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中 文 摘 要 ： 近年來由於結構基因體學蓬勃發展，使得蛋白質結構資料庫

（PDB）中所記載的蛋白質結構資料，以驚人的速度增加。也

因此在後基因體學時代，已知結構卻未知其功能的蛋白質數

量不斷累積的情況下，便十分需要設計快速有效之生物資訊

的方法，幫助研究者研究蛋白質之間的結構同源性以及分析

其功能，進而探索蛋白質結構與功能的關聯性。 

針對上述議題，我們近五年的研究已開發出「3D-BLAST」等

方法論與工具，設計出利用 23 個結構字元所組成的結構字元

集序列。此結構字元集之一級序列，包含蛋白質三級立體結

構的資訊，可應用於快速的結構相似度搜尋。 

本研究計畫根據結構字元集之研究，提出一全新定義之蛋白

質局部結構片段，命名為「結構字元單位」，用以表現組成

蛋白質結構上的基本單元。此結構字元單位乃是由兩個蛋白

質二級結構以及一個位於兩二級結構之間的無特定結構片段

所組合而成的序列，能同時呈現具高度變異的結構彈性及二

級結構所提供的結構穩定性。接著，我們根據 3D-BLAST 快速

結構比對的結果，建立一結構字元單位相似度網路。此網路

中的每個節點代表一個結構字元單位，而節點之間的連線則

表示兩局部結構具有高度相似性。最後整合複雜系網路學的

方法論，探究此網路之拓樸特徵。初步研究結果顯示，用蛋

白質局部結構之相似度所建立的複雜網路，符合無尺度網路

的拓樸特徵，其連接度分佈呈現冪次函數曲線而非常態分

佈，表示該網路中存在少數幾個擁有高度連接的節點，而大

部分其餘的節點則只擁有很少的連線。 

本研究計畫提出證據證實蛋白質具模組性，可由一定數量的

基本單元組合而成。某些通用之基本單元頻繁出現於許多蛋

白質中，而某些獨特之基本單元則用以決定蛋白質的特殊功

能。本計畫未來可延伸應用於已知的藥物-標的蛋白資料庫，

配合結構相似度網路所紀錄之資訊，幫助我們辨識可能執行

重要功能的蛋白質片段，輔助開發胜肽類藥物、多標靶藥物

或舊藥新用之應用。 

中文關鍵詞： 局部結構相似度網路、蛋白質模組性、網路生物學 

英 文 摘 要 ： With structural models developed using genome-wide 

investigative strategies, the number of protein 

structures with unknown or unassigned functions in 

the Protein Data Bank (PDB) has been rapidly 

increasing. Effective bioinformatics methods are 

therefore needed to annotate the structural homology 

and possible functions of these protein structures.  

In this study, we develop a new network approach to 



identify protein structures based on the 3D-BLAST 

method. Using tertiary protein structures, this 

method enables not only a fast protein similarity 

search but also the identification of 23 states of 

structural alphabet (SA) sequences that represent the 

structural motifs of protein backbones. 

Using SA, we define new local structural fragments 

called units of structural alphabet (USAs) that 

represent unique features of protein structures. Each 

USA is composed of two secondary protein structures 

and one loop located between these two secondary 

structures； USAs can maintain not only the 

flexibility of variable loops but also the stability 

of secondary structures. We conduct a similarity 

search and investigate the network formed by all-

against-all USA sequence comparisons, where USAs 

represent nodes and links represent homology 

relationships. 

Our findings show a highly uneven degree distribution 

characterized by a few and highly connected USAs 

(hubs) coexisting with many nodes having only a few 

links. Networks with such a power-law degree 

distribution are scale free. These findings not only 

suggest the existence of organizing principles for 

local protein structures but also allow us to 

identify key fragments that are potentially useful 

for new drug development and design. Of particular 

interest is the identification of USAs in the set of 

known drug protein targets. 

英文關鍵詞： local structure similarity network, protein 

modularity, network biology 
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中文摘要 

近年來由於結構基因體學蓬勃發展，使得蛋白質結構資料庫（PDB）中所記

載的蛋白質結構資料，以驚人的速度增加。也因此在後基因體學時代，已知結構

卻未知其功能的蛋白質數量不斷累積的情況下，便十分需要設計快速有效之生物

資訊的方法，幫助研究者研究蛋白質之間的結構同源性以及分析其功能，進而探

索蛋白質結構與功能的關聯性。 

針對上述議題，我們近五年的研究已開發出「3D-BLAST」等方法論與工具，

設計出利用23個結構字元所組成的結構字元集序列。此結構字元集之一級序列，

包含蛋白質三級立體結構的資訊，可應用於快速的結構相似度搜尋。 

本研究計畫根據結構字元集之研究，提出一全新定義之蛋白質局部結構片段，

命名為「結構字元單位」，用以表現組成蛋白質結構上的基本單元。此結構字元

單位乃是由兩個蛋白質二級結構以及一個位於兩二級結構之間的無特定結構片

段所組合而成的序列，能同時呈現具高度變異的結構彈性及二級結構所提供的結

構穩定性。接著，我們根據 3D-BLAST 快速結構比對的結果，建立一結構字元單

位相似度網路。此網路中的每個節點代表一個結構字元單位，而節點之間的連線

則表示兩局部結構具有高度相似性。最後整合複雜系網路學的方法論，探究此網

路之拓樸特徵。初步研究結果顯示，用蛋白質局部結構之相似度所建立的複雜網

路，符合無尺度網路的拓樸特徵，其連接度分佈呈現冪次函數曲線而非常態分佈，

表示該網路中存在少數幾個擁有高度連接的節點，而大部分其餘的節點則只擁有

很少的連線。 

本研究計畫提出證據證實蛋白質具模組性，可由一定數量的基本單元組合而

成。某些通用之基本單元頻繁出現於許多蛋白質中，而某些獨特之基本單元則用

以決定蛋白質的特殊功能。本計畫未來可延伸應用於已知的藥物-標的蛋白資料

庫，配合結構相似度網路所紀錄之資訊，幫助我們辨識可能執行重要功能的蛋白

質片段，輔助開發胜肽類藥物、多標靶藥物或舊藥新用之應用。 

 
關鍵字: 局部結構相似度網路、蛋白質模組性、網路生物學 
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Abstract 

With structural models developed using genome-wide investigative strategies, 

the number of protein structures with unknown or unassigned functions in the Protein 

Data Bank (PDB) has been rapidly increasing. Effective bioinformatics methods are 

therefore needed to annotate the structural homology and possible functions of these 

protein structures.  

In this study, we develop a new network approach to identify protein structures 

based on the 3D-BLAST method. Using tertiary protein structures, this method 

enables not only a fast protein similarity search but also the identification of 23 states 

of structural alphabet (SA) sequences that represent the structural motifs of protein 

backbones. 

Using SA, we define new local structural fragments called units of structural 

alphabet (USAs) that represent unique features of protein structures. Each USA is 

composed of two secondary protein structures and one loop located between these two 

secondary structures; USAs can maintain not only the flexibility of variable loops but 

also the stability of secondary structures. We conduct a similarity search and 

investigate the network formed by all-against-all USA sequence comparisons, where 

USAs represent nodes and links represent homology relationships. 

Our findings show a highly uneven degree distribution characterized by a few 

and highly connected USAs (hubs) coexisting with many nodes having only a few 

links. Networks with such a power-law degree distribution are scale free. These 

findings not only suggest the existence of organizing principles for local protein 

structures but also allow us to identify key fragments that are potentially useful for 

new drug development and design. Of particular interest is the identification of USAs 

in the set of known drug protein targets. 

 

 

Keyword: local structure similarity network, protein modularity, network biology
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Introduction 

In the past few decades, genomics (DNA sequences), structural genomics 

(protein structures), and proteomics (protein expression and interactions) have rapidly 

enhanced knowledge on biological functions and systems. With structural models 

developed using genome-wide investigative strategies [1–3], the number of protein 

structures in the Protein Data Bank (PDB) has rapidly increased. By September 30, 

2008, there were already more than 53384 known protein structures [4]. The 

increasing number of known protein structures with unknown/unassigned functions 

emphasizes the demand for effective bioinformatics methods for annotating the 

structural homology or evolutionary family of proteins and inferring their cellular 

functions. 

The comparison and analysis of the relationship between new protein structures 

with unclear functions and well-known structures seeks to bridge the protein 

structure–function research gap. Given a query protein structure, we may search 

through the database and report similar protein structures. However, unlike 

one-dimensional sequence comparison, structural alignment for determining 

similarities is much more complex and computationally expensive. Some methods can 

be used for efficient pair-wise structural comparison [5], but these methods entail an 

exhaustive search to compare the query structure against all protein structures in the 

database. 

To bridge the current protein structure–function research gap and address 

anterior questions, many approaches have been proposed for encoding 3D local 

structural fragments based on Cartesian coordinates into a one-dimensional 

representation using several letters called the structural alphabet [6–13]. The 

structural alphabet represents advantageous local structures and has been used to (i) 

compare/analyze 3D structures [14–16], (ii) predict protein 3D structures from amino 

acid sequences [6, 9], (iii) reconstruct protein backbones [11], and (iv) model loops 

[17]. In addition, given that local structures are generally more evolutionary 

conserved than amino acid sequences, a series of research has been developed to 

explore protein structures [18]. The structural alphabet theory has already been 

utilized to compare protein structures, search for homologs [19, 20], and assign 

protein families [21].  

Earlier, we developed the kappa-alpha (κ, α) plot derived structural alphabet and 

a novel BLOSUM-like substitution matrix, called structural alphabet substitution 

matrix (SASM), which searches through the structural alphabet database (SADB). 

This structural alphabet was used in developing the fast structure database search 

method called 3D-BLAST, which is as fast as BLAST [22] and provides the statistical 

significance (E-value) of an alignment, indicating the reliability of a hit protein 

structure [19, 20]. Moreover, we developed an automated server called fastSCOP [21] 

for integrating a fast structure database search tool (3D-BLAST) and a detailed 

structural comparison tool, as well as for recognizing the SCOP domains and SCOP 

superfamilies of query structures [23]. 

Random networks with complex topology are common in nature. Numerous 

network biology researchers have demonstrated that networks in many biological 

systems can be characterized [24]. Biological networks observed in epidemiology, 

metabolic pathways, gene regulation, protein domain interaction, drug–target binding, 

and protein structures have some similar topological properties [24–29]. In these 

networks, most nodes have only a few links, and a disproportionate number of nodes 
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have high connections. Networks characterized by power-law degree distribution are 

called scale free [30]. Furthermore, the clustering coefficient of hierarchical 

modularity in the metabolic networks of 43 distinct organisms follows power-law 

scaling [27]. 

Protein fold and functional site similarity networks provide evidence of protein 

evolution and help in structure-based functional annotation [31, 32]. In this research, 

we propose a structural similarity network as a framework for classifying the 

structures of protein segments and analyze whether the degree distribution of this 

network obeys the power law. Proteins are divided according to their local structures 

using the specific length of sliding windows. The distribution of the structural 

diversity of local protein structures also shows a power-law property [33]. However, 

in this research, the local structures of proteins, which consist of consecutive fixed 

numbers of amino acids, are not used for generating information on typical secondary 

structures. 

Purposes and major claims 

Only a small number of residues are often conserved in the functional active sites 

or binding regions of proteins with similar functions. Therefore, in this study, we look 

deeply into the core of proteins and evaluate their basic unit. Proteins are then divided 

into various fragments based on the location of secondary structures and loops. 

Moreover, similarities in the local structures of fragments are analyzed to acquire 

insights for bridging the protein structure–function research gap. 

We develop a novel network biology approach based on the recently developed 

3D-BLAST method of protein structure identification. With this method and using 

tertiary protein structures, we can conduct a fast protein similarity search and identify 

23 states of structural alphabet (SA) sequences that represent the local structures of 

protein backbones. Additionally, we define new fragments that can describe local 

structural features called units of structural alphabet (USA). Each USA is composed 

of two secondary structures and one loop. 

Subsequently, we develop a complex structural similarity network based on 

USAs and assess its degree distribution. All-against-all alignment of USA sequences 

is utilized to determine structural similarity. In our similarity network, each USA is 

taken as a node, and alignment is represented by the link between two USAs with 

similar structure. After building the complex network, we characterize its topological 

properties and determine whether it follows power-law degree distribution and is 

therefore scale free. 

In the future, USA will be applied to peptide drug discovery and multi-target 

drug design for enhancing drug development efficiency and the biological diversity of 

targets. Potential important fragments are valuable for new drug development and 

prediction based on the complete networked system of binding interactions with 

proteins. 

Materials and Methods 

Figure 1 illustrates this study’s methodology. Every protein structure can be 

divided into USAs composed of two secondary protein structures and one loop 

located between these two secondary structures. After determining USAs, protein 

units are translated into encoded SA sequences according to the kappa and alpha map. 

A complex network is obtained, with nodes representing USAs and links representing 

structural similarity based on the results of all-against-all USA alignment. 
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Furthermore, the topological properties of the similarity network are analyzed to 

determine whether the network is scale free. 

CACDABBDDLLRMQ-TVQXDCDBDBBDCYBABBBDCBYDCBDB 1gwx_A(416-457) 
|||||||||  | | ||| |  ||||||||| |||||||||||  E-value:1e-11
DACYBBBBACBRHQRTVQHGRMCBCBYCDBA-CYACAYCBBDB 1xzx__(403-444)

A

B

D

C

C

0.0001

0.001

0.01

0.1

1

1 10 100

 
Figure 1. Research methodology. 

 

Figure 2 shows the flow of this study. First, a testing set is prepared from 

nr-PDB-50 dated April 8, 2011; only proteins from the source species Homo sapiens 

are selected. Second, each protein structure is translated into SA sequences. Overall, 

1603 proteins with SA encoding are included in the testing set called 

SADB-nrPDB50-HUMAN. Third, protein chains are divided into many USAs with 

various kappa and alpha angles, leading to a USA database with 5525 protein units. 

Fourth, 3D-BLAST is used to search and align rapidly every USA against the whole 

database. Based on E-values in alignment results, the USA-based similarity network 

is developed. Finally, the characteristics and properties of this network are analyzed. 

5

nr-PDB-50
Date: 

20110408

nr-PDB-50-
HUMAN

Select:
Homo sapiens

SADB-nrPDB50-HUMAN 
(1603)

…
…

USA database
(5525 units)

…

All-against-all structure 
alignment using 3D-BLAST

To analyze the 
characteristic and 

property of network

Translate to SA sequence

Divide into USA

To build the similarity 
network of USA based on 

E-value

 
Figure 2. Research flow. 
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Preparation 

The date of PDB used as testing set is April 8, 2011. The testing set is collected 

based on certain principles. First, the selected database is nr-PDB-50, in which the 

sequence identities are lower than 50% among proteins. In addition, the species of 

protein are only chosen from Homo sapiens. Second, the length of each protein chain 

must be longer than 15 residues. Finally, each protein chain must have at least one 

USA. A total of 1603 protein chains are included in the testing data set.  

After translating all structures in the testing data set into SA sequences, the USAs 

are divided based on the location of secondary structures and loops. The 

determination of USA is explained further in the next section. A total of 5525 protein 

units are obtained from 1603 proteins.  

In this study, the unit of protein includes both secondary structures and random 

coils. These novel protein units can maintain not only the flexibility of variable loops 

but also the stability of secondary structures. Figure 3 demonstrates the USA in one 

protein and its SA sequence. This protein with chain named 1gwx_A belongs to one 

kind of all-helix proteins classified in the SCOP database [23]. It has 9 USAs shown 

as a short loop (green color) between two helical structures (red color). 

 
Figure 3. USAs in protein 1gwx_A and SA sequence. 

Construction of the USA-based similarity network using E-values 

We use 3D-BLAST to align all 10291 USAs against all USAs. In 3D-BLAST 

results, E-values indicate the degree of similarity between query USAs and subject 

USAs. An E-value lower than the threshold suggests that the given two USAs are 

conformationally similar. Based on the results of all-against-all USA comparison, we 

can find the homology similarity among all USAs and thus build the similarity 

network. In this network, each node represents one USA and each link between nodes 

represents a homology relationship. 

We use two kinds of E-values to determine homology relationships. The first 

kind considers whole-structure similarity between USAs, and the second kind called 

E
loop

-value measures the conformation of variable loops in a very specific way. The 

threshold E-value, which is used to determine if two structures are homologous, has 

been evaluated in previous studies [19, 20]. This threshold value is set at 10
-15

. 

However, the length of USA is usually smaller than that of the whole protein. Hence, 

the original E-value is not suitable for determining whether USAs are homologous. 

We try different threshold values to decide which is appropriate for determining 

homologs. 

PDB:1gwx_A

1gwx_A(404-457)

DABYBCBDYACACDABBDDLLRMQTVQXDCDBDBBDCYBABBBDCBYDCBDB

1gwx_A ( 216- 236) BBBBBYYALGPGPKCDAYCAC
1gwx_A ( 230- 257) CDAYCACQVTRVRTTKKKEXXTIDCDAC
1gwx_A ( 253- 287) DCDACGDLLSEKMVQXVNMQWIPKIABDCBYCADD
1gwx_A ( 289- 319) DYYBBACBYCDCGQPGACGQSKCDBBBACYD
1gwx_A ( 311- 328) CDBBBACYDLQGCACDBY
1gwx_A ( 366- 392) BDBABDDCBGGSHEKIACDDAYCBDYB
1gwx_A ( 382- 422) ACDDAYCBDYBRTGRTVQHMRMDABYBCBDYACACDABBDD
1gwx_A ( 432- 472) DCDBDBBDCYBABBBDCBYDCBDBBDLCXMGPFKFBCBBBD
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Furthermore, we modify the parameter of original E-values and re-compute 

E-values only in loop structures because if two USAs with long secondary structures 

align to each other, the resulting E-value becomes insignificant. In this situation, the 

alignment score for two secondary structures is high. Even if the two USAs are totally 

dissimilar, the E-value is still lower than the threshold.  

To avoid the foregoing problem, we focus only on loop conformation and 

consider the score in the loop to modify E-values. We re-compute for the E
loop

-value 

instead of using the original E-value. The E
loop

-value is given as  
Sloop mnE  2 ………………….……………(1) 

m is total number of SA within loop coding, n is the length of alignment only in 

the loop region, and S is the bit score in the loop region. In our database, the total 

number (m) of SA within loop coding is 111922. Finally, the threshold E-value is set 

at 10
-5

 and the E
loop

-value is set at 5.0. 

Analysis of network characteristics and properties 

In this study, we mainly measure two quantifiable descriptions of complex 

networks: the power-law degree distribution and the clustering coefficient. Most 

biological networks are scale free. Their degree distribution approximates the power 

law, P(k)～k
-γ

. Degree distribution, P(k), is the probability of nodes with exactly k 

links, and γ  is the degree exponent with a value usually between 2 and 3. In a 

network with a degree distribution following power law, the highly connected node is 

linked to a small fraction of all nodes in the network and most nodes are linked to a 

few neighbors.  

Another quantifiable characteristic description is the clustering coefficient. The 

function C(k) is defined as the average clustering coefficient of nodes with k links. In 

the clustering coefficient CI = 2nI/k(k–1), nI is the number of links connecting kI 

neighbors of node I to each other [24].  

 In hierarchical networks, the distribution of clustering coefficient, which 

follows C(k)～k
-1

, is a straight line with a slope equals -1 on a log-log plot. The 

hierarchical network is one kind of a scale-free network. Unlike traditional scale-free 

networks, a hierarchical architecture implies a central node connected to one or more 

other nodes that are two levels lower in the hierarchy with a link between each of the 

second-level nodes and the central node. Meanwhile, each of the second-level nodes 

that are connected to the central node also have one or more other nodes that are three 

levels lower in the hierarchy connected to it [24]. 

We evaluate the statistical distribution of the USA-based similarity network and 

provide characteristics to show its power-law behavior. Results show that this new 

USA-based network is a scale-free and hierarchical network. 

Results and Discussion 

Definition of USA 

We test various parameters for the length of secondary structures, loops, and 

whole USAs. The best results are shown in Figure 4. The length of secondary 

structures must be ≧5 residues, the limitation of loop length is set at ≧3 residues, 

and the total USA length must be ≧15 residues (Figure 4A). These criteria are used 

for filtering short USAs because USAs smaller than 15 residues are not reliable for 

comparing conformation. Moreover, very short secondary structures and loops may 

lack structural information and biological meaning.  
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Distribution of USA database  

Figures 4B and 4C present the distribution of the number of USAs in each 

protein and the length of each USA, respectively. The curves of both distributions are 

smooth in the log-log plot, suggesting that the set criteria satisfies the nature of local 

protein structures. Figure 4B shows that the highest number of USAs in a protein is 38. 

In addition, 627 proteins have only one USA, and P(N=1) is 0.2374. Figure 4C shows 

that the length of the longest USA is 247 residues, and the biggest P(L) is 0.0578 

(L=20). 

 
Figure 4. A) Criteria for the length of secondary structures, 

loops, and whole USAs. B) Distribution of the number of 

USAs in each protein. C) Distribution of length of each USA. 

USA-based similarity network 

Figure 5 illustrates the USA-based structural similarity network. This figure is 

drawn using the software Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/). In the 

network, every red spot is a node representing one USA. Two nodes are connected by 

an edge (white color), and they are considered of similar structure if their E-value of 

alignment is less than 10
-5

 and E
loop

-value is less than 5.0. The structural similarity 

network contains 1511 nodes with at least one neighbor.  

 
Figure 5. USA-based structural similarity network. 

>= 5 >= 5>=3

>=15
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Network characteristics and properties 

In this section, we determine if our novel network is scale free and even 

hierarchical. We first analyze the degree distribution of the network. Figure 6A 

presents that log-log plot of the distribution. The network is approximately 

characterized by power law, where P(k)～k
-1.34

. Thus, there is no doubt that the 

USA-based structural similarity network is scale free. In addition, the highest degree 

of USA is 51, and P(k=1) is 0.4421. However, the evaluation result of clustering 

coefficient in Figure 6B points out that C(k) is independent of degree in our network. 

Therefore, the USA-based similarity network is scale free without hierarchical 

modularity. 

 

 
Figure 6. Log-log plot of the degree distribution of network and 

Clustering coefficient distribution of the USA-based similarity network. 

Conclusions 

In this study, we develop a novel local structural fragment called USA to 

describe unique features of the functional sites of protein structures. We extend the 

structural alphabet research by integrating another totally different research field, 

complex networks. Previous studies have proven that SA is robust and reliable for 

representing protein structures. Thus, we further use SA in describing local structures 

and designing USA. Moreover, we use 3D-BLAST to search for USA homologs 

rapidly and build our proposed similarity network.  

Our structural similarity network is constructed using knowledge of complex 

networks. In addition, the analysis of the characteristics and behavior of the similarity 

network is based on the complex network literature. Results show that there is a 

highly uneven degree of distribution in the USA-based similarity network. Highly 

connected USAs, which are called hubs, constitute a small fraction of all USAs. In 

other words, the probability of having USAs with only a small number of neighbors is 

usually high. 

In contributing to the literature, this study combines two distinct research fields 

and provides a new and interesting viewpoint for investigating the relationship 

between protein structures and functions.  

In the future, we can further utilize USAs in drug development and design. We 

will identify possible key fragments that may be useful for new drug development and 

design. Drug-related databases, such as PDTD [34] and DrugBank [35], may be used 

to identify potential USAs in the set of known drug protein targets as new drugs. 
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