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Abstract 

Research in assembly planning can be categorised into three types of approach: 
graph-based, knowledge-based and artificial intelligence approaches. The main drawbacks of the 
above approaches are as follows: the first is time-consuming; in the second approach it is 
difficult to find the optimal solution; and the third approach requires a high computing efficiency. 
To tackle these problems, this study develops a novel approach integrated with some 
graph-based heuristic working rules, robust back-propagation neural network (BPNN) engines 
via Taguchi method and design of experiment (DOE), and a knowledge-based engineering (KBE) 
system to assist the assembly engineers in promptly predicting a near-optimal assembly 
sequence. Three real-world examples are dedicated to evaluating the feasibility of the proposed 
model in terms of the differences in assembly sequences. The results show that the proposed 
model can efficiently generate BPNN engines, facilitate assembly sequence optimisation and 
allow the designers to recognise the contact relationships, assembly difficulties and assembly 
constraints of three-dimensional (3D) components in a virtual environment type. 

 
Keywords: assembly sequence planning; assembly precedence diagrams; neural networks; 

design of experiment; Taguchi method 
 
1. Introduction 

In general, assembly involves the integration of components and parts to create a product or 
system through computer-aided design and manufacturing (CAD/CAM) systems. Assembly 
planning is a crucial design step for generating a feasible assembly sequence. Traditional 
assembly planning is manual and based on the experience and knowledge of industrial engineers; 
however, manual analysis does not allow the feasibility of assembly sequences to be easily 
verified. In the electronics industry, the approximate 40%- 60% of total wages was paid to 
assembly labors (Kalpakjian, 1992). The implementation of design for assembly (DFA) and 
design for manufacturing (DFM) resulted in enormous benefits, including the simplification of 
products, reduction of assembly product costs, improvement of quality, and shrinkage of time to 
market (Kuo et al., 2001). Good assembly sequence planning (ASP) has been recognised as a 
practical way of reducing operational difficulties, the number of tools and the working time (Lai 
and Huang, 2004).  
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De Fazio and Whitney (1987) adopted the concept of Bourjault (1984) to generate a complete 
set of assembly sequences. They generated sequences in two stages – creating the precedence 
relations between liaisons or logical combinations of liaisons in a product and verifying the 
liaison sequence. Homen de Mello and Sanderson (1991a)  made a representation of the directed 
AND/OR graphs to create feasible assembly sequences. In addition, Kroll (1994) used 
graph-based procedures with conventional representations to reduce the number of sorting 
operations required. He then extended his previous approach from uniaxial assemblies to triaxial 
assemblies and presented a set of rules for resolving conflicts between multiple parents and 
multiple offspring. However, in practice most assembly companies use semi-automatic systems to 
generate an assembly plan and employ 2D cross-sectional views to represent their heuristic 
models (Lin and Chang, 1993).  

Assembly planning is also regarded as “assembly by disassembling,” i.e., an assembly 
sequence results from systematically disassembling the final product and reversing the 
disassembling sequence (Lee, 1989). This approach usually employs the contact-based feature to 
represent the precedence relationships of the product. A designer can successively assign the 
assembly relations to form the assembly plan based on the precedence diagram. However, the 
contact-based precedence diagram cannot effectively express the complexity of the assigned 
assembly relations. An effective assembly plan must include other graphs, such as the explosion 
graph, the relational model graph, the incidence matrix, the assembly precedence diagram (APD), 
etc. In reality, few experts or engineers know exactly how to derive a correct explosion graph, 
draw a complete relational model graph or incidence matrix among the components, or determine 
a complete APD to generate an optimal assembly sequence (Chen et al., 2004b; Chen et al., 
2008). 

The other approach to Knowledge-based engineering (KBE) is a technology that allows an 
engineer to create a product model based on rules and the powerful CAD/CAM applications that 
used to design, configure and assemble products, examples of which include the so-called expert 
systems, web-based knowledge bases involving the engineering knowledge (i.e., Knowledge 
Fusion) and becoming an critical part of business strategy (Homen de Mello and Sanderson, 
1991b). In addition, numerous researchers have employed an artificial intelligence (AI) tree 
search or graph search methodology to generate an assembly sequence (Homen de Mello and 
Sanderson, 1991b; Chen et al., 2004a). Unfortunately, the search space increases explosively 
when the number of components in a design grows. To relieve this combinational complexity, 
heuristic rules and genetic algorithms (GAs) have been used in the searching process (Marian et 
al., 2003; Chen et al., 2004a). Other studies have used the Hopfield and BPNN as the means to 
generate optimum or sub-optimum assembly sequences(Chen, 1990; Hong and Cho, 1993; 
Sinanog˘lu, 2006). 

This study proposes a three-stage integrated approach with some heuristic working rules to 
assist the planner to obtain an optimal assembly plan. In the first stage, the Above Graphs with 
spatial constraints are used to create a correct explosion graph of the assembly model; these two 
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graphs can be used to represent the correct geometric constraints among the assembly parts. In 
the second stage, a three-level relational model is developed to generate a complete relational 
model graph (RMG) and the incidence matrix. The relational model graph can be advanced and 
transformed into an assembly precedence diagram (APD), which is used to describe the assembly 
precedence relations of the parts. Based on these graphs, the designer can easily find feasible 
sequences and evaluate the difficulty of assembly. In the third stage, the CAD-based Knowledge 
Fusion (KF) programming language and BPNN engines via Taguchi method and design of 
experiment (DOE) are employed to validate the available assembly sequences. The three kinds of 
real-world toy products are utilised to evaluate the feasibility of the proposed model in terms of 
the differences in underlying assembly characteristics and predict a near-optimal assembly 
sequence according to the defined performance criteria. 

2. The working concepts and procedures 

The working concepts and procedures of the proposed approach are shown in Fig. 1. Initially, 
detailed data is input from a 2D engineering drawing and related assembly information into a 
CAD assembly package. Then, the correct explosion graph is developed using the transforming 
rules. Finally, the relational models are generalized to represent the assembly precedence 
relations, and an evaluating mechanism is then employed to find a global feasible solution. The 
planning process is recursive until the defined criteria was satisfied. The main outputs of the 
integrated graph and BPNN-based assembly planning are the complete RMG, APD, and BPNN 
engines. In addition, Fig. 2 represents the knowledge-based engineering (KBE) system rendering 
a UG-based operational interface to access the potential graph and BPNN-related details via 
different types of database, and a robust BPNN engine dedicated to promptly generating a 
near-optimal assembly sequence. 

3. Back-propagation neural network 

In much of the literature, back-propagation neural networks (BPNNs) have been adopted 
because they have the advantages of a fast response and high learning accuracy (Maier and 
Dandy, 1998; Liu et al., 2001; Lee et al., 2001; Yao et al., 2005; Chen and Hsu, 2007). The 
superiority of a network’s functional approach depends on the network architecture and 
parameters, as well as the problem complexity. If inappropriate network architecture or 
parameters are selected, undesirable results may be obtained. Conversely, the results will be much 
more significant if good network architecture and parameters are selected. The BPNN consists of 
an input layer, hidden layer, and output layer. The parameters for the BPNN include the number 
of hidden layers, number of hidden neurons, learning rate, momentum, etc. All of these 
parameters can significantly impact the performance of the neural network. Fogel (1991) 
proposed a final information statistical (FIS) process based on Akaike’s information criterion 
(AIC) to determine the number of hidden layers and neurons. One hidden layer is sufficient to 
compute arbitrary decision boundaries and quite adequate to model nonlinearity in most cases of 
the BPNN (Khaw et al., 1995; Anjum et al., 1997). The limitation of Fogel’s research is that the 
process can only perform simple binary classifications. Murata and Yoshizawa (1994) and Onoda 
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(1995) respectively proposed methods to improve AIC. These methods, called the network 
information criterion (NIC) and neural network information criterion (NNIC), use statistical 
probabilities together with an error energy function to determine the number of hidden neurons. 

In this research, the steepest-descent method was used to find the weight change and to 
minimize the error energy function. The activation function is a hyperbolic sigmoid function. 
According to past studies (Hush and Horne, 1993; Cheng and Tseng, 1995), there are a few 
conditions for network learning termination: (1) when the root mean square error (RMSE) 
between the expected value and network output value is reduced to a preset value; (2) when the 
preset number of learning cycles has been reached; and (3) when cross-validation takes place 
between the training samples and test data. The first two methods are related to the preset values. 
This research adopts the first and second approaches by gradually increasing the network training 
time to gradually decrease the RMSE until it is stable and acceptable. The RMSE is defined as 
follows: 

( )∑
=

−=
N

i
ii yd

N
RMSE

1

21 ;                                                     (1)                    

where N, di, and yi are the number of training samples, the actual value for training sample i, 
and the predicted value of the neural network for training sample i, respectively. 

In network learning, input information and output results are used to adjust the weighting 
values of the network. The more detailed the input training classification and the greater the 
amount of learning information which are provided, the better the output will conform to the 
expected result. Since the learning and verification data for the BPNN are limited by the 
functional values, the data must be normalized by the following equation: 

( ) minminmax
minmax

min DDD
PP

PPPN +−×
−
−

=  ;                                   (2)                     

where PN is the normalized data, P is the original data, Pmax is the maximum value of the 
original data, Pmin is the minimum value of the original data, Dmax is the expected maximum value 
of the normalized data, and Dmin is the expected minimum value of the normalized data. 

When applying the neural network to the system, the input and output values of the neural 
network fall in the range of [0.1, 0.9]. 
 

4. Taguchi method 
 

Taguchi’s parameter design method normally selects an appropriate formulation of the S/N 
ratio and calculates the S/N ratio for each treatment. There are three types of S/N ratios: nominal 
the best, the larger the better, and the smaller the better. Most engineers choose the highest S/N 
ratio treatment as the preliminary optimal initial process parameter setting. Taguchi method has 
also been used to design the parameters for neural networks in previous research (Khaw et al., 
1995; Santos and Ludermir, 1999). Khaw et al. (1995) applied Taguchi method to design the 
parameters and verified that the method could rapidly and robustly design the optimal parameters. 
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Santos and Ludermir (1999) applied a factorial design to assist the design and implementation of 
a neural network. The formulae of the three types of S/N ratios are given as follows: 
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where iy  is the response value of a specific treatment under i  replications, n  is the number 

of replications, y  is the average of all iy  values, and S  is the standard deviation of all iy  

values. 

5. Optimization of the neural network parameters using RSM & Taguchi method 
In this research, we applied the Taguchi method and DOE to obtaining the optimal parameter 

settings of the BPNN. Since the number of hidden layers did not have a significant effect on 
convergence, the number of hidden layer was set to 1. The controlling factors of Taguchi method 
are transfer function (Ft), the number of hidden neurons (Nh), learning rate (Rl), momentum (Mt), 
and Epochs (Ep). The numbers of neurons in the hidden layer under different levels were obtained 
by the method proposed by Khaw et al. (1995) and Haykin (1999). Information on the factors’ 
assumptive settings at different levels is listed in Table 1. Apart from transfer function (Ft), the 
number of hidden neurons (Nh), learning rate (Rl), momentum (Mt) and the numbers of 
calculation generations i.e. epochs (Ep) are determined by first finding the range in which these 
factors have better converging results, and second by determining the equal-distance value for the 
three levels.  

Under the condition of five factors, one for two levels and four for three level, and no 
correlation among the five factors, the total degrees of freedom were 17 (i.e., 1× (2-1) +4 × (5 – 
1)).  An L18 (21×34) orthogonal array is selected for arranging the factors and carrying out the 
experiment. In this experiment, there are two replications, and the predicted performance (Mean 
square error, MSE) of Y is the evaluation value for different combinations of factor levels. Υ  is 
the average of two Y’s in each replication. The optimal combination of factor levels is the 
experiment with the largest S/N ratio. From the experimental results of Taguchi method, the main 
effects plots of BPNN’s factors through Taguchi method can be seen in Fig. 3. The optimal 
combination of factor levels is represented by the following: BPNN architecture of 5-13-1, the 
transfer function is Hyperbolic Tangent, the number of calculation generations of 35,000, a 
learning rate of 0.9, and a momentum of 0.9.  

Subsequently, the result of the DOE with response surface methodology (RSM) on the 
factors’ assumptive settings at two levels listed in Table 2 is revealed: the number of neurons of 
15, a learning rate of 0.9, a momentum of 0.9, and the number of calculation generations of 
50,000. The response optimization of BPNN’s parameters via DOE is represented in Fig. 4.   
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6. Illustrative examples 

 In this section, the examples of a toy car, a toy motorbike and a toy boat are used to 
demonstrate the generation procedures of assembly planning. 
 

6.1 Creating the exploded view, RMG and APD 
The exploded view can be directly created from the Above Graph, which possesses the 

contact relationships of a spatial structure. Fig. 5 shows the parts list, assembly codes and the 
exploded view. The validity of each exploded view can be confirmed by the contact relationships 
of the spatial structure and Above Graphs. Applying a correct exploded view allows us to derive 
the exact assembly plans. For brevity, the detailed planning steps are omitted. Fig. 6 shows the 
complete relational model graph (RMG) and APD for the proposed case study. 

 
 

6.2 Assembly sequence generation using the back-propagation neural network 
In this study, a toy car is used as a training sample, whereas a toy motorbike and a boat are 

employed as verifying samples. Fig. 7-10 show the parts list, assembly codes, the exploded view, 
and the complete relational model graph (RMG) and APD of the above latter samples. The 
characteristics of each assembly part include the number of the assembly incidence (AI), total 
penalty value (TPV), feature number (FN), weight and volume. These characteristics are 
commonly regarded as the larger the better for the assembly sequence priority. The optimal 
sequence results with information on five characteristics of a toy car, a toy boat and a motorbike 
are shown in Tables 3, 4 and 5, respectively. 
 

6.3 Experimental results and discussion 

The toy car, the toy motorbike and the toy boat can be decomposed into 28, 17 and 15 parts, 
respectively. Each part of the afore-mentioned experimental articles has five characteristics 
parameters: the value of assembly incidence (AI), total penalty value (TPV), feature number (FN), 
weight and volume, which are used as network input parameters, and one expected network 
output adopts the ranking number of the optimal assembly sequence. 

Table 6 shows the performance of BPNN engine 2 via DOE is superior to that of BPNN 
engine 1 via Taguchi method as implements testing BPNN data. Fig. 11 and Fig. 12 demostrates 
an assembly sequence prediction for testing toy motorbike (17 data) using BPNN engine 1 and 2, 
respectively. In addition, the trend is normally the larger the potential samples of KBE database 
get, the more precise is the assembly sequence predition via a robust BPNN engine.     

   

 
7. Conclusions 

Theoretically, an assembly plan can be optimised based on the factors of shortest assembly 
time and assembly sequence optimisation. However, these are uncertain factors prior to the 
determination of the optimised assembly scheme and the completion of the jig and fixture. The 
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proposed model adopts a three-stage integrated assembly planning approach to express the 
complexity of the assembly relations and to evaluate the feasibility of the respective assembly 
sequences in the design phase. The experimental results for the case study verify the feasibility of 
the proposed approach, which facilitates the DFA in potential applications of 3D component 
models to assist manual or automatic assembly in a virtual environment, and allows the designer 
to recognise the relative position, geometric constraints and relationships of the 3D components 
using the following graph-oriented methods: the Above Graph, APD and relational model graph. 
The planner can further generate a correct explosion graph and construct an incidence matrix for 
validating the assembly relations through applying the Above Graph and relation models. In 
addition, this three-stage integrated approach can effectively promote the quality of the generated 
assembly plan and facilitate assembly sequence optimization via knowledge-based engineering 
(KBE) system and a robust BPNN engine. 
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Fig. 1. Working concepts and procedures. 
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Fig. 2. KBE model for assembly sequence optimisation. 
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Fig. 4. The RSM response optimization of BPNN’s parameters. 
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Fig. 5. The parts list and exploded view of a toy car. 
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Fig. 6. The complete RMG and APD of a toy car. 
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Fig. 7. The parts list and exploded view of a motorbike. 

 

 

 

Fig. 8. The complete RMG and APD of a motorbike. 
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Fig. 9. The parts list and exploded view of a toy boat. 

 

 

 

Fig. 10. The complete RMG and APD of a boat. 
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Fig. 11. An assembly sequence prediction via BPNN engine 1. 

 
Fig. 12. An assembly sequence prediction via BPNN engine 2. 

Table 1  Information on the factors’ assumed settings at different levels via Taguchi  
Method. 

Item Control factor Level 1 Level 2 Level 3 

Ft Transfer function 
Hyperbolic 

Tangent  
Sigmoid  

Nh Number of neurons in the hidden layer 8 13 18 
Rl Learning rate 0.7 0.8 0.9 
Mt Momentum 0.7 0.8 0.9 
Ep Epochs 20,000 35,000 50,000 
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Table 2  Information on the factors’ assumed settings at different levels.   

Item Control factor Level 1 Level 2 

A Number of neurons in the hidden layer 4 18 
B Learning rate 0.3 0.9 
C Momentum 0.5 0.9 
D Number of epochs 10,000 50,000 

 

Table 3  The optimal assembly sequence of a toy car. 
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Table 4  The optimal assembly sequence of a toy motorbike.  
 
 
 
 
 
 
 
 
 
 

 
 
 

Table 5  The optimal assembly sequence of a toy boat. 
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Table 6  Comparisons of BPNN performance between Taguchi method and DOE  
approach. 
 

Item Training RMSE Testing RMSE Approach 

BPNN engine 1 0.055357604 0.015026421
Taguchi method 

(13-0.9-0.9-35000) 

BPNN engine 2 0.048829895 0.010480437
DOE 

(15-0.9-0.9-50000) 
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最佳化類神經網路(ANN)引擎及知識庫。最後，應用 UG/KF 二次
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英文： 

In recent years, the efficient integration among CAX 
(CAD/CAM/CAE) systems through knowledge-based engineering 
(KBE) and Computer aided design (CAD) systems is employed to 
achieve intellectual design, assembly, manufacturing, and maintenance 
in most industries. Assembly sequence planning (ASP) is normally 
based on engineers’ personal experience and intuition, and lack of 
theoretical support in determining spatial relative positions and 
assembly relationship constraints of product components. Thus, the 
aim of this project is to develop the KBE assembly sequence planning 
system and further generate an optimal assembly sequence applying 
weight, volume, geometric features, contact relationships and total 
penalty values as input parameters of neural networks (NN), and an 
output variable (optimal assembly sequence) derived by Above graphs, 
Relational model graphs, assembly precedence graphs (APD) and 
analysis of spatial constraint relationships to construct a robust 
NN-based ASP engine and Knowledge database. Finally, the CAD 
second development tool, Unigraphics/Knowledge Fusion (UG/KF), is
herein implemented to complete the KBE assembly sequence planning 
system through the integration of NN engine and UG/CAD system.   
 

Keywords: knowledge-based engineering, assembly sequence 
planning, assembly sequence optimization, neural networks, 
Knowledge Fusion. 
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