FHRERTPELE CLET TS AR

MR Stokes > 2 AR HMAKE S B g
g %EE G w)

Rl S T I Y

% % % ¢ NSC 100-2115-M-216-001-

#HoF H OB 100208 01 p 3 101 &07* 31p
HoFOH =P EERY AR K

P F o4 A :%*_pqglg

FESEAR AL A - EeE s | RS
By 4-{ @B AR REF

P A R O101& 107 05




LR 3

o R

oo R

M g & 5% (corners) % 4 s B R 4E(crack
mngularlty)””’)'LE PR A RESAEG AT
%o 42 HHA B ATR BB B A e R
ERP NGkl 2R R AR KA @ B
93 LA (FEM) 2 3 REL 22 (FDM) & 2.5 2 * A+ fz
(fundamental SOlUtiOHS)kf TS AECE 2 E IR iR ] R
%ﬁ?ﬁﬁ&lﬁmgﬁﬂ»ﬁp°ﬂwmpﬂ‘gili
F KR EM R AR T2 b B T
P BCE R o F R R AR - g ez
(general particular solutions)® 44 ¥ 4 'irﬁl#%EAﬁi
(singular particular solution) ° %ﬁ‘“” i - Bk kL
Benffafeh o AR E Pt & g A KRR Fulfz o A
L N R SR ] R AR SR S R e )
HRAEEF FRERAH RGN ORAIFTE -

RPSEIAE ~ AR U FE B B Uiz Trefftz i
) RERES

The singular solutions for linear elastostatics
problems are important in both theory and
computation. The singular property and the singular
solutions near corners are both important to design
effective numerical schemes. Traditional finite
element and finite difference methods provide poor
accuracy of numerical solutions for singularity,
unless increasing re-meshing strategy is used, but
the cost of computation is high.

Our research is to set up a systematic analysis for
linear elastostatics with corner or edge singularity.
Our effort is to build a systematical strategy to
derive singular particular solutions from general
particular solutions depending on different boundary
condition, such as mixed boundary conditions on
different edges or mixed boundary conditions on the
same corner edge. It is a continued work from our
previous articles which deal with seeking the general
singular solutions of linear elastostatics near the
corners under free traction boundary conditions. In
addition, we will design more effective models of
crack singularity under mixed boundary conditions.
The particular solutions and fundamental solutions



can be used for plane strain and plane stress
problems, to lead to the method of particular
solutions (MPS) and the method of fundamental
solutions (MFS), respectively. For the crack models,
we will develop the combined Trefftz method (TM)
which is with a few singular particular solutions
(PS) and many fundamental solutions (FS), to well
suit for linear elastostatics with corners.

linear elastostatics, fundamental solutions,
particular solutions, singular particular solutions,
Trefftz methods, collocation Trefftz method, boundary
elements method
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A. Introduction tothe Linear Elastostatics

For easy comprehension, we may use the vectorimot@s in [Li, Chu, Young,
Lee, 2009] and [Lee, Young, Li, Chu, 2010]. We hthe Cauchy-Navier equation of

linear elastostatics:



1

A+ (
1- 2

)O(Om) =0, in S, (1)

1
, O<u<—.
2(A + ) 2

The strain and stress relations are also given by

Where the Poisson ratio =

1+v [
&ij :?O.ij _Ea_ijzakk'

k=1

There also exist the symmetric relations:
O =0ji, & =€

Based on the above notation, the Cauchy-Naviertegues written explicitly as

LAU+ (A +ﬂ){g_>2<l:+;x_2;} =0,inS,
0°u 0% . @)

LAV + (A +”){axay +6_y2} =0,inS,
The traction ondS is given by

T(W)(X) = (7, (u,v),7, @, V))", 3)
where

r,(uv)=ogn+o.n,, and 7 (uv)=0,n+on,
or

r,(u,v) = 0, cosh x )+ g, cos y

r,(u,v) =0, cosh x o, cost y 4)

where n and n, denote the coordinates of the outward normalédtiundary.

Equation 4 can be written as:

r,(uv)=-0,sinf+ao, co¥ and 7 (u,v)=-0,sind+o, cod (5)
Where the stress component are:
o, =(A+2uu, +Av,, and o, =Au, +(A+2u)v, and o, = u(u, +v,) (6)

In [Mogilevskaya , 1998], [Qin, 2000], for the pkastress problem, the

particular solutions are expressed as the compieatibns. Denotie= J-1,



z=x+iy=ré’, Z=x-iy=re"®, The particular solutions u(x, y) and v(x, y) oéth
plane stress equations are given by the real aadiimary parts oA ,B,,C, , andD,

below, respectively,

A =iz“ +iDkzZ"™,
B, =z - DkzZ"",

. (7)
C =iz",

where D :L4u' By substituting the complex = x+iy =r€?, and

Z =x-iy=re™?,into Equation 7, or from [Li, Chu, Young Lee, 2008je complete

particular solutions can be given as (see [Qin0P0O0

u, =ZL:r"{ak[—sink6+ Dk sin - 29 |+ b, [cosk - Dk co~- 2 }

¢, sinkd-d, coké H+d,,
L

v, = > r{a [coskd+ Dk cosk — 2§ b, [sirk+ Dk sirK- 2
C, coksli6?+ d, sirké }c,,
(8)
Equation 8 will be used further to satisfy the t@stindary conditions. Some
preliminary procedures with free traction boundesyditions on 8 =+77 is outlined
first as a basic research procedure for our worlderiving singular particular

solution.

B. Derivation of sinqular particular solution for thefirst kind boundary

conditionsfor Linear Elastostatics

(1)

According to equation 8, we will derive and findwg@ns to fit particular boundary
conditions, such as the free traction boundary tmms, and get singular solutions
under these boundary conditions. This is the nemBbus step. It takes some
derivation.

(1a) Use equation 8, and rewrite equation 8 by reptakiby a complex

variablev' =v, .



(1b) Equation 8 can be written as:
u_= ZL:rVk {a [-sinv,8+ Dy, sin, - 2P I+b, [cos), —Dv, cos{ - & }
C, sink\:/ie— d, cos @ }d,,

rvk{ak[cosvk6+ Dv, cosk— 2§ ¥ Db, [sikk+Dv, sinf - 4

c cosv,@+d, sinv @ Hc,.

M-

vV, =

=
iy

9)
According to [Li, Chu, Young and Lee, 2010], ah@¢, Young, Li, Chu, 2010]

the particular solutions have to satisfy the gisenndary condition first. For

example, we have to calculaig,u, v, v, of Equation 9 with respect to x and

y. In [Lee, Young, Li, Chu, 2010], complex functions wased to derive
traction condition. In this research we will derparticular solution directly
from linear elastostatiche derived particular solutions which satisfy the
given boundary conditions will lead a system ofataun about the complex
variabley, . These complex variablg can be solved either by numerical
method, such as Newton method; or in some speaiakc, the singular
particular solutions can be derived with explidgebraicy, (e.g., see

Equation 11 below).

C(-1,1) ¥ B(L.1)

DC1,0) o ALLD)

Figure 1. A Motz’s Model
(1c) Design some models of crack singularity based aokcbeam, models to
mimic the Motz’s problem) [Motz, 1947], see Figuréexplicitly boundary
condition were not shown in the figure). Since ay\accurate solution is
obtained by collocation Trefftz method for this Mstmodel with very high
accuracy requirement in computation by MATHEMATIQAI, Hu, Li, 2004]

According to the free traction boundary conditio® & +77, we will have a



)

preliminary result, such as (we give one equatardemonstration only) and

assum& =U, = 0, 8= 0, then

L—

u. :Zrn%{bznﬂ[h D(n—%)cos@wéﬁ— D (n+—;)cos(1——‘;’ )

n=0

[N

ZL: r"{b,[(1 + D(n+1))cosnd-Dn cosa— 2¥ J}+h, ,

n=1

(11)

Also for v, =0, at 8= 0, therefore,

L-1

v =T

n=

n+

%{bml[l— D(n—%)sin(n +%)0+ D(n +—;)sin(n——z’)9]}+

Z rn{bz,-[(l _ D( n+1)) sinn@ + Dnsin(n— 2)9]};

=]
The unknown coefficients have to be decided byrdéiseé boundary traction
conditions independently. Here we give only one ehoand their boundary
conditions are given as follows.
Model 1: Model 1 is designed as the Cauchy-Navier equatatisfying the
boundary condition.

o, =0,=0, onOD

v =u, =0, onOA
v, =0, onABLCD
1 v, =0, onBC

(12)

u
u

(1d) On each model, different particular solutions W&l obtained according
to their boundary conditions and are used in thiecation Trefftz method in

the following step 2 to solve the unknown paranseter

Up to this step, there are still unknown parametersd to be solved, and will be

solved in the next step 3 by the collocation Teefftethod.

After completion of step 1, particular solutionskxfuation 5 with different boundary

conditions will be obtained, take Equation 11 agregle, and define basis particular



solutions, such as:

D,y (1,6) = fm;[(2+D(”+%))COS(‘+%)9—D 6+ )cost-9 ]
®,(r,6) =r"Dnlcos(d )~ cosh— 2§ ], 13
W1, 6) = fn+;D(n+%))[—Sin(n+—;)9+sin(n——z)ﬁ’],

W, (r,6) =r"[(2-Dn)sin(d)+ Dnsinf— 2§ ].

Different basis other than these boundary condstiwil be obtained according to
different boundary condition from Equations 12, éineir derivation are similar to the
current procedure.

©)

Design the collocation Trefftz Method. We choostipalar solutions from step (1)
and denote the solution seMas Since they satisfy the governed equations 5, and
some boundary conditions, the unknown parametérslstep 1, are sought by
satisfying the rest boundary conditions. Here wi argfine the boundary energy, for

example,

ABLCD

luV)= [[(v-17 +a&full+ | (uP+w¥) (14)

where wis some weight, usually we choosce:%, L is the number of

unknown of the particular solutions.

Define the collocation Trefftz method as: To segk,v, )1V, such that

I (u,v.)= min I (u,v) where
(V)

I (u,v) = numerical value( j [(v-2) + ofu?] + j U2+ w¥?) (15)
BC ABLICD
We approximate the integral equation 15 by somegnaition rule, such as midpoint
or the Gaussian quadrature. Details will not beegitiere.
(4)

On the other hand, we can also use equation I&o & collocation equation

set, such as,

\/ﬁ{ibnwn( r, el)} = \/E( ry Hl) DB_C (16a)



w\/_{Zb CD(rl,e)} =0,(r, §) OBC (16b)
w\/_{Zb W )} 0,(r, 6) 0 AB [ CD (16c)

2L - -
J{> b (1, 8) +h} =0,(r, § TABOCD (16d)
n=1

Equation 16 forms and a square or an over-detedrsgstem. Some numerical

method such as QR or least square method can benmapted to solve the unknown
coefficients.

®)

In the implementation of collocation Trefftz meth@articular solutions are obtained
after completion of steps 1 and 2, 3, and 4. Ifamental solutions needed to be used,
then we can try to use the combined method devdlbgd.i [Li, 200§. We use a few
terms of the singular particular solutions togethiégh many fundamental solutions to
form a combined Trefftz methodi¢e, Young, Li, Chu, 2010]The set of complete
solutions can be written as the following: (take @olution as demonstration)

ULZZ{aj(_ZIn rPQj +D [(X )2_(y_,7j)2] +
j=1 PQJ
AL NI L1100 o
rPQj feo, =1

bzn+1[(2+D(n+—))COS(h+ )9 D+ —)COSI(I-—W

(17a)

VL:Z{bj(_ZIn rPQi+ [(y /7) (X_Ej)z.l"'
=1 PQ]
NCRALIAZANN

(y-m)
[ r l } Zd2]+1w21+1(r H)+d

rPQJ i=

PQi

b2n+1[(2+D(n+—))cos®+ )9 D+ )cos(l-—&]



(17b)
Equations 17a,b consist of two parts, orteesset of fundamental solutions,

and another is a small set of singular particubduiteons. But the small sub-region

contains source pointg, of fundamental solutions is estimated and experteten

before a suitable region is determined. This issthhealled Combined Trefftz Method.

C. Derivation of singular particular solution for the second kind boundary

conditionsfor Linear Elastostatics (mixed type boundary conditions- the fir st
kind)
(1)

At the initial step, we should be aware of how $e the complete set of particular

solutions, i.e., equation 8 to match the boundanddions given in the outline shown
above paragraph. That meabeps 1~5 in the outline above will be repeated for
different boundary condition¥Ve want to find the particular solution with mixed
boundary conditions, oneisfree displacement and the other oneis afreetraction.

For the free displacement boundary condition, that is, u=v=0, on 8= C, and
the freetraction boundary condition 7, =r,=0, on =0 where the tractionr,
and r, are written in equations 5 and 6. A new particstzlution from equation 9

satisfying the free displacement condition shoulikenthe equation 9 to be a

simplified form as:

u_ =Y r*{a [-2sinv, 8+ Dy, (sing, — 2P~ siv, 8 )b Dy, [cos, — cos( - Z) ]

L
k=

LY

v, = 1" {a,Dy[-cosv 8+ cosy - 2§ ¥b, [2siv,0+Dy, (sing- B- snd )

L
k=

LN

(18)
The derivation of the new particular solution sf§fing the free traction
condition is the most tedious task.[Lee, Young, Li, Chu, 2010], complex functions

were used to derive traction condition. In the entiproject, direct derivation from



linear elastostatics will be usddence we will need one lemma from [Li, Chu, Young
and Lee, 2009].

Lemma: There exists the equalities,

6_r_cosga _Srﬂae -sing 00_cos9_

0x oy ox r E_ r

By chain rule, we should be able to derivgu,,v,,v, by

Ju _du ar au 68

ox or ax 06 ax
6v_6v6r+6v6¢9

X orox 96 dx
and o,,0,,0,, by equation 5 or equation 6. Details will be czadrin the

project.
)
After the completion o$tep 1, we should have an equation which describe theepow
v, =a, +if, fori=12,.L derived from equation 18 under the condition that
existence of nonzero solutions of the variabkgs and b, . Based on this equation,
we can then find solution otr, & B, either by numerical method or an explicit
formula. For the numerical computation part, itéstainly workable. But, we like to
find if there is explicit algebraic equation whidbscribes these particular solutions,
since it our goal to find an explicit particuladsion under these mixed boundary
conditions. We should be able to write the particsingular solution derived from

equation 18 into the form as:

u_ = > r*{a ®1+hbDv,®2}

(19)

- =~ =~
I MI_ N MI_
s R

vV, r*{a W1+bW2].

®1=[-2sinv, 8+ Dy, (sinf, — 2P - sin, 6 )
®2=Dy,[cosv, — cos¢, — 2 ]
W1=Dy,[-cosv, @+ cos¢ — 2§ ]

W2 =[2sinv, @+ Dy, (sin, — 2§ - sin, 6 )]
But, if we can find the relation betwegnb, , then we may re-write the equation

where (20)

19 as:



u, :irvk{at P1+a’P2}
= (21)
v =>r"{a wi+a?w2).

=~
11
iy

Equations 19 or 21 will be used in the computat@raccurate numerical singular
particular solutions in the models we design. Nb& though the unknown in
equation 19 is the same as equation 21, but ifitthk@own a;,a> maybe complex
conjugate each other, then the unknown can bedurdduced, and it will be studies
in the project.
©)
After will have the new set of particular solutisatisfying the free displacement
condition and free traction condition as in equatid9, and 21. The unknown
variables a; anda’ will solved by satisfying the rest of boundary diions in the
new designed model. We will imitate tMotz’s problemas in Li, Chu, Young and
Lee, 2009
And the boundary conditions can be defined as;
r,=1,=0, onOD
v =u=0, onOA
u=v, =0, onABOCD

o, = -1, Oy = 0, onBC

(22)

It means that on the edgBC there is a stress on the negative y direction, and
no stress on the x component. Several new modelddbe given other than this
model shown in equation 22 to test the accuracyssataility of collocation Trefftz
Method.

(4)

As in the outline above, we can set up a collocaliefftz model. We choose
particular solutions fromstep (3) and denote the set\§s. Since these particular
solutions already satisfy the governed equatiorad,some boundary conditions, the
unknown parameters, anda’ in equation 19, are sought by satisfying the rest

boundary conditions. Here we will define the bouwydanergy, for example,

V)= [ U +aA]+0 [ (u, +3v, +1)*+ (U, +v,) 7 (23)

ABCD



where wis some weight, usually we choosre:%, L is the number of

unknown of the particular solutions. Define thdl@mation Trefftz method
as: Toseek uy v, OV, such that

I (u.,v,)= (uryrv1)itrh1/L | (u,v) where
I (u,v) = numerical value{ j [u? +w?V] +w2j( u, +3v, +1) *+(u, +v,) I}
ABLOCD BC
(24)

On the other hand, we can also use equation 2go & set of collocation equation
similar to equation 16a and 16b, 16¢c, and 16d ddipgron the boundary energy
given in equation 24, with suitable weighting faetg an algebraic over-determined
system is formed. Some numerical method such asrQ&ast square method can be
implemented to solve the unknown coefficients.
®)
After we solve the algebraic equation, we can getieate solution, and the leading
power v, and the first coefficient. These informations vad used in calculating

Stress Intensity Factor. Such as Qin[2000]:

K, :Irimgay(rﬁ) (25)
K, :|im£_’faxy(r,0) (26)

r-or4

D. (D) Derivation of sinqular particular solution for the second kind boundary

conditionsfor Linear Elastostatics (mixed type boundary conditions- the

second kind)

The procedure ifc) can also be used to calculate another set of wyrmbnditions.
We call it mixed boundary condition of the secomaldk

(1) By the experience from the previous paragraptenivetion of the singular
particular solutions and forming the collocatiorffiz method, we should be now
aware how to use the complete set of particulartgwls to match the boundary

conditions given by the model and derive the siagphrticular solutions. Now, we



want to get the particular solution with mixed bdary conditions on the same corner
edge Wewant to find the particular solution with mixed boundary conditionson
the same corner edge, with a free displacement and a free traction, we call it the

mixed boundary condition of the second kind. For example,
u=v, =0 at & =0, (27)

and the mixed boundary condition

u =v, =0at 8 = 0, (28)
where 0<@< 27, u and v are the displacements along and perpendiculato th
edge =0, respectively, andv is the external normal. A new particular solution
from equation 19 satisfying equation 27 can betamigs:

u =Y r*{a[-sinv8+Dy,sinf, - 2P [+, sinv,8-d, cos,8 },
(29)
=)

L
k=1
L

rvk{ak[cosvk6?+ Dv, cosk- 2§ }c, cog d+d, simé }c,
k=

1

We will use equation 29 to satisfy the next mixedrdary condition given at

equation 28. But a transformation formula will keeded.
u* =ucosd +v sind (30)
v =-usind+vcod

We shall have a new set of particular solutions as

u :ZL:rVk {a (-1+Dv,)sinf, - 1P I+ ¢, sing, + 1P Hc, sind
N (30-1)
v =>r"{a,(1+Dy,)cosf, - 1P+, cos{+ B ¥c, co® .

=~
1

1

And

L
u => r**{a,@-Dy) @1~y )cosy — W k¢ (v, )cos{ + B ]

k=1

L -1 . .
v =2 1 {a @+ Dv)@+v,)sing, - 1P - (trv, )sing + B }.

k=1
(2) After the completion o$tep 1, we should have an equation which describe the
powers v, =a, +if,, fori=12,..L.Based on this equation, we can then find
solution of a, & B, either by numerical method or an explicit formutas our goal
to find an explicit particular solution under these&ed boundary conditions. If

possible, we should be able to write the singuéatigular solution equation 29 into



the form which should be similar to equation 11r Ewample, the boundary condition

IS given as:

u=vy=0, a =0

v=uy=0, at =2

Then the singular particular solution can be wnits:

u, :irzm{aﬂ([ sln(2k 1)6?+ D(Zk_ ])sin(l_ 9)6?]+
k=1 4 4 (31)

qwm “hop,

Vﬁirzm aZk[COS(Zk 1)9+D’2k ])CO°’2< 9 y I
= 4 (32)

loosE g,

In addition, Equation 31 , 32 will be used in tlenputation for accurate singular

particular solutions in the models we design. Otimindary conditions will be

explored in the research by deriving explicit pafar solutions.

©)

After will have the new set of particular solutisatisfying the free displacement

condition and free traction condition as in equadi@1 and 32. The unknown

variables a, and ¢ will solved by satisfying the rest of boundary diions in the

new designed model. We will imitate tMotz’s problemas in Li, Chu, Young and

Lee, 2009

And the boundary conditions can be defined simyjlad the one given in the part 1as;
v=u,=0, onOD
u=v,=0, onOA
u=v, =0, onABOCD
o,=-1, 0,,=0, onBC

(32)

It means on the edg®C there is a stress on the negative y direction,ranstress
on the x component.

(4)

Up to this stage, we can set up a collocation Treffodel. Design the Collocation



Trefftz Method. We choose particular solutions fretep (3) and denote the set\4s
Since they satisfy the governed equations 1, angedmundary conditions, the
unknown parameters left siep (3), are sought by satisfying the rest boundary
conditions. Here we will define the boundary enefgy example,

luVv)= [ U +aA]+ [ (u, +3v, +1)*+ (U, +v,) 7 (33)

'ABLCD
. . 1 .
where wis some weight, usually we choose:I, L is the number of unknown of

the particular solutions.
Define the Collocation Trefftz method as: To segk,v, )V, such that

I (u.,v. )= (uryrv1)itrh1/L | (u,v) where
I (u,v) = numerical valug{ j [u? +aA] +w2j(ux 3y, +1) 2+(u, +v) 3 (34)
ABLOCD BC

On the other hand, we can also use equation 8#roa collocation equation
similar to equations 16a~d, and an over-determaystem is formed. Some
numerical method such as QR or least square metiotie implemented to solve the
unknown coefficients.
®)
After we solve the algebraic equation, we can getigate solution, and the leading
power v, and the first coefficient. These information via# used in calculating

Stress Intensity Factor. Such as Qin[2000]:

. ~N2m . N2m
KI :IrIHOFJy(r’O) and K” :IrIEnOFUXy(r,O)

Results after completion of these stepsin (C) and (D):

1. It will lead to a systematically derivation ratly singularity property but also
singularity particular solutions of corners for taifferent cases, one is with free
stress on one side and a clamped boundary conditidhe other side; and the other
is a mixed boundary conditions on the same cordge gthat is one free displacement

and a free traction boundary condition on the seaneer edge.

2. It will lead to a systematically analysis of diamental solutions and singular



particular solutions for different boundary conaiits.

3. Some crack models which mimic the Motz’s problegithbe established.

4. A combined Trefftz method is formed by many famental solutions and a few

singular particular solutions to solve corners krsiagularity of linear elastostatics.

5. Calculate Stress Intensity factét, and K, shown in equation 26 to provide

accurate values for application.

I_L 2| B f‘_ .
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Singularity of Linear Elastostatics and Stokes Equations with Their Numerical Solutions

Linear elastostatics problem with mixed boundary conditions
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the other ison different edges
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