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With structural models developed using genome-wide
investigative strategies, the number of protein
structures with unknown or unassigned functions in
the Protein Data Bank (PDB) has been rapidly
increasing. Effective bioinformatics methods are
therefore needed to annotate the structural homology
and possible functions of these protein structures.
In this study, we develop a new network approach to
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1dentify protein structures based on the 3D-BLAST
method. Using tertiary protein structures, this
method enables not only a fast protein similarity
search but also the identification of 23 states of
structural alphabet (SA) sequences that represent the
structural motifs of protein backbones.

Using SA, we define new local structural fragments
called units of structural alphabet (USAs) that
represent unique features of protein structures. Each
USA is composed of two secondary protein structures
and one loop located between these two secondary
structures ; USAs can maintain not only the
flexibility of variable loops but also the stability
of secondary structures. We conduct a similarity
search and investigate the network formed by all-
against-all USA sequence comparisons, where USAs
represent nodes and links represent homology
relationships.

Our findings show a highly uneven degree distribution
characterized by a few and highly connected USAs
(hubs) coexisting with many nodes having only a few
links. Networks with such a power-law degree
distribution are scale free. These findings not only
suggest the existence of organizing principles for
local protein structures but also allow us to
1dentify key fragments that are potentially useful
for new drug development and design. Of particular
interest is the identification of USAs in the set of
known drug protein targets.

local structure similarity network, protein
modularity, network biology
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Abstract

With structural models developed using genome-wide investigative strategies,
the number of protein structures with unknown or unassigned functions in the Protein
Data Bank (PDB) has been rapidly increasing. Effective bioinformatics methods are
therefore needed to annotate the structural homology and possible functions of these
protein structures.

In this study, we develop a new network approach to identify protein structures
based on the 3D-BLAST method. Using tertiary protein structures, this method
enables not only a fast protein similarity search but also the identification of 23 states
of structural alphabet (SA) sequences that represent the structural motifs of protein
backbones.

Using SA, we define new local structural fragments called units of structural
alphabet (USAs) that represent unique features of protein structures. Each USA is
composed of two secondary protein structures and one loop located between these two
secondary structures; USAs can maintain not only the flexibility of variable loops but
also the stability of secondary structures. We conduct a similarity search and
investigate the network formed by all-against-all USA sequence comparisons, where
USAs represent nodes and links represent homology relationships.

Our findings show a highly uneven degree distribution characterized by a few
and highly connected USAs (hubs) coexisting with many nodes having only a few
links. Networks with such a power-law degree distribution are scale free. These
findings not only suggest the existence of organizing principles for local protein
structures but also allow us to identify key fragments that are potentially useful for
new drug development and design. Of particular interest is the identification of USAs
in the set of known drug protein targets.

Keyword: local structure similarity network, protein modularity, network biology



Introduction

In the past few decades, genomics (DNA sequences), structural genomics
(protein structures), and proteomics (protein expression and interactions) have rapidly
enhanced knowledge on biological functions and systems. With structural models
developed using genome-wide investigative strategies [1-3], the number of protein
structures in the Protein Data Bank (PDB) has rapidly increased. By September 30,
2008, there were already more than 53384 known protein structures [4]. The
increasing number of known protein structures with unknown/unassigned functions
emphasizes the demand for effective bioinformatics methods for annotating the
structural homology or evolutionary family of proteins and inferring their cellular
functions.

The comparison and analysis of the relationship between new protein structures
with unclear functions and well-known structures seeks to bridge the protein
structure—function research gap. Given a query protein structure, we may search
through the database and report similar protein structures. However, unlike
one-dimensional sequence comparison, structural alignment for determining
similarities is much more complex and computationally expensive. Some methods can
be used for efficient pair-wise structural comparison [5], but these methods entail an
exhaustive search to compare the query structure against all protein structures in the
database.

To bridge the current protein structure—function research gap and address
anterior questions, many approaches have been proposed for encoding 3D local
structural fragments based on Cartesian coordinates into a one-dimensional
representation using several letters called the structural alphabet [6-13]. The
structural alphabet represents advantageous local structures and has been used to (i)
compare/analyze 3D structures [14-16], (ii) predict protein 3D structures from amino
acid sequences [6, 9], (iii) reconstruct protein backbones [11], and (iv) model loops
[17]. In addition, given that local structures are generally more evolutionary
conserved than amino acid sequences, a series of research has been developed to
explore protein structures [18]. The structural alphabet theory has already been
utilized to compare protein structures, search for homologs [19, 20], and assign
protein families [21].

Earlier, we developed the kappa-alpha (x, o)) plot derived structural alphabet and
a novel BLOSUM-like substitution matrix, called structural alphabet substitution
matrix (SASM), which searches through the structural alphabet database (SADB).
This structural alphabet was used in developing the fast structure database search
method called 3D-BLAST, which is as fast as BLAST [22] and provides the statistical
significance (E-value) of an alignment, indicating the reliability of a hit protein
structure [19, 20]. Moreover, we developed an automated server called fastSCOP [21]
for integrating a fast structure database search tool (3D-BLAST) and a detailed
structural comparison tool, as well as for recognizing the SCOP domains and SCOP
superfamilies of query structures [23].

Random networks with complex topology are common in nature. Numerous
network biology researchers have demonstrated that networks in many biological
systems can be characterized [24]. Biological networks observed in epidemiology,
metabolic pathways, gene regulation, protein domain interaction, drug—target binding,
and protein structures have some similar topological properties [24-29]. In these
networks, most nodes have only a few links, and a disproportionate number of nodes
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have high connections. Networks characterized by power-law degree distribution are
called scale free [30]. Furthermore, the clustering coefficient of hierarchical
modularity in the metabolic networks of 43 distinct organisms follows power-law
scaling [27].

Protein fold and functional site similarity networks provide evidence of protein
evolution and help in structure-based functional annotation [31, 32]. In this research,
we propose a structural similarity network as a framework for classifying the
structures of protein segments and analyze whether the degree distribution of this
network obeys the power law. Proteins are divided according to their local structures
using the specific length of sliding windows. The distribution of the structural
diversity of local protein structures also shows a power-law property [33]. However,
in this research, the local structures of proteins, which consist of consecutive fixed
numbers of amino acids, are not used for generating information on typical secondary
structures.

Purposes and major claims

Only a small number of residues are often conserved in the functional active sites
or binding regions of proteins with similar functions. Therefore, in this study, we look
deeply into the core of proteins and evaluate their basic unit. Proteins are then divided
into various fragments based on the location of secondary structures and loops.
Moreover, similarities in the local structures of fragments are analyzed to acquire
insights for bridging the protein structure—function research gap.

We develop a novel network biology approach based on the recently developed
3D-BLAST method of protein structure identification. With this method and using
tertiary protein structures, we can conduct a fast protein similarity search and identify
23 states of structural alphabet (SA) sequences that represent the local structures of
protein backbones. Additionally, we define new fragments that can describe local
structural features called units of structural alphabet (USA). Each USA is composed
of two secondary structures and one loop.

Subsequently, we develop a complex structural similarity network based on
USAs and assess its degree distribution. All-against-all alignment of USA sequences
is utilized to determine structural similarity. In our similarity network, each USA is
taken as a node, and alignment is represented by the link between two USAs with
similar structure. After building the complex network, we characterize its topological
properties and determine whether it follows power-law degree distribution and is
therefore scale free.

In the future, USA will be applied to peptide drug discovery and multi-target
drug design for enhancing drug development efficiency and the biological diversity of
targets. Potential important fragments are valuable for new drug development and
prediction based on the complete networked system of binding interactions with
proteins.

Materials and Methods

Figure 1 illustrates this study’s methodology. Every protein structure can be
divided into USAs composed of two secondary protein structures and one loop
located between these two secondary structures. After determining USAs, protein
units are translated into encoded SA sequences according to the kappa and alpha map.
A complex network is obtained, with nodes representing USAs and links representing
structural similarity based on the results of all-against-all USA alignment.
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Furthermore, the topological properties of the similarity network are analyzed to
determine whether the network is scale free.

\‘ /7 CACDABBDDLLRMQ-TVQXDCDBDBBDCYBABBBDCBYDCBDB 1gwx_A(416-457)
PEEEEeerr e e b Feerere e Frerrrr i E~value:le-11
DACYBBBBACBRHQRTVQHGRMCBCBYCDBA-CYACAYCBBDB 1xzx__(403-444)

Figure 1. Research methodology.

Figure 2 shows the flow of this study. First, a testing set is prepared from
nr-PDB-50 dated April 8, 2011; only proteins from the source species Homo sapiens
are selected. Second, each protein structure is translated into SA sequences. Overall,
1603 proteins with SA encoding are included in the testing set called
SADB-nrPDB50-HUMAN. Third, protein chains are divided into many USAs with
various kappa and alpha angles, leading to a USA database with 5525 protein units.
Fourth, 3D-BLAST is used to search and align rapidly every USA against the whole
database. Based on E-values in alignment results, the USA-based similarity network
is developed. Finally, the characteristics and properties of this network are analyzed.

— — Select: f
nr-PDB-50 Homo sapiens
Date:
| 20110408 | \

nr-PDB-50- USA database
HUMAN (5525 units)

Translate to SA Sequen(fl;——r

SADB-nrPDB50-HUMAN
(1603)

All-against-all structure
__— alignment using 3SD-BLAST

Divide into USA,
) . To build the similarity
network of USA based on

o . E-value

To analyze the
characteristic and
property of network

Figure 2. Research flow.



Preparation

The date of PDB used as testing set is April 8, 2011. The testing set is collected
based on certain principles. First, the selected database is nr-PDB-50, in which the
sequence identities are lower than 50% among proteins. In addition, the species of
protein are only chosen from Homo sapiens. Second, the length of each protein chain
must be longer than 15 residues. Finally, each protein chain must have at least one
USA. Atotal of 1603 protein chains are included in the testing data set.

After translating all structures in the testing data set into SA sequences, the USAs
are divided based on the location of secondary structures and loops. The
determination of USA is explained further in the next section. A total of 5525 protein
units are obtained from 1603 proteins.

In this study, the unit of protein includes both secondary structures and random
coils. These novel protein units can maintain not only the flexibility of variable loops
but also the stability of secondary structures. Figure 3 demonstrates the USA in one
protein and its SA sequence. This protein with chain named 1gwx_A belongs to one
kind of all-helix proteins classified in the SCOP database [23]. It has 9 USAs shown
as a short loop (green color) between two helical structures (red color).

1gwx_A ( 216- 236) BBBBBYYALGPGPKCDAYCAC

1gwx_A ( 230- 257) CDAYCACQVTRVRTTKKKEXXTIDCDAC

1gwx_A ( 253- 287) DCDACGDLLSEKMVQXVNMQWIPKIABDCBYCADD
1gwx_A ( 289- 319) DYYBBACBYCDCGQPGACGQSKCDBBBACYD

1gwx_A ( 311- 328) CDBBBACYDLQGCACDBY

1gwx_A ( 366- 392) BDBABDDCBGGSHEKIACDDAYCBDYB

1gwx_A ( 382- 422) ACDDAYCBDYBRTGRTVQHMRMDABYBCBDYACACDABBDD
\ 1gwx_A ( 432- 472) DCDBDBBDCYBABBBDCBYDCBDBBDLCXMGPFKFBCBBBD

1gwx_A(404-457)

DABYBCBDYACACDABBDDLLRMQTVQXDCDBDBBDCYBABBBDCBYDCBDB

Figure 3. USAs in protein 1gwx_A and SA sequence.

Construction of the USA-based similarity network using E-values

We use 3D-BLAST to align all 10291 USAs against all USAs. In 3D-BLAST
results, E-values indicate the degree of similarity between query USAs and subject
USAs. An E-value lower than the threshold suggests that the given two USAs are
conformationally similar. Based on the results of all-against-all USA comparison, we
can find the homology similarity among all USAs and thus build the similarity
network. In this network, each node represents one USA and each link between nodes
represents a homology relationship.

We use two kinds of E-values to determine homology relationships. The first
kind considers whole-structure similarity between USAs, and the second kind called
E'°°P.value measures the conformation of variable loops in a very specific way. The
threshold E-value, which is used to determine if two structures are homologous, has
been evaluated in previous studies [19, 20]. This threshold value is set at 10™.
However, the length of USA is usually smaller than that of the whole protein. Hence,
the original E-value is not suitable for determining whether USAs are homologous.
We try different threshold values to decide which is appropriate for determining
homologs.



Furthermore, we modify the parameter of original E-values and re-compute
E-values only in loop structures because if two USAs with long secondary structures
align to each other, the resulting E-value becomes insignificant. In this situation, the
alignment score for two secondary structures is high. Even if the two USAs are totally
dissimilar, the E-value is still lower than the threshold.

To avoid the foregoing problem, we focus only on loop conformation and
consider the score in the loop to modify E-values. We re-compute for the E'°-value
instead of using the original E-value. The E'°-value is given as

E°=mn2™ (1)

m is total number of SA within loop coding, n is the length of alignment only in

the loop region, and S is the bit score in the loop region. In our database, the total
number (m) of SA within loop coding is 111922. Finally, the threshold E-value is set

at 10°° and the E"®-value is set at 5.0.

Analysis of network characteristics and properties

In this study, we mainly measure two quantifiable descriptions of complex
networks: the power-law degree distribution and the clustering coefficient. Most
biological networks are scale free. Their degree distribution approximates the power
law, P(k)~k™. Degree distribution, P(k), is the probability of nodes with exactly k
links, and y is the degree exponent with a value usually between 2 and 3. In a
network with a degree distribution following power law, the highly connected node is
linked to a small fraction of all nodes in the network and most nodes are linked to a
few neighbors.

Another quantifiable characteristic description is the clustering coefficient. The
function C(k) is defined as the average clustering coefficient of nodes with k links. In
the clustering coefficient C, = 2n/k(k-1), n, is the number of links connecting k;
neighbors of node | to each other [24].

In hierarchical networks, the distribution of clustering coefficient, which
follows C(k)~k™, is a straight line with a slope equals -1 on a log-log plot. The
hierarchical network is one kind of a scale-free network. Unlike traditional scale-free
networks, a hierarchical architecture implies a central node connected to one or more
other nodes that are two levels lower in the hierarchy with a link between each of the
second-level nodes and the central node. Meanwhile, each of the second-level nodes
that are connected to the central node also have one or more other nodes that are three
levels lower in the hierarchy connected to it [24].

We evaluate the statistical distribution of the USA-based similarity network and
provide characteristics to show its power-law behavior. Results show that this new
USA-based network is a scale-free and hierarchical network.

Results and Discussion

Definition of USA

We test various parameters for the length of secondary structures, loops, and
whole USAs. The best results are shown in Figure 4. The length of secondary
structures must be =5 residues, the limitation of loop length is set at =3 residues,
and the total USA length must be =15 residues (Figure 4A). These criteria are used
for filtering short USAs because USAs smaller than 15 residues are not reliable for
comparing conformation. Moreover, very short secondary structures and loops may
lack structural information and biological meaning.
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Distribution of USA database

Figures 4B and 4C present the distribution of the number of USAs in each
protein and the length of each USA, respectively. The curves of both distributions are
smooth in the log-log plot, suggesting that the set criteria satisfies the nature of local
protein structures. Figure 4B shows that the highest number of USAs in a protein is 38.
In addition, 627 proteins have only one USA, and P(N=1) is 0.2374. Figure 4C shows
that the length of the longest USA is 247 residues, and the biggest P(L) is 0.0578
(L=20).

A 225 , >=3 | >=5
} {
>=15
B 1 C I
* L]
° 1.1
0.1 ®e
*e
.l
—~ 0.01
= 00 K} S
(=9 . ﬁ\_:
) 0.001 3
. ® %
0. 001 - S
e 0. 0001 - e

0.0001
| 10 100 1E-05

Number of USA in ever ! 10 U
protein, N Length of USA, L

Figure 4. A) Criteria for the length of secondary structures,
loops, and whole USAs. B) Distribution of the number of
USAs in each protein. C) Distribution of length of each USA.

USA-based similarity network

Figure 5 illustrates the USA-based structural similarity network. This figure is
drawn using the software Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/). In the
network, every red spot is a node representing one USA. Two nodes are connected by
an edge (white color), and they are considered of similar structure if their E-value of
alignment is less than 10° and E'*-value is less than 5.0. The structural similarity
network contains 1511 nodes with at least one neighbor.

Figure 5. USA-based structural similarity network.



Network characteristics and properties

In this section, we determine if our novel network is scale free and even
hierarchical. We first analyze the degree distribution of the network. Figure 6A
presents that log-log plot of the distribution. The network is approximately
characterized by power law, where P(k)~k™**. Thus, there is no doubt that the
USA-based structural similarity network is scale free. In addition, the highest degree
of USA is 51, and P(k=1) is 0.4421. However, the evaluation result of clustering
coefficient in Figure 6B points out that C(k) is independent of degree in our network.
Therefore, the USA-based similarity network is scale free without hierarchical
modularity.

1 17 &K
A . B ] . o R
* ° 1 ‘0 *
. 1 . o0
0.1 ¢ e, P(k)=K7 =k L . 2%
®e "..‘() ? . * e
o
= =
T oo ’so\ S
Sode® 4
0.001 “ oo
0.0001 R R 0.1 e e
1 10 100 1 10 100
Degree, K Degree, K

Figure 6. Log-log plot of the degree distribution of network and
Clustering coefficient distribution of the USA-based similarity network.

Conclusions

In this study, we develop a novel local structural fragment called USA to
describe unique features of the functional sites of protein structures. We extend the
structural alphabet research by integrating another totally different research field,
complex networks. Previous studies have proven that SA is robust and reliable for
representing protein structures. Thus, we further use SA in describing local structures
and designing USA. Moreover, we use 3D-BLAST to search for USA homologs
rapidly and build our proposed similarity network.

Our structural similarity network is constructed using knowledge of complex
networks. In addition, the analysis of the characteristics and behavior of the similarity
network is based on the complex network literature. Results show that there is a
highly uneven degree of distribution in the USA-based similarity network. Highly
connected USAs, which are called hubs, constitute a small fraction of all USAs. In
other words, the probability of having USAs with only a small number of neighbors is
usually high.

In contributing to the literature, this study combines two distinct research fields
and provides a new and interesting viewpoint for investigating the relationship
between protein structures and functions.

In the future, we can further utilize USAs in drug development and design. We
will identify possible key fragments that may be useful for new drug development and
design. Drug-related databases, such as PDTD [34] and DrugBank [35], may be used
to identify potential USAs in the set of known drug protein targets as new drugs.
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