輸入端,輸出及
	輸入所需分析之角度及角速度。這種作法,可使得閱讀系統方塊圖
	及進行程式設計,變的更為清楚,而可以很容易知道程式運作的流
	程。本研究第五及第七部份是以輸入視線角為步階響應,及載具或
	目標運動為弦式波時,兩種情況之追蹤模擬,包括目標有俯仰及偏
	航動作,只有載具有俯仰及偏航動作,測試程式穩定迴路功能,載
	具有滾轉的動作,交叉偶連效應,當載具有滾轉時,同時考慮交叉
	偶連效應,穩定迴路不工作時之狀況,及追蹤迴路有靜摩擦效應之
	狀況。 本研究第六部份是運用模糊控制器(Fuzzy Controller) 設
	計,依馬達的特性,分別定義天線輸入準向誤差E,前後兩次準向
	誤差之差異值ΔE,及追蹤迴路控制輸入信號U,等歸屬函數。並以
	輸入視線角之步階響應信號,作為追蹤模擬之輸入信號。發現使用
	模糊控制器,可以在短時間內使得天線追蹤並鎖定住目標。這是由
	於模糊控制為一非線性之控制,因此性能結果比傳統線性控制所得
	的要好,對應現有之各項要求,如較佳之步階式追蹤反應速度,及
	馬達靜摩擦力效應容忍度(Dead band可達到± 0.0125),均可以達到
	相當高的追蹤及穩定性能。與第五部份作比較,可以知道,模糊控
	制所能容忍的摩擦力大小,較傳統控制(Dead band可達到± 0.001)
	為佳。

r L	英文:
	This research applies the traditional PID (Proportion, Integration,
a	and Derivation) compensator and the newly fuzzy control methods for
S	ystem performance analysis as well as comparison. Then the results
с	an be applied for later hardware implementation. The details of these
t	wo methods are as follows:
	1. Traditional PID compensator design
	(1) Tracking-loop control system modeling
	(2) Stabilization-loop control system modeling
	(3) Matlab tracking-loop compensator simulation program
	development
	(4) Matlab stabilization-loop compensator simulation program
	development
	(5) Satellite six-degree-of-freedom equation of motion program
	development
	(6) Matlab vehicle equation of motion program development
	(7) Pitch and yaw channels' tracking-loop bandwidth requirement
	analyses
	(8) Pitch and yaw channels' stabilization-loop bandwidth requirement
	analyses
	(9) Pitch and yaw channels' tracking-loop motor requirement analyses
	(10) Pitch and yaw channels' tracking-loop motor friction non-linear
	effect analyses
	(11) Radome slope error compensator design
	(12) Vehicle motion decoupling and antenna tracking error
	performance analyses
	2. Fuzzy controller design
	(1) Fuzzy logic controller design
	The details are the relationship function design and parameter
	variation performance analyses.
	(2) Fuzzy controller simulation program development and analyses
	The details are the decoupling analyses of attitude variation with
	aspect angle 45° (the noise amplitude is set to 15% of measurement),
	inner- and outer-gimbals' tracking angles, response time and stability
	analyses.
	-

可利用之產業	船載或車載衛星追蹤系統設計
及	
可開發之產品	
	本研究中模擬方塊圖是由多個 Subsystem 所組成。首先分別
	建立天線俯仰及偏航兩頻道之追蹤及穩定迴路,將其輸入、輸出端
	定義為 in 及 out, 再分別將俯仰及偏航頻道定義為兩個 Subsystem,
计编辑	利用各 Subsystem 所定義之 in 及 out 端子,建立兩頻道之聯結。完
权 侧 行 和	成兩頻道之連結後,再將此兩頻道定義為新的 Subsystem,再由最
	上層之系統作為統一的輸出及輸入端,輸出及輸入所需分析之角度
	及角速度。這種作法,可使得閱讀系統方塊圖及進行程式設計,變
	的更為清楚,而可以很容易知道程式運作的流程,人機介面效果好。
	本研究發現使用模糊控制器,可以在短時間內使得天線追蹤並
	鎖定住目標。這是由於模糊控制為一非線性之控制,因此性能結果
按度及泻田幼硬估	比傳統線性控制所得的要好,對應現有之各項要求,如較佳之步階
作质众建用的俱但	式追蹤反應速度,及馬達靜摩擦力效應容忍度(Dead band 可達到±
	0.0125),均可以達到相當高的追蹤及穩定性能,比傳統控制(Dead
	band 可達到±0.001)為佳。

※ 1.每項研發成果請填寫一式二份,一份隨成果報告送繳本會,一份送 貴 單位研發成果推廣單位(如技術移轉中心)。

※ 2. 本項研發成果若尚未申請專利,請勿揭露可申請專利之主要內容。

※ 3. 本表若不敷使用,請自行影印使用。

Ka頻段艦載行動衛星通信之追蹤控 制系統設計研析

(NSC Project No.: NSC-95-2623-7-216-001-D)

執 行 單 位:中華大學機航所
計 畫 主 持 人:林君明教授
研 究 生:黃安槿

目錄

摘要

1.	天练	追蹤系統模擬方塊圖之推導	10
2.	衛星	穩定迴路分析	13
	2.1 禾	穩定迴路只有積分補償器(頻域分析)	13
	2.2 肴	穩定迴路只有積分補償器(時域分析)	23
	2.3 積	穩定迴路有加上 PI 補償器(頻域分析)	25
	2.4 種	穩定迴路有加上 PI 補償器(時域分析)	51
3.	四ラ	元素法簡介	54
4.	系約	充模擬方塊圖	57
5.	載」	具及目標運動角速率為步階之追蹤模擬	66
	5.1	目標有俯仰及偏航動作	66
	5.2	只有載具有俯仰及偏航動作	68
	5.3	測試程式穩定迴路功能	70
	5.4	載具有滾轉的動作	72
	5.5	交叉偶連效應	74
	5.6	載具有滾轉之交叉偶連效應	76
	5.7	載具有滾轉,同時考慮交叉偶連效應	
		及穩定迴路不作用之狀況	78

5.8	追蹤迴路內產生摩擦效應之狀況	80
6. FU2	ZZY CONTROLLER 之性能分析	93
6.1	Fuzzy Controller 歸屬函數表設計	93
6.2	歸屬函數各區域之定義及示意圖	94
6.3	無滾轉效應之模糊控制模擬	96
6.4	具有滾轉效應之模擬	108
6.5	摩擦效應增大之模擬(dead band =±0.0125)	114
7. 載	具及目標運動角速率為弦式波之追蹤模擬	119
7.1	目標有俯仰及偏航動作	125
7.2	只有載具有俯仰及偏航動作	125
7.3	測試程式穩定迴路功能	127
7.4	載具有滾轉的動作	131
7.5	交叉偶連效應	132
7.6	載具有滾轉之交叉偶連效應	134
7.7	載具有滾轉,同時考慮交叉偶連效應	
	及穩定迴路不作用之狀況	136
5.8	追蹤迴路內產生摩擦效應之狀況	138
8. 結	淪	154

9.	參考文獻	155

摘要

本研究第一部分是進行天線追蹤系統模擬方塊圖之推導,以利將來進行 Ka 頻段 天線,追蹤衛星之六自由度的模擬及分析。其中包括推導天線俯仰及偏航頻道,追蹤 及穩定迴路方塊圖, Gimbal Rate 公式之證明,與載具俯仰,偏航,及滾轉角速率的 耦合效應(Body Angular Rate Cross-Coupling Effects)。

第二部份是進行衛星追蹤及穩定迴路,頻域(Frequency-Domain)及時域 (Time-Domain)性能分析。原理運用簡化的模式,進行分析,以掌握關鍵參數。其中 穩定迴路是以只用積分,及再整合比例積分(Proportion and Integeration, PI)補償器, 等兩種情況,來進行設計。而後利用 Simulink 模擬,以便比較兩種補償器之性能,可 知運用 PI 補償器的系統,無論是頻域及時域的性能都較好。

第三部份是四元素法簡介,以四元素法為基礎,四元素法為採用四個變量,而得 到較簡化之姿態修正方程式,可運用於導航座標的轉換,而不會有奇異值(Singular Value)產生的問題,所以非常方便可靠。

第四部份是說明系統模擬程式設計的原理,本研究中模擬方塊圖是由多個 Subsystem 所組成。首先分別建立俯仰及偏航兩頻道之追蹤及穩定迴路,將其輸入、 輸出端定義為 in 及 out,再分別將俯仰及偏航頻道定義為兩個 Subsystem,利用各 Subsystem 所定義之 in 及 out 端子,建立兩頻道之聯結。完成兩頻道之連結後,再將 此兩頻道定義為新的 Subsystem,再由最上層之系統作為統一的輸出及輸入端,輸出 及輸入所需分析之角度及角速度。這種作法,可使得閱讀系統方塊圖及進行程式設 計,變的更為清楚,而可以很容易知道程式運作的流程。

本研究第五及第七部份是以輸入視線角為步階響應,及載具或目標運動為弦式波時,兩種情況之追蹤模擬,包括目標有俯仰及偏航動作,只有載具有俯仰及偏航動作, 測試程式穩定迴路功能,載具有滾轉的動作,交叉偶連效應,當載具有滾轉時,同時 考慮交叉偶連效應,穩定迴路不工作時之狀況,及追蹤迴路有靜摩擦效應之狀況。

本研究第六部份是運用模糊控制器(Fuzzy Controller)設計,依馬達的特性,分別 定義天線輸入準向誤差 E ,前後兩次準向誤差之差異值 ΔE,及追蹤迴路控制輸入信 號U,等歸屬函數。並以輸入視線角之步階響應信號,作為追蹤模擬之輸入信號。發 現使用模糊控制器,可以在短時間內使得天線追蹤並鎖定住目標。這是由於模糊控制 為一非線性之控制,因此性能結果比傳統線性控制所得的要好,對應現有之各項要 求,如較佳之步階式追蹤反應速度,及馬達靜摩擦力效應容忍度(Dead band 可達到± 0.0125),均可以達到相當高的追蹤及穩定性能。與第五部份作比較,可以知道,模糊 控制所能容忍的摩擦力大小,較傳統控制(Dead band 可達到±0.001)為佳。

9

1. 天線追蹤系統模擬方塊圖之推導

天線追蹤系統模擬方塊圖之推導,詳述如下:

因為追蹤天線視線方向之角變化率,是由天線內外環架角速率,及視線方向之旋 轉率,加乘的效應,或由載具角速度再加上載具至天線的相對的角速度,故二者可表 示如下:

$$\begin{split} \vec{\omega}_{s} &= \dot{\phi}_{r} \hat{x}_{s} + \dot{\phi}_{RL} \hat{Y}_{s} + \dot{\phi}_{uD} \hat{Z}_{s} \end{split} \tag{1} \\ &= \vec{\omega}_{S/B} + \vec{\omega}_{B} \\ &= \dot{\lambda}_{RL} \hat{Y}_{b} + \dot{\lambda}_{uD} \hat{Z}_{s} + \dot{\theta}_{r} \hat{x}_{b} + \dot{\theta}_{RL} \hat{y}_{b} + \dot{\theta}_{uD} \hat{z}_{b} \\ &= \dot{\lambda}_{RL} \left(\sin \lambda_{uD} \hat{x}_{s} + \cos \lambda_{uD} \hat{y}_{s} \right) + \dot{\lambda}_{uD} \hat{z}_{s} \\ &= \dot{\theta}_{r} \left(\cos \lambda_{RL} \cos \lambda_{uD} \hat{x}_{s} - \sin \lambda_{R} \cos \lambda_{RL} \hat{y}_{s} + \sin \lambda_{RL} \hat{z}_{s} \right) \end{aligned} \tag{2} \\ &+ \dot{\theta}_{RL} \left(\sin \lambda_{uD} \hat{x}_{s} + \cos \lambda_{uD} \hat{y}_{s} \right) \\ &+ \dot{\theta}_{uD} \left(-\sin \lambda_{RL} \cos \lambda_{uD} \hat{x}_{s} + \sin \lambda_{RL} \sin \lambda_{uD} \hat{y}_{s} + \cos \lambda_{RL} \hat{z}_{s} \right) \end{split}$$

比較(1)及(2)可得下列三項等式:

$$\dot{\phi}_{r} = \dot{\theta}_{r} \cos \lambda_{uD} \cos \lambda_{RL} + (\dot{\lambda}_{RL} + \dot{\theta}_{RL}) \sin \lambda_{uD} - \dot{\theta}_{uD} \cos \lambda_{uD} \sin \lambda_{RL}$$
(3)

$$\varphi_{RL} = \lambda_{RL} \cos \lambda_{uD} - \theta_r \sin \lambda_{uD} \cos \lambda_{RL} + \theta_{RL} \cos \lambda_{uD} + \theta_{uD} \sin \lambda_{RL} \sin \lambda_{uD}$$
(4)

$$\dot{\lambda}_{RL} = \frac{\left(\phi_{RL} + \theta_r \sin\lambda_{uD} \cos\lambda_{RL} - \phi_{RL} \cos\lambda_{uD} - \theta_{uD} \sin\lambda_{uD} \sin\lambda_{RL}\right)}{\cos\lambda_{uD}}$$
(5)

及
$$\dot{\phi}_{uD} = \dot{\lambda}_{uD} + \dot{\theta}_r \sin \lambda_{RL} + \dot{\theta}_{uD} \cos \lambda_{RL}$$
 (6)或

$$\dot{\lambda}_{uD} = \dot{\phi}_{uD} - \dot{\theta}_r \sin \lambda_{RL} - \dot{\theta}_{uD} \cos \lambda_{RL}$$
(7)

另一方面,由圖1之天線追蹤系統模擬方塊圖,可得天線俯仰頻道 Gimbal Rate:

$$\dot{\theta}_{g} = -\omega_{by} + \dot{\lambda}_{pc_{s}} \frac{\left(12 + \frac{1}{s}\right) \times 808 \times 1.04 \times \frac{1}{s}}{1 + \left(12 + \frac{1}{s}\right) \times 808 \times 1.04 \times \frac{1}{s} \times \cos \varphi_{g}}$$

$$+ \omega_{bx} \cos \theta_{g} \sin \varphi_{g} \frac{\left(12 + \frac{1}{s}\right) \times 808 \times 1.04 \times \frac{1}{s}}{1 + \left(12 + \frac{1}{s}\right) \times 808 \times 1.04 \times \frac{1}{s} \times \cos \varphi_{g}}$$

$$- \omega_{bz} \sin \theta_{g} \sin \varphi_{g} \frac{\left(12 + \frac{1}{s}\right) \times 808 \times 1.04 \times \frac{1}{s}}{1 + \left(12 + \frac{1}{s}\right) \times 808 \times 1.04 \times \frac{1}{s}}$$

$$(8)$$

將式(8)分子及分母上下通分後,改寫成下式:

$$\dot{\theta}_{g} = -\omega_{by} + \dot{\lambda}_{pc_{s}} \frac{s \times 808 \times 1.04 \times 12 + 808 \times 1.04}{s^{2} + (1 + 12s) \times 808 \times 1.04 \times \cos\varphi_{g}} + \omega_{bx} \cos\theta_{g} \sin\varphi_{g} \frac{(12s+1) \times 808 \times 1.04}{s^{2} + (1 + 12s) \times 808 \times 1.04 \times \cos\varphi_{g}}$$
(9)
$$-\omega_{bz} \sin\theta_{g} \sin\varphi_{g} \frac{(12s+1) \times 808 \times 1.04}{s^{2} + (1 + 12s) \times 808 \times 1.04 \times \cos\varphi_{g}}$$
(9)

因為載具及衛星之相對運動,所造成的視線變化率,是一個低頻的信號(Low Pass in Nature),

$$\therefore \dot{\theta}_{g} = -\omega_{by} + \frac{\dot{\lambda}_{pc_{s}}}{\cos\varphi_{g}} + \frac{\omega_{bx} \cos \theta_{g} \sin \varphi_{g}}{\cos\varphi_{g}} - \frac{\omega_{bz} \sin\theta_{g} \sin\varphi_{g}}{\cos\varphi_{g}}$$
(10)

而由式(5) ,可得追蹤天線之偏航頻道 Gimbal Rate:

$$\dot{\lambda}_{RL} = \frac{\dot{\phi}_{RL} + \dot{\theta}_r \sin\lambda_{uD} \cos\lambda_{RL} - \dot{\theta}_{RL} \cos\lambda_{uD} - \dot{\theta}_{uD} \sin\lambda_{uD} \lambda_{RL}}{\cos\lambda_{uD}}$$
$$= -\dot{\theta}_{RL} + \frac{\dot{\phi}_{RL}}{\cos\lambda_{uD}} + \frac{\dot{\theta}_r \cos\lambda_{RL} \sin\lambda_{uD}}{\cos\lambda_{uD}} - \frac{\dot{\theta}_{uD} \sin\lambda_{uD} \cos\lambda_{RL}}{\cos\lambda_{uD}}$$
(11)

比較式(10)及(11),可知二者完全相等,因為有下列對應關係:

追蹤天線之俯仰頻道方塊如圖 1,及其 Gimbal Rate 之證明,同上列方法,不贅述。

圖1天線追蹤系統模擬方塊圖

2. 衛星穩定迴路分析

2.1 穩定迴路只有積分補償器(頻域分析)

模擬方塊如圖 2,不同 T 及 K1 值之 G.M 以及 P.M 對照如表 1,波德圖如下:

圖 2 穩定迴路只有積分補償器示意圖

表 1	穩定迴路	只有積	分補償	器不同 T	及 K1	值之	G.M 以及	. P.M 對照表
-----	------	-----	-----	-------	------	----	--------	-----------

Т	K1	G.M	P.M(deg)
0.1	25	inf	69.5
0.1	50	inf	78.9
0.1	75	inf	82.5
0.1	100	inf	84.3
0.2	25	inf	78.9
0.2	50	inf	84.3
0.2	75	inf	86.2
0.2	100	inf	87.1
0.4	25	inf	84.3
0.4	50	inf	87.1
0.4	75	inf	88.1
0.4	100	inf	88.6
0.5	25	inf	85.4
0.5	50	inf	87.7
0.5	75	inf	88.5
0.5	100	inf	88.9

圖 3 T = 0.1, K1 = 25

圖 4 T = 0.1, K1 = 50

圖 5 T=0.1, K1=75

圖 6 T = 0.1, K1 = 100

圖 7 T=0.2, K1=25

圖 8 T = 0.2, K1 = 50

圖 9 T = 0.2, K1 = 75

圖 10 T = 0.2, K1 = 100

圖 11 T = 0.4, K1 = 25

圖 12 T = 0.4, K1 = 50

圖 13 T = 0.4, K1 = 75

圖 14 T = 0.4, K1 = 100

圖 15 T = 0.5, K1 = 25

圖 16 T = 0.5, K1 = 50

圖 17 T=0.5, K1=75

圖 18 T = 0.5, K1 = 100

圖 19 K1 變化之波德圖

由圖 19 可知,當 K1 從 25,50,75,100 逐漸增加時,其 PM 也隨著 K1 的增加, 而往上增加,對於迴路之穩定,有正面的幫助。

2.2 穩定迴路只有積分補償器(時域分析)

本節是利用 Simulink 進行模擬,當輸入視線角(LOS Angle),為一個三角波,進行視線變化率輸出波型之分析,當 K1 等於 25,50,75,100 時,結果如下:

圖 20 輸入視線角為一個三角波,K1=25,輸出視線變化率波型變化圖

圖 21 輸入視線角為一個三角波,K1=50,輸出視線變化率波型變化圖

圖 22 輸入視線角為一個三角波,K1=75,輸出視線變化率波型變化圖

圖 23 輸入視線角為一個三角波, K1 = 100, 輸出視線變化率波型變化圖

2.3 穩定迴路有加上 PI 補償器(頻域分析)

穩定迴路有加上 PI 補償器之模擬方塊如圖 24,不同 T,K0 及 K1 值之 G.M 以及 P.M 對照如表 2,波德圖如下:

圖 24 穩定迴路有加上 PI 補償器之模擬方塊圖

Т	K0	K1	G.M	P.M(deg)
0.1	1	25	inf	90.2
0.1	1	50	inf	90.1
0.1	1	75	inf	90.1
0.1	1	100	inf	90.1
0.1	2	25	inf	109
0.1	2	50	inf	101
0.1	2	75	inf	97.7
0.1	2	100	inf	95.8
0.1	5	25	inf	113
0.1	5	50	inf	132
0.1	5	75	inf	121
0.1	5	100	inf	114
0.2	1	25	inf	90.4
0.2	1	50	inf	90.2

表 2 穩定迴路有加上 PI 補償器之

0.2	1	75	inf	90.2
0.2	1	100	inf	90.1
0.2	2	25	inf	102
0.2	2	50	inf	96.1
0.2	2	75	inf	94.1
0.2	2	100	inf	93.1
0.2	5	25	inf	133
0.2	5	50	inf	114
0.2	5	75	inf	106
0.2	5	100	inf	102
0.4	1	25	inf	90.9
0.4	1	50	inf	90.5
0.4	1	75	inf	90.3
0.4	1	100	inf	90.2
0.4	2	25	inf	97.5
0.4	2	50	inf	93.8
0.4	2	75	inf	92.5
0.4	2	100	inf	91.9
0.4	5	25	inf	117
0.4	5	50	inf	104
0.4	5	75	inf	99.2
0.4	5	100	inf	96.9
0.5	1	25	inf	91.1
0.5	1	50	inf	90.6
0.5	1	75	inf	90.4
0.5	1	100	inf	90.3
0.5	2	25	inf	96.8
0.5	2	50	inf	93.4
0.5	2	75	inf	92.3
0.5	2	100	inf	91.7
0.5	5	25	inf	114
0.5	5	50	inf	102
0.5	5	75	inf	98
0.5	5	100	inf	96

圖 25 T = 0.1, K0 = 1, K1 = 25

圖 26 T = 0.1, K0 = 1, K1 = 50

圖 27 T = 0.1, K0 = 1, K1 = 75

圖 28 T = 0.1, K0 = 1, K1 = 100

圖 29 T = 0.1, K0 = 2, K1 = 25

圖 30 T = 0.1, K0 = 2, K1 = 50

圖 32 T = 0.1, K0 = 2, K1 = 100

圖 33 T = 0.1, K0 = 5, K1 = 25

圖 34 T = 0.1, K0 = 5, K1 = 50

圖 35 T = 0.1, K0 = 5, K1 = 75

圖 36 T = 0.1, K0 = 5, K1 = 100

圖 37 T = 0.2, K0 = 1, K1 = 25

圖 38 T = 0.2, K0 = 1, K1 = 50

圖 39 T = 0.2, K0 = 1, K1 = 75

圖 40 T = 0.2, K0 = 1, K1 = 100

圖 41 T = 0.2, K0 = 2, K1 = 25

圖 42 T = 0.2, K0 = 2, K1 = 50

圖 43 T = 0.2, K0 = 2, K1 = 75

圖 44 T = 0.2, K0 = 2, K1 = 100

圖 45 T = 0.2, K0 = 5, K1 = 25

圖 46 T = 0.2, K0 = 5, K1 = 50

圖 48 T = 0.2, K0 = 5, K1 = 100

圖 49 T = 0.4, K0 = 1, K1 = 25

圖 50 T = 0.4, K0 = 1, K1 = 50

圖 52 T = 0.4, K0 = 1, K1 = 100

圖 53 T = 0.4, K0 = 2, K1 = 25

圖 54 T = 0.4, K0 = 2, K1 = 50

圖 56 T = 0.4, K0 = 2, K1 = 100

圖 58 T = 0.4, K0 = 5, K1 = 50

است

100

ш

10⁻¹

10⁻²

-40

-60 0

-90

10⁻³

Phase (deg)

圖 60 T = 0.4, K0 = 5, K1 = 100

Frequency (rad/sec)

101

10³

10²

104

圖 62 T = 0.5, K0 = 1, K1 = 50

圖 64 T = 0.5, K0 = 1, K1 = 100

圖 65 T = 0.5, K0 = 2, K1 = 25

圖 66 T = 0.5, K0 = 2, K1 = 50

圖 67 T = 0.5, K0 = 2, K1 = 75

圖 68 T = 0.5, K0 = 2, K1 = 100

圖 70 T = 0.5, K0 = 5, K1 = 50

圖 72 T = 0.5, K0 = 5, K1 = 100

圖 73 不同 K1 值之系統波德圖

由圖 73 可以發現,當 K1 越大的時候, PM 越大, 則迴路之穩定性也會比較良好。

圖 74 不同 K0(=K2)值之系統波德圖.

由圖 74 可知, K0 之大小對 PM 之影響不大。而從圖 73 及 74 可知, 在加上一個 PI 補償器的穩定迴路當中, K0 相對於 K1,對 PM 所造成的影響,幾乎可以忽略。

2.4 穩定迴路有加上 PI 補償器(時域分析)

本節是利用 Simulink 進行模擬,當輸入視線角(LOS Angle),為一個三角波,進行視線變化率輸出波型之分析,當 K0 等於 1,2,4,5 時,結果如下:

圖 75 輸入視線角為一個三角波,K0=1,輸出視線變化率波型變化圖

圖 76 輸入視線角為一個三角波,K0=2,輸出視線變化率波型變化圖

圖 77 輸入視線角一個三角波,K0=4,輸出視線變化率波型變化圖

圖 78 輸入視線角為一個三角波,K0=5,輸出視線變化率波型變化圖

3. 四元素法簡介

本節是說明四元素法的原理,以利後續各節進行載具與目標在各種情況下,天線 視線角的輸入,及輸出視線角變化率的性能分析模擬。如:二者在同一個俯仰或偏航 平面內運動,或是不同平面內運動;或是載具有滾轉運動,造成輸出信號會有互相交 連的情況。四元素法為採用四個變量,而得到較簡化之姿態修正方程式,可運用於導 航座標的轉換,而不會有奇異值(Singular Value)產生的問題,所以非常方便可靠。若 於*i*-座標系統上,定義一旋轉軸,並旋轉一特定角度,則可得到另一座標系統。假設 α , β 與 γ 分別為此一旋轉軸,與 i_1 , i_2 及 i_3 之夾角,同時若假設旋轉之角度為 μ ,則可定義 一組四元素為:

$$e = e_0 + e_1 \vec{i} + e_2 \vec{j} + e_3 \vec{k}$$
(12)

其中

$$e_0 = \cos\frac{\mu}{2} \tag{13}$$

$$e_1 = \sin\frac{\mu}{2}\cos\alpha \tag{14}$$

$$e_2 = \sin\frac{\mu}{2}\cos\beta \tag{15}$$

$$e_3 = \sin\frac{\mu}{2}\cos\gamma \tag{16}$$

而 e0, e1, e2及 e3 等四元素,即可以描述姿態變換,其轉換矩陣為:

$$A = \begin{bmatrix} e_0^2 + e_1^2 - e_2^2 - e_3^2 & 2(e_1e_2 + e_0e_3) & 2(e_1e_3 + e_0e_2) \\ 2(e_1e_2 - e_0e_3) & e_0^2 - e_1^2 + e_2^2 - e_3^2 & 2(e_2e_3 + e_0e_1) \\ 2(e_1e_3 + q_0e_2) & 2(e_2e_3 - e_0e_1) & e_0^2 - e_1^2 - e_2^2 + e_3^2 \end{bmatrix}$$
(17)

其中e0, e1, e2及e3四元素, 有一限制條件如下:

$$e_0^2 + e_1^2 + e_2^2 + e_3^2 = 1 \tag{18}$$

若已知尤拉角θ, Ψ , Φ 之初始值,亦可以推算四元素之初始值,其公式如下:

$$e_0 = \cos\frac{\theta}{2}\cos\frac{\phi}{2}\cos\frac{\psi}{2} + \sin\frac{\theta}{2}\sin\frac{\phi}{2}\sin\frac{\psi}{2}$$
(19)

$$e_1 = \cos\frac{\theta}{2}\sin\frac{\phi}{2}\cos\frac{\psi}{2} - \sin\frac{\theta}{2}\cos\frac{\phi}{2}\sin\frac{\psi}{2}$$
(20)

$$e_2 = \sin\frac{\theta}{2}\cos\frac{\phi}{2}\cos\frac{\psi}{2} + \cos\frac{\theta}{2}\sin\frac{\phi}{2}\sin\frac{\psi}{2}$$
(21)

$$e_3 = -\cos\frac{\theta}{2}\cos\frac{\phi}{2}\sin\frac{\psi}{2} + \sin\frac{\theta}{2}\sin\frac{\phi}{2}\cos\frac{\psi}{2}$$
(22)

其中尤拉角(Euler angle) θ , Ψ , ϕ 為:

$$\theta = \sin^{-1} \left(-2(e_1 e_3 - e_0 e_2) \right)$$
(23)

$$\phi = \tan^{-1} \left(\frac{-2(e_2 e_3 + e_0 e_1)}{2(e_0^2 + e_3^2) - 1} \right)$$
(24)

$$\psi = \tan^{-1} \left(\frac{-2(e_1 e_2 + e_0 e_3)}{2(e_0^2 + e_1^2) - 1} \right)$$
(25)

這裡要說明一下:一般θ表示載具俯仰角, Ø為載具滾轉角, W為載具偏航角。 而四元素與載具角度變化率之間的關係,可由下式表示:

$$\dot{e}_0 = -\frac{1}{2} (e_1 p + e_2 q + e_3 r) + k\varepsilon e_0$$
(26)

$$\dot{e}_1 = \frac{1}{2} (e_0 p - e_3 q + e_2 r) + k\varepsilon e_1$$
(27)

$$\dot{e}_2 = \frac{1}{2} (e_3 p + e_0 q - e_1 r) + k\varepsilon e_2$$
(28)

$$\dot{e}_0 = \frac{1}{2} \left(-e_2 p + e_1 q + e_0 r \right) + k \varepsilon \, e_3 \tag{29}$$

其中:

$$\varepsilon = 1 - \left(e_0^2 + e_1^2 + e_2^2 + e_3^2\right)$$
(30)

p,q,r分別為三軸之旋轉角速率(Angular Rate),k為調整收斂速率的額外參數, 通常定為 100。

初始的四元素變化率,經由(26)~(29)四式計算,再經過積分器計算後,即可得到 下一個時刻的四元素;透過下一時刻之四元素,又可以計算得到下一時刻之尤拉角。 經過這樣的循環,再送入天線追蹤及穩定迴路的模擬方塊中,即可以快速的鎖定目前 正在追蹤的目標,求出天線各軸向的準向誤差(Boresight Error),環架角(Gimbal Angle),及視線變化率(LOS Rate)等輸出,即可進行天線的追蹤及穩定迴路性能分析。

本研究的模擬方塊如圖 79, \dot{e}_0 , \dot{e}_1 , $\dot{e}_2 \mathcal{R} \dot{e}_3$ 經過(19)~(22)及(26)~(29)式的轉換後,再經過積分,便可以得到下一時刻之 e_0 , e_1 , $e_2\mathcal{R} e_3$ 。下一時刻之 e_0 , e_1 , $e_2\mathcal{R} e_3$, 代入式(23)~(25),可以得到新的尤拉角,接著便可以加入追蹤及穩定迴路,做追蹤及穩定的工作。

圖 79 四元素法座標轉換模擬方塊示意圖

4系統模擬方塊圖

為了程式設計的方便,本模擬方塊圖是由多個 Subsystem 所組成。首先分別建立 俯仰及偏航頻道之追蹤及穩定迴路,將其輸入、輸出端定義為 in 及 out。再分別將俯 仰及偏航頻道定義為兩個 Subsystem,利用各 Subsystem 所定義之 in 及 out 端子,建 立兩頻道之聯結。完成兩頻道之連結後,再將此二頻道定義為新的 Subsystem,再由 最上層之系統作為統一的輸出及輸入端,輸出及輸入各種天線視線角及載具與目標之 運動角速度。這種作法,可使得閱讀系統方塊圖及程式設計,變的更為清楚,而可以 很容易知道程式運作的流程。

首先依據前述第一章所推導之方程式,建立天線俯仰及偏航頻道,穩定及追 蹤模擬方塊,如圖 80 及 81 所示(馬達靜摩擦效應尚未加入)。

圖 80 天線俯仰頻道追蹤及穩定迴路模擬方塊圖(無馬達摩擦效應)

圖 81 天線偏航頻道追蹤及穩定迴路方塊圖(無馬達摩擦效應)

天線俯仰及偏航頻道,追蹤及穩定迴路建構完成之後,即可分別將此二方塊 圖,定成為兩個Subsystem,如圖 82 中之俯仰頻道和偏航頻道。同時,為了使系 統運作,必須加入輸入以及輸出,由前述可知,輸入是透過四元素法的轉換,所 得到的尤拉角,再加上初始之載具三軸角度變化率pv(滾轉角速率),qv(俯仰角速 率),及rv(偏航角速率),再加上目標的三軸角度變化率pt(滾轉角速率),qt(俯仰 角速率),及rt(偏航角速率),即可完成。

圖 82 加入四元素法轉換後之天線追蹤及穩定方塊圖

將圖 82 所有項目,合併為一個新的Subsystem,分別定義為目標和載具等兩個不同的Subsystem,再依照各輸出及輸入之需求,將各初始條件(如視線角,環架角,載 具p_v,q_v,r_v及尤拉角等),及所需的輸出資訊(如追蹤準向誤差,環架角,及視線角速 率等)加以分別連接,如圖 83,便可以最簡便的方式,完成模擬的工作。

圖 83 包含輸入及輸出之連續系統天線追蹤及穩定迴路方塊圖 本研究模擬馬達的靜摩擦效應,是使用 Dead Zone(死域寬度),如圖 84,來進行

馬達靜摩擦力效應,對天線追蹤及穩定迴路性能的分析。

圖 84 馬達靜摩擦效應模擬方塊圖

本節是說明模糊控制器(Fuzzy Controller)的設計及模擬原理,本階段是先運用簡

化的模型,掌握模糊控制器的重要參數,方法如下。首先是將脈衝信號(Impuse)積分 後之步階信號(Unit-Step),作為天線追蹤模擬之輸入視線角信號(Line-Of-Sight Angle, LOS)。而後分別建立天線俯仰與偏航頻道之追蹤及穩定迴路模擬方塊,如圖 85 及 86, 即可進行模糊控制器的設計。 其中模糊控制器(Fuzzy Controller) 的設計原理,是依 馬達的特性,分別定義天線輸入準向誤差 E ,前後兩次準向誤差之差異值 ΔE,及追 蹤迴路控制輸入信號 U,等歸屬函數,詳細定義及設計模擬結果,將於第七節加以說 明。而下一詳細精確驗證階段,才運用四元素法,進行各頻道間的交連影響分析,這 樣做可以快速掌握模糊控制器的重要參數,節省很多的模擬時間。

圖 85 模糊控制之天線俯仰頻道追蹤及穩定迴路模擬方塊圖

圖 86 模糊控制之天線偏航頻道追蹤及穩定迴路模擬方塊圖

完成俯仰頻道(圖 85),及偏航頻道(圖 86)之Subsystem模擬程式設計,即可分別將 兩頻道所產生之資訊,提供給另一頻道使用,以滿足追蹤目標所需之要求,同時再輸 入載具與目標之初始俯仰姿態角 θ_t - $\theta_v(0)$,偏航姿態角 Ψ_t - $\Psi_v(0)$,及載具(或目標) p_v , q_v , $r_v(或p_t, q_t, r_t)$ 角度變化率及滾轉姿態角。

圖 87 俯仰及偏航頻道交互作用模擬方塊圖

最後,運用圖 87 建立新的 Subsystem,即完成如圖 88 之「使用模糊控制器之俯 仰及偏航頻道,追蹤及穩定迴路系統模擬方塊圖」。最後還要建立輸入之脈衝訊號產 生器,以及輸出至 Workspace 以產生所需之圖形,以供分析模擬結果之用。

圖 88 模糊控制之俯仰及偏航頻道,追蹤及穩定迴路系統模擬方塊圖

5. 載具及目標運動角速率為步階響應之追蹤模擬

5.1 只有目標有俯仰及偏航動作

(1)
$$q_t = -1 \text{ rad } / \text{ s}$$
, 作用 0.6 杪, $\theta_t - \theta_v (0^-) = 0$, $\Psi_t - \Psi_v (0^-) = 0$ 。

圖示由上至下分別為<u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 89 $q_t = -1 \text{ rad } / \text{ s}$,作用 0.6 杪, $\theta_t - \theta_v (0^-) = 0$, $\Psi_t - \Psi_v (0^-) = 0$, 天線追蹤性能模擬結果。

由圖 89 可知目標俯仰運動,造成俯仰環架角變動為 -0.6 rad 時,天線仍可以快速正常鎖住目標。

(2) $r_t = -1 \text{ rad } / \text{ s}$,作用 0.6 杪, $\theta_t - \theta_v (0) = 0$, $\Psi_t - \Psi_v (0) = 0$ 。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 90 $r_t = -1 \text{ rad } / \text{ s}$,作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 天線追蹤性能模擬結果。

由圖 90 可知目標偏航運動,造成偏航環架角變動為 -0.6 rad 時,天線仍可以快速正常鎖住目標。

5.2 只有載具有俯仰及偏航動作

(1) qv = -1 rad / s, 作用 0.6 杪, $\theta_t - \theta_v (0) = 0$, $\Psi_t - \Psi_v (0) = 0$.

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 91 qv = -1 rad / s,作用 0.6 杪, θ_t - $\theta_v(0) = 0$, Ψ_t - $\Psi_v(0) = 0$, 天線追蹤性能模擬結果。

由圖 91 可知載具俯仰運動,造成俯仰環架角變動為 0.6 rad 時,天線仍可以快速正常鎖住目標。

(2) rv = -1 rad / s,作用 0.6 杪, $\theta_t - \theta_v (0) = 0$, $\Psi_t - \Psi_v (0) = 0$ 。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 92 $r_v = -1 \text{ rad } / s$,作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 天線追蹤性能模擬結果。

由圖 92 可知載具偏航運動,造成偏航環架角變動為 0.6 rad 時,天線仍可以快速 正常鎖住目標。

5.3 测試天線穩定迴路功能

前述 5.1 及 5.2 兩小節是測試天線穩定迴路有作用之性能,本節將進行當天線穩 定迴路無作用時之性能分析比較。

 $q_v = -1 \text{ rad } / s$,作用 0.6 杪, $\theta_t - \theta_v (0^{\circ}) = 0$, $\Psi_t - \Psi_v (0^{\circ}) = 0$, 穩定迴路有作用(Switch = 1)。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 93 $q_v = -1 \text{ rad } / \text{ s}$,作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 穩定迴路有作用(Switch = 1),天線追蹤性能模擬結果。

圖 93 首先是模擬天線穩定迴路有作用的情況,以便和下一個例子做對照分析。

$q_v = -1 \text{ rad } / \text{ s}$,作用 0.6 杪, $\theta_t - \theta_v (0) = 0$, $\Psi_t - \Psi_v (0) = 0$,穩定迴路無作用(Switch = 0)。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 94 $q_v = -1 \text{ rad } / s$,作用 0.6 杪, $\theta_t - \theta_v (0) = 0$, $\Psi_t - \Psi_v (0) = 0$, 穩定迴路無作用(Switch = 0),天線追蹤性能模擬結果。

由圖 94 可知,穩定迴路無作用(Switch=0),天線俯仰頻道準向誤差很大,追蹤 迴路將會發散,無法鎖定目標。

5.4 載具有滾轉動作,探討穩定迴路有無工作之影響

載具參數:單純考慮rolling ($p_v = 1 \text{ rad } / s$) 、 $\varphi_v (0) = 0$ 、 $\theta_t - \theta_v (0) = 0$ 、 $\Psi_t - \Psi_v (0) = 0$ 、 天線穩定迴路有作用 (Switch = 1)、載具及目標均無pitch以及yaw的動作。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 95 $p_v = 1 \text{ rad } / s$,作用 0.6 杪, $\phi_v(0) = 0$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 天線穩定迴路有作用 (Switch = 1), 天線追蹤性能模擬結果。

由圖 95 可知,因為天線內外環架角均為零,穩定迴路有作用,所以載具的滾轉, 都不會造成俯仰及偏航軸向,目標追蹤的影響。
載具參數:單純考慮rolling ($p_v = 1 \text{ rad } / s$) , $\varphi_v(0) = 0$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 天線穩定迴路無作用 (Switch = 0), 載具及目標均無pitch以及yaw的動作。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 96 $p_v = 1 \text{ rad } / \text{ s}$,作用 0.6 杪, $\varphi_v(0) = 0$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 天線穩定迴路不作用 (Switch = 0), 天線追蹤性能模擬結果。

由圖 96 可知,因為天線內外環架角均為零,不管穩定迴路有無作用,所以載具的滾轉,都不會造成俯仰及偏航軸向,目標追蹤的影響。

5.5 交叉偶連效應

前述 5.1 至 5.4 小節僅模擬單一軸向之追蹤狀況,但實際上之追蹤過程,不會只 有單一軸向之運動,因此在這部份,將針對不同狀況之偶連效應做分析。

(1) 載具參數: q_v = -1 rad / s, 作用 0.6 秒, θ_t-θ_v(0) = 0 rad,
 目標參數: r_t = -1 rad / s, 作用 0.6 秒, Ψ_t-Ψ_v(0) = 0 rad, 其餘為零。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 97 $q_v = -1 \text{ rad } / s$,作用 0.6 杪, $r_t = -1 \text{ rad } / s$,作用 0.6 杪, $\theta_t - \theta_v(0) = 0 \text{ rad }, \Psi_t - \Psi_v(0) = 0$,天線追蹤性能模擬結果。

由圖 97 可知,載具有俯仰動作,而目標有偏航動作時,天線俯仰及偏航頻道準向誤差,仍然能很快的歸零,即天線仍能穩定鎖住目標。

(2) 載具參數: rv = -1 rad / s, 作用 0.6 秒, θt- θv (0) = 0, 目標參數: qt = -1 rad / s, 作用 0.6 秒, Ψt-Ψv(0) = 0, 其餘為零。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 98 rv = -1 rad / s,作用 0.6 杪, $q_t = -1 rad / s$,作用 0.6 杪, $\theta_t - \theta_v (0) = 0$, $\Psi_t - \Psi_v (0) = 0$,天線追蹤性能模擬結果。

由圖 98 可知,載具有偏航動作,而目標有俯仰動作時,天線俯仰及偏航頻道準向誤差,仍然能很快的歸零,即天線仍能穩定鎖住目標。

5.6 載具上有滾轉之交叉偶連效應

(1) 載具參數: q_V = -1 rad / s, 作用 0.6 秒, p_V = 1 rad / s, 作用 0.6 秒。 目標參數: r_t = -1 rad / s, 作用 0.6 秒, θ_t-θ_v(0) = 0, Ψ_t-Ψ_v(0) = 0。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 99 $q_v = -1 \text{ rad / s}$,作用 0.6 杪, $p_v = 1 \text{ rad / s}$,作用 0.6 杪, $r_t = -1 \text{ rad / s}$,作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 天線追蹤性能模擬結果。

由圖 99 可知,載具有俯仰及滾轉動作,而目標有偏航動作時,天線俯仰及偏航 頻道準向誤差,仍然能很快的歸零,即天線仍能穩定鎖住目標。

(2)載具參數: rv = -1 rad / s,作用 0.6 秒, p_v = 1 rad / s,作用 0.6 秒。 目標參數: q_t = -1 rad / s,作用 0.6 秒,θ_t-θ_v(0) = 0,Ψ_t-Ψ_v(0) = 0。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 100 rv = -1 rad / s,作用 0.6 杪, $p_v = 1$ rad / s,作用 0.6 杪, $q_t = -1$ rad / s,作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,天線追蹤性能模擬結果。

由圖 100 可知,載具有偏航及滾轉動作,而目標有俯仰動作時,天線俯仰及偏航 頻道準向誤差,仍然能很快的歸零,即天線仍能穩定鎖住目標。

5.7 當載具有滾轉時,同時考慮交叉偶連效應,及穩定迴路不作用時之狀況。

 (1) 載具參數: q_v = -1 rad / s, 作用 0.6 秒, p_v =1 rad / s, 作用 0.6 秒, 天線穩定迴路不作用(Switch = 0) , θ_t-θ_v(0) = 0, Ψ_t-Ψ_v(0) = 0, 目標參數: r_t = -1 rad / s, 作用 0.6 秒。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 101 $q_v = -1 \text{ rad } / \text{ s}$,作用 0.6 杪, $p_v = 1 \text{ rad } / \text{ s}$,作用 0.6 杪, $r_t = -1 \text{ rad } / \text{ s}$,作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = .0$,天線穩定迴路不作用(Switch = 0),天線追蹤性能模擬結果。

由圖 101 可知,穩定迴路無作用(Switch=0),則天線俯仰頻道準向誤差很大,追 蹤迴路將會發散,無法鎖定目標。

(2) 載具參數: rv = -1 rad / s, 作用 0.6 秒, p_v = 1 rad / s, 作用 0.6 秒, 天線穩定迴路不作用(Switch = 0), 目標參數q_t = -1 rad / s, 作用 0.6 秒, θ_t-θ_v(0)=1 rad / s, Ψ_t-Ψ_v(0) = 0。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 102 rv = -1 rad / s,作用 0.6 杪, $p_v = 1 rad / s$,作用 0.6 杪, $q_t = -1 rad / s$,作用 0.6 杪, Switch = 0, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 天線追蹤性能模擬結果。

由圖 102 可知,穩定迴路無作用(Switch=0),則天線俯仰頻道準向誤差很大,追 蹤迴路將會發散,無法鎖定目標。 5.8 天線追蹤迴路有馬達靜摩擦效應,穩定迴路有作用,無滾轉及交連效應。

(5.8.1)僅有目標在單軸向內運動

目標参數:q_t = -1 rad / s,作用 0.6 杪, θ_t - $\theta_v(0) = 0$, Ψ_t - $\Psi_v(0) = 0$, 穩定迴路有作用, Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 103 $q_t = -1 \text{ rad / s}$,作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,穩定迴路有作用, (Dead band = ± 0.001),天線追蹤性能模擬結果。

由圖 103 可知,目標有俯仰動作,且天線追蹤迴路有馬達靜摩擦效應,則天線俯仰頻道準向誤差,會有大幅抖動的現象,天線追蹤性能不良會脫鎖。

目標参數: $r_t = -1 \text{ rad / s}$,作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 穩定迴路有作用, Dead band = ± 0.001。

圖 104 $r_t = -1 \operatorname{rad} / s$,作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,穩定迴路有作用, (Dead band = ± 0.001),天線追蹤性能模擬結果。

由圖 104 可知,目標有偏航動作,且天線追蹤迴路有馬達靜摩擦效應,則天線偏 航頻道準向誤差,會有大幅抖動的現象,天線追蹤性能不良會脫鎖。

(5.8.2) 僅有載具在單軸向內運動 (1)載具參數: q_v = -1 rad / s, 作用 0.秒, θ_t-θ_v(0) = 0, Ψ_t-Ψ_v(0) = 0, Dead band = ± 0.001。

gimbal pitch command gimbal yaw command 0.8 1 0.6 0.5 e 0.4 rad 0 0.2 -0.5 01 -1 L 0 0.5 1.5 0.5 1 2 1 1.5 2 errorpitchv erroryawv 1.5 1 1 0.5 0.5 0 0 -0.5 -0.5 -1. 0 -1 L 0 0.5 0.5 1.5 1.5 1 2 1 2 losratepitchv losrateyawv 1.5 1 1 0.5 rad / s 0.5 rad / s 0 0 -0.5 -0.5 -1. 0 -1 L 0 0.5 0.5 1 1.5 2 1 1.5 2

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 105 $q_v = -1 \text{ rad } / s$,作用 0.6 杪, $\theta_t - \theta_v(0^-) = 0$, $\Psi_t - \Psi_v(0^-) = 0$, (Dead band = ± 0.001) ,天線追蹤性能模擬結果。

由圖 105 可知載具有俯仰運動,造成俯仰環架角變動為 0.6 rad 時,若天線追蹤 迴路有馬達靜摩擦效應,則天線俯仰頻道準向誤差,會有大幅抖動的現象,天線追蹤 性能不良會脫鎖。

(2)載具參數: rv = -1 rad / s, 作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, (Dead band = ± 0.001)。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 106 rv = -1 rad / s,作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, (Dead band = ± 0.001),天線追蹤性能模擬結果。

由圖 106 可知載具有偏航運動,造成偏航環架角變動為 0.6 rad 時,若天線追蹤 迴路有馬達靜摩擦效應,則天線偏航頻道準向誤差,會有大幅抖動的現象,天線追蹤 性能不良會脫鎖。 (5.8.3)穩定迴路不作用(Switch = 0),其餘條件與前面相同。

載具參數: $q_v = -1 \text{ rad } / s$, 作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 穩定迴路有作用(Switch = 1), Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

由圖 107 可知載具有俯仰運動,造成俯仰環架角變動為 0.6 rad 時,若天線追蹤 迴路有馬達靜摩擦效應,而穩定迴路有作用(Switch = 1),則天線俯仰頻道準向誤差, 會有大幅抖動的現象,天線追蹤性能不良會脫鎖。

載具参數: $q_v = -1 \text{ rad } / s$,作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 穩定迴路不作用(Switch = 0), (Dead band = ± 0.001)。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 108 q_v = -1 rad / s,作用 0.6 杪, θ_t - $\theta_v(0) = 0$, Ψ_t - $\Psi_v(0) = 0$,穩定迴路不作用(Switch = 0), (Dead band = ± 0.001), 天線追蹤性能模擬結果

由圖 108 可知,穩定迴路不工作時,則天線俯仰頻道準向誤差很大,追蹤迴路將 會發散,無法鎖定目標。

(5.8.4) 加入載具滾轉交叉偶連效應,也就是pv≠0。

(1)载具参数:q_v = -1 rad / s,作用 0.6 秒, p_v =1 rad / s,作用 0.6 秒。 θ_t-θ_v(0) = 0,Ψ_t-Ψ_v(0) = 0,其餘為零, Dead band = ± 0.001。

圖 109 $q_v = -1 \text{ rad / s}$,作用 0.6 杪, $p_v = 1 \text{ rad / s}$,作用 0.6 杪, $\theta_t - \theta_v(0^-) = 0$, $\Psi_t - \Psi_v(0^-) = 0$, (Dead band = ± 0.001),天線追蹤性能模擬結果。

由圖 109 可知載具有俯仰及滾轉運動,會造成天線俯仰及偏航環架角,有一些交連抖動的影響。若天線追蹤迴路有馬達靜摩擦效應,則天線俯仰及偏航頻道準向誤差,會有大幅抖動的現象,天線追蹤性能不良會脫鎖。

(2) 載具參數: rv = -1 rad / s, 作用 0.6 秒, p_v =1 rad / s, 作用 0.6 秒, θ_t-θ_v(0) = 0, Ψ_t-Ψ_v(0) = 0, 其餘為零, Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 110 rv = -1 rad / s,作用 0.6 杪, $p_v = 1$ rad / s,作用 0.6 杪, $\theta_{t} - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, (Dead band = ± 0.001), 天線追蹤性能模擬結果。

由圖 110 可知載具有偏航及滾轉運動,會造成天線俯仰及偏航環架角,有一些交 連抖動的影響。若天線追蹤迴路有馬達靜摩擦效應,則天線俯仰及偏航頻道準向誤 差,會有大幅抖動的現象,天線追蹤性能不良會脫鎖。

(5.8.5) 無滾轉交叉偶連效應

(1) 載具參數: $q_v = -1 \text{ rad } / s$,作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 目標參數: $r_t = -1 \text{ rad } / s$,作用 0.6 杪,其餘為零, Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 111 $q_v = -1 \text{ rad } / \text{ s}$,作用 0.6 杪, $r_t = -1 \text{ rad } / \text{ s}$,作用 0.6 杪, (Dead band = ± 0.001) , $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 天線追蹤性能模擬結果。

由圖 115 可知載具有俯仰運動,而目標有偏航運動,會造成天線俯仰及偏航環架 角為 0.6 rad 及-0.6 rad。若天線追蹤迴路有馬達靜摩擦效應,則天線俯仰及偏航頻道 準向誤差,會有大幅抖動的現象,天線追蹤性能不良會脫鎖。

(2) 載具參數: r_v = -1 rad / s, 作用 0.6 秒, θ_t-θ_v(0) = 0, Ψ_t-Ψ_v(0) = 0, 目標參數: q_t = -1 rad / s, 作用 0.6 秒, 其餘為零, Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 112 rv = -1 rad / s,作用 0.01*6 杪, $q_t = -1 rad / s$,作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, (Dead band = ± 0.001),天線追蹤性能模擬結果。

由圖 112 可知載具有偏航運動,而目標有俯仰運動,會造成天線俯仰及偏航環架 角為 0.6 rad。若天線追蹤迴路有馬達靜摩擦效應,則天線俯仰及偏航頻道準向誤差, 會有大幅抖動的現象,天線追蹤性能不良會脫鎖。

(5.8.6) 包含滾轉之交連效應

(1)載具參數: p_v = 1 rad / s, 作用 0.6 秒, q_v = -1 rad / s, 作用 0.6 秒,
 目標參數: -r_t = 1 rad / s, 作用 0.01*6 秒, θ_t-θ_v(0) = 0, Ψ_t-Ψ_v(0) = 0,
 (Dead band = ± 0.001)。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 113 $p_V = 1 \text{ rad } / \text{ s}$,作用 0.6 杪, $q_V = -1 \text{ rad } / \text{ s}$,作用 0.6 杪, $\theta_t - \theta_V(0^-) = 0$, $\Psi_t - \Psi_V(0^-) = 0$, $r_t = -1 \text{ rad } / \text{ s}$,作用 0.6 杪(Dead band = ± 0.001) , 天線追蹤性能模擬結果。

由圖 113 可知載具有俯仰及滾轉運動,而目標有偏航運動時,會造成天線俯仰及 偏航環架角,有一些交連抖動的影響。若天線追蹤迴路有馬達靜摩擦效應,則天線俯 仰及偏航頻道準向誤差,會有大幅抖動的現象,天線追蹤性能不良會脫鎖。

(2)载具参数: p_v = 1 rad / s,作用 0.6 秒,rv = -1 rad / s,作用 0.6 秒, 目標参数: q_t = -1 rad / s,作用 0.6 秒, θ_t-θ_v(0) = 0,Ψ_t-Ψ_v(0) = 0, Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 114 $p_v = 1 \text{ rad } / \text{ s}$,作用 0.6 杪, rv = -1 rad / s,作用 0.6 杪, $q_t = -1 \text{ rad } / \text{ s}$,作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, (Dead band = ± 0.001),天線追蹤性能模擬結果。

由圖 114 可知載具有偏航及滾轉運動,而目標有俯仰運動時,會造成天線俯仰及 偏航環架角,有一些交連抖動的影響。若天線追蹤迴路有馬達靜摩擦效應,則天線俯 仰及偏航頻道準向誤差,會有大幅抖動的現象,天線追蹤性能不良會脫鎖。 (5.8.7) 天線穩定迴路不作用(Switch=0),且具有滾轉動作之交連效應

(1)載具參數: p_v = 1 rad / s,作用 0.6 秒,q_v = -1 rad / s,作用 0.6 秒, 目標參數: r_t = -1 rad / s,作用 0.6 秒,θ_t-θ_v(0) = 0,Ψ_t-Ψ_v(0) = 0, 天線穩定迴路不作用(Switch = 0), Dead band = ±0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 115 p_v = 1 rad/s,作用 0.6 秒,q_v = -1 rad/s,作用 0.6 秒,r_t = -1 rad/s,作用 0.6 秒, θ_t-θ_v(0) = 0,Ψ_t-Ψ_v(0) = 0,天線穩定迴路不作用(Switch = 0), (Dead band = ± 0.001),天線追蹤性能模擬結果。

由圖 115 可知載具有偏航及滾轉運動,而目標有俯仰運動時,會造成天線俯仰及 偏航環架角,有一些交連抖動的影響。若天線追蹤迴路有馬達靜摩擦效應,而天線穩 定迴路又不作用(Switch=0),則天線俯仰及偏航頻道準向誤差,會有大幅抖動的現 象,天線追蹤性能不良會脫鎖。

(2)載具參數: p_v = 1 rad / s,作用 0.6 秒,q_v = 1 rad / s,作用 0.6 秒, 目標參數: r_t = 1 rad / s,作用 0.6 秒,θ_t-θ_v(0) = 0,Ψ_t-Ψ_v(0) = 0, 天線穩定迴路有作用(Switch = 1), Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 116 $p_v = 1 \text{ rad / s}$,作用 0.6 杪, $q_v = 1 \text{ rad / s}$,作用 0.6 杪, $r_t = 1 \text{ rad / s}$,作用 0.6 杪, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,天線穩定迴路有作用(Switch = 1),(Dead band = ± 0.001), 天線追蹤性能模擬結果。

由圖 116 可知載具有俯仰及滾轉運動,而目標有偏航運動時,會造成天線俯仰及 偏航環架角,有一些交連抖動的影響。若天線追蹤迴路有馬達靜摩擦效應,天線穩定 迴路有作用(Switch=1),則天線俯仰及偏航頻道準向誤差,會有大幅抖動的現象,天 線追蹤性能不良會脫鎖。

6. FUZZY CONTROLLER 之性能分析

6.1 Fuzzy Controller 歸屬函數表設計

本節是進行 Fuzzy Controller 設計。首先定義天線俯仰或偏航頻道,輸入視線角準向誤差 E ,前後兩次準向誤差之差異值 ΔE ,及追蹤迴路控制輸入信號 U 等之歸屬 函數。結果如表 3、4 及 5。而示意如圖 161-163。

Е					
Range		[-1 1]			
Display Range		[-1 1]			
名稱	Туре	Parameter			
Negative Big(NB)	Trapmf	[-1 -1 -0.75 -0.3]			
Negative Medium(NM)	Trimf	[-0.75 -0.3 -0.15]			
Negative Small(NS)	Trimf	[-0.15 -0.1 0]			
Zero(ZE)	Trimf	[-0.05 0 0.05]			
Positive Big(PB)	Trimf	[0 0.1 0.15]			
Positive Medium(PM)	Trimf	[0.15 0.3 0.75]			
Positive Small(PS)	Trapmf	[0.3 0.75 1 1]			

表3 天線輸入誤差 E 之歸屬函數表

	表 4	前後兩次準向誤差之差異值 ΔE 之歸屬	函數表
--	-----	---------------------	-----

ΔΕ							
Range		[-4.5 4.5]					
Display Range		[-4.5 4.5]					
名稱	Туре		Parameter				
Negative Big(NB)	Trapmf		[-4.5 -4.5 -3.375 -1.35]				
Negative Medium(NM)	Trimf		[-3.375 -1.35 -0.72]				
Negative Small(NS)	Trimf		[-1 -0.5 0]				
Zero(ZE)	Trimf		[-0.25 0 0.25]				
Positive Big(PB)	Trimf		[0 0.5 1]				
Positive Medium(PM)	Trimf		[0.72 1.35 3.375]				
Positive Small(PS)	Trapmf		[1.35 3.375 4.5 4.5]				

U							
Range		[-12 12]					
Display Range		[-12 12]					
名稱	Туре		Parameter				
Negative Big(NB)	Trapmf		[-12 -12 -9.6 -8.4]				
Negative Medium(NM)	Trimf		[-9.6 -8.4 -7.2]				
Negative Small(NS)	Trimf		[-8.4 -4.8 0]				
Zero(ZE)	Trimf		[-4.8 0 4.8]				
Positive Big(PB)	Trimf		[0 4.8 8.4]				
Positive Medium(PM)	Trimf		[7.2 8.4 9.6]				
Positive Small(PS)	Trapmf		[8.4 9.6 12 12]				

表5 追蹤迴路控制輸入信號U之歸屬函數表

6.2 歸屬函數各區域之定義及示意圖

圖 121 歸屬函數 E 各區域之定義及示意圖

圖 123 歸屬函數 U 各區域之定義及示意圖

6.3 無滾轉效應之模糊控制模擬

 $q_v = 0 \text{ rad } / s, r_v = 0 \text{ rad } / s, \theta_t - \theta_v(0) = 0, \Psi_t - \Psi_v(0) = 0, 俯仰頻道視線角步階輸$ 入(Unit-step Input)) $\lambda = 0.6 \text{ rad}, 偏航頻道視線角步階輸入 \lambda = 0 \text{ rad}, 無摩擦力效應。$

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 124 $q_v = 0 \text{ rad } / s, r_v = 0 \text{ rad } / s, \theta_t - \theta_v(0) = 0, \Psi_t - \Psi_v(0) = 0, 俯仰頻道視線角步階輸入$ (Unit-step Input)) λ = 0.6 rad, 偏航頻道視線角步階輸入 λ = 0 rad, 無摩擦力效應, 天線追蹤性能模擬結果。

當摩擦力沒有加入時,天線俯仰頻道的環架角初期反應很快,可以達到 0.6 rad 之 穩態要求。 $q_v = 1 \text{ rad } / s$,作用 0.06 秒, $r_v = 0 \text{ rad } / s$,俯仰頻道視線角步階輸入 $\lambda = 0 \text{ rad}$,偏航頻道視線角步階輸入 $\lambda = 0 \text{ rad}$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,無摩擦力效應。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 125 $q_v = 1 \text{ rad } / s$,作用 0.06 秒, $r_v = 0 \text{ rad } / s$,俯仰頻道視線角步階輸入 $\lambda = 0 \text{ rad}$, 偏航頻道視線角步階輸入 $\lambda = 0 \text{ rad}$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,無摩擦力效應, 天線追蹤性能模擬結果。

初始天線俯仰頻道環架角為 0,因載具之角速率為 1 rad /s,作用 0.06 秒,故造成天線的輸入視線角變動,而天線俯仰頻道的環架角則會有跟著動作,準向誤差經過暫態效應之後,仍可以歸零,即可以鎖定目標。

$q_v = 0 \text{ rad } / s$, $r_v = 0 \text{ rad } / s$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 俯仰頻道視線角步階輸入 $\lambda = 0.6 \text{ rad}$, 偏航頻道視線角步階輸入 $\lambda = 0 \text{ rad}$, 有摩擦效應(Dead band = ±0.001) 。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u> <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 126 $q_v = 0 \text{ rad / s}, r_v = 0 \text{ rad / s}, \theta_t - \theta_v(0) = 0, \Psi_t - \Psi_v(0) = 0, 俯仰頻道視線角步階輸入 \lambda = 0.6 \text{ rad}, 偏航頻道視線角步階輸入 \lambda = 0 \text{ rad}, 有摩擦效應(Dead band = ±0.001), 天線追蹤性能模擬結果。$

此與圖 124 類似,但加入的摩擦效應之後,天線俯仰頻道環架角及準向誤差, 會受到摩擦力的影響,有低頻抖動反應稍慢的現象,但是天線仍可追蹤鎖定目標。

$q_v = -1 rad / s$, $r_v = 0 rad / s$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 俯仰頻道視線角步階輸入 $\lambda = 0 rad$, 偏航頻道視線角步階輸入 $\lambda = 0 rad$, 有摩擦效應(dead band = ±0.001) 。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 127 q_v = -1 rad / s, r_v = 0 rad / s, θ_t - $\theta_v(0^-) = 0$, Ψ_t - $\Psi_v(0^-) = 0$, 俯仰頻道視線角步階輸入 $\lambda = 0$ rad, 偏航頻道視線角步階輸入 $\lambda = 0$ rad, 有摩擦效應(dead band = ±0.001), 天線追蹤性能模擬結果。

同樣與圖 126 做比較,但加入的摩擦效應之後,天線俯仰頻道環架角及準向誤差, 會受到摩擦力的影響,雖有低頻抖動(收斂性)反應稍慢的現象,但是天線仍可追蹤鎖 定目標。

$q_v = 0 rad / s$, $r_v = 0 rad / s$, $\theta_{t}-\theta_v(0) = 0$, $\Psi_{t}-\Psi_v(0) = 0$, 俯仰頻道視線角步階輸入 $\lambda = 0 rad$, 偏航頻道視線角 $\lambda = 0.6 rad$, 無摩擦力效應。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u> <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 128 $q_v = 0 \text{ rad } / s, r_v = 0 \text{ rad } / s, \theta_t - \theta_v(0) = 0, \Psi_t - \Psi_v(0) = 0, 俯仰頻道視線角命令\lambda = 0 \text{ rad}, 偏航頻道視線角命令 \lambda = 0.6 \text{ rad}, 無摩擦力效應, 天線追蹤性能模擬結果。$

當摩擦力之效應沒有加入時,天線偏航頻道的環架角可以很快速而平穩的達到 0.6 rad 之穩態要求。

$q_v = 0 \text{ rad } / s_r r_v = 0 \text{ rad } / s_r \theta_t - \theta_v(0) = 0, \Psi_t - \Psi_v(0) = 0, 俯仰頻道視線角命令\lambda = 0 \text{ rad}, 偏航頻道視線角命令\lambda = 0.6 \text{ rad}, 有摩擦力效應, (Dead band = ± 0.001) °$

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u> <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 129 q_v = 0 rad / s, r_v = 0 rad / s, θ_t - $\theta_v(0^-)$ = 0, Ψ_t - $\Psi_v(0^-)$ = 0, 俯仰頻道視線角命令λ = 0 rad, 偏航頻道視線角命令λ=0.6 rad, 有摩擦力效應, (Dead band = ± 0.001), 天線追蹤 性能模擬結果。

此與圖 128 類似,但加入的摩擦效應之後,天線偏航頻道環架角及準向誤差,穩 態時會受到摩擦力的影響,而稍有低頻抖動(收斂性)反應稍慢的現象,但是天線仍可 追蹤鎖定目標。 $q_v = 1 \text{ rad } / s$,作用 0.06 秒,造成初始俯仰頻道視線角有-0.06 rad的變化。 $r_v = 0 \text{ rad } / s$,俯仰頻道視線角命令 $\lambda = 0.6 \text{ rad}$,偏航頻道視線角命令 $\lambda = 0 \text{ rad}$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,無摩擦力效應。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 132 q_v = 1 rad / s,作用 0.06 秒,造成初始俯仰頻道視線角有-0.06 rad變化。 r_v = 0 rad / s,俯仰頻道視線角命令 λ = 0.6 rad,偏航頻道視線角命令 λ = 0 rad, θ_t - $\theta_v(0^-)$ = 0, Ψ_t - $\Psi_v(0^-)$ = 0,無摩擦力效應,天線追蹤性能模擬結果。

由於載具姿態角及天線視線同時在運動,因此初始俯仰頻道環架角會為-0.06 rad。 另一方面,因有穩定迴路的作用,所以在天線俯仰及偏航頻道,環架角及準向穩態誤 差方面,雖有上下的變動,但是天線仍能夠鎖定目標。 rv = 1 rad / s 作用 0.06 秒,造成初始偏航頻道視線角有-0.06 rad 變化。 $q_v = 0 rad / s$,俯仰頻道視線角命令 $\lambda = 0.6 rad$,偏航頻道視線角命令 $\lambda = 0 rad$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,無摩擦力效應。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 133 $r_v = 1 \text{ rad / s}$ 作用 0.06 秒,造成初始偏航頻道視線角有-0.06 rad變化。 $q_v = 0 \text{ rad / s}$,俯仰頻道視線角命令 $\lambda = 0.6 \text{ rad}$,偏航頻道視線角命令 $\lambda = 0 \text{ rad}$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,無摩擦力效應,天線追蹤性能模擬結果。

由於載具姿態角及天線視線同時在運動,因此初始偏航頻道環架角會為-0.06 rad。 另一方面,因有穩定迴路的作用,所以在天線俯仰及偏航頻道,環架角及準向穩態誤 差方面,雖有上下的變動,但是天線仍能夠鎖定目標。 $q_v = -1 \text{ rad / s}$ 作用 0.06 秒,造成初始俯仰頻道視線角有 0.06 rad變化。 $r_v = 0 \text{ rad / s}$,俯仰頻道視線角命令 $\lambda = 0 \text{ rad }$,偏航頻道視線角命令 $\lambda = 0.6 \text{ rad}, \theta_t - \theta_v(0)$ $= 0, \Psi_t - \Psi_v(0) = 0, r_v = 0 \text{ rad / s}, 無摩擦力效應。$

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error</u>) <u>Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 $134 q_v = -1 rad/s$ 作用 0.06秒,造成初始俯仰頻道視線角有 0.06 rad變化。 $r_v = 0 rad/s$,俯仰頻道視線角命令 $\lambda = 0 rad$,偏航頻道視線角命令 $\lambda = 0.6 rad$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,無摩擦力效應,天線追蹤性能模擬結果。

由於載具姿態角及天線視線同時在運動,因此初始俯仰頻道環架角會為 0.06 rad。 另一方面,因有穩定迴路的作用,所以在天線俯仰及偏航頻道,環架角及準向穩態誤 差方面,雖有上下的變動,但是天線仍能夠鎖定目標。 rv = 1 rad / s,作用 0.06 秒,造成初始偏航頻道視線角有 -0.06 rad 變化。 $q_v = 0 rad / s,俯仰頻道視線角命令 \lambda = 0 rad ,偏航頻道視線角命令 \lambda = 0.6 rad,$ $\theta_t - \theta_v(0) = 0, \Psi_t - \Psi_v(0) = 0, 無摩擦力效應。$

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 135 $r_v = 1 \text{ rad / s}$,作用 0.06 秒,造成初始偏航頻道視線角有-0.06 rad變化。 $q_v = 0 \text{ rad / s}$,俯仰頻道視線角命令 $\lambda = 0 \text{ rad}$,偏航頻道視線角命令 $\lambda = 0.6 \text{ rad}$, $\theta_t - \theta_v(0^-) = 0$, $\Psi_t - \Psi_v(0^-) = 0$,無摩擦力效應,天線追蹤性能模擬結果。

由於載具姿態角及天線視線同時在運動,因此初始偏航頻道環架角會為-0.06 rad。 另一方面,因有穩定迴路的作用,所以在天線偏航頻道,環架角及準向穩態誤差方面, 雖有上下的變動,但是天線仍能夠鎖定目標。

$q_v = 1 \text{ rad } / s$,作用 0.06 秒,造成初始俯仰頻道視線角有-0.06 rad變化。 $r_v = 0 \text{ rad } / s$,俯仰頻道視線角命令 $\lambda = 0.6 \text{ rad }$,偏航頻道視線角命令 $\lambda = 0 \text{ rad }$, $\theta_t - \theta_v(0^{\circ}) = 0$, $\Psi_t - \Psi_v(0^{\circ}) = 0$,有摩擦力效應 (Dead band = ± 0.001)。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 136 q_v = 1 rad / s,作用 0.06 秒,造成初始俯仰頻道視線角有-0.06 rad變化。 r_v = 0 rad / s,俯仰頻道視線角命令 λ = 0.6 rad,偏航頻道視線角命令 λ = 0 rad, θ_t - $\theta_v(0^-)$ = 0, Ψ_t - $\Psi_v(0^-)$ = 0,有摩擦力效應 (Dead band = ± 0.001), 天線追蹤性能模擬結果。

與圖 132 相似的結果,由於載具姿態角及天線視線同時在運動,因此初始俯仰頻 道環架角會為-0.06 rad。但受到摩擦力的影響,會造成低頻擾動的效應。另一方面, 因有穩定迴路的作用,所以在天線俯仰頻道,環架角及準向穩態誤差方面,雖有上下 的變動,但是天線仍能夠鎖定目標。 $r_v = 1 rad / s$,作用 0.06 秒,造成初始偏航頻道視線角有-0.06 rad變化。 $q_v = 0 rad / s$,俯仰頻道視線角命令 $\lambda = 0 rad$,偏航頻道視線角命令 $\lambda = 0.6 rad$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,有摩擦力效應 (Dead band = ± 0.001)。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 137 $r_v = 1rad / s$,作用 0.06 秒,造成初始偏航頻道視線角有-0.06 rad變化。 $q_v = 0$ rad / s, 俯仰頻道視線角命令 $\lambda = 0$ rad ,偏航頻道視線角命令 $\lambda = 0.6$ rad , θ_t - $\theta_v(0) = 0$, Ψ_t - $\Psi_v(0) = 0$,有摩擦力效應 (dead band = ± 0.001),天線追蹤性能模擬結果。

與圖 135 有相似的結果,由於載具姿態角及天線視線同時在運動,因此初始偏航 頻道環架角會為-0.06 rad。但受到摩擦力的影響,會造成低頻擾動的效應。另一方面, 因有穩定迴路的作用,所以在天線偏航頻道,環架角及準向穩態誤差方面,雖有上下 的變動,但是天線仍能夠鎖定目標。
6.4 具有滾轉效應之模擬

 $p_v = 1 \text{ rad } / s$,作用 0.06 秒,造成 0.06 rad滾轉姿態角,俯仰頻道視線角命令 $\lambda = 0 \text{ rad }$,偏航頻道視線角命令 $\lambda = 0 \text{ rad }$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 無摩擦力效應。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 138 $p_v = 1 \text{ rad } / \text{ s}$,作用 0.06 秒,造成 0.06 rad滾轉姿態角,俯仰頻道視線角命令 $\lambda = 0 \text{ rad}$,偏航頻道視線角命令 $\lambda = 0 \text{ rad}$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 無摩擦力效應,天線追蹤性能模擬結果。

本模擬因為是只有載具本身在滾轉,而俯仰及偏航頻道環架角均為零,因此不會 有任何的環架角交連變化及誤差產生,而可以鎖定目標。

$p_v = 1 rad / s$,作用 0.06 秒,造成 0.06 rad滾轉姿態角,俯仰頻道視線角命令 $\lambda = 0 rad$,偏航頻道視線角命令 $\lambda = 0 rad$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 有摩擦力效應 (Dead band = ± 0.001)。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 139 $p_v = 1 \text{ rad / s}$, 作用 0.06 秒,造成 0.06 rad滾轉姿態角,俯仰頻道視線角命令 $\lambda = 0 \text{ rad}$,偏航頻道視線角命令 $\lambda = 0 \text{ rad}$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$, 有摩擦力效應 (Dead band = ± 0.001), 天線追蹤性能模擬結果。

雖然載具有滾轉,但是俯仰及偏航頻道環架角均為零,因此不會有任何的環架角 交連變化及誤差產生。即使有摩擦力效應,結果如上一情況,可以鎖定目標。 $p_v = 1 \text{ rad } / \text{s}$,作用 0.06 秒,造成 0.06 rad滾轉姿態角, $r_v = 1 \text{ rad } / \text{s}$,作用 0.06 秒,造成偏航姿態角為 -0.06 rad,俯仰頻道視線角命令 $\lambda = 0.6 \text{ rad}$,偏航頻道視線角命令 $\lambda = 0 \text{ rad}$, $\theta_t - \theta_v(0^{-}) = 0$, $\Psi_t - \Psi_v(0^{-}) = 0$,無摩擦力效應。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 140 $p_v = 1 \text{ rad / s}$,作用 0.06 秒,造成 0.06 rad滾轉姿態角, $r_v = 1 \text{ rad / s}$, 作用 0.06 秒,造成偏航姿態角為 -0.06 rad,俯仰頻道視線角命令 $\lambda = 0.6 \text{ rad}$, 偏航頻道視線角命令 $\lambda = 0 \text{ rad}$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,無摩擦力效應, 天線追蹤性能模擬結果。

載具有滾轉,所以俯仰及偏航頻道環架角會有瞬間交連現象,而有準向誤差產 生。偏航方向受到載具滾轉的效應所影響,會有偏航頻道環架角產生,但因為穩定迴 路之作用,可以鎖定目標。 $p_v = 1 rad / s$,作用 0.06 秒,造成 0.06 rad滾轉姿態角, $q_v = -1 rad / s$,作用 0.06 秒,造成 0.06 rad俯仰姿態角。俯仰頻道視線角命令 $\lambda = 0 rad$,偏航頻道視線角 $\lambda = 0.6 rad$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,無摩擦力效應。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 141 $p_v = 1 \text{ rad / s}$,作用 0.06 秒,造成 0.06 rad滾轉姿態角, $q_v = -1 \text{ rad / s}$,作用 0.06 秒, 造成 0.06 rad 俯仰姿態角。俯仰頻道視線角命令 $\lambda = 0 \text{ rad}$,偏航頻道視線角 $\lambda = 0.6 \text{ rad}$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,無摩擦力效應,天線追蹤性能模擬結果。

載具有滾轉,所以俯仰及偏航頻道環架角會有瞬間交連現象,而有準向誤差產 生。俯仰方向受到載具滾轉的效應所影響,會產生俯仰環架角。但因為穩定迴路之作 用,可以鎖定目標。 $p_v = 1 \text{ rad } / \text{s}$,作用 0.06 秒,造成 0.06 rad, $r_v = 1 \text{ rad } / \text{s}$ 作用 0.06 秒,造成 0.06 rad 偏航姿態角。俯仰頻道視線角 $\lambda = 0.6 \text{ rad}$,偏航頻道視線角 $\lambda = 0 \text{ rad}$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,有摩擦力效應 (Dead band = ± 0.001)。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 142 $p_v = 1 \text{ rad / s}$,作用 0.06 秒,造成 0.06 rad, $r_v = 1 \text{ rad / s}$ 作用 0.06 秒,造成 0.06 rad 偏航姿態角。俯仰頻道視線角 $\lambda = 0.6 \text{ rad}$,偏航頻道視線角 $\lambda = 0 \text{ rad}$, θ_t - $\theta_v(0) = 0$, Ψ_t - $\Psi_v(0) = 0$,有摩擦力效應(dead band = ±0.001), 天線追蹤性能模擬結果。

載具有滾轉,所以俯仰及偏航頻道環架角會有瞬間交連現象,而有準向誤差產 生。偏航方向受到載具滾轉的效應所影響,會產生偏航環架角。受到摩擦效力的影響, 會有收斂性的低頻抖動效應,但因為穩定迴路之作用,可以鎖定目標。 $p_v = 1 \text{ rad } / \text{s}$,作用 0.06 秒,造成 0.06 rad滾轉姿態角。 $q_v = -1 \text{ rad } / \text{s}$,作用 0.06 秒,造成俯仰姿態角 0.06 rad。俯仰頻道視線角 $\lambda = 0 \text{ rad}$,偏航頻道視線角 $\lambda = 0.6 \text{ rad}$, $\theta_t - \theta_v(0^-) = 0$, $\Psi_t - \Psi_v(0^-) = 0$, 有摩擦力效應(Dead band = ± 0.001)。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 143 $p_v = 1 \text{ rad}/s$,作用 0.06 秒,造成 0.06 rad滾轉姿態角。 $q_v = -1 \text{ rad}/s$,作用 0.06 秒,造成俯仰姿態角 0.06 rad。俯仰頻道視線角 $\lambda = 0$ rad,偏航頻道視線角 $\lambda = 0.6 \text{ rad}, \theta_t - \theta_v(0) = 0, \Psi_t - \Psi_v(0) = 0,$ 有摩擦力效應(dead band = ±0.001),天線追蹤性能模擬結果。

載具有滾轉,所以俯仰及偏航頻道環架角會有瞬間交連現象,而有準向誤差產 生。俯仰方向受到載具滾轉的效應所影響,會產生俯仰環架角。受到摩擦效力的影響, 會有收斂性的低頻抖動效應,但因為穩定迴路之作用,可以鎖定目標。 6.5 摩擦力效應增大之模擬(dead band =±0.0125)
q_v =1 rad/s,作用 0.06 秒,造成初始瞬間俯仰姿態角為 -0.06 rad。俯仰頻道視線 角命令λ = 0.6rad,偏航頻道視線角命令λ = 0 rad,θ_t-θ_v(0) = 0, Ψ_t-Ψ_v(0) = 0, 有 摩擦力效應(Dead band =± 0.0125)。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight</u> <u>Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 144 $q_v = 1 \text{ rad / s}$,作用 0.06 秒,造成初始瞬間俯仰姿態角為 -0.06 rad。 俯仰頻道視線角命令 $\lambda = 0.6 \text{ rad}$,偏航頻道視線角命令 $\lambda = 0 \text{ rad}$, $\theta_t - \theta_v(0^-) = 0$, $\Psi_t - \Psi_v(0^-) = 0$,有摩擦力效應(Dead band = ± 0.0125), 天線追蹤性能模擬結果。

因為有摩擦力效應,雖然俯仰頻道有輕微的低頻抖動效應,但仍可追蹤鎖定目標。

$r_v = 1 rad / s$,作用 0.06 秒,造成初始瞬間偏航姿態角為 -0.06 rad。俯仰頻道視線角命令 $\lambda = 0 rad$,偏航頻道視線角命令 $\lambda = 0.6 rad$, $\theta_t - \theta_v(0^-) = 0$, $\Psi_t - \Psi_v(0^-) = 0$,有摩擦力效應(Dead band = ± 0.0125)。

圖示由上至下分別為<u>Gimbal Pitch Command, Gimbal Yaw Command, BSE(Bore Sight</u> Error) Pitch, BSE Yaw, Gimbal Pitch Angle, Gimbal Yaw Angle。

圖 145 $r_v = 1 \text{ rad / s}$,作用 0.06 秒,造成初始瞬間偏航姿態角為 -0.06 rad。俯仰頻道 視線角命令λ=0 rad ,偏航頻道視線角命令λ=0.6 rad, θ_t-θ_v(0)=0, Ψ_t-Ψ_v(0)=0,有摩擦力效應(Dead band = ± 0.0125),天線追蹤性能模擬結果。

因為有摩擦力效應,雖然偏航頻道有輕微的低頻抖動效應,但仍可追蹤鎖定目標。

$p_v = 1 rad / s$,作用 0.06 秒,造成初始瞬間滾轉姿態角為 0.06 rad,俯仰頻道視線角命 $\partial_{\lambda} = 0 rad$,偏航頻道視線角命 $\partial_{\lambda} = 0 rad$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,有摩擦力效應 (Dead band = ± 0.0125)。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight</u> <u>Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 146 $p_v = 1rad / s$,作用 0.06 秒,造成初始瞬間滾轉姿態角為 0.06 rad,俯仰頻道視線 角命令λ=0 rad,偏航頻道視線角命令λ=0 rad,θt-θv(0)=0,Ψt-Ψv(0)=0, 有摩擦力效應 (Dead band = ± 0.0125),天線追蹤性能模擬結果。

因為俯仰及偏航環架角均為零,而載具的姿態變動只有滾轉,與目標之視線角不動,所以仍然可以維持天線的追蹤及鎖定。

 $p_v = 1 \text{ rad } / \text{ s}$,作用 0.06 秒,造成初始瞬間滾轉姿態角為 0.06 rad, $r_v = 1 \text{ rad } / \text{ s}$,作用 0.06 秒,造成初始瞬間偏航姿態角為 -0.06 rad。俯仰頻道視線角命令 $\lambda = 0.6 \text{ rad}$,偏航頻道視線角命令 $\lambda = 0 \text{ rad}$, θ_t - $\theta_v(0^{-}) = 0$, Ψ_t - $\Psi_v(0^{-}) = 0$,有摩擦力效應 (Dead band = ± 0.0125)。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight</u> Error) Pitch, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

圖 147 $p_v = 1 \text{ rad / s}$,作用 0.06 秒,造成初始瞬間滾轉姿態角為 0.06 rad, $r_v = 1 \text{ rad / s}$,作用 0.06 秒,造成初始瞬間偏航姿態角為 -0.06 rad。俯仰頻道視線角命令 $\lambda = 0.6 \text{ rad}$,偏航頻道視線角命令 $\lambda = 0 \text{ rad}$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = 0$,有摩擦力效應 (Dead band = ± 0.0125),天線追蹤性能模擬結果。

因為有摩擦力效應,雖然俯仰方向有輕微的低頻抖動,但仍然可以維持天線的追蹤 及鎖定。 $p_v = 1 \text{ rad } / s$,作用 0.06 秒,造成初始瞬間滾轉姿態角為 0.06 rad。 $q_v = 1 \text{ rad } / s$,作用 0.06 秒,造成初始瞬間俯仰姿態角為 -0.06 rad。俯仰頻道視線角命令 $\lambda = 0$ rad,偏航頻道視線角命令 $\lambda = 0.6 \text{ rad}, \theta_t - \theta_v(0^-) = 0$, $\Psi_t - \Psi_v(0^-) = 0$,有摩擦力效應(Dead band = ± 0.0125)。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>Gimbal Pitch Angle</u>, <u>Gimbal Yaw Angle</u>。

 圖 148 p_v = 1 rad / s,作用 0.06 秒,造成初始瞬間滾轉姿態角為 0.06 rad。q_v = 1 rad / s, 作用 0.06 秒,造成初始瞬間俯仰姿態角為 -0.06 rad。俯仰頻道視線角命令 λ=0 rad,偏航頻道視線角命令λ=0.6 rad,θ_t-θ_v(0)=0,Ψ_t-Ψ_v(0)=0, 有摩擦力效應(Dead band = ±0.0125),天線追蹤性能模擬結果。

因為有摩擦力效應,雖然俯仰及偏航頻道有輕微的低頻抖動,但仍然可以維持天線的追蹤及鎖定。

7.输入角速率為弦式波之天線追蹤模擬

7.1 只有目標有俯仰及偏航動作

 目標有俯仰弦式波運動,角速率峰值qt = 0.1 rad/sec~0.3 rad/sec, θt-θv(0) = π/6,Ψt-Ψv(0) = 0。

圖示由上至下分別為 <u>Gimbal Pitch Command, Gimbal Yaw Command, BSE(Bore</u> <u>Sight Error) Pitch, BSE Yaw, LOS Rate Pitch</u>, <u>LOS Rate Yaw</u>。

圖 149 目標有俯仰弦式波運動,角速率峰值 $q_t = 0.1 \text{ rad/sec} \sim 0.3 \text{ rad/sec}$, $\theta_t - \theta_v(0) = \pi/6$, $\Psi_t - \Psi_v(0) = 0$, 天線追蹤性能模擬結果。

由圖 149 可知目標有俯仰弦式波運動,角速率峰值 $q_t = 0.1$ rad/sec時,天線仍可以快速正常鎖住目標。

目標有俯仰弦式波運動,角速率峰值 $q_t = 0.2 \text{ rad/sec}, \theta_t - \theta_v(0) = \pi/6, \Psi_t - \Psi_v(0) = 0$ 。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight</u> Error) Pitch, <u>BSE Yaw</u>, LOS Rate Pitch, LOS Rate Yaw。

圖 150 目標有俯仰弦式波運動,角速率峰值qt = 0.2 rad/sec,天線追蹤性能模擬結果。 由圖 150 可知目標有俯仰弦式波運動,角速率峰值qt = 0.2 rad/sec時,天線仍可以快速正常鎖住目標。

目標有俯仰弦式波運動,角速率峰值 $q_t = 0.3 \text{ rad/sec}, \theta_t - \theta_v(0) = \pi/6, \Psi_t - \Psi_v(0) = 0$ 。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u> <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS Rate Yaw</u>。

圖 151 目標有俯仰弦式波運動,角速率峰值 $q_t = 0.3 \text{ rad/sec}$,天線追蹤性能模擬結果。 由圖 151,可知目標有俯仰弦式波運動,角速率峰值 $q_t = 0.3 \text{ rad/sec}$ 時,天線仍可以快速正常鎖住目標。

(2) 目標有偏航運動,角速率峰值r_t=0.1 rad/sec~0.3 rad/sec, θ_t-θ_v(0) = 0, Ψ_t-Ψ_v(0) = π/6。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS Rate Yaw</u>。

圖 152 目標有偏航運動,角速率峰值 r_t=0.1 rad/sec,天線追蹤性能模擬結果。

由圖 152 可知目標有偏航運動,角速率峰值 $r_t = 0.1$ rad/sec時,天線仍可以快速 正常鎖住目標。

目標有偏航運動,角速率峰值rt=0.2 rad/sec, θ_t - $\theta_v(0) = 0$, Ψ_t - $\Psi_v(0) = \pi/6$ 。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS Rate Yaw</u>。

圖 153 目標有偏航運動,角速率峰值 r_t=0.2 rad/sec,天線追蹤性能模擬結果。 由圖 153 可知目標有偏航運動,角速率峰值r_t=0.2 rad/sec時,天線仍可以快速正 常鎖住目標。

目標有偏航運動,角速率峰值rt=0.3 rad/sec, θ_t - $\theta_v(0) = 0$, Ψ_t - $\Psi_v(0) = \pi/6$ 。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS Rate Yaw</u>。

圖 154 目標有偏航運動,角速率峰值 $r_t = 0.3 \text{ rad/sec}$,天線追蹤性能模擬結果。

由圖 154 可知目標有偏航運動,角速率峰值r_t=0.3 rad/sec時,天線仍可以快速正常鎖住目標。

7.2 只有載具有俯仰及偏航運動,俯仰角速率峰值 $q_v = \pi/12 \text{ rad/sec}, \theta_t - \theta_v(0) = \pi/6, \Psi_t - \Psi_v(0) = 0$ 。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS Rate Yaw</u>。

圖 155 只有載具有俯仰運動,俯仰角速率峰值 $q_v = \pi/12 \text{ rad/sec}, \theta_t - \theta_v(0^-) = \pi/6, \Psi_t - \Psi_v(0^-) = 0, q_v = \pi/12 \text{ rad/s}, \theta_t - \theta_v(0^-) = \pi/6, \Psi_t - \Psi_v(0^-) = 0,$ 天線追蹤性能模擬結果。

由圖 155 可知,可知載具有俯仰運動,俯仰角速率峰值q_v = π/12 rad/s時,天線仍可以快速正常鎖住目標。

只有載具有偏航運動,偏航角速率峰值 $r_v = \pi/12 \text{ rad/s}, \theta_t - \theta_v(0) = 0, \Psi_t - \Psi_v(0) = \pi/6$ 。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS Rate Yaw</u>。

圖 156 只有載具有偏航運動,偏航角速率峰值 $r_v = \pi/12 \text{ rad/s}, \theta_t - \theta_v(0) = 0, \Psi_t - \Psi_v(0) = \pi/6, 天線追蹤性能模擬結果。$

由圖 156 可知,可知只有載具有偏航運動,偏航角速率峰值 $r_v = \pi/12$ rad/s時,天線仍可以快速正常鎖住目標。

7.3 測試模擬程式穩定迴路功能

前述 7.1,7.2 兩大項天線追蹤迴路測試中,是使用 PI 補償器,使迴路趨於穩定, 本小節將研究當穩定迴路有/無作用(Switch = 1/0)時之性能分析。

(7.3.1) 載具有俯仰運動, 俯仰角速率峰值 $q_v = \pi/12, \theta_t - \theta_v(0) = -\pi/6, \Psi_t - \Psi_v(0) = 0$ 。 (載具與目標在同一俯仰平面內的運動及追蹤)

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS Rate Yaw</u>。

圖 157 載具有俯仰運動,俯仰角速率峰值 $q_v = \pi/12 \text{ rad/s}, \theta_t - \theta_v(0) = -\pi/6, \Psi_t - \Psi_v(0) = 0, 穩定迴路有作用(Switch = 1), 天線追蹤性能模擬結果。$

當天線穩定迴路有作用時,若載具有俯仰的運動,天線俯仰頻道環架角有變動, 但是準向誤差可歸零,所以天線可追蹤鎖定目標。

載具有俯仰運動,俯仰角速率峰值 $q_v = \pi/12 \operatorname{rad/s}, \theta_{t-}\theta_v(0) = \pi/6, \Psi_{t-}\Psi_v(0) = 0, 穩 定迴路無作用(Switch = 0)。(載具與目標在同一俯仰平面內的運動及追蹤)$

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS Rate Yaw</u>。

圖 158 載具有俯仰運動,俯仰角速率峰值 $q_v = \pi/12 \text{ rad/s}, \theta_t - \theta_v(0) = -\pi/6, \Psi_t - \Psi_v(0) = 0, 穩定迴路無作用(Switch = 0), 天線追蹤性能模擬結果。$

當天線穩定迴路無作用時,若載具有俯仰的運動,天線俯仰頻道環架角有變動, 但是準向誤差很大無法歸零,所以天線無法追蹤鎖定目標。

(7.3.2) 載具有偏航運動,偏航角速率峰值 $r_v = \pi/12 \text{ rad/s}, \theta_t - \theta_v(0) = 0, \Psi_t - \Psi_v(0) = \pi/6, 穩定迴路有作用(Switch = 1)。$ (載具與目標在同一偏航平面內的運動及追蹤)

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS Rate Yaw</u>。

圖 159 載具有偏航運動,偏航角速率峰值 $r_v = \pi/12 \text{ rad/s}$, $\theta_t - \theta_v(0) = 0$, Ψ_t-Ψ_v(0) = π/6,穩定迴路有作用(Switch = 1),天線追蹤性能模擬結果。

當天線穩定迴路有作用時,若載具有偏航的運動,天線偏航頻道環架角有變動,但 是準向誤差可歸零,所以天線可追蹤鎖定目標。

載具有偏航運動,偏航角速率峰值 $r_v = \pi/12 \text{ rad/s}, \theta_t - \theta_v(0) = 0, \Psi_t - \Psi_v(0) = \pi/6, 穩 定迴路無作用(Switch = 0)。(載具與目標在同一同一平面內的運動及追蹤)$

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u>) <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS Rate Yaw</u>。

圖 160 載具有偏航運動,偏航角速率峰值 $r_v = \pi/12 \text{ rad/s}$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = \pi/6$,穩定迴路無作用(Switch = 0),天線追蹤性能模擬結果。 當天線偏航頻道穩定迴路無作用時,追蹤性能變差。

7.4 載具有滾轉的動作

(1) 單純考慮載具有滾轉的動作(p_v≠0),無俯仰及偏航的初始環架角及動作。 載具滾轉角速率峰值p_v = π/18 rad/s,載具初始滾轉姿態φ_v = roll angle = π/6, 天線穩定迴路有作用(Switch = 1)。

圖示由上至下分別為 <u>Gimbal Pitch Command, Gimbal Yaw Command, BSE(Bore</u> <u>Sight Error) Pitch, BSE Yaw, LOS Rate Pitch</u>, <u>LOS Rate Yaw</u>。

圖 161 載具滾轉角速率峰值 $p_v = \pi/18 \text{ rad/s}$,載具初始滾轉姿態 $\varphi_v = \text{roll angle} = \pi/6$, 天線穩定迴路有作用(Switch = 1),天線追蹤性能模擬結果。

載具滾轉角速率峰值 $p_v = \pi/18 \text{ rad/s}$,載具初始滾轉姿態 $\varphi_{v=}$ roll angle = $\pi/6$,天線穩定迴路 無作用(Switch = 0) 。

圖 162 載具滾轉角速率峰值 $p_v = \pi/18 \text{ rad/s}$,載具初始滾轉姿態 $\varphi_v = \text{roll angle} = \pi/6$, 天線穩定迴路無作用(Switch = 0),天線追蹤性能模擬結果。

由圖 161 及圖 162 可知,此狀況下因為內、外環架角均為零,所以不管穩定迴路 有無開啟作用,都不會影響天線的性能。 7.5 交叉偶連效應

前述 7.1 到 7.4 僅模擬天線單一軸向之追蹤狀況,但實際上之追蹤過程,不會只 有單一軸向之運動,因此本小節,將針對不同狀況之偶連效應進行分析。

(1) 載具參數:俯仰角速率峰值 $q_v = \pi/12 \text{ rad/s}$,目標參數:偏航角速率峰值 $r_t = \pi/12 \text{ rad/s}$, $\theta_t - \theta_v (0) = 0$, $\Psi_t - \Psi_v(0) = \pi/6$,其餘為零。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore</u> <u>Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS RateYaw</u>。

圖 163 載具俯仰角速率峰值 $q_v = \pi/12 \text{ rad/s}, \theta_t - \theta_v(0) = 0, \Psi_t - \Psi_v(0) = \pi/6,$ 目標偏航角速率峰值 $r_t = \pi/12, 天線追蹤性能模擬結果。$

由圖 163 可知,載具有俯仰運動,而目標有偏航運動時,天線俯仰及偏航頻道追 蹤準向誤差,約為 10 % 以下。

(2) 載具參數:偏航角速率峰值 $r_v = \pi/12 \text{ rad/s}$,目標參數:俯仰角速率峰值 $q_t = \pi/12 \text{ rad/s}$, $\theta_t - \theta_v(0^{\circ}) = \pi/6$, $\Psi_t - \Psi_v(0^{\circ}) = 0$,其餘為零。

圖 164 載具偏航角速率峰值 $r_v = \pi/12 \text{ rad/s}, \theta_t - \theta_v(0) = \pi/6, \Psi_t - \Psi_v(0) = 0,$ 目標俯仰角速率峰值 $q_t = \pi/12 \text{ rad/s}, 天線追蹤性能模擬結果。$

由圖 164 可知,載具有偏航運動,而目標有俯仰運動時,天線俯仰及偏航頻道 追蹤準向誤差,約為 10 % 以下。

7.6 載具有滾轉之交叉偶連效應

(1) 載具參數:俯仰角速率峰值 $q_v = \pi/12$,滾轉角速率峰值 $p_v = \pi/18$ rad/s; 目標參數:偏航角速率峰值 $r_t = \pi/12$, $\theta_t - \theta_v(0^{\circ}) = 0$, $\Psi_{t-}\Psi_v(0^{\circ}) = \pi/6$,其餘為零。

圖示由上至下分別為 <u>Gimbal Pitch Command, Gimbal Yaw Command, BSE(Bore</u> <u>Sight Error) Pitch, BSE Yaw, LOS Rate Pitch</u>, <u>LOS RateYaw</u>。

圖 165 載具俯仰角速率峰值 $q_v = \pi/12 \text{ rad/s}$, 滾轉角速率峰值 $p_v = \pi/18 \text{ rad/s}$, 目標參數:偏航角速率峰值 $r_t = \pi/12 \text{ rad/s}$, $\theta_t - \theta_v(0^-) = 0$, $\Psi_t - \Psi_v(0^-) = \pi/6$, 天線追蹤性能模擬結果。

比較圖 163 及圖 165 可知,當載具有滾轉及俯仰運動,而目標又有偏航運動 之狀況下,天線俯仰頻道環架角,會受載具滾轉影響不大,天線俯仰及偏航頻道 追蹤準向誤差,都會變大,但是仍可鎖住目標。

(2) 載具參數:偏航角速率峰值r_v = π/12 rad/s,滚轉角速率峰值p_v = π/18 rad/s, 目標參數:俯仰角速率峰值q_t = π/12 rad/s,θ_t-θ_v(0) = π/6,Ψ_t-Ψ_v(0) = 0。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS Rate Yaw</u>。

圖 166 載具偏航角速率峰值 $r_v = \pi/12 \text{ rad/s}$, 滾轉角速率峰值 $p_v = \pi/18 \text{ rad/s}$, 目標俯仰角速率峰值 $q_t = \pi/12 \text{ rad/s}$, $\theta_t - \theta_v(0^-) = \pi/6$, $\Psi_t - \Psi_v(0^-) = 0$, 天線追蹤性能模擬結果。

圖 164 及圖 166 的效應是有對應的關係,可知天線俯仰頻道環架角,會受載具滾 轉影響而有變動,天線俯仰及偏航頻道追蹤準向誤差,都會變大,但是仍可鎖住目標。

7.7 載具有滾轉,同時考慮交叉偶連效應及穩定迴路不作用之狀況

 (1) 載具參數:俯仰角速率峰值q_v = π/12 rad/s,滾轉角速率峰值p_v = π/18 rad/s, 目標參數:偏航角速率峰值r_t = π/12 rad/s,θ_t-θ_v(0) = 0, Ψ_t-Ψ_v(0) = π/6, 天線俯仰頻道穩定迴路不作用。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS RateYaw</u>。

圖 167 俯仰角速率峰值 $q_v = \pi/12 \text{ rad/s}$,滾轉角速率峰值 $p_v = \pi/18 \text{ rad/s}$,偏航角速率峰值 $r_t = \pi/12 \text{ rad/s}$, $\theta_t - \theta_v(0^-) = 0$, $\Psi_t - \Psi_v(0^-) = \pi/6$,天線俯仰頻道穩定迴路不作用, 天線追蹤性能模擬結果。

當載具有滾轉及俯仰運動時,會有交叉偶連的效應,天線追蹤的效果會比較差, 在這個例子當中,天線俯仰頻道穩定迴路不作用之後可以發現,天線追蹤的效果更加 的差,天線俯仰頻道準向誤差可以看出有很大的差異,而不僅僅只是大小的差異。以 圖 167 之天線俯仰頻道準向誤差與圖 165 相較之下,明顯差了將近 10 倍,可知天線 穩定迴路不作用之影響。

(2) 載具參數:偏航角速率峰值 $r_v = \pi/12 \text{ rad/s}$,滾轉角速率峰值 $p_v = \pi/18 \text{ rad/s}$, 目標參數:俯仰角速率峰值 $q_t = \pi/12 \text{ rad/s}$, $\theta_t - \theta_v(0^{-}) = \pi/6$, $\Psi_t - \Psi_v(0^{-}) = 0$, 天線俯仰頻道穩定迴路不作用。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS RateYaw</u>。

圖 168 偏航角速率峰值 $r_v = \pi/12 \text{ rad/s}$, 滾轉角速率峰值 $p_v = \pi/18 \text{ rad/s}$, 俯仰角速率峰值 $q_t = \pi/12 \text{ rad/s}$, $\theta_t - \theta_v(0^-) = \pi/6$, $\Psi_t - \Psi_v(0^-) = 0$, 天線俯仰頻道穩定迴路不作用, 天線追蹤性能模擬結果。

當載具有滾轉及偏航運動時,會有交叉偶連的效應,天線追蹤的效果會比較差, 在這個例子當中,天線穩定迴路不作用之後可以發現,天線追蹤的效果更加的差,天 線俯仰頻道準向誤差可以看出有很大的差異,而不僅僅只是大小的差異。以圖 168 之 天線俯仰頻道準向誤差與圖 166 相較之下,明顯差了將近 10 倍,可知天線穩定迴路 不作用之影響。 7.8 追蹤迴路內有馬達靜摩擦效應之狀況

- (7.8.1).僅有馬達靜摩擦效應,穩定迴路正常運作,無滾轉及交連效應。目標有俯仰運動,載具沒有運動。
- (1) 目標參數: 俯仰角速率峰值 $q_t = \pi/12 \text{ rad/sec}, \theta_t \theta_v(0) = \pi/6, \Psi_t \Psi_v(0) = 0$ 。 Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS RateYaw</u>。

圖 169 目標俯仰角速率峰值 $q_t = \pi/12 \text{ rad/sec}, \theta_t - \theta_v(0) = \pi/6, \Psi_t - \Psi_v(0) = 0,$ 載具沒有姿態變動,穩定迴路正常運作,天線追蹤性能模擬結果。

由圖 169 可知,目標有俯仰姿態變動,載具沒有運動時,穩定迴路正常運作,則 天線俯仰頻道馬達的靜摩擦效應,對於穩態追蹤準向誤差性能來說,影響很小。

(2) 目標參數:偏航角速率峰值 $r_t = \pi/12 \text{ rad/sec}, \theta_t - \theta_v(0^-) = 0, \Psi_t - \Psi_v(0^-) = \pi/6$ 。 Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS RateYaw</u>。

圖 170 目標偏航角速率峰值 $r_t = \pi/12 \text{ rad/sec}, \theta_t - \theta_v(0) = 0, \Psi_t - \Psi_v(0) = \pi/6,$ (Dead band = ± 0.001), 天線追蹤性能模擬結果。

由圖 170 可知,目標有偏航運動,而載具沒有運動時,穩定迴路正常運作,則天線偏航頻道馬達的靜摩擦效應,對於穩態追蹤準向誤差性能來說,有些影響。

(7.8.2) 載具有俯仰或偏航運動,目標沒有運動

 (1) 載具參數:俯仰角速率峰值q_v = π/12 rad/sec, θ_t-θ_v (0⁻) = π/6, Ψ_t-Ψ_v (0⁻) = 0。 Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS RateYaw</u>。

圖 171 俯仰角速率峰值 $q_v = \pi/12 \text{ rad/sec}, \theta_t - \theta_v(0^{-}) = \pi/6, \Psi_t - \Psi_v(0^{-}) = 0,$ (Dead band = ± 0.001) , 天線追蹤性能模擬結果。

在這種狀況之下,載具有俯仰運動,而目標沒有運動時,馬達靜摩擦效應,對於 穩態追蹤準向誤差性能來說,有些影響。

(2) 載具參數: 偏航角速率峰值 r_v=π/12 rad/sec, θ_t-θ_v(0) = 0, Ψ_t-Ψ_v(0) = π/6, Dead band = ± 0.001。

圖 172 載具偏航角速率峰值 $r_v = \pi/12 \text{ rad/sec}, \theta_t - \theta_v(0^-) = 0, \Psi_t - \Psi_v(0^-) = \pi/6$ (Dead band = ± 0.001), 天線追蹤性能模擬結果。

在這種狀況之下,載具有偏航運動,而目標沒有運動時,馬達靜摩擦效應,對於 穩態追蹤準向誤差性能來說,有些影響。 (7.8.3)穩定迴路不作用之性能比較,其餘條件與前面相同。Dead band = ± 0.001。

(1) 載具參數: 俯仰角速率峰值 $q_v = \pi/12 \text{ rad/sec}$, $\theta_t - \theta_v (0^{-}) = \pi/6$, $\Psi_t - \Psi_v (0^{-}) = 0$, (Switch = 0) 。

圖 173 載具俯仰角速率峰值 $q_v = \pi/12 \text{ rad/sec}, \theta_t - \theta_v(0) = \pi/6, \Psi_t - \Psi_v(0) = 0,$ (Switch = 0) (Dead band = ± 0.001) , 天線追蹤性能模擬結果。

由圖 173 可知,當穩定迴路不作用,又有馬達靜摩擦效應時,天線俯仰頻道追蹤 之準向誤差變大,追蹤性能不良。

載具參數: 俯仰角速率峰值 $q_v = \pi/12 \text{ rad/sec}$, $\theta_t - \theta_v(0) = \pi/6$, $\Psi_t - \Psi_v(0) = 0$ (Switch = 1) (Dead band = ± 0.001)。

圖 174 載具俯仰角速率峰值q_v = $\pi/12$ rad/sec , θ_t - $\theta_v(0) = \pi/6$, Ψ_t - $\Psi_v(0) = 0$, (Switch = 1) , (Dead band = ± 0.001) , 天線追蹤性能模擬結果。

由圖 174 可知,即使穩定迴路有作用時,馬達靜摩擦力的效應,仍會使天線俯仰 頻道追蹤之準向誤差,有變大現象,使追蹤性能不良。
(2) 載具參數:偏航角速率峰值 $r_v = \pi/12$ rad/sec $\theta_t - \theta_v (0^-) = 0$, $\Psi_t - \Psi_v (0^-) = \pi/6$ (Switch = 0) , (Dead band = ± 0.001)

圖 175 載具偏航角速率峰值 $r_v = \pi/12 \text{ rad/sec}, \theta_t - \theta_v(0) = 0, \Psi_t - \Psi_v(0) = \pi/6,$ (Switch = 0), (Dead band = ± 0.001), 天線追蹤性能模擬結果。

由圖 175 可知,當穩定迴路不作用時,馬達靜摩擦力的效應,仍會使天線偏航頻 道追蹤之準向誤差變大,追蹤性能不良。

載具參數:偏航角速率峰值 $r_v = \pi/12 \text{ rad/sec}$, $\theta_t - \theta_v (0) = 0$, $\Psi_t - \Psi_v (0) = \pi/6$ (Switch = 1) , (Dead band = ± 0.001) 。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, LOS Rate Pitch, LOS RateYaw。

圖 176 載具偏航角速率峰值 $r_v = \pi/12 \text{ rad/sec}, \theta_t - \theta_v(0^-) = 0, \Psi_t - \Psi_v(0^-) = \pi/6,$ (Switch = 1), (Dead band = ± 0.001), 天線追蹤性能模擬結果

由圖 176 可知,當穩定迴路不作用時,馬達靜摩擦力的效應,仍會使天線偏航頻 道追蹤之準向誤差變大,追蹤性能不良。 (7.8.4)加入滾轉效應,也就是pv≠0。Dead band = ±0.001。

(1) 載具參數:俯仰角速率峰值qv = $\pi/12 \text{ rad/s}$, $p_v = \pi/18 \text{ rad/s}$, 目標參數:偏航角速率峰值rt = $\pi/12 \text{ rad/s}$, $\theta_t - \theta_v(0^\circ) = 0$, $\Psi_t - \Psi_v(0^\circ) = \pi/6$ 。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS RateYaw</u>。

圖 177 載具偏航角速率峰值 $q_v = \pi/12 \text{rad/sec}$,滾轉角速率峰值 $p_v = \pi/18 \text{rad/sec}$, 偏航角速率峰值 $r_t = \pi/12 \text{ rad/s}$, $\theta_t - \theta_v(0^-) = 0$, $\Psi_t - \Psi_v(0^-) = \pi/6$, (Dead band = ±0.001),天線追蹤性能模擬結果。

由圖 177 可知,馬達靜摩擦力及載具 rolling 的效應,都會使天線追蹤迴路變的 性能都會受到影響,而變差。

(2) 載具參數:偏航角速率峰值r_v = π/12 rad/sec, p_v = π/18 rad/sec, 目標參數:俯仰角速率峰值q_t = π/12 rad/sec, θ_t-θ_v(0) = π/6, Ψ_t-Ψ_v(0) = π/6, Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS RateYaw</u>。

圖 178 載具偏航角速率峰值r_v = π/12 rad/sec , 滾轉角速率峰值p_v = π/18 rad/sec , 俯仰角速率峰值q_t= π/12 rad/sec , θ_t - $\theta_v(0)$ =π/6 , Ψ_t - $\Psi_v(0)$ = 0 , (Dead band = ±0.001) , 天線追蹤性能模擬結果。

由圖 178 可知,馬達靜摩擦力及載具 rolling 的效應,都會使天線追蹤迴路的性能,受到影響而變差。

- (7.8.5) 無滾轉之交叉偶連效應
 - (1) 載具參數:俯仰角速率峰值q_v = π/12 rad/sec,其餘為零。
 目標參數:偏航角速率峰值r_t = π/12 rad/sec,θ_t-θ_v(0) = 0,Ψ_t-Ψ_v(0) =π/6, Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS RateYaw</u>。

圖 179 載具俯仰角速率峰值 $q_v = \pi/12 \text{ rad/sec}$, 目標偏航角速率峰值 $r_t = \pi/12 \text{ rad/sec}$, $\theta_t - \theta_v(0^{\circ}) = 0$, $\Psi_t - \Psi_v(0^{\circ}) = \pi/6$, (Dead band = ± 0.001), 天線追蹤性能模擬結果。

由圖 179 可知,即使在無滾轉之交叉偶連效應下,馬達靜摩擦力的效應,仍會使 天線追蹤迴路的性能,受到影響而變差。

(2) 載具參數: 偏航角速率峰值r_v = π/12 rad/sec, 目標參數: 俯仰角速率峰值q_t = π/12 rad/sec, θ_t-θ_v (0) = π/6, Ψ_t-Ψ_v (0) = 0, Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error)</u> Pitch, <u>BSE Yaw</u>, LOS Rate Pitch, LOS RateYaw。

圖 180 載具偏航角速率峰值 $r_v = \pi/12 \text{ rad/sec}$,目標俯仰角速率峰值 $q_t = \pi/12 \text{ rad/sec}$, $\theta_t - \theta_v(0) = \pi/6$, $\Psi_t - \Psi_v(0) = 0$, (Dead band = ± 0.001), 天線追蹤性能模擬結果。

由圖 180 可知,即使在無滾轉之交叉偶連效應下,馬達靜摩擦力的效應,仍會使 天線追蹤迴路的性能,受到影響而變差。

- (7.8.6) 包含滾轉之交連效應
- (1) 載具參數: 滾轉角速率峰值p_v = π/18 rad/sec, 俯仰角速率峰值q_v = π/12 rad/sec, 目標參數: 偏航角速率峰值r_t = π/12 rad/sec, θ_t-θ_v (0) =0, Ψ_t-Ψ_v(0) =π/6; Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS RateYaw</u>。

圖 181 載具滾轉角速率峰值 $p_v = \pi/18 \text{ rad/sec}$,俯仰角速率峰值 $q_v = \pi/12 \text{ rad/sec}$, $\theta_t - \theta_v(0^-) = 0$,偏航角速率峰值 $r_t = \pi/12 \text{ rad/sec}$, $\theta_t - \theta_v(0^-) = 0$, $\Psi_t - \Psi_v(0^-) = \pi/6$, (Dead band = ± 0.001),天線追蹤性能模擬結果。

由圖 181 可知,在有滾轉之交叉偶連效應下,加上馬達靜摩擦力的效應,會使天線 追蹤迴路的性能,受到影響而變更差。

(2) 載具參數: 滾轉角速率峰值pv = π/18 rad/sec, 偏航角速率峰值r_v = π/12 rad/sec, 目標參數: 俯仰角速率峰值q_t = π/12 rad/sec, θ_t-θ_v (0) =0, Ψ_t-Ψ_v(0) =π/6, Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS RateYaw</u>。

圖 182 載具滾轉角速率峰值 $p_v = \pi/18 \text{ rad/sec}$, 偏航角速率峰值 $r_v = \pi/12 \text{ rad/sec}$, 俯仰角速率峰值 $q_t = \pi/12$, $\theta_t - \theta_v(0^-) = \pi/6$, $\Psi_t - \Psi_v(0^-) = 0$, (Dead band = ± 0.001) , 天線追蹤性能模擬結果。

由圖 182 可知,在有滾轉之交叉偶連效應下,加上馬達靜摩擦力的效應,會使天線追蹤迴路的性能,受到影響而變更差。

(7.8.7) 無穩定迴路且具有滾轉動作之交連效應

 (1)載具參數: 滾轉角速率峰值p_v = π/18 rad/sec, 俯仰角速率峰值q_v = π/12 rad/sec, 目標參數: 偏航角速率峰值r_t = π/12 rad/sec, θ_t-θ_v (0⁻) =0, Ψ_t-Ψ_v(0⁻) =π/6, Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS RateYaw</u>。

圖 183 載具滾轉角速率峰值 $p_v = \pi/18 \text{ rad/sec}$,俯仰角速率峰值 $q_v = \pi/12 \text{ rad/sec}$, 目標偏航角速率峰值 $r_t = \pi/12 \text{ rad/sec}$, $\theta_t - \theta_v(0) = 0$, $\Psi_t - \Psi_v(0) = \pi/6$, (Switch = 0), (Dead band = ± 0.001),天線追蹤性能模擬結果。

由圖 183 可知,在俯仰頻道穩定迴路不動作,有滾轉之交叉偶連效應下,加上馬 達靜摩擦力的效應,會使天線俯仰頻道脫鎖,而偏航頻道追蹤迴路的性能,受到影響 而變更差。

(2) 載具參數: 滾轉角速率峰值p_v = π/18 rad/sec, 偏航角速率峰值r_v = π/12 rad/sec, 目標參數: 俯仰角速率峰值q_t = π/12 rad/sec, θ_t-θ_v(0) = π/6, Ψ_t-Ψ_v(0) = 0, Dead band = ± 0.001。

圖示由上至下分別為 <u>Gimbal Pitch Command</u>, <u>Gimbal Yaw Command</u>, <u>BSE(Bore Sight Error) Pitch</u>, <u>BSE Yaw</u>, <u>LOS Rate Pitch</u>, <u>LOS RateYaw</u>。

圖 184 載具滾轉角速率峰值 $p_v = \pi/18 \text{ rad/sec}$, 偏航角速率峰值 $r_v = \pi/12$, 目標俯仰角速率峰值 $q_t = \pi/12 \text{ rad/sec}$, $\theta_t - \theta_v(0^{-}) = \pi/6$, $\Psi_t - \Psi_v(0^{-}) = 0$, (Switch = 0), (Dead band = ± 0.001), 天線追蹤性能模擬結果。

由圖 184 可知,在俯仰頻道穩定迴路不動作,有滾轉之交叉偶連效應下,加上馬 達靜摩擦力的效應,會使天線俯仰頻道脫鎖,而偏航頻道追蹤迴路的性能,受到影響 而變更差。

8.結論

本研究報告第一部分是進行天線追蹤系統模擬方塊圖之推導,以利將來進行 Ka 頻段天線,追蹤衛星之六自由度的模擬及分析。其中包括追蹤天線之俯仰及偏航頻道 方塊圖,Gimbal Rate 公式之證明,與載具俯仰,偏航,及滾轉角速率的耦合效應(Body Angular Rate Cross-Coupling Effects)。

第二部份是進行衛星追蹤及穩定迴路穩定性頻域(Frequency-Domain)及時域 (Time-Domain)性能分析時,運用簡化的模式,進行分析,以掌握關鍵參數。以便將 來可以數位模擬分析六自由度耦合情況,這樣可以收事半功倍之效。其中是以穩定迴 路只用積分及比例積分(Proportion and Integeration,II)補償器等兩種情況,來進行分 析及模擬。發現只用積分補償器增益 K2 從 25,50,75,100 逐漸增加時,其相位邊 限(Phase Margin, PM)也隨著 K2 的增加而增加,對於迴路之穩定有正面的幫助。並 模擬當天線之視角線(Line-of-Sight)變化輸入為一個三角波(Triangle Wave),利用 Simulink 套裝軟體,模擬當 K2 等於 25,50,75,100 之天線追蹤角速率(Antenna Tracking Line-of-Sight rate)波形變化,並運用 PI 補償氣所得到的結果進行頻域及時域性能比較 分析。發現 PI 補償器的穩定迴路當中,K2 相對於 K1 對 PM 的影響,幾乎可以忽略。 又 K1 增益有變化時,對系統穩定性的影響也很少。而後利用 Simulink 來模擬天線追 蹤角速率波形變化,當 K1 等於 1,2,4,5 之波型變化,以便和只有積分器之情況相 比較,可知輸出的波形比較接近方波,所以有加上 PI 補償器的系統時域(Time Domain) 性能較好。

本研究第三部份,簡介四元素法之原理以及在本次研究中之應用,並以圖示清楚 的將詳細的內容及步驟逐一說明。第四部份以圖示詳細說明,本研究之系統方塊圖運 作的方法。可以透過這部份,清楚掌握系統之追蹤及穩定迴路的各項流程,並可以充 分瞭解系統之運作方式。

本研究第五及第七部份是以輸入視線角為步階響應,及載具或目標運動為弦式波時,兩種情況之追蹤模擬,包括目標有俯仰及偏航動作,只有載具有俯仰及偏航動作, 測試程式穩定迴路功能,載具有滾轉的動作,交叉偶連效應,當載具有滾轉時,同時 考慮交叉偶連效應,穩定迴路不工作時之狀況,及追蹤迴路有靜摩擦效應之狀況。

本研究第六部份是運用模糊控制器(Fuzzy Controller),以輸入視線角為步階響應,作為追蹤模擬之輸入信號。發現使用模糊控制器,可以在短時間內使得天線追蹤 並鎖定住目標。這是由於模糊控制為一非線性之控制,因此性能結果比傳統線性控制 所得的要好,對應現有之各項要求,如較佳之步階式追蹤反應速度,及馬達靜摩擦力 效應容忍度(Dead band 可達到±0.0125),均可以達到相當高的追蹤及穩定性能。與第 五部份作比較,可以知道,模糊控制所能容忍的摩擦力大小,較傳統控制(Dead band 可達到±0.001)為佳。

9. 参考文獻

- A.C. Densmore, and V. Jamnejad(1993), "A Satellite-Tracking K- and Ka- band Mobile Vehicle Antenna System,"IEEE Trans. on Vehicular Technology, vol.42, no.4, pp 502-513
- [2] H. Chris Tseng and Dennis W. Teo, "Ship Mounted Satellite Tracking Antenna with Fuzzy Logic Control," IEEE 1995. 639-645
- [3] H. Chris Tseng and Dennis W. Teo(1998), "Ship Mounted Satellite Tracking Antenna with Fuzzy Logic Control,"IEEE Trans. on Aerospace and Electronic Systems, vol.34, no. 2, pp. 639- 645
- [4] R. H. Wu and P. C. Tung, (2002) "Studies of Stick-Slip Friction, Presliding Displacement, and Hunting," J. Dynamic Systems, Measurement, and Control,vol. 124, no. 3, pp.111-117
- [5] Zadeh, L. A. (1988) Fuzzy logic.IEEE Computing Magazine (Apr. 1988), 83-93.
- [6] Lee, C. C. (1990) Fuzzy logic .in control systems: Fuzzy logic controller-Part I. IEEE Transactions on Man., Cybernetics, 20 (Mar./Apr.1990), 404-418
- [7] Tseng, H. C., and Hwang, V. H. (1993), Servocontroller tuning with fuzzy logic, IEEE Transactions on Control Systems Technology, 1, 4 (Dec. 1993).
- [8] P. Estabrook and W. Rafferty, "Mobile satellite vehicle antennas: Noise temperature and receiver GF," in Proc. IEEE Veh. Technol. Conf, San Francisco, CA, Apr. 1989.
- [9] A. Densmore, V. Jamnejad, et al., "Two WKa-band mechanically steered, and mobile antennas for the NASA ACTS mobile terminal,"in Proc. Advanced Communications Technology Satellite Program Conference, NASA, Wash., D.C., Nov. 18-19, 1992.
- [10] B. Levitt, "The ACTS mobile terminal rain compensation algorithm,"SATCOM Quarierly, JPL Publication 410-33-2, July 1991
- [11] K. Dessouky, ef al., "Field trials of a NASA-developed mobile satellite terminal," in Proc. Int. Mobile Satellite Con\$ 1990, JPL Publication 90-7, June 1990.
- [12] D. Bell, et al. "Reduced-height, mechanically steered antenna development," MSAT-X Quarterly, No. 18, JPL Publication 410-13-18, Jan. 1989.
- [13] R. E. Collins, Field Theory of Guided Waves. IEEE Press, 1991.
- [14] R. Blomquist, "Report of the mechanical analysis of the AMT antenna assembly," JPL Internal Document, IOM 3524-91 -034, Feb. 1991.
- [15] A. Densmore, V. Jamnejad, et al., "The ACTS mobile terminal reflector antenna system," SATCOM Quarterly, No. 7, JPL Publication No. 410-33-7, Oct. 1992.
- [16] V. Jamnejad and A. Densmore, "A dual frequency WKa-band small reflector antenna for use in mobile experiments with the NASA advanced communications technology satellite," IEEE APSIURSZ Joint Intern.Sym., URSZ Digest, p. 1540, July 1992.