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Abstract

To continue our previous efforts on the simulation of a human aortic flow based on the

techniques of CFD and MR phase-contrast velocimetry in National Taiwan University Hospital,



a novel unified artificial compressibility solver is initialized based on the unified Eulerian and
Lagrangian coordinate transformations will be developed to simulate Hemodynamics of
deformable aorta. In additions, the fluid-structure interactions will be considered. Based on the
unified coordinates, the flow equations and geometry equations can be expressed in
conservation form and updated simultaneously during each time step. Thus, the accurate
estimation of geometry conservation and controlling the grid velocity based on the unified
approach can avoid severe grid deformation caused by moving vessel walls or boundary layers
(considered as slip lines) near the surfaces. Our team work has demonstrated its feasibility in
the simulation of artery blood flow motions with MRA; and with the consideration of the future
novel fluid-structure interaction model in the current Hemodynamics flow solvers in unified

coordinates, our noninvasive simulation of blood flows would become possible.

During this 2-year project:

In the first year, we will derive mathematical formulation of the artificial 2D and 3D
incompressible Navier-Stokes Equations in a unified coordinate system and the related
eigensystems. Then implement a numerical modeling of governing equation with suitable wall
moving model & compliant arterial model. In the validated cases, we will verify the accuracy of
the current fluid-structure model in unified coordinates and application on 2D Aortic Flow
Simulations. In the second year, we will use MRA imaging techniques to achieve the wall
motion of a human aorta, then to modify the current vessel wall model to accurately simulate
fluid-structure interaction and the related blood flow behaviors and pressure, shear stress
formations. Also we will develop a three-dimensional Hemodynamics code with the fluid-
structure interaction and choose validate cases to verify the accuracy of the current fluid-
structure model in unified coordinatesTo implement unsteady flow calculations, a dual time
stepping strategy including the LU decomposition method is used in the pseudo-time iteration
and the second-order accurate backward difference is adopted to discretize the unsteady flow
term. The original FORTRAN code is converted to the MPI code and tested on a 64-CPU IBM
SP2 parallel computer. The test results show that a significant reduction of computing time in
running the model and a near-linear speed up rate is achieved up to 32 CPUs at IBM SP2
processors. The speed up rate is as high as 31 for using IBM SP2 64 processors The test shows
efficient of parallel processing to provide prompt simulation of 3D cavity, unsteady dropping
airfoil and blood flows in an aortic tube with a linear elastic modelling of wall motion [2,3] is

included here .
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Introduction

Moving body simulation is one of attractive topics in the Computational Fluid Dynamics
(CFD) area. Recently, several techniques of moving body simulation are applied on the study of
bio-fluid dynamics problems such as blood flows through vessels and organs, also flapping
wings. The key issue to achieve accurate simulation on these topics is required to reply moving
grid or dynamic mesh algorithm. One common way to deal with dynamic mesh is rely on the so-
called Lagrangian method. Computational cells in the Lagrangian coordinates, on the other hand,
are literally fluid particles. Consequently, it is capable of producing sharp slip line resolution due
to no convective flux across cell interfaces with minimized numerical diffusion. However, the
disadvantage is that the computational cells exactly follow fluid particles always brings severe
grid deformation, causing inaccuracy and even breakdown of the computation once the fluid
velocity is used as the mesh moving velocity, To prevent this from happening, the most famous
Lagrangian method in use at the present time—the arbitrary Lagrangian—Eulerian (ALE)
technique—uses continuous rezoning. However, ALE requires continuous interpolations of flow
variables and computational geometry that may result in unnecessary numerical inaccuracy.
Recently, to understand the connection between the Lagrangian method and the Eulerian
appraoch, an unified Eulerian and Lagrangian coordinate transformation was proposed by Hui et
al [2, 3] to solve the Euler equations and achieve sharp of resolution of the contact line correctly.
As we know, in the frame work of unified coordinates approach, the fluid equations and
geometric evolution equations are written in a combined conservative form, which is different
from the fluid equations alone in the pure Eulerian approach. The hybrid type coordinate system
considers the flow variables to be functions of time and of some permanent identification of
pseudo-particles which move with velocity hq, q being the velocity of fluid particles. It includes
the Eulerian coordinates as special case when h = 0 and the Lagrangian when h = 1. The unified

coordinate system decides the grid velocity set to be ig, where q is the fluid velocity and h is a

parameter which is determined by constraint conditions, such as the mesh alignment with the slip

surface, or keeping grid angle during the mesh movement. Therefore, the grid velocity can be



changed locally according to the value of h. With a prescribed grid velocity, the inviscid flow

equations are written in a conservative form in the computational domain (A, &, n,¢ ), as well as

the geometric conservation laws which control the mesh deformation. Therefore, numerical
diffusion across the slip line can be reduced to a minimum with the crisp capturing of the contact

discontinuity. T

Based on the Hui’s idea, we would like to extend the previous work [4, 5] to derive three-
dimensional incompressible flow equations under the Euler- Lagrangian coordinate. In the
framework of Euler-Lagrangian coordinates, the unsteady artificial compressibility based
incompressible flow equations are derived and the related moving geometry equations can be
achieved in conservation form and updated simultaneously during each time step. Thus, the
accurate estimation of geometry conservation and controlling the grid velocity based on the
unified approach are expected to avoid severe grid deformation and computation breakdown
caused by moving body or boundary layers (considered as slip lines in Lagrangian coordinates).
Also, a unified artificial compressibility approach is developed to simulate the moving body
flows with viscous effects and fluid-structure interaction. Test cases including the three-
dimensional lid-driven cavity flow, a dropping airfoil, and a pulsating aortic tube are used to
verify the computations. Under this circumstance, the current FORTRAN code is converted to

the MPI code tested on a 64-CPU IBM SP2 parallel computer.

Governing Equation

The governing equations of the flow considered are the time-dependent incompressible
Navier-Stokes equations (1) in the Cartesian coordinate. After introducing the pseudo-
compressibility to connect pressure with continuity equation based on Chorin [1], the considered
equations of motion of the fluid can be compactly written in in the following nondimensional

conservation form. like

a—Q+6—E+6—F+8—T:L[N]VZQ (1)
o0 oOx 0Oy 0z Re
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Based on the transformation of unified coordinate

dt=dA

dx = hud A+ Adé + Ldn + Pd¢
dy = hvd A + Bd&E + Mdn +Q'd¢
dz = hwd A+ Cd& + Ndn + Rd¢

@

where h is an arbitrary function of coordinates (A, & m, { ) and u, v, w are x-, y- and z-
component of the fluid velocity ¢ , Re is the so-called Reynolds number, B is pseudo

compressibility factor; respectively. Let
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denotes the material following the pseudo-particle, whose velocity is /g . Then it is easy to

show that

Do Dn_y DE_, @
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That is, the curvilinear coordinate are material functions of the pseudo-particles, and hence are
their permanent identifications. Accordingly, computational cells move and deform with pseudo-
particles, rather than with fluid particles as in Lagrangian coordinates. Furthermore, the

geometrical state variables satisfy the compatibility conditions as

oA _ohu oL _ohu 0P _dhu 3B _ohv M _ohv 00 _dhv 8C _dhw ON _dhw R _ahw ()
o oc’on omior oL el of or on ok oc ol efor on o oL
From the above transformation matrix, the governing equation becomes
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(6)

Where gis a preserved variable vector,E, F and G are flux vectors and £, F G, are viscous
terms. Like
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Wall model

In this work, we consider a deformable aorta in the numerical tests. The fluid-structure
interaction is required to consider in the simulation. Here, the wall compliance is modelled using
an independent ring model to compute the vessel deformations. This model assumes that the
structural nodes move only in the radial direction. In spite of its intrinsic limitations, the extreme
simplicity of this model makes it very popular. A linear elastic model equation to describe the

wall motion can be written as a damped oscillator:

2
ma—:+d@+kr=Pw (7
ot ot
Where m=p h, k= %, d = 2</mk and h is the wall thickness, #» the wall density, E
—v)a

the Young’s modulus, v the Poisson ratio, a the vessel radius, p the pressure, » the wall

displacement and ,  the pressure force at the wall. The radial displacement of each structural

node can be obtained by solving equation (7) by using a fourth order Runge-Kutta scheme. The
fluid-structure equations (6) & (7) are solved in an uncoupled way. Both the solutions of fluid
and structure equations are updated in an unsteady time marching manner. The pressure loads at
the vessel wall predicted by the fluid solver are transferred to be the source terms in the structure

equation at the same time step. After that, the wall displacement is updated at each grid point



along the whole tube and vessel. Also, the wall mesh velocity can be estimated based on the last
two wall displacements during the previous two time steps to achieve the second-order accurate
estimation. Then, the new wall position and mesh velocity are substituted into the fluid solver
and the related boundary conditions. Therefore, the updated pressure load can be re-predicted
and a cycle of simulation fluid-structure interaction during the same time step is completed until
the fluid-structure interaction is repeated until mass conservation criteria is satisfied in the fluid
solver. However, the strategy of wall motion estimation may result in the moving grid distortion
to produce excessive numerical errors. To avoid numerical instability, the geometry conservation

included in equation (6) and a grid re-generation may be the necessary procedure.

Numerical Results

In the numerical flux approximation, one three-order accurate upwinding flux extrapolation

for the derivatives gg. which have the form. A third-order upwind flux at the cell interface is

defined by

B~ 1BQ. W BQ)+ JoF, -0, +E, ~AF ) ®)
Where The flux difference is taken as
AE, = 47(0)AQ,, ©)
where A represents the Jacobian matrix’. The 4*and 4~ matrices are computed first by forming a

diagonal matrix of the positive eigenvalues and multiplying through by the similarity transform,

and since the 4*matrix plus the 4~ matrix equals the original Jacobian matrix, we have

A" = XAX!
A =A-A"

(10)

where X is the matrix of right eigenvectors of 4 , X ' is its inverese. The flux difference is

evaluated at the midpoint by using the average of Q:

0=1(0,,+0,.) (11)

The eigenvectors in (11) of equation (6) as shown in [4] linearly independent, forming a



completed basis in the state space. The system equations (8) are therefore regarded as hyperbolic
for all values of h. This includes the Eulerian coordinates as a special case when h = 0 and the
Lagrangian one when h = 1. As we have known from Hui’s works [2,3], it is shown that for the
smooth solutions of the system of two-dimensional Euler equations of gas dynamics written in
the classical Lagrangian coordinates is equivalent to the same system written in the unified
coordinates with h = 1. The steps of the proof can easily be repeated for the current artificial
compressibility flow equations to show its weak hyperbolicity existed on the classical
Lagrangian coordinates. To avoid possible numerical difficulties arising from the lack of a

completed set of eigenvectors, we shall use 0 = 4 <1 to keep the hyperbolic character of the

artificial compressibility equations. In the following test cases, we choose h =0.99 for all the
steady-state cases to keep the weak hyperbolicity for the model equations we use. In the unsteady
cases, h is assumed as grid velocity for the moving body simulation to keep the geometry

conservation law. Also, B is kept to be 10 in all the cases.

Parallel implementation and Discussions

The current parallelized flow solver presents the results of two-dimensional and three-
dimensional numerical simulation of the flow field in the followings:

First, the lid-driven cavity flow problem is a widely used benchmark test for the
incompressible Navier-Stokes code validation. With the simplicity of geometry, the driven cavity
flow contains complicated flow physics driven by multiple counter rotating vortices on the
corners of the cavity depending on the Reynolds number. From all our computations for
Re=3200 The computations are performed on a 64x64x64 on non-uniform grids as shown in
Figure 1(a) which are clustered near the wall and stretched from the wall to the cavity center.
The velocity plot on a plane and 3D streamtrace patterns in the driven cavity flow are plotted in
Figure 1. It is shown that one primary vortex near the center and three corner eddies are captured.
Also one small secondary zone in the lower right corner is visible. Secondary, a two-
dimensional experiment of a falling airfoil in a water tank conducted by Andersen, Persavento,
and Wang [5], for the falling airfoil, the freely falling trajectory was measured based on the flow
conditions with the Reynolds numbers 1100. The meshes of 400x100 are used for the
calculations. Fig. 2(a) presents trajectories of the falling airfoil, where the black one is the

experimental measurement in [5] and the purple one is the trajectory from the computation.



Overall, the two trajectories are close to each other and have an identical slope. The vorticity
field at four instants during a full rotation of the airfoil is also presented in Fig. 2(b). Thirdly, to
perform numerical simulation on an aortic tube under fluid-structured interaction, one cycle of
heartbeats is 0.855 seconds according to MRI data. The equation (6) was solved for a peak
Reynolds number of 5000 at the inlet of ascending of aorta and numerical boundaries were
chosen based on flow conditions: (i) MRA scanned flow rate [6] at the inlet of ascending aorta (ii)
Surface traction free and zero velocity gradients at the outlet of descending aorta. (iii) MRA
scanned flow rates at the outlet of three branches (iv) Grid velocity as the vessel wall velocity
condition. Then, the final results were achieved at the fifth cycle of the computation which was
starting from the initial conditions as zero velocity. Velocity vectors and shear stress
distributions on vessel walls on the cross sections of the aorta are shown in our computations as
in Figure 3 and 4. The computed averaged shear stresses along aortic wall with and without
elastic assumptions are observed. It is noted that a computed peak value of the wall shear stress
along the aortic wall at the aortic arch and the wall shear stress drop at downstream of the aortic
arch during t =2/4 T. These phenomena may be resulted from the variation of the vessel diameter
and the presence of the bifurcation. The inlet flow rate approaches zero in the late diastole, so the
wall shear stress distributions are approaching flat. It demonstrates that wall shear stresses were
highly dynamic, but were generally high along the vicinity of the branches and low along the
lesser curvature, particularly in the descending thoracic aorta. The maximum wall shear stress

distribution is presented on the aortic arch in the late systole.

Elastic stenotic tube

Figure 9 demonstrates that a completed cycle of the velocity contours in an elastic
stenotic tube. The computation is performed based on a 200x51 grid cells. The non-dimensional
geometrical parameters are as follows: inlet diameter 1; pre-stenosis length 5, and stenosis
length 1; a long post-stenosis domain 31 are chosen in order to minimize the influence of
downstream boundary conditions. In order to avoid considering the turbulence effects, a mild
stenosis with only 25% area reduction is considered. The flow was assumed to be laminar,
incompressible and Newtonian, and the walls only deform in the radial direction with the grid

velocity obtained from equation (7). Therefore the h value is floating with grid velocity at each grid



point during every physical time step. At the inlet boundary, a sinusodial incoming velocity profile
as described in equation (12) is used. The fluid-structure interaction is included in the
calculations. The pressures at the inlet can be obtained from the solution of the governing
equation by assuming an prescribed incoming velocity distribution. At the outflow boundary,

traction-free conditions is assumed.
u(d) = %(1—00S(2ﬂ/1)) (12)

In this case, a Reynolds number defined at the inlet of 800 is selected. As total velocity
contour plots shown in Fig. 9, it is shown that the reverse flow distal to the stenosis and the re-
circulation region moves to downstream from the early systolic cycle to late diastolic cycle.
Also we can find that the formation of the recirculation region is strongly effected by the
compliant vessel. The separation mainly appears around the flow over the neck of the stenosis,
and then it disappears around the region along the convergent wall and restarts at the beginning
of the divergent wall. It is shown that the separation zone shows up periodically along the
compliant vessel wall. In Figure 10, pressure distributions are shown to distribute along the
stenotic wall. It is shown that the pressure drop occurs around the neck of the stenotic region in
the late diastolic cycle and at the beginning of systolic cycle. Next, the pressure distributions
along the stenotic region for four different Reynolds number with 100, 200, 400, and 600 are
also shown in Figure 10. It is shown that the pressure drop occurs around the neck of the
stenotic region no matter what the value of Reynolds number is. A negative pressure difference
is increased with the increasing Reynolds number. Furthermore, the estimations of wall shear
stress distributions for the whole wall and the stenotic area are depicted in Figure 10. It is very
encouraging to find that the prediction of the location of maximum wall shear stress is
consistent with the analytic studies which demonstrate the location of maximum wall shear
stress is always upstream of the neck of the stenosis and independent of Reynolds number in the
whole pusatile cycle. In addition, a strong oscillating wall shear stress distribution is shown to
appear around the neck of the constriction-enlargement region for the lower wall which is
depicted in Figure 11. It is noted that the prediction of the location of maximum wall shear
stress is always found around the beginning of enlargement and independent of the Reynolds

number. Also a positive peak of the shear stress distribution is found to appear on the lower



aortic arch during the systole and the early diastole, and then changed to be a negative peak

during the late diastole.

The computation is very time consuming for time accurate and pseudo-time evolutions in
the above calculations. The parallel computation technology is very necessary in the three-
dimensional cases. In our parallel computation tests, the test results also display very promising
potential of parallel processing as shown in Table. The original standard FORTRAN based
incompressible Navier-Stokes code coupled with a linear elasticity model was converted to be a
MPI based solver, also, it was tested on IBM SP2 690A parallel System. The parallel system is
consisted of 415.2 GFLOPS with 96 CPUs Multiprocessor (SMP) nodes connected by High-
performance switches, each node contains four POWER3 processors, four GB of main memory
and 192 GB of hard disk. The clock rate of the processor is 1.9 GHz. The Floating Peak
Performance of each processor is SPECc{p2000 of 1898. Each processor comprises eight
execution units, a 32 KB instruction cache, 64 KB data cache and an on-board bus interface unit.
There are three fixed point units, two floating point units, two load/store units and one
branch/dispatch unit in each processor. The MPI code is paralleled along both the longitude and
latitude. The tested result of the model is shown in table. The model results were then carefully
validated to ensure that the two versions of the model produce virtually the same result. We have
made several test runs and the results are summarized in Table A. Apparently, the concept of
parallel processing suited the current dual-time Navier Stokes Solver very well. The model can
take advantage of the MPI code fully, since minimal amount of data transfer among CPUs is
required for solving the governing equation explicitly. A significant reduction of computing time
in running the model and a almost linear speed up rate is achieved up to 32 CPUs in all the
different data partition. The speed up rate is as high as 32 for using 64 processors at the same

time. It provides very promising potential for prompt diagnosis using modern CFD technology.

Concluded Remarks
® [n this paper, an unsteady artificial compressibility solver for moving body simulation
based on unified coordinate approach is proposed and developed. In the framework of

unified coordinates, a unified moving body approach, include the unsteady



incompressible flow equations and moving geometry equations, with grid velocity as
hq achieves conservation form and updated simultaneously during each time step.
Accurate estimation of geometry conservation and controlling the grid velocity based
on the unified approach can avoid severe grid deformation and computation
breakdown caused by moving body or boundary layers (considered as slip lines in
Lagrangian coordinates). Also, a linear elastic modeling of wall motion is included
here for the consideration of the fluid-structure interaction.

® [n this study, a parallel incompressible flow-structured solver instrumented with MPI
is developed on the simulation of bio-fluid flow problems. The test results show that a
significant reduction of computing time in running the model and a near-linear speed
up rate is achieved up to 32 CPUs at IBM SP2 platforms. The speed up rate is as high
as 32 for using IBM SP2 64 processors Also, the overall accuracy on the pressure on
blade surfaces are in good agreement with validated data. The test shows very
promising potential of the current parallel flow code to provide prompt simulation of

the current flow test cases.
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(a) Numerical validation of the trajectory of a falling airfoil (the red solid line--- the measured data [6],
the dashed line--- simulation)

]
xfem) x{em)



x(m;ﬂ 1 9 ”

cm)
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Figure 2 A simulation of a falling airfoil flow (Re=3200)
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Figure 3 Blood flow velocity vector through the aortic vessel during a full cardic cycle (Re=5000)
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Figure 4 the shear stress distributions along the Aortic vessel during a full cardic cycle (Re=5000)
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Figure9 Velocity contour plots in a pulsatile cycle for a deformable tube
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Figure 11 Variations of shear stress at stenotic wall for Reynolds numbers=800 from X=2 to
X=9 in pulsatile cycle

Table 2-D with data partition on IBM SP2

CPUs Elapsed time(sec) [Speed up Efficiency

1 107438 1.00 100.%

4 35001 3.19 80.%

8 15803 6.2 75.%

16 10998 10.1 70.%

32 6043 18.2 64%

64 3152 32.2 51.%
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