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中文摘要 

 

本研究計畫之主要目的為以遺傳進化程式(GE)建立北臺灣翡翠水庫之每月水質預測模式, GE具有

發掘重要輸入變數之能力, 並且將其自動組成數學方程式, 本計劃中 GE 模式以十五個輸入變數來決

定最適合之非線性方程式, 可預測水庫中之總磷(TP)濃度, 結果經過GE程序搜尋出三個顯著的輸入因

子: 包括兩項 TP 來源 (上游兩個支流 TP)與最大月降雨量, 因為 GE 模式可有效的模擬水庫水質之動

態過程, 接下來則利用巨觀遺傳演算法(MGA)為最佳化模式結合此 GE 預測模式, 藉以控制從集水區

而來的營養源, 發現可有效的維持水庫中 TP 濃度。 

 

關鍵詞: 遺傳進化程式(GE), 水質預測模式, 遺傳演算法(GA), 總磷(TP) 

 

 

 



 III

Abstract 
The objective of this study is to establish a monthly water quality predicting model using a grammatical 

evolution (GE) programming system for Feitsui Reservoir in Northern Taiwan. Grammatical evolution (GE) 
has an ability to find out significant input variables and combine them to form mathematical equations 
automatically. In this study, GE model was fed with fifteen input variables to determine a reasonable 
nonlinear mathematical equation for predicting the total phosphorous (TP) concentration in reservoir. Three 
significant input variables, including two TP sources and maximum rainfall were chosen through GE process. 
Because the obtained GE model can effectively simulate the dynamics of reservoir water quality, a 
Macro-Genetic Algorithm (MGA) was then used as an optimization model mixed with this GE predicting 
model to control the nutrient loads from the watershed and maintain the in-reservoir TP concentration 
efficiently. 

 

Keywords：grammatical evolution (GE), water quality predicting model, genetic algorithm (GA), total  
        phosphorous (TP)
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1. Introduction 
Taiwan is located in a transition zone between the tropical and subtropical climates and is characterized 

by high temperature and ample rainfall. In the present time, the reservoirs provide about 70% of drinking 
water for a population of nearly 23 millions and industrial water use in Taiwan. According to Kao et al. 
(2006), various types of anthropogenic disturbance are affecting Taiwan watersheds. Nutrient loads from 
excessive watershed development continue to increase, resulting in accelerated eutrophication in many 
reservoirs (Kuo et al., 2007). Therefore, we developed a nutrient model to simulate the behavior of nutrient 
loads in an important reservoir located in Northern Taiwan. In this study, the model is based on data from 
nutrient loads of a main creek and two tributaries to forecast the total phosphorous (TP) concentration in 
Feitsui Reservoir. 

Evolutionary computation techniques are based on a powerful principle of evolution i.e. survival of the 
fittest. They are considered to be very efficient optimization methods. Among these methods, genetic 
algorithm (GA) is one of the most popular search algorithms. But there are some kinds of difficulties of GA 
related to the fixed-length encoding and premature convergence. Indeed; researchers have successfully used 
evolutionary algorithms for automatically generating programs or equations among the inputs and outputs. 
The lately developed grammatical evolution (GE) technique is a biologically plausible approach that performs 
the evolutionary processes on simple variable-length binary strings. This new data structure is flexible and it 
allows researchers to exploit benefits of genetic algorithms. Chen et al. (2008) applied it to improve the 
remote monitoring on water quality in a subtropical reservoir with satellite imagery successfully.  

 

2. Grammatical Evolution 
Grammatical evolution (GE) is an evolutionary automatic programming type system that combines a 

variable length binary string genome and Backus-Naur Form (BNF) grammar to evolve interesting structures. 
Variable length binary string genomes are used with each codon representing an integer value where codons 
are consecutive groups of 8 bits. The integer values are used in a mapping function to select an appropriate 
production rule from the BNF definition; the numbers generated always represent one of the rules that can be 
used at that time (Elseth and Baumgardner, 1995). The details of this procedure are described as the 
following: 

 
2.1 Backus-Naur form 

BNF is a notation for expressing the grammar of a language in the form of production rules (Naur, 1963). 
BNF grammars consist of so called terminals representing the items that can appear in the language, e.g., +, -, 
etc., and nonterminals, which can be expanded into one or more terminals and nonterminals. A grammar can 
be represented by the tuple {N, T, P, S}, in which N is the set of nonterminals, T the set of terminals, P is a set 
of production rules that maps the elements of N to T, and S is a start symbol that is a member of N. When 
there are a number of productions that can be applied to one particular N, the choices are delimited with the 
‘|’ symbol. 

Below is a BNF example, where 
N = {expr, op, pre_op} 
T = {Sin, Cos, Log, +, -, *, /, Variable X, Constant 1.0} 
S = <expr> 
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And P can be represented as: 
（1）<expr> :: = <expr><op><expr>…………………..rule 0 
             | ( <expr><op><expr>)………..……….rule 1 
             |<pre-op> (<expr>)…………..………...rule 2 

|<var>……………………….…..……...rule 3 
（2）<op> :: = + …………………………..……….…..rule 0 
            | - …………………………………….….rule 1 
            | / …………………………………….….rule 2 
            |* …………………………………….….rule 3 
（3）<pre-op> :: = Sin …………………..………….…rule 0 
               | Cos ………………..………….……rule 1 
               | Log ………………..………….……rule 2 
（4）<var> :: = X  …………………..………….…….rule 0 
            | 1.0 …………………………………..…rule 1 
 
2.2 Mapping Process 

The genotype is used to map the start symbol onto terminals by reading codons of 8 bits to generate a 
corresponding integer value from which an appropriate production rule is selected by using the following 
mapping function: 

Rule = (codon integer value) MOD (number of rules for the current nonterminal)…….(1) 
Considering the following rule, i.e., given the nonterminal op, there are four production rules to select 

from: 
<op> :: = +  ………………………… ..rule 0 

         | -  …………………………. .rule 1                             |    
/  ………………………….. rule 2 

       |*  .…………………..…….. rule 3  
If we assume the codon being read produces the integer 6, then 
6 MOD 4 = 2 
would select <op> as rule 2:  /. Each time a production rule has to be selected to map from a 

nonterminal, another codon is read. In this way, the system traverses the genome. 
For example, considering the individual in Table 1, there are fourteen 8-bit binary codons in one string. 

The decoding process is described as follows: 
 

(1) First, concentrating on the start symbol <expr>, four possible productions to be chosen are distinguished. 
To make this choice, we read the first codon from the chromosome “11001000” and use it to generate a 
number “200”. Because the standard decode of the binary 11001000 equals to 200. This number will 
then be used to decide which production rule to use according to Eq. (1) in BNF. Thus, we have 200 
MOD 4 = 0, meaning we must take the zeroth production, rule (0), so that <expr> is now replace with 

<expr><op><expr>. 
 

(2) Continuing with the first <expr>, i.e., always starting from the leftmost nonterminal, a similar choice must 
be made by reading the next codon value 160 and again using the given formula we get 160 MOD 4 = 
0，i.e., rule 0. The leftmost <expr> will now be replaced with <expr><op><expr> to give  
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<expr><op><expr><op><expr>. 
(3) Again, we have the same choice for the first <expr> by reading the next codon value 206, the result being 

the application of rule 2 to give 
  <pre-op>(<expr>)<op><expr><op><expr>. 
(4) Now, the leftmost <pre-op> will be determined by the codon value 96 that gives us rule 0, which is 

<pre-op> becomes Sin. We have the following:  
  Sin(<expr>)<op><expr><op><expr> 

. 

. 

. 
(14) The mapping continues until eventually we are left with the following expression: 
  Sin(X)*Cos(X)+1.0 
 

Notice that if there had been any extra codons, they would have been simply ignored during the 
genotype-to-phenotype mapping process. It is possible for individuals to run out of codons and in this case, 
we wrap the individual and reuse the codons. This technique of wrapping the individual draws inspiration 
from the gene-overlapping phenomenon, which has been observed in many organisms (Elseth and 
Baumgardner, 1995). It is possible that an incomplete mapping could occur even after several wrapping 
events and in this case, the individual in question is given the lowest possible fitness value. 

Because there is a problem that only integers can be presented by using the binary coding scheme 
mentioned above, we revised it as a real-coded representation. The real numbers which imply that, each 
chromosome is a real-valued vector, as opposed to binary-coded GA, where chromosomes are 0-1 vectors. It 
is very useful and efficient to generate the real-number constants and coefficients shown in these output 
equations. When a codon is decoded as a constant, the value of real-coded genome can be generated directly. 
Whereas mapping a codon to the BNF rule, just need to round it off as a non-negative integer within the 
range between 0~255 then choose one corresponding BNF rule. 

Fig. 1 shows a combination of GE and GA, called GEGA, to generate the optimal relationship among 
inputs and outputs automatically. First, a GE was employed to transfer the real-coded string through BNF 
grammars to mathematical function. The data from several bands of remotely sensed imagery were used in 
the GE as inputs to predict the water quality in the reservoir. Further, a GA was incorporated with this GE to 
optimize the objective value of those functions. In other words, the GA was used to determine the most 
proper relationship among the input and output data pairs.  

 
2.3 Fitness Function 

The correlation coefficient (CC) between predicted and actual values is adopted as the fitness function of 
GE. Through several experiments, it is observed that this fitness function can accelerate the speed of search 
procedure compared with using the root mean squared error (RMSE) directly. It is able to achieve both “high 
linear correlation” and “small RMSE”simultaneous in most cases, so we chose the former as the objective 
function. This study therefore employed single linear regression analysis to decrease the RMSE of estimation 
(Yeh et al., 2010). 

fy ⋅+= βα ………………………………………………………………….(2) 
where 

f = output value of data predicted bythe GE; 
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  y = actual output value of data in the dataset; 

 βα and = the intercept and slope, respectively. 

3. The Case Study 

3.1 Feitsui Reservoir 
Feitsui Reservoir at 25027’ N and 121033’ E is the most important reservoir of Northern Taiwan, 

supplying drinking water for more than five million people in the Taipei City. The main dam is located at the 
downstream of Peishih Creek, a tributary of Hsintien Creek (Fig. 2). The reservoir construction started in 
mid-1979 and completed in 1987 with an initial storage of 406× 106m3. It has a surface area of 10.24 km2 (at 
EL.170m), and its catchments area is 30 times the total reservoir area. With about 20 km in length, the 
mainstream is of meandering morphology. The effective storage capacity near the dam was 359 million m3, 
39.68 m and 113.5 m for the mean depth and maximum depth, respectively. The average bed slope is 0.3%. 
The main landscape in the reservoir watersheds is terrace and hardwood montane. Most banks of this reservoir 
are the previous agricultural farms, primarily tea farms, which were flooded after the reservoir operation. The 
average annual precipitation is around 2,500 mm or more. The main geological substrates are interstratified 
with sandstone and shale formed after the Oligocene. The primary soils are Entisol and Inceptisol according to 
Soil Taxonomy. Agricultural activities are surrounded the catchment area, while there are no industrial 
activities over the catchments, and accordingly the reservoir is isolated from any industrial pollution sources. 
The atmospheric influx and domestic sewage as well as agricultural fertilizers would be the primary sources for 
most anthropogenic chemicals. Feitsui reservoir is one of the most extensively monitored reservoirs in Taiwan. 
Although water quality in Feitsui Reservoir is among the best in Taiwan, the reservoir still receives much 
attention because of significant watershed nutrient loads. The nutrient loads are mainly from non-point 
agricultural and tourist activities. Under the Carlson trophic state index, water quality of the reservoir is listed 
as mesotrophic most of the time and eutrophic for only a few months in recent years.  

 
3.2 TP Data Set 

All the nutrient loads in Feitsui Reservoir were considered the summation of three sources of the main 
flow Peishih Creek and two tributaries, Diyu Creek and Kingkwa Creek in this case study (Fig. 2). The monthly 
monitoring data records of 1996–2005 were obtained from the Feitsui Reservoir Administration Bureau and the 
Research Center for Environmental Change, Academia Sinica. The first 6-year records were used for model 
training (calibration) and the following 4-year records for model testing (verification) The input variables 
includes the phosphorus loads (which indicates the main inflow Peishih Creek, the tributaries Diyu Creek, and 
Kingkwa Creek), two meteorological variables (including average and maximum rainfall inthe watershed), and 
two hydrological variables (including inflow and outflow). These seven input variables are chosen as the main 
factors to predict the TP in reservoir. Study done by Kuo et al. (2006) used similar data sets in reservoir water 
quality prediction. However, the TP concentrations in Feitsui Reservoir become increasingly high in recent 
years. Under such circumstance, by employing only the seven input variables early mentioned cannot achieve a 
satisfied accuracy of prediction in this study. Therefore, total fifteen input variables contain seven input 
variables described above at time step t and the other seven input variables: their values one step ahead (time 
step t-1), as well as one input variable: the TP in reservoir at time step t-1. This system identification problem 
may be viewed as a searching for a proper function (and its parameters) which maps fifteen input values onto an 
output value (average TP in reservoir at time step t). Table 2 presents the statistical parameters of the data set 
used in this study in order to prescreen the data characteristics. In the Table 2, the xmean, Sx, Cv, xmax and xmin 
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denote the data mean, standard deviation, variation coefficient, maximum and minimum, respectively. 
 

3.3 Models Performances Evaluation 
The root mean square errors (RMSE) and mean absolute errors (MAE) denoted below are used as the 

comparison criteria to evaluate the models performances in these applications. 

∑
=

=
N

1i

2
ii predicted)Y-observed(Y

N
1RMSE

 …………………………..(3)  
 

∑
=

=
N

1i
ii predictedY-observedY

N
1MAE

………………………………..(4)
 

 
where N is the number of data, Yi is the TP concentration for the time step i. 
 

3.4 Results 
The function library types in BNF include several general mathematical operators such as {+, -, *, /, LN, 

EXP, POWER}. The IGE model was carried out for three times (runs). Results of these three mathematical 
formulas are listed as follows: 

)X*X*(181.81*199.94)X-(X*0.0000001119.5Y 311211 ++= ..…….(5) 

Where 
 X1 is the TP concentration (μg/L) of tributary Diyu Creek at time step t.  
 X3 is the TP concentration (μg/L) of main inflow Peishih Creek at time step t. 
X12 is the maximum rainfall（mm）in the watershed at time step t-1. 
Y is the average TP concentration (μg/L) in the reservoir at time step t 

Only three input variables, square of X1, X3 and X12, were chosen automatically from the total fifteen input 
variables by GE to form the equation shown as Eq. (5). From the statistical results, the RMSE value found is 
equals to 9.96 at the training. The scatter plots was shown in Fig. 3. 

 
3.5 Optimization of the Water Quality Control 
 
3.5.1 MacroGA (MGA) 

A macro genetic algorithm (MGA) was adopted to optimize the control of nutrient loads of phosphorus 
from the watershed. A flow diagram of this combined method is shown in Fig. 4. In this study, the IGE model is 
used to forecast average TP in reservoir. Then, the MGA is used as a search strategy to quantify the phosphorus 
reduction rates of the inflows so that the trophic state can be improved to reach different lower levels 
representing by the Scenarios 1 and 2. The proposed approach has the advantage of coupling the nonlinear 
function generator of the IGE with the global solution exploration of the MGA. 

The genetic algorithm (GA) is an iterative procedure, which includes a population of individuals that are 
candidate solutions to specific domain. During each generation, the individuals in the current population are 
related to their effective evaluations, and a new population of candidate solutions is formed by specific genetic 
operators like reproduction, crossover, and mutation. These steps are repeated until the convergence criterion is 
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satisfied or a predetermined number of generations are achieved. According to a couple of our previous works, 
real-coded GAs has advantages over binary coded GAs (Chang and Chen, 1998; Chen, 2003a; Chang et al., 
2005). Hence, in this study, we only considered real-coded GAs. Blend crossover (BLX-α) uniformly picks 
values that lie between two points contain the two parents, but may extend equally on either side determined by 
a user specified GA-parameter α (Chen and Chang, 2007). 

In standard GA, the selection operator chooses individuals with a probability proportional to their relative 
fitness, but this can lead to “premature convergence”. Therefore, a macro-evolutionary algorithm (MA) is 
presented as a selection scheme to improve the capability of searching global optimum solutions in GA, which 
is called MGA. Unlike population-level evolution, which is employed in standard evolutionary algorithms; 
MGA is evolution at the higher level. The model exploits the presence of links between “species” that represent 
candidate solutions to the optimization problem (Chen, 2003 b). In addition, MGA has many advantages when 
compared with GA using a traditional selection operator. First, MGA can reach higher fitness values than 
traditional GAs for equal population sizes. Second, the probability of success in reaching a good fitness value 
in a typical run is higher in MGA than in GA. Finally, the time needed to reach the optimum using the same 
population size is lower in MGA (Marin and Sole, 1999). This method has been applied successfully to water 
resources optimization problems that can be formulated in terms of an optimization function even if the 
function is highly multimodal or highly multidimensional (Chen et al., 2007), . 

 

3.5.2 Objective Function 
The objective function of optimization model can be written as: 

∑ + 2
3

2
1Minimize μμ ……………………………………………………….(7) 

subject to: 

The in-reservoir TP concentration achieves the expected water quality which is considered as two 
scenarios: the first scenario is set to be 20 (μg/L) and the second scenario is set to be 30 (μg/L). 

Here u1 is the phosphorus reduction rate of the tributary Diyu Creek; and u3 is the phosphorus reduction 
rate of the main flow Peishih Creek. The range of the two phosphorus reduction rates is set to the same 
interval 0–1. Applying real-coded GA to the optimization problems, chromosomes may be generated that fail 
to meet constraints. Therefore, each generated chromosome must be checked against such constraints.  

The optimum values of the phosphorus reduction rate of the two sources, u1 and u3, obtained by using the 
MGA for scenario 1 to control Feitsui Reservoir water quality are presented in Fig.5. The average phosphorus 
reduction rate (u1) of scenario 1 (TP in reservoir under 20 (μg/L) is 0.024(2.4%) for the tributary Diyu Creek; 
and average u3=0.298 (29.8%) for the main flow Peishih Creek. It indicates that the reduction rate of main flow 
is larger than that of the tributary at most time periods. In the scenario 2, the optimum values of u1 and u3 are 
also presented in Fig.5. Based on the calculation, the average u1 and u3 are equals to 0.016 (1.6%) and 0.022 
(2.2%), respectively. The result shows that these two reduction rates are close to each other for scenario 2 (TP 
in reservoir under 30 (μg/L). Fig. 6 reveals the TP concentration in Feitsui Reservoir through reducing the 
phosphorus loads from the watershed for scenarios 1 and 2, respectively. In addition, the average reduction rate 
of TP in reservoir equals 81% for scenario 1; while it reaches 95% for scenario 2. 
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4. Summary and Conclusions 
This paper provides a grammatical evolution (GE) method combining with macro-evolutionary genetic 

algorithm (MGA) to potentially predict and control the total phosphorous (TP) concentration of a reservoir in 
Taiwan. Statistically, the result shows that the GE is not as simple as basic formula; but it provides an 
appropriate model to simulate TP concentration. From the results of GE, three input variables were found 
available. These three inputs include the TP concentration of tributary Diyu Creek at time step t (X1), the TP 
concentration of main inflow Peishih Creek at time step t (X3) and the maximum rainfall in the watershed at 
time step t-1 (X12), to predict the TP concentration in reservoir at time step t (Ｙ). 

It is seen from the results that the MGA is able to identify control schemes that reduce the in-reservoir 
TP concentration and water quality in the reservoir can be expected to achieve a lower level. For scenario 1, 
if the watershed loads are reduced by average 16%, the TP in reservoir will stay below 20 (μg/L). In the 
scenario 2, if the watershed loads are reduced by average 1.9%, the TP in reservoir can be under 30 (μg/L). 
Finally, it is concluded that the mixture of GE with MGA has a potential ability to optimally control nutrient 
loads from the watershed. 
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Table1.Example of each codon converted into corresponding BNF grammar 

No. 8-bit binary codon Integer value Mapping function BNF grammars
1 11001000 200 200 MOD 4 = 0 <expr><op><expr>
2 10100000 160 160 MOD 4 = 0 <expr><op><expr><op><expr>
3 11001110 206 206 MOD 4 = 2 <pre-op>(<expr>)<op><expr><op><expr>
4 01100000 96   96 MOD 3 = 0 Sin(<expr>)<op><expr><op><expr>
5 00011011 27   27 MOD 4 = 3 Sin(<var>)<op><expr><op><expr>
6 01001000 72   72 MOD 2 = 0 Sin(X)<op><expr><op><expr>
7 01101011 107 107 MOD 4 = 3 Sin(X)*<expr><op><expr>
8 00111110 62   62 MOD 4 = 2 Sin(X)*<pre-op>(<expr>)<op><expr>
9 00010110 22   22 MOD 3 = 1 Sin(X)*Cos(<expr>)<op><expr>
10 00110111 55   55 MOD 4 = 3 Sin(X)*Cos(<var>)<op><expr>
11 01011000 88   88 MOD 2 = 0 Sin(X)*Cos(X)<op><expr>
12 01100100 100 100 MOD 4 = 0 Sin(X)*Cos(X)+<expr>
13 11001011 203 203 MOD 4 = 3 Sin(X)*Cos(X)+<var>
14 00101001 41   41 MOD 2 = 1 Sin(X)*Cos(X)+1.0  
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Table 2. The statistical parameters of data set 

Variables 
 

Statistical 
parameters 

Diyu 

Creek 

( 1X1 , X8t t− )

Kingkwa 

Creek 

( 1X2 ,X9t t− ) 

Peishih 

Creek 

( 1X3 ,X10t t− )

Average 

rainfall 

( 1X4 ,X11t t− )

Maximum

rainfall 

( 1X5 , X12t t− )

Inflow 

( 1X6 , X13t t− ) 

Outflow 

( 1X7 ,X14t t− )

TP 

( 1Y ,X15t t− )

Units CMSD CMSD CMSD mm mm CMSD CMSD /g Lμ
t  31.78 36.83 35.92 11.05 89.37 1000.51 1013.26 23.13 

meanx  
1t −  31.85 36.88 36.06 11.09 89.84 1005.18 1017.00 23.04 

t  22.39 36.32 30.33 9.62 86.03 906.43 1037.20 12.82 
xS  

1t −  22.47 36.47 30.42 9.65 86.24 908.81 1040.77 12.84 

t  0.7 0.99 0.84 0.87 0.96 0.91 1.02 0.55 
v mean( / )xC S x  

1t −  0.71 0.99 0.84 0.87 0.96 0.90 1.02 0.56 

t  
maxx  

1t −  
100 255 120.72 70.54 468.8 6937.24 7287.83 98.57 

t  
minx  

1t −  
4.9 6.25 6.2 1.18 8.9 98.86 161.65 5.26 
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Set parameters
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Fig. 1. The flowchart of GE combined with GA 
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Fig. 2. Location of Feitsui Reservoir and its watershed 
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Fig. 3The scatter plots of GE  
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Fig. 4. Flowchart of GE predictor combined with MGA optimizer 
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Fig. 5. u1 and u3 for scenarios 1 and 2  
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Fig. 6. The in-reservoir total phosphorus (TP) concentration before and after reduction of phosphorus loads 

from the watershed (Scenarios 1 and 2) 
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