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Abstract 

Biological systems are often organized by multi-scale functional subsystems(modules). Accurate 

system-level modularity organization can provide valuable information on isolated subsystem models of 

subcellular processes or physiological phenomena. Current methods for modularity detection are mostly 

optimization-based and it is difficult to trace the origin of  the  unsatisfactory results, which may be due to  

poor data, inappropriate objective function selection or simply result from natural evolution, and hence no 

system-level accurate modularity can be offered. Motivated by the evolution idea and using robustness and 

adaption as guiding principles, we propose a new approach that can identify significant multi-scale functional 

modules that are sufficiently accurate at the system level. The success of this evolution strategy is 

demonstrated by applying to the yeast protein-protein interaction network and the neuronal network of C. 

elegans. Several functional subsystems of important physiological phenomena can be revealed. For example,   

the cell cycle subcellular process in yeast can be successfully dissected into functional modules of cell cycle 

control, cell size check point, spindle assembly checkpoint, and DNA damage check point in G2/M and S 

phases. The interconnections between these modules provide clues on the signal stimulus entries of check 

points into the cell cycle, which are consistent with experimental findings. For the C. elegans, biologically 

plausible subsystem models of sensorimotor, chemosensation and egg-laying, mechanosensation and 

locomotion were extracted from the whole neuronal network. Previous unknown pathways of how chemotaxis 

affects egg-laying rate, subtle insights into functions of neurons, and a simplified neural circuit model for 

thermotaxis, can be obtained from the detected modularity organization. This evolution strategy can also be 

applied adequately to multi-scale biological systems from mesoscopic scale, e.g cortical network in brain, to 

subcellular molecular networks. 

Keywords: 
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摘要 

本計劃提出功能關聯函數最佳化的想法建構一個偵測生物網路模組結構之計算理論，功能關聯函

數最佳化方法的優點在於可偵測重疊模組結構、沒有模組大小解析極限以及 100%的蛋白質遮蓋率，我

們將此理論方法應用至酵母菌蛋白質交互作用網路與線蟲神經元網路上以證明其於實際生物網路之可

應用性。對於酵母菌蛋白質交互作用網路，我們得到了與實驗數據吻合之蛋白質功能分佈、功能模組

大小分佈之理論預測結果，進一步檢視酵母菌細胞週期生理機制，我們由所計算出的模組結構拼出一

個包含細胞週期控制單元與檢查點的完整細胞週期子網路系統，並且從這個細胞週期子網路系統之模

組間交互作用的關係，我們可以獲得許多細胞週期檢查點與控制單元之生物訊號傳遞模式。於線蟲神

經元網路，我們提出的方法是首例可以解析線蟲神經元網路功能單元的工具，我們也因此從整個線蟲

神經元網路抽取出與觸覺、化學感應與生蛋、移動、力學感應生理現象有關之神經元迴路，更進一步

提出了線蟲熱感應等溫運動之簡化神經迴路模型與化學感應影響產蛋速率之神經元傳導路徑。 

 

關鍵字: 

生物網路、模組、穩健性、演化



研究報告內容: 

I. 前言與研究目的 

自從 1999 年 Barabasi 等人提出無尺度複雜網路(Scale free network)的概念後[1]，
有相當多的學者開始從事複雜與生物網路之研究，並且這些網路也被證實為 scale 
free network[2,3]，E. Ravasz 與 A.L. Barabasi 進一步說明現實世界存在的複雜網路大

多是階層式網路(hierarchical network)[4]，生物網路如蛋白質交互作用網路、新陳代

謝網路也被驗證是階層式網路結構[5,6]。階層式網路有一個特點就是具有模組結構

(modular structure)，如圖一所示，這些模組結構是由緊密連結之節點所組成，而模組

間之交互作用相較於模組內稀疏許多，Dr. Lee Hartwell 指出細胞的功能例如訊息傳

導、新陳代謝是由一些彼此有許多交互作用的分子所完成[7]，在生物網路當中這些

模組結構更是具有真實生物功能的小單元，所以若能了解生物網路中具備獨立運作

功能之功能模組必定對於生命運作現象的簡化模型建立與了解有很大的助益，於是

有相當多的研究投入於複雜與生物網路之功能模組偵測之議題上。 
           

 

圖一. 網路模組結構示意圖。 

目前要鑑定生物網路功能模組所需要克服的問題共計有， 

      (a) 重疊模組結構問題:  
生物網路功能模組的特色是高度重疊模組結構，指一個節點可以被歸屬於多個

模組結構，從圖二酵母菌蛋白質功個數分佈可以看出酵母菌蛋白質具有單一生物功能

約只占 40%，具有兩個以上功能之蛋白質高達約 60%，而且一個蛋白質最多可同時

擁有 13 種不同生物功能，所以生物網路是具有高度重疊模組結構之網路。                
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          圖二. 酵母菌蛋白質功個數分佈圖。 
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 (b) 模組大小解析度問題: 
         從圖三我們可以知道酵母菌功能模組大小分佈相當廣泛，小至兩三個蛋白質即可

組成一個功能模組，大至約 300 個蛋白質方能組成一個功能模組，在酵母菌功能模組

當中，組成蛋白質個數為 2、3、4、5 的模組佔了相當大的比例，所以一個能夠有效偵

測生物網路功能模組之計算理論需要免除於模組大小解析度問題，並且其所獲得之模

組大小分佈結果數據需與真實生物資料符合。 
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圖三. 酵母菌功能模組蛋白質個數分佈。 

     (c) 模組結構遮蓋率(coverage)與精確度(accuracy)問題: 
好的偵測生物網路模組結構之方法必須要有 100%遮蓋率與高精確度，一個能夠有

效偵測生物網路功能模組之計算理論需要兼顧遮蓋率與精確度，最好是達到遮蓋率

100%且具有相當高之精確度。有鑒於以上所提偵測生物網路模組結構將遇到的困難，

本計劃提出一個基於演化思考的新方法於生物網路功能模組之計算理論，克服上述之

困難，並將此方法應用於真實生物網路實例研究中。   
 

II. 研究方法: 

考慮與解決生物網路重疊模組結構，網路中的每一節點將賦予模組機率分佈函數 ，

即為節點 i 隸屬於模組σ之機率，如此一來我們可以把網路中的節點隸屬於多個模組事件轉

換為機率事件，此外為了克服網路模組大小解析度問題，我們仿照 functional correlation 定義

需考慮模組大小分布 ，為了簡化計算量我們只考慮網路中的點與其有直接交互作用之點

的功能關聯函數，而且採取疊代計算取代模擬退火來局部最佳化功能關聯函數，我們將此想

法表示如下， 
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          網路模組結構計算內容與步驟條列如下，             

(1) 隨機亂數產生初始模組機率分佈函數  )0()(iPσ
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計算初始模組大小分布       
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(2) 更新模組機率分佈函數     
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   不成立則 n=n+1; 跳至步驟 2並重複步驟 2,3,4 ;  

(5) 若 ，則點 i 隸屬模組σ，λσ >)(iP λ為選取之門檻值。 

III.結果與討論 

我們將此計算理論應用至酵母菌蛋白質交互作用網路與線蟲神經元網路，獲得了許多有用且

豐富的生物知識成果，由於詳細內容繁多請參考附件。
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Biological systems are often organized by multi-scale functional subsys-

tems(modules). Accurate system-level modularity organization can provide

valuable information on isolated subsystem models of subcellular processes or

physiological phenomena. Current methods for modularity detection are mostly

optimization-based and it is difficult to trace the origin of the unsatisfactory

results, which may be due to poor data, inappropriate objective function selec-

tion or simply result from natural evolution, and hence no system-level accurate

modularity can be offered. Motivated by the evolution idea and using robustness

and adaption as guiding principles, we propose a new approach that can iden-

tify significant multi-scale functional modules that are sufficiently accurate at the

system level. The success of this evolution strategy is demonstrated by applying

to the yeast protein-protein interaction network and the neuronal network of C.

elegans. Several functional subsystems of important physiological phenomena

can be revealed. For example, the cell cycle subcellular process in yeast can be

successfully dissected into functional modules of cell cycle control, cell size check

point, spindle assembly checkpoint, and DNA damage check point in G2/M and

S phases. The interconnections between these modules provide clues on the

signal stimulus entries of check points into the cell cycle, which are consistent

with experimental findings. For the C. elegans, biologically plausible subsys-

tem models of sensorimotor, chemosensation and egg-laying, mechanosensation

and locomotion were extracted from the whole neuronal network. Previous un-

known pathways of how chemotaxis affects egg-laying rate, subtle insights into

functions of neurons, and a simplified neural circuit model for thermotaxis, can

be obtained from the detected modularity organization. This evolution strategy

can also be applied adequately to multi-scale biological systems from mesoscopic

scale, e.g cortical network in brain, to subcellular molecular networks.

Understanding multi-scale functional complexity of biological systems can help to unravel

the secret of life. Functional complexity of biological systems are usually performed by in-
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teracting components(genes, proteins, metabolites and etc.) to form the so-called biological

networks. These interacting components are organized spatially and temporally into inter-

connected subsystems(modules) in hierarchy, which in turn cooperate to perform multi-scale

cellular functions. Using high throughput techniques, the interactomes of biological systems

can be realized, computational identification of consistent modules in a biological system at

the system level is one of the most significant and challenging problems in systems biology.

The accurate information of interconnected modules of a biological system not only can

reveal the functions of the members within modules, but also can shed light on how they

are orchestrated together to form cellular machines in subcellular processes.

Modularity in biological networks has been discovered to possess overlapping and hier-

archical structures [1, 2, 3, 4, 5, 6]. Modules in the same or different hierarchical levels can

overlap heavily with each other, i.e. possess common members that carry out multiple func-

tions. In a hierarchically organized biological network, a large module can be decomposed

into several submodules, these submodules can be further subdivided into even smaller sub-

modules and so on(See Fig. 1a). These modules are diverse in size, organized at various scales

simultaneously or dynamically to perform multi-scale functions. Theoretically, there is no

strict definition for modules, and the so called ”assortative mixing” rule is widely accepted

in detecting modules[7]. Modules are defined as clusters of densely intra-connected nodes

with sparse links between them. Assortative mixing is a popular definition for modules, but

there are alternative definition of modules using link clustering[8, 9].

In an evolving network, modular structures may facilitate evolutionary changes and are

governed by robustness and adaptation[10]. For survival and adaptability, modularity orga-

nizations must be robust against environmental and genetic perturbations, but at the same

time evolvable[11, 12]. To compromise between robustness and evolvability in biological

systems, the generation of a variety of non-lethal phenotypes and genetic buffering produces

many evolved modularity organizations. The core function embedded in a module is robust

against changes, and adaptation would drive modularity to be even more robust. On the

other hand the phenotypes are allowed to be changed by altering interactions between the
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modules. However, due to limited resources that can be used to maintain robustness in a

bio-system, modularity cannot evolve to be extremely robust against some perturbations

or the system will be fragile against other unanticipated perturbations, which is harmful

for survival[13, 14, 15]. Hence, modularity in an evolving biological network possesses con-

served parts that were adapted optimally, and some non-adapted parts that deviated from

optimality[16].

Most of the present modular detection theories are optimization-based methods, the over-

lapping and hierarchical characteristics of the modules make the detection of true system-

level modular structures unsatisfactory[5, 17, 18, 19, 20, 21, 22] and suffered from the draw-

back of size resolution limit[23, 24]. The designed objective function could only take partial

set of perturbations into account and the optimal modularity may even be undesirable for

survival upon unanticipated perturbations, and thus fail to give the system-level plausible

modularity. One can never know where the unsatisfactory modules originated from, it can

be due to the optimization scheme, the selection of objective function, or evolution by na-

ture (See Online supporting materials). Without an accurate system-level modularity, it is

difficult to understand how the modules cooperated to build the cellular machines. Hence,

accurate identification of modularity from interactomes at the system level is important and

can provide powerful insight to unravel the pathways and signals stimuli between subcellular

processes, however optimization is not a good scheme to achieve this goal.

Despite cells are open systems, the modularity organizations of adapted robustness trade-

offs among robustness, fragility, limited resources and others, i.e robustness strength located

within the adapted region that is not too high or not too low (as illustrated in Fig. 1b),

possess an essential backbone. The functionally significant membership of these realistic

modules can be revealed by the evolutionary conservative profiles of modularity in adapted

robustness trade-offs with given interactomes. Evolutionary conservation rate of members

in a module tells us their functional significance and reliability. Hence, investigating these

adapted modularity organizations can offer us more biologically plausible system-level modu-

larity than just by using optimazation. Robustness and adaptation can serve as fundamental
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guiding principles to uncover biologically plausible modularity organizations at the system

level. In this paper, this evolution strategy is applied to two real biological networks, the

yeast protein-protein interaction(PPI) and C. elegans neuronal networks, to demonstrate its

applicability on uncovering biological significant modules and revealing important biological

processes from subcellular to cellular scales.

In our evolution strategy approach, modular classification for each node is described

by several functional probability components Pσ if the node has some probability to be

classified into the modules labelled by σ. A node becomes a member of the σ module

if its Pσ component is larger than a chosen threshold. A node with several probability

components larger than the threshold is assigned to multiple modules, and hence overlapped

modular structures can be produced. To apply the evolution strategy to uncover the modular

structure, a robustness function is used to evaluate and select modularity organizations of

adapted robustness trade-offs. The correlation of a node with the σ-module is measured by

the quantity Gσσ which is defined as the ratio of the percentage of directly interacting nodes

that are in the same common module to the percentage of nodes belonged to the same

module in the whole network(See Methods)[25]. The robustness function for modularity,

RM(Pσ), is used to evaluate how robust the modularity(Pσ) is, and is defined as the sum

of Gσσ over all nodes and modules. Presumably, a network would be highly efficient and

more robust against perturbations if common module nodes tend to aggregate together in

the network, i.e have higher value of robustness function RM(Pσ). A real network organized

its modularity structures (defined by the functional probabilities Pσ for each node) toward

the higher value of robustness function if such a network had been evolved and adapted for

a sufficiently long time[25, 26, 16]. Therefore, the functional probability Pσ is hypothesized

to be proportional to Gσσ, i.e nodes within a module tends to evolve to interact directly.

In nature, real modularity is composed of conserved core of modules plus some modules

that deviate strongly from optimality. In our theory, functionally significant modules are

captured by conserved components within modules by examining modularity variants in

adapted robustness trade-offs. Newly evolved and highly variational modules are difficult
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to be detected accurately since they may not have adapted to be robust. Nodes associ-

ated with modules at various hierarchical levels possess different strengths of functional

probabilities. The hierarchical organization is inferred by first identifying the so-called co-

clustered groups which correspond to strongly cohesive modules at the lower level. These

are nodes with high functional probabilities to be frequently classified into the same modules

for adapted robust modularity realizations. Then these co-clustered groups associated to

form more complex hierarchical modular structure. Fig. 1a illustrates how the overlapped

modules can be detected at multi-scales. Module A has classification component σ0, i.e. all

members in modules A have their community probabilities in the σ0 component higher than

the threshold(See Methods for more details). In this example, module A contains three sub-

modules A.1, A.2, A.3 with classification components σ1, σ2, σ3 respectively. For instance,

nodes belonging to submodule A.3 have two components of community probability, σ0, σ3

that are higher than the threshold. In general, nodes within each submodules are stronger

functionally correlated than other nodes in module A, for example for nodes in A.1 the

community probability in components σ1 is larger than that of their σ0 component. Hence,

modules were detected from higher to lower hierarchies as the threshold is being varied

from low to high values. Although our theory appears to be different from the ”assortative

mixing” rule, the assortative mixing rule can be shown to arise from the robustness and

adaptation of modularity organization, but our method is free from the size resolution limit

(See Online supporting materials).

First, we apply the evolution strategy to the yeast protein-protein interaction(PPI). In the

yeast PPI network, embedding particular functions in detected modules is investigated by

the function accuracy of modules, which is defined as the highest percentage of nodes within

a module that have the same function annotation from experimental data. As shown in

Fig. 2a, there are over 70% of modules with function accuracy higher than 0.5. It indicates

that members of most detected modules have the same annotated functions. The k-clique

percolation method has been proposed that could detect overlapped modules[5] and its

results for the yeast PPI network are also shown in Fig. 2a ∼ 2d for comparison. Fig.
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2a shows that the function accuracy for modules detected by k-clique percolation is higher

than those by the evolution strategy. However, members of a module may participate in

the activity of a biological process that is accomplished by various function proteins (as

illustrated in Fig. 3 and discussed below). Those low function accuracy modules often

participate in biological processes with hybrid function components. The results of k-clique

percolation appears to have a higher function accuracy only because it detects the strongly

connected parts of a network, but not the true modular structures. Fig. 2b and 2c show that

our detected modular structures are consistent with real protein annotation data in module

size distribution and number of function distribution for proteins. Such agreement reveals

that both overlapping and hierarchical organizations of modularity are correctly captured.

In Fig. 2b, the percentage of small size detected modules appears to be a little higher than

the real data, but the agreement with the real data greatly improved when the unknown

function modules, whose members are mostly unknown function proteins, are neglected in

the statistics. Such unknown function proteins are clustered in modules, network-based

bioinformatic approaches are difficult to infer accurate functions to these proteins[27].

Fig. 3a and 3b show two low function accuracy modules corresponding to the well-

known cell cycle control and spindle assembly check point respectively. In Fig. 3a, it is a

dynamically regulated module which controls the progress of cell cycle process. The cyclin

dependent kinase(CDK) CDC28 sequentially binds and phosphorylates the cell cycle re-

entry cyclin CLN3, G1/S specific cyclins CLN1,2, S phase cyclin CLB5, G2/M transition

cyclins CLB1-4, to control the progress of cell division from G1 → S → G2 → M . CDC28

binds to CLN3 to trigger the cell cycle process, then binds to CLN1, CLN2 promoting the

cell to bud. After budding, CDC28 phosphorylates CLB5 to begin DNA replication, and

mitosis follows the binding of CDC28 to CLB1-4. Finally, the two significant inhibitors

SIC1 and CDH1 help the cell to return to G1 state, to complete one cycle of cell division.

Although, the cell cycle controlling module is biologically plausible, but only 29.6%(8/27) of

proteins possessing the main function of budding in this module. Our result suggests that

the unknown function protein YPR174C in the cell cycle control module which is localized
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at the nuclear periphery, it probably participates in the cell cycle controlling mechanism.

Fig. 3b shows the detected spindle check point module with function accuracy 0.455(5/11).

The biological signal was propagated from mitotic arrest deficient proteins MAD1, MAD2,

MAD3 to CDC20 and PDS1, then transmitted into cell cycle control module to accomplish

the function of spindle assembly checkpoint[28, 29].

We select the cell cycle to demonstrate how important accurate system-wide consistent

information of modules is for building the cellular machine of biological processes, especially

the signal transmission between functional subsystems. The complete cell cycle machine

can be dissected as a combination of several detected modules, including one controlling

module, cell size check point, DNA damage check point in G2/M and S phases, and spindle

assembly checkpoint (see Fig. 3c). DNA damage response experiment revealed that DNA

damage-induced DDC1 phosphorylation requires RAD24 protein, but RAD9 is not required

for DDC1 phosphorylation, supporting the notion that RAD9 and RAD24 act in different

pathways in DNA damage response[30]. The fact that RAD9 and RAD24 are located in two

different detected modules related to DNA damage further supports such an experimental

inference. It is worth-noting that our approach detected that the protein YDJ1 in the

cell size check point module interacts with cyclin CLN3 to trigger cell cycle entry. Such

a cell cycle triggering mechanism is consistent with the recent experimental discovery that

a growth-associated chaperone YDJ1 releases CLN3 from endoplasmic recticulum to enter

the nucleus and trigger the cell cycle event[31]. Although multi time scales are involved in

the cell cycle process, our results demonstrate that only by considering protein interaction

with typical subsecond time scale can still offer deep biological function knowledge about cell

cycle if accurate and system-wide consistent information on functional subsystems(modules)

was obtained.

The other application is on the neuronal network in C. elegans, it is the simplest

brain connectome with only 281 neurons. In a neuronal network, the synapse network

topology and bursting frequency of neurons are two important parameters to determine

its physiological functions. Here the effect of bursting frequency is not considered, the
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connections of chemical synapses and gap junctions are all treated as undirected edges, the

excitatory or inhibitory nature of the synapses are also ignored, only the network structure

can already reveal significant bioloigcal infomation. The C. elegans neuronal network is

densely connected, its hierarchical and overlapping modularity organization is difficult to

solve and there is still no any satisfactory result up to now. For example, the k-clique

percolation method results in a single module for the whole neuronal network. Even the

methods of optimization of modularity could only detect four large disjoint modules, which

fails to understand their physiological functions[23]. Our theory detected 13 and 24 modules

at thresholds of 0.1 and 0.3 respectively, and the modules are heavily overlapped, which

means that each neuron is responsible for several functions. Fig. 4a, b show that common

module neurons in C. elegans are mostly distributed widely in the worm body, unlike the

mammalian network in which the same function neurons aggregate into cortical areas. The

neurons within a detected module are often of multi neuron types and distributed to several

ganglia (See Online Supporting materials Fig. S4.). It indicated that neurons in C. elegans

such primitive animals are responsible for more functions than advanced mammals.

Fig. 4c ∼ f show several combinations of modules at a threshold value of 0.3, all of them

correspond to specific physiological functions with some of them observed in experiments.

Fig. 4c shows the detected modules can be identified as the sensorimotor modules. The

module enclosed by red lines has sensory functions, e.g thermosensation, chemosensation,

olfaction, etc. Most neurons in this module are amphids, and amphid interneurons. The

other module enclosed by blue lines is the sensory/motor module composed of sensory neu-

rons, ring interneurons and ring motor neurons. Its function is for transmitting the signals

detected by sensory module to nerve ring motor neurons and then to innervate muscles. The

thermotaxis, chemotaxis, olfactory behaviors of C. elegans are controlled by the sensorimotor

modules.

Thermotaxis is an interesting phenomenon in C. elegans in which the worm can track

along the isotherm of previously adapted cultivation temperature. The modules enclosed

by red and blue lines in Fig. 4c are detected modules corresponding to thermosensation
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and sensorimotor behaviors. The hybrid modules control the isothermal motion of C.

elegans[32, 36, 33]. The detected hybrid modules can be further reduced to a simplified

neural circuit model of thermotaxis (Fig. 4d) by selecting key neurons with severe effects on

thermotactic phenotypes and motor neurons [32, 33]. Previous experiments revealed that

AFD, AWC are the primary and secondary temperature sensory neurons, AIY is responsible

for thermophilic motion and AIZ controls cryophilic motion. RIA integrates thermophilic

and cryophilic signals from AIY and AIZ to motor output[32, 33, 34, 35]. The thermal

sensory neurons in the simplified thermotaxis model are AFD(1,4), AWC(1,2), ASE(1,∞),

ASG(1,1), ASI(1,1), ASH(∞,1), where the first and second number in the parentheses are

the shortest path lengths from the sensory neuron to AIY and AIZ respectively, with ∞
indicates unreachable. The smaller distance to AIY/AIZ indicates the stronger correlation

with thermophylic/cryophilic motion. Hence, our results indicate that AFD, AWC, ASE,

ASG, and ASI are the key driving neurons to trigger thermophilic pathway (AFD and AWC

that can trigger thermophilic pathway was previously observed in experiments[32, 33, 36]),

whereas ASG, ASI, and ASH are the key neurons to trigger cryophilic pathway.

Fig. 4e shows the hybrid modules corresponding to the physiological function of how

chemosensation correlates with egg-laying in C. elegans. Neurons enclosed by solid and

dashed lines are members of modules at threshold value 0.3 and 0.4 respectively. The

hybrid module is composed of three modules with the functions of chemosensation and egg-

laying(green line), tail motion(orange), and ventral motion(purple). It has been reported

that chemosensation could affect egg-laying rate in C. elegans[37], but little was known

about how the signals are being conveyed from chemoreceptors to egg-laying motorneurons.

The newly detected module enclosed by the green dashed lines in Fig. 4e suggests possible

pathways on how the signals are transmitted from amphids, via the nerve ring, then to

ventral cord and arrived at vulval motorneurons HSNL, HSNR, VC5, and VC4 in blue

shadowed region 2. It was known that mechanical stimulation such as vibration of culture

medium dish inhibits the egg-laying rate[37], this effect can be understood from mechanical

sensory neurons PVM, AVM, PLMR, PLML, ALML in light blue shadow region 1 in our
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detected chemosensation/egg-laying module. Our modular detection results can have more

subtle explanation on the functions of neurons. For example, the six hermaphrodite-specific

neurons VC1-6 in the ventral nerve cord can be subdivided into two groups[37]: vulval-

proximal VC4, VC5 and vulval-distal VC1-3, VC6 within blue shadowed region 3. VC4

and VC5 have direct synaptic output to vulval muscles, but VC1-3 and VC6 make fewer

neuromuscular junctions with vulval muscles, but have more junctions with ventral muscles.

In our modular detection results, VC5 belongs to chemosensation and egg-laying module,

VC1-3 and VC6 are in ventral motion module. The VC4 neuron is located in both modules.

This result is consistent from the anatomy experimental findings.

The hybrid modules in Fig. 4f correspond to mechanosensation. C. elegans lives in dirt

and eats bacteria, mechanical sensation is important for C. elegans to detect soil particles and

help to find bacterial food sources. Hermaphrodite has 30 mechanoreceptor neurons(MRNs)

that might be used to detect mechanical stimulation[39]. In the hybrid modules, the module

enclosed by red lines is for the function of body mechanosensation. It is composed of MRNs

and motor neurons in ventral and tail. The module enclosed by green lines corresponds to

head mechanosensation. Most members in this module are MRNs and motor neurons in

nerve ring. Neurons in the light blue shadow are the complete 30 MRNs in hermaphrodite.

Fig. 4g illustrates the locomotion hybrid modules, these 3 modules correspond to head,

ventral and tail motion respectively. Other neurons direct the synaptic outputs to these

three modules to perform locomotion in C. elegans.

To summarize, our proposed evolution strategy can infer biologically plausible functional

subsystems(modules) of a biological system at the system level. With the aid of accurate

multi-scale modules, subsystems for specific physiological phenomena can be easily extract

by combining relevant modules. In addition to network interactome data, integrating multi-

sources high throughput data consistently at the system level to infer real functional sub-

systems can accelerate the understanding in biology.
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METHODS

The adjacency matrix A is used to describe the topology of a network with Aij = 1 if

node j interacts with i, and otherwise Aij = 0. Each node i is assigned with a functional

probability P
(i)
σ which is the weight for node i to be classified into the σ module. The

correlation of a node i with the σ-module is measured by the quantity G
(i)
σσ defined as [25]

G(i)
σσ = P (i)

σ

n
(i)
σ

fσ
=

∑
j P

(i)
σ AijP

(j)
σ /ki

fσ
(1)

where n
(i)
σ is the percentage of nearest interacting neighbors of node i that belong to module

σ, ki is the degree of node i, fσ =
∑

i P
(i)
σ

N
is the percentage of nodes belong to the σ module

in the whole network of a total number of N nodes. The robustness function RM , defined

as the sum of G
(i)
σσ over all nodes and modules, is used to measure the robustness of the

modularity organization,

RM

(
P (1)

σ , P (2)
σ , . . . , P (N)

σ

)
=

∑
i

∑
σ

G(i)
σσ =

∑
i,j

∑
σ

P
(i)
σ AijP

(j)
σ /ki

fσ

. (2)

Thousands of modularity variants with adequate values of robustness function are sam-

pled with different initial conditions. To sample the adapted modularity organizations, we

start from a randomly generated initial modularity organization, i.e. assigned arbitrary

functional probabilities Pσ to each node in the network. The robustness function RM can

be calculated using this initial modularity organization. The functional probability is hy-

pothesized to be proportional to G
(i)
σσ,

P (i)
σ =

fσG
(i)
σσ∑

σ fσG
(i)
σσ

. (3)

P
(i)
σ would simply be proportional to fσ if the modular structure is independent of the

network topology. The influence of modular structure by the network topology is taken into

account through the hypothesis of P
(i)
σ ∝ G

(i)
σσ. The functional probabilities are renewed by

Eq. (3) after the robustness function was calculated from initial functional probabilities for

each node. This process is repeated iteratively until the robustness function RM is locally
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optimized. If the robustness function falls within the adapted region as shwon schematically

in Fig. 1b, then the corresponding functional probabilities are then used for figuring out the

memberships of modules. A node with functional probability Pσ > λ is classified to the σ

module, where λ is the chosen threshold value.

In order to investigate the evolutionary conservation rate of these sampled modularity in

adapted robustness trade-offs, we first analyze the classification results for the obtained

adapted modularity realizations at threshold 0.1 and identify the so-called co-clustered

groups. The constituents of a co-clustered group are nodes with high functional probabilities

to be frequently classified into the same modules, here we set the threshold for co-clustered

groups as 0.7, these co-clustered groups constitute the functional modules in the lower level.

The classification component for a co-clustered group is defined as the component of func-

tional probability used for figuring out the members of the corresponding co-clustered group.

Suppose that the classification components corresponding to each co-clustered groups are

σ1, σ2, . . . , σm, the community probability Π(i)(l) of the node i at the lth trial was defined

as the collection of functional probabilities for the node in classification components cor-

responding to each co-clustered group, Π(i)(l) =
(
P

(i)
σ1 , P

(i)
σ2 , . . . , P

(i)
σm

)
. With a total of L

trials, the community probability is then averaged over all sampled suboptimal modularity

organizations, 〈Π(i)〉 = 1
L

∑L
l=1 Π(i)(l). Finally, this resultant average community probability

is used for figuring out members of each detected modules, i.e. nodes are assigned to mod-

ules σ if the σ-component of 〈Π(i)〉 > λ. The modular classification result is independent of

the number of modules for the initial modularity organization as long as it is taken to be

sufficiently large.
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[5] Palla, G., Derényi, I., Farkas, I., & Vicsek, T. Uncovering the overlapping community

structure of complex networks in nature and society. Nature 435, 814-818 (2005).

[6] Clauset, A., Moore, C., & Newman, M.E.J. Hierarchical structure and the prediction

of missing links in networks. Nature 453, 98-101 (2008).

[7] Newman, M.E.J. Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002).

[8] Ahn, Y. Y., Bagrow, J. P., & Lehmann, S. Link communities reveal multiscale com-

plexity in networks. Nature 466, 761-765 (2010).

[9] Evans, T. S. & Lambiotte, R. Line graphs, link partitions and overlapping communities.

Phys. Rev. E 80, 016105 (2009).

[10] Hartwell, L.H., Hopfield, J.J., Leibler, S., & Murray A.W. From molecular to modular

cell biology. Science 402, c47-c52 (1999).

[11] Gerhart, J., & Kirschner, M. in Cells, Embryos, and Evolution: Toward a Cellular and

Developmental Understanding of Phenotypic Variation and Evolutionary Adaptability

(Blackwell Science, Malden, MA) (1997).

[12] Kirschner, M., & Gerhart, J. Evolvability. Proc. Nat. Acad. Sci. USA 95, 8420-8427

(1998).

[13] Kitano, H. Towards a theory of biological robustness. Mol. Syst. Biol. 3:137 (2007).



15

[14] Carlson, J.M., & Doyle, J. HOT Robustness and design in complex systems. Phys. Rev.

Lett. 84, 2529-2532 (2000).

[15] Carlson, J.M., & Doyle, J. Complexity and robustness. Proc. Nat. Acad. Sci. USA 99

suppl1, 2538-2545 (2002).

[16] Pe
′
rez-Escuderoa, A., Marta Rivera-Albaa, A., de Polaviejaa, G. Structure of deviations

from optimality in biological systems. Proc. Nat. Acad. Sci. USA 106, 20544-20549

(2009).

[17] Newman, M.E.J., & Girvan, M. Finding and evaluating community structure in net-

works. Phys. Rev. E 69, 026113 (2004).

[18] Duch, J., & Arenas, A. Community detection in complex networks using extremal

optimization. Phys. Rev. E 72, 027104 (2005).

[19] Li, Z., Zhang, S., Wang, R.S., Zhang, X.S., & Chen, L. Quantitative function for

community detection. Phys. Rev. E 77 , 036109 (2008).

[20] Lancichinetti, A., Fortunato, S., & Kertesz, J. Detecting the overlapping and hierarchi-

cal community structure in complex networks. New J. Phys. 11, 033015 (2009).

[21] Reichardt, J., & Bornholdt, S. Detecting fuzzy community structures in complex net-

works with a Potts model. Phys. Rev. Lett. 93, 218701 (2004).

[22] Girvan, M., & Newman, M.E.J. Community structure in social and biological networks.

Proc. Nat. Acad. Sci. USA 99, 7821-7826 (2002).

[23] Fortunato, S., & Barthelemy, M. Resolution limit in community detection. Proc. Nat.

Acad. Sci. USA 104, 36-41 (2007).

[24] Kumpula, J.M., Saramaki, J., Kaski, K., & Kertesz, J. Resolution limit in complex

network community detection with Potts model approach. Eur. Phys. J. B 56, 41-45

(2007).

[25] Huang, J.Y. Tomography of functional organization in protein-protein interaction net-

work. Physica A 388, 2072-2080 (2009).

[26] Kao, K.C., & Huang, J.Y. Accurate and fast computational method for identifying

protein function using protein-protein interaction data. Mol. BioSyst. 6, 830-839 (2010).



16

[27] Sharan, R., Ulitsky, I., & Shamir, R. Network-based prediction of protein function.

Mol. Syst. Biol. 3:88 (2006).

[28] Hoyt, M.A. A new view of the spindle checkpoint. J. Cell Biol. 154, 909-912 (2001).

[29] Ibrahim, B., Diekmann, S., Schmitt, E., & Dittrich, P. In-Silico modeling of the mitotic

spindle assembly checkpoint. PLoS ONE 3:e1555 (2008).

[30] Longhese, M.P., Foiani, M., Muzi-Falconi, M., Lucchini, G., & Plevani, P. DNA damage

checkpoint in budding yeast. The EMBO Journal 17, 5525-5528 (1998).

[31] Vergés, E., Colomina, N., Gari, E., Gallego, C., & Aldea, M. Cyclin Cln3 is retained

at the ER and released by the J chaperone Ydj1 in late G1 to trigger cell cycle entry.

Mol. Cell 26, 649-662 (2007).

[32] Mori, I., & Ohshima, Y. Neural regulation of thermotaxis in Caenorhabditis elegans.

Nature 376, 344-348 (1996).

[33] Kuhara, A., et al. Temperature Sensing by an Olfactory Neuron in a Circuit Controlling

Behavior of C. elegans. Science 320, 803-807 (2008).

[34] Kimura, K.D., Miyawaki, A., Matsumoto, K., & Mori, I. The C. elegans Thermosensory

Neuron AFD Responds to Warming. Curr. Biol. 14, 1291-1295 (2004).

[35] Biron, D., Wasserman, S., Aravinthan, J.H.T., Samuel, D.T., & Sengupta, P. An ol-

factory neuron responds stochastically to temperature and modulates Caenorhabditis

elegans thermotactic behavior. Proc. Nat. Acad. Sci. USA 105, 11002-11007 (2008).

[36] Mori, I., Sasakura, H., & Kuhara, A. Worm thermotaxis a model system for analyzing

thermosensation and neural plasticity. Curr. Opin. Neurobiol. 17, 712-719 (2007).

[37] Schafer, W.R. in Egg-laying, WormBook, ed. The C. elegans Research Community,

WormBook, doi/10.1895/wormbook.1.38.1, http://www.wormbook.org/ (2005).

[38] White, J.G., Southgate, E., Thomson, J.N., & Brenner, S., FRS (eds) The structure

of the nervous system of the Nematode Caenorhabditis Elegans. Phil. Trans. R Soc. B

314, 1-340 (1986).

[39] Goodman, M. B. Mechanosensation. (January 06, 2006), WormBook, ed.

The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.62.1,



17

http://www.wormbook.org.



18

Figure 1

(a)

A (σ )0

A.1 ( )σ ,σ0 1

A.2 ( )σ ,σ0 2

A.3 ( )σ ,σ0 3

(b)

Adapted region

Pσ

RM



19

FIG. 1: Schematics illustrating how overlapping modules can be detected at multi-scales.

(a) Module A containing a co-clustered group with classification component σ0. There

are three submodules A.1, A.2 and A.3 within A with classification components σ1, σ2, σ3

corresponding to these three co-clustered groups. Usually, the community probabilities

in components σ1, σ2, σ3 are larger than that of component σ0. The multi-scale modular

structures can be obtained as the threshold is being varied from low to high values. (b)

Modules were driven to have higher value of robustness function RM if they were adapted

for a sufficiently long time. Only modularity organizations with adequate value of robustness

function are advantageous in surviving for cells. Too high or too low value of robustness is

harmful for survival.(see also the supporting information).

FIG. 2: Consistency of detected modular structure and real protein annotation data in yeast

PPI network. The results of k-clique percolation method are also shown for comparison[5].

(a) Most modules detected by evolution strategy have the main functions, which means that

our detected modules are functional units. The results of k-clique percolation appears to

have a higher function accuracy only because it detects the strongly connected parts of a

network, but not the true modular structures. k-clique percolation, like other methods, fails

to be able to recognize the pathways and signal triggering entries of biological processes:

over half of the proteins detected in yeast are without modular classification (See supporting

information Table SI). (b) The consistency of detected modules and real data in modular

size distribution reveals that the true hierarchical organization was captured, while results of

k-clique percolation method deviates a lot. (c) Evolution strategy classification membership,

i.e. number of modules that a node participated, agrees well with the data on the distribution

of number of functions for proteins, but k-clique percolation method does not. It indicates

that the overlapping structures of modules was correctly uncovered. (d) The average number

of functions for proteins with given node degree k agrees well with real annotation data for

degree k ≤ 20. The strong fluctuation for degree k > 20 is due to the low number statistics

of these proteins.
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FIG. 3: Examples of detected modules in yeast PPI network. (a) The G1, S, G2, M

phase cyclins CLN3, CLN1,2, CLB1-5 and two significant inhibitory proteins SIC1, CDH1

are included in the cell cycle control module except CLB6 which is absent from the DIP

core data set. CDC28 binds to different phase cyclins to control the progress of cell cycle.

The main function of this module is 43.01.03.05, the budding, cell polarity and filament

formation, only 29.6%(8/27) of proteins within this module possess this function. Such a

low function accuracy is due to the hybrid functions nature in the cell cycle progression

control process. (b) Another example of low function accuracy module is a module that

functions as the spindle assembly check point. The main function is cell cycle check points

10.03.01.03 with function accuracy 45.5%(5/11). (c) The complete cell cycle process in

budding yeast is composed of the cell cycle control, cell size check point, DNA damage

check point and spindle assembly check point modules. The signal of spindle assembly check

point starts from MAD1, MAD2, MAD3 to CDC20 and PDS1, then entering into the cell

cycle control module to trigger the check of spindle assembly[28, 29]. From the cell size

check point module, cell growth triggers the cell cycle process by sending signal from YDJ1

to CLN3.
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FIG. 4: Detected modules in C. elegans neuronal network reveal significant pathways of

physiological phenomena. (a) Soma positions(projected onto the AP axis) for each neuron

for the 24 modules detected at threshold 0.3. (b) Average soma position of neurons within

each module for the 24 detected modules at threshold 0.3. (c) Sensorimotor modules. Six

types of neurons are colored coded[38]: Red: amphids, Orange: other sensory receptors in

head, Brown: motorneurons in the nerve ring, Purple: motorneurons in ventral cord, Yellow:

neurons in tail ganglia, Green: egg-laying neurons. Neurons that belonged to two of the

above six types are in Pink, neurons that belonged to three of the above six types are in

Light blue, neurons that belong to none of these six types are in Grey. Neurons belonging

to other modules were grouped into a circle at the right lower corner, in e∼g are similar.

(d) Model neural circuit for thermotaxis in C. elegans. The chemical synapses and gap

junctions are represented in directed and undirected edges respectively. The self undirected

edge of a neuron class correspond to gap junctions between left and right neurons within this

neuron class. Sensory neurons, interneurons and motor neurons are represented by triangles,

squares and circles respectively. (e) Chemosensation/Egg-laying modules: neurons enclosed

by green, orange and purple lines are members of Chemotaxis-Egg laying, tail motion, and

ventral motion modules respectively. Neurons in blue shadowed region 1, 2, 3 are mechanical

sensory, vulva motor and ventral motor neurons respectively. The neurons enclosed by green

dashed lines is the submodule at threshold 0.4, which suggests previously unknown pathways

of how signals are conveyed from amphid receptors to motorneurons HSNL, HSNR, VC5

and VC4 which innervate vulval muscles and modulate the egg-laying rate. (f) Head and

body mechanosensory modules: neurons located within the light blue shadow are the 30

mechanoreceptor neurons in hermaphrodite[39]. (g) Locomotion modules: three modules

corresponding to head, ventral and tail motion which cooperate to perform locomotion in

C. elegans.
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表  Y04 

報告內容應包括下列各項： 

一、參加會議經過 

    此次為本人首次參與國際系統生物研討會，該項國際系統生物研討會行之有年是系

統生物學界一年一度的盛會，此回國際系統生物研討會由德國海德堡大學承辦於

Mannheim 的 Rosengarten 會議中心舉行，從 8/28 到 9/1 為期五天，由於此次德國行機

會難得本人於 8/22-8/27 額外安排了訪問 Koln 與 Stuggart 的訪問行程，此行於 8/21

搭機前往德國法蘭克福，8/22-8/27 進行私人訪問行程，於 8/28 早上抵達 Mannheim 參

加國際系統生物研討會，大會安排於 8/28 下午三點舉行開幕儀式，開幕後隨即接著四

場精采的大會演講並於晚間八點舉行歡迎接待交誼餐會。 

    此回系統生物研討會，大會將口頭發表與張貼壁報論文依其性質區分為  

1. Design principle of living systems 
2. Model identification and discrimination 
3. Systems Genomics and evolution 
4. Systems Immunology 
5. Host-Pathogen Interactions 
6. Personalized medicine and drug development 
7. Synthetic biology 
8. Cell mechanics 
9. Systems biology of aging 
10. Computational tools and algorithms 

11.Systems neuroscience 

    本人此回於 systems neuroscience 發表一篇壁報論文，難得的是有機會與從事蛋

白質交互作用研究素富盛名的德國學者 P. Bork 做點短暫的意見交流。此次大會比較特

殊的是於八月三十日下午安排了 Industrial session，並且於八月三十一日下午有安排

了 Industrial workshop，並且於國際系統生物研討會前後於海德堡大學 BioQuant 與

DKFZ 安排了多達三十場左右的各種系統生物議題的 workshops，而且光是發表的壁報論

文就多達六百多篇，足見此次系統生物研討會內容豐富程度。  

 

二、與會心得 

    此行讓個人更能了解到目前系統生物學國際學者所關心的研究議題，而且也見證到

了歐洲國家系統生物學雄厚的研究能量與研究題材的多樣性，更難得的是歐洲系統生物

學界與業界緊密結合的程度值得國內學習效法，例如德國 Virtual liver network。由

於國內從事系統生物研究的學者為數不多，而系統生物學又是當前生物學界公認的未來

趨勢與主流，所以國內學者應該有多一點類似參與系統生物國際研討會的機會，以推廣

系統生物於國內的研究量與質。 

 

三、考察參觀活動(無是項活動者省略) 

1. 海德堡大學 
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Modularity approach to decipher functional organization 
of neural system in C. elegans 

 
Jiun-Yan Huang1(黃俊燕) , Pik-Yin Lai2(黎璧賢) 

 
1 Department of Bioinformatics, Chung Hua University, Hsin Chu 300, 

Taiwan, R.O.C 
2 Department of Physics, Graduate Institute of Biophysics 

and Center for Complex Systems, National Central University, 
Chung-Li 320, Taiwan, R.O.C 

 
 

C. elegans is a primitive model organism for neural system study. There are 
302 neurons distributed from head to tail in C. elegans. The connectivity data had 
been assembled by J.G White et al. in 1986[1]. In the past ten years, the rapidly 
developed of complex network theory helps one to analyze subcellular molecular 
networks and neuronal networks. This connectivity data of C. elegans was 
analyzed via complex network approach by Lav R. Varshney et al.[2]. From 
connectivity to functionality becomes one of the most challenging and important 
issues in C. elegans neuroscience. However, a satisfactory method to unravel 
hierarchically modular structure of neuronal network is still lacking. 

Here, we developed an evolution-based method to detect modular structure for 
C. elegans neuronal network. Our theory could detect overlapping modules at 
multi-scale in a network, which is appropriate to apply to hierarchically organized 
neuronal network system. From our results, functions of several modules can be 
recognized, e.g sensory, nerve ring motor, locomotion, chemosensation /egg-laying, 
mechanosensation, etc.. Furthermore, higher level organization of physiological 
behaviors, such as how chemosensation affects egg-laying rate, thermotaxis 
physiological behavior, were successfully resolved by interactions of these 
modules. Hence, our theory offers a systems way to decipher functional 
organization of neural system from connectivity data.    

   
 
 
References:  
[1] J. G. white et al., Phil. Trans. Royal Soc. London. Series B, Biol Scien. 314, 

1-340, (1986). 
[2] Lav R. Varshney et al., PLoS Compt. Biol. 7(2) :e10010066, (2011). 
  
e-mail: jyhuang@chu.edu.tw, pylai@phy.ncu.edu.tw  
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