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Recently, the null field method (NFM) is proposed by
the 2011 Ministry of Education Academic Medal Winner
in engineering science, Prof. J. T. Chen with his
research groups. In NFM, the fundamental solutions
with the source nodes outside of the solution domain
are used in the Green formulas by the boundary
integral equations from boundary element methods. The
Fourier expansions of the known and the unknown
boundary conditions on the circular boundaries are
chosen, so that the explicit discrete matrices are
easily constructed by means of orthogonality of
Fourier functions. The NFM has been applied to
elliptic problems in circular domains with multiple
circular holes, and many engineering application
problems, reported in many papers:; 1n this report we
consider Laplace’ s equation only. In [Li, Huang,
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Liaw, LeeX, 2012], entitled as’ The null field
method of Dirichlet problems of Laplace’ s equation
on circular domains with circular holes’ is taken as
a basis of this research, some error analysis 1is
given for the assurance of the field nodes to locate
on the domain boundary.

As a result, in this project, a new method called
the ’ interior field method (IFM)" is given, which
is the special case of the null field method (NFM)
when the field nodes are just located on the domain
boundary. The IFM is simpler than the NFM, because
only one formula of interior solutions 1s needed,
compared with multiple formulas used in the NFM. The
IFM 1s more advantageous in simplicity and
applications. In addition, some flux conservation law
allow user to delete one more variable to deduce the
number of collocation equation, thus the system of
equation can be reduced. Numerical experiments with
and without conservative schemes are provided to
support the analysis. Some error analysis are also
studied in the project.

Boundary integral equations, fundamental solution,
Fourier series, Laplace’ s equations, elliptic PDEs,
null field method, interior field method, condition
number.
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1.598EEREA - Laplace’s equations in 2D

In order to simply describe the Null Field Method (NFM), we confine ourselves Laplace’ s

equation and choose the circular domain with one circular hole. Denote the disks S; and
SPl with radii R and R, respectively. Let SPl U S, and the eccentric circular domains
S: and SRI may have different origins. Let 2R< R. The annular solution domain S = S\ &

with the exterior and the interior boundaries 4 S; and @ SRu respectively. In [Chen and Shen,

1



2009], R=25, and R =1, and the origins of S; and S;are located at (0,0) and (-R,0)

respectively. The following Dirichlet problems are discussed by Palaniappan [Palaniappan,

20021,
2 2
pu=2Y49Y0g s, 1)
ox- oy
u=1 ond$ (2)
u=0, onodS (3)

The true solution of Equations 1-2 can be found at [Palaniappan, 2002] and is given as,

u(p.9)= 5o B coF,

b 4
2In2  p?+16+ & cog’ @

where (p,¢)are the polar coordinate of §; withorigin (-1,0). Equations (1-3) are called

the Model problem in this research.

We assume the boundary conditions are given and can be approximated by Fourier expansions.

On the exterior boundary 0S;, there exist the approximation of Fourier expansions,

M
u=u:= g+ {acos K@+ hsin B}, on 0S5, (5)
k=1
ou_ M .
P Ia P+ { pcoskd+ qsinld}, on 0S; (6)
k=1

where a,, b, p., g are coefficients.

On the interior boundary OS%J there exist the approximation of Fourier expansions,

M —_— p—
U=T,=3+) {gcos g+ Rsinld}, on oS, (M
k=1
T M
PRl =P+ {Rcoskf+qsinid}, on 0S, (8)
k=1

where @,h,P. 0 are coefficients. In Equations 5-8, @ and & are the polar coordinates of

S; and SRu respectively, and V and 7 are the outward normal of 0S; and OSRI,
respectively. The Dirichlet conditions, the Neumann conditions, and their mixed types on

0S; are given with known coefficients.
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Figure 1: Configuration of the Model problem

In S, we denote two nodes X=Q=(xYy)=(p0,0), and y=P=({,n)=(r,¢), where X=pcosf,

y=psind; and £=Rcosg, n=Rsing, where p=+x*+Yy> and R=r with r=+&+n*. The
fundamental solution (FS) for Laplace equation is that satisfies the following equation,

O%U(x,y) =20 (x - y)

where O(x-—y) denotes the direc-delta function. We obtain the fundamental solution as

U(x,y)zln‘%‘ and In‘ﬁ)‘ =In\/p2—2pRcos(9—¢ * R, whereP_Q 1s the line connecting points

P and Q [Chen, Shen, Wu, 2005].

From the Boundary Element Method (BEM) Theory [Chen, Zhou, 1992][Yu, 2002], we have three

different Green formulas for different location of the field nodes Q(X):

iy ;o —2mi(Q), QU'S
jas{ln\PQ(a—Vy—L( ywn\Pq W, = -7 R Q9 9)

0, otherwise

3



where P(y)O(SO0S.

By [Abramowitz et al. 1964], [Li, 2009], [Li, Huang, Huang, 2010], two kinds of series

expansions of the FS hTFii‘ are given as:

In[PQ|=In|P(y) ~Q(x)|=In|Q(0,8) - P(r.4)
U'(xy)=In =32 (E) cos-¢), p<r
= =h (10)

00

U(x, y)=Inp- Z (—)“COSHG-¢), p>r

n=1 N

where X=Q=(xYy)=(p,0) and y=P=(,7)=(r,¢); and the superscripts “e”, and “i” mean the

exterior and interior field nodes X, respectively.

By Equation 10, we can derive two kinds of derivatives expansions of FS as the following:

2u(x y)zhi(‘iﬂ)cosne—m, p<r
(an
—U( y) = Z

Note that the traditional boundary element method is based on the first formula of Equation
9. By moving the field node to the boundary, some Cauchy principle value, Riemann principle
value on Laplace equations, and some Hadamard principle value may happen in biHarmonic
equations [Chen, Lee, Lee, 2009]. The calculation becomes very difficult, thus the dual null
field integral equation is used and the field nodes X are located on the complimentary domain
of SOO0S. That is called the Null Field Method which is based on the third formula of Equation
9.

So, now we can define the null field method for Laplace's equation that we discuss in our

proposal as the following:

GU(y)

(%) u(»aa—VU(x ya, xOS (12)

J-asﬂuas,;i Iy J-asﬂuas,;i

where S¢ is the compliment of domain SOdS.



By substituting the Fourier expansions of the Fundamental solutions in Equation 10 and its

derivative in Equation 11 into Equation 12 yield the basic algorithm of the Null Field Method,

U(xy) __0U(xy)
ov o

noting that the normal derivative of interior circle 6SRL 1s defined by

The reason of naming the Null Field is because that the field nods X or Q is supposed to

locate outside of the solution domain S and its boundary 0dS only.

Chen and his research group have applied the Null Field Method to solve many engineering
applications, and the governing equations include Laplace’ s equation, Poisson Equations,
BiHarmonic equation, Helmholtz equation, etc. ([Chen, Shen, Wu 2005], [Chen et al. 2008a, b, c],
[Chen, Lee, Liao, 2008] ~ [Chen, Kuo, Lin, 2002], [Chen, Lee, Chen Lin, 2002], [Chen, Lee,
Liao, 20087, [Chen, Shen 2009], [Chen, Liao, Lee, 2009], [Chen, Lee, Lee, 2009], etc). Although
the basic descriptions above have been used in many papers of Chen, there exist no complete
explicit equations reported so far. The explicit equations are important not only to

understand the intrinsic nature of the NFM, but also to extend their applications. In the
Green formula Equation 9, the field node Q =X=(p,8)1s supposed to locate outside of the
solutiondomain SOO0S only; this is why the algorithms of Chen is called the null field method
(NFM). Some new evidences have been observed in the new article TThe null-field method of
Dirichlet problems of Laplace’ s equation on circular domains with circular holes by Li,
Huang, Liao, and Lee, and has been published at Engineering Analysis with Boundary Elements,
36(2012), ppd77-491, including that we can locate the field node just on the domain boundary:

x[J0S; Also a better choice of location of x is also suggested by numerical experiment.
In order to describe two systems of polar coordinates by (0,8) and (p,8) with origins (0, 0)
and (X,)) for S and S§;, respectively ( see Figure 1). The conversion between these two

polar coordinates is defined as:

- (A n O — ﬁsin(§)+yl
p—\/(pCOSG)'l')(l)?"' @Slne)'l'yli and tane—m (13)
,52J(pcos(9)—>g)2+ sin@ )y, § and tam?:l('l;z%g))__ifl (14)
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By referring to [Li, Huang, Liaw, Lee*, 2012], we have established the first explicit algebraic

equations of NFM as:

For the exterior field node X=(p,8) with p>r =R, we have

ext( e [_) Rﬂz (

Rlni_(i;_ ](a cos(d 1+ | sin(@ ) 27 Rinp) p-

k-1

j(ak cos(d )+ | sin(é )

k (15)
an{%j (R cos(@)+ q sin(€ )+ 27 R (D Y-
1R Y e BN
RJTZE(EJ (7. cos(Kd )+ q sirtkd))} =0
For the interior field node Xx=(p,8) with P<T =R, we have
Lint(p19’p1§):__ RJTZ( k+1j g cos(d ) Q singd )x Zra
Rni(R"k:j(akcos(m )+ b sin(@ )- {27 R(n Ry p-
k=1 (16)

Ry’

k=1

Xll—\
JUIN

|

Z%(gj (. cogkd) +q,sin(kd))} =0

j cos(l@ »q sin(l@ )+ 2r R(In R) Jo

Equations 15 and 16 are called the explicit algebraic equations of NFM.
B B30 302

2. Null Field Method for the Model Problem

(2.1) The collocation equations for the conventional null field method

Since one of the Dirichlet or the Neumann conditions is givenon 0S; and 0S; , only 2(M+N)+2

coefficients in Equations 15-16 are unknown. We choose 2M+1 and 2N+1 field nodes on S€, which

may be located uniformly on the exterior and the interior circles, as shown in Figure 2.



H4e

Ri - R1

Figure 2. Location of field nodes on the exterior of large circle and interior of the small

circle

(p,6) = (R+¢,i08), i=0,1,2, -, 2M
(p,0)=(R -£,i08), i=0,1,2, -, 2N

2T AD = 2ir

where EZO,OS§<R1, and A@= , - )
M +1 2N+1

A system of 2(M+N)+2 discrete equations from Equations 15-16 can be obtained as:

L..(R+£,i060,p,,6)=0, i=0,1,2,....® (17
L.(0,0,R-£,i08)=0, i=0,12,.,R (18)

The corresponding (2,8) and (2,8) can be obtained from the conversion formula of Equations

13-14, respectively. Thus a linear system of algebraic equations is obtained and can be written
as

Fz=Db, (19
where the matrices FOR™", and n=2(M+N)+2. The unknown coefficients can be obtained by
Equation 19. Once all the coefficients are available, the solution at the interior domain,
which 1s based on the first equation of the Green formula of Equation 9, the solution at the

interior node (p,0)0S can be written as:



u(x) = u(p, )-—aSRmR{ (x5 S y)}day 20)

By some manipulation, the solution can be written as:

Uy -y = Uy-n(0,6) = Uy (2.6)= 3~ RIn B p= Rin B p
+§i% Rk}(lok coskd )+ g, sin(d )+ — Z( F’iﬂj @ cost@ ¥ b sing )) , (0,0)0S
+%i%{%} (b, cost@ 1+ g, sintd 27| Z. ] @ cokd)+B,sin(@))

(21)
and (p,0)0Sare available from conversion of Equation 9.

(2.2) Main theoretical results
The main theoretical result in [Li, Huang, Liaw, Lee*, 2012] is given to re-assure the

location of field nodes can be at the boundary.

Theorem A. Let uOHP@S) 0 yO H™@9I( =2) be given, then Equations 15-16 hold for

p - R and p - R, respectively.

So, the field nodes can now be located on the boundary on the implementation of NFM without
worrying about the use of the Green formula given at Equation 9. Since in many engineering
applications of NFM, users usually put the field nodes on the boundary, and they may not know
the reason exactly, so we actually solve one of their puzzle.

(2.3) Stability criterion

What if we still put the field nodes on the complimentary domain S€, that is when
£>0, 0<e<R? What actually the numerical results will show? The second theoretical result

of [Li, Huang, Liaw, Lee*, 2012] gave the conclusion that the choices of (&,&)in the NFM do
not affect much on convergence rates, but do have influence on stability. Let O denote the
distance of field node Q to 0S. The larger J 1is chosen, the worse the instability of the
NFM occurs. As a result, 0=0 (i.e., Q 00S) is the best for stability. However, when 9 >0,

the errors are slightly smaller. Therefore, small O is a favorable choice for both high
8



accuracy and good stability.
From above analysis, we know basically some theoretical results of implementing the
conventional Null Field Method and since it is so widely used in engineering community, the

above results are important for users.

A conservative scheme of the above mentioned methods is further studied, which is called the
conservative scheme. Some stability analysis of the collocation schemes of the above mentioned
methods and error analysis have been studied. Further study of the null field method, such
as the Interior Field Method can provide users more choices on implementation when they solve

boundary value problems.

In this project, we have gievn some important results of the conservative scheme of the null
field method and the introduction of a new method called Interior Field Method, which is a

special case of Null Field Method.

A Conservative Scheme of Null Field Method and Inteor Field Method

for Laplace’s Equation on Dirichlet Boundary Condition

(1) A conservative scheme
In some physical problems, the flux conservation is imperative and essential. The

conservative scheme of NFM can be designed to satisfy exactly the flux conservation,

Jo @), #] (W), =0 (22)

. : . du o : .
where U, 1is given at Equation 6, and is E=qo = p0+2{ pcos kf+ g sinlg}; and Uy is given
k=1

a_

M _—
at Equation 8, and is =0, =Pt z Ppcoskd+qsinkd}. So just substitute these two

9



function into Equation 22, we have an the result directly,

27Rp, + 2TR =0 (23)

or

Rp+ RR=0 (24)

By Equation 23 or Equation 24, one variable can be substituted by another, say that,

h = T (25)
R_Q)

Therefore, the system of NFM in Equations 15-16 can be rewritten as the following,

L(;;nsew(p 0, g R]TZ( j(ak COSG@ )+ Q S|n(l€ ))"

(_ J cos(i@ )+ Ty sin(d ) {27 RIn2 ) p-
o p

y (26-1)
Rﬂﬂ(%%ﬂﬂd@ﬁqamww
N1(R o
RJTZE[E] (7. cos(kd )+q sin(@ )} =0
Lor (0,6, =-28, - RJTZ[ k+1j(@ cos(d }+  sin(d )y rg+
z( i (a.cos0)+  sinl))- (or R ) p-
. (26-2)

RIY [ j (P, cos(kd )+ g sin(6 ))-

N

R (_J(gcos(wsv)+qksm(k9))} 0

The new collocation scheme can thus be designed is similar to Equations 17-18, and can be

rewritten as:

Conservative Scheme :

A new system of 2(M+N)+1 equations, with 2(M+N)+1 field nodes,

10



WL R+¢,i00,0,8)=0, i=0,1,2,..., (27
WL p,6,R -%,i00)=0, i=0,1,2,.. 8- (28)

where W are some weight function to balance the different boundary conditions.

[t means that when we just use the same number of field nodes with the number of unknown
variables The first question we need to know is the performance of the numerical results,
do they have good convergence rate and good stability as in the traditional NFM?

From the output of the numerical results in Table 1, For Model Problem, choose the better
match between M and N as (M,N) = (2:1). The conservative

scheme with $\epsilon = \bar \epsilon =0$ are used in computation ( whih is the common way
of implementation of the NFM). The domain errors and the errors of normal derivatives on the
boundary are defined in [Li, Huang, Liaw, Lee*, 2012]. The errors and condition numbers for
different (M, N) with $(\epsilon, \bar \epsilon) = (0,0)$ are listed in Table 1 and their

leading coefficients $\p_k$ and $\bar\p_k$ are given in Tables 2 and 3, respectively.

Table 1: Errors and condition numbers for Model Problem by the conservative schemes
with M =2N and e = e = 0.

(M.N) (4, 2) (10, 5) | (20, 10) | (30, 15) | (40, 20) | (50, 25) | (GO, 30}
lu—upr_wllac.s 1.05(-1) | 1.20(-3) | 1.06{-6) | 9.95(-10) [ 9.83(-13) | 1.00(-15) | 1.06{-18)
| — wpr— wllo.os 1.74(-1) | 2.07(-3) | 1.74(-6) | 1.68(-9) [ 1.69(-12) | 1.75(-15) | 1.85(-18)

[ty — (ar-n)ellocas | 5.43(-1) | 1.33(-2) | 2.12(-5) | 2.98(-8) | 3.93(-11) | 5.01(-14) | 6.38(-17)
[ty — (far—n)elloos | 8.03(-1) | 2.00(-2) | 3.49(-5) | 5.02(-8) | 6.77(-11) | 8.77(-14) | 1.11({-16)

- 5.53 8.66 12.2 1.49(1) LT1(1) 1.92(1) 2.11(1)
it L58(-3) | 9.77(-6) | 4.23(-9) | 2.40(-12) | 1.52(-15) | 1.03(-18) | 7.25(-232)
Tritin—next 4.35(-1) | 2.75(-1) | L.7G(-1) | L.38(-1) 1.18(-1) 1.04(-1) 09.44(-2)
Cond 3.50(3) | 8.86(5) | 2.88(9) | 6.22(12) | 1.13(16) | 1.87(19) | 2. ll{”_h
Cond_eff 1.13(3) | 1.75(5) | 5.72(8) | 1.23(12) | 2.25(15) | 3.71(18) | 5.75(21)
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Table 2: The coefficients p. for Model Problem by the conservative schemes with

(M,N)=(60,30) and e = €= 0.

k Pk I P
0 (.57T07T80163555853625033433 31 | -5.374457839373220664920012(-10)
1 -0.57TOTRO163555853622406607 32 | 2.687228019657442755320359(-10)
2 (.2885390081 T77926807976638 33 | -1.343614459804690596367250(-10)
3 -0, 144260950408889634 00026606 34 | 6.718072298825661844946376(-11)
4 0.07213475204444816976408510 35 | -3.359036149250162612080399(-11)
5 -0.03606737602222408462520972 36 | 1.679518074491390723174677(-11)
L] 0.01803368501111204208153934 37 | -8.397500371350200011826765(-12)
7 -0.009016844005556020834934555 38 | 4.198T7951847TET3T912560074(-12)
) 0.0045084220027780 10235687519 30 | -2.009397501650664663576194(-12)
G -0.00225421100135900495852 1401 40 | 1.0496987952200680843090120(-12)
10 0.001127105500694502340550229 41 | -5.248403971144989136138502(-13)
11 | -0.0005635527503472510502195915 | 42 | 2.624246981518089173520479(-13)
12 | 0.000281776375173625421T417780 | 43 | -1.31212348744161341897709G(-13)
13 | -0.0001408881875865126222836058 | 44 | 6.560617410002066841980570(-14)
14 | 0.00007044400379340623553631763 | 45 | -3.280308682490658044045444(-14)
15 | 20.000035222046806T0305348 186035 | 46 | 1.640154322182716998703010(-14)
16 | 0.00001761102344835147226200443 | 47 | -8.200771439360115784056128(-15)
17 | -8.805511724175690102745908(-6) 48 | 4.100385544863161885186935(-15)
18 4.402755862087806269441078(-6) 49 | -2.050192555590879377263215(-15)
19 | -2.2013779310438T70539709053(-6) 50 | 1.025005945011031712555171(-15)
20 1. 100688096552190T937032014(-6) 51 | -5.125473T60088550T88688903(-16)
21 | -5.503444827600310960441710(-7) | 52 | 2.562725269619909724745545(-16)
22 2.751722413804464446000859(-7) 53 | -1.281339188110428401643500(-16)
23 | -1.375861206902072040192052(-7) 54 | 6.406215453481607042047T389(-17)
24 6.8709306034500038066114312(-8) 55 | -3.202117537983115593265803(-17)
25 | -3.4396530172534175T6801460(-8) 56 | 1.5090013974395542642025490(-17)
26 1.7T19826508625T042308 18684 (-8 57 | -7.952813108425345073524545(-18)
27 | -8.509132543121390392021213(-9) 58 | 3.8389060742356455201052180(-18)
28 4.2090566271554419120316275(-9) 50 | -1.763972137438824022366321(-18)
29 | -2.149783135772019511589404(-9) 60 | 5.087371004498464587TRG628(-19)
30 1074801567881 7223572831558(-9)
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Table 3:

(M,N)=(60,30) and e = €= 0.

The coefhicients pp for Model Problem

by the conservative schemes with

k yi]e k D

| 0.7213475204444517010936630 16 | -6.718072066013094712676984(-10)
2 -0.1803368801111204223094541 17 | 1.679517826935096113362002(-10)
3 0.04508422002778010169383850 18 | -4.198792562201 101666906831 (-11)
4 -0.01127105500694502055048827 19 | 1.049696026160650052946703(-11)
) 0.002817763751736249231193163 20 | -2.624217827T6225296TT771502(-12)
6 | -0.0007044400379340553415316399 | 21 | 6.560311254678255866111787(-13)
T 0.0001761102344835057940405807 | 22 | -1.630833562726413073268950(-13)
8 | -0.00004402755862086732353848251 | 23 | 4.097032032974534007971194(-14)
0 | 0.00001100688965520661758726790 | 24 | -1.021506775455881601041334(-14)
10 | -2.751722413790350241929543(-6) | 25 | 2.526286255800526313317198(-15)
11 6.879306034351912027339590(-7) 26 | -6.027735300006301341202410(-16)
12 | -1.719826508453085338171442(-7) | 27 | 1.208072873234010897048207(-16)
13 4.2095662609674450042523801(-8) 28 | 7.540054271798071757598855(-19)
14 | -1.074891565851013927669677(-8) | 29 | -3.2135V7006689146711757850(-17)
15 2.687228897857964431243502(-9) 30 | 4.0638328266302772392483734(-17)

From Table 1, we can see the following asymptotes

|H

(upr—n)|lo.s

{_‘lI]]i] — {}l ] .ﬁ'lnf ).

Errors in Table 1 are almost the same as those in [Li, Huang, Liaw, Lee*, 2012], that means
the convergence rate are almost the same. But the condition number in Table 1 is much larger
than $\mbox {Cond} = O(M)$ as shown in [Li, Huang, Liaw, Lee*, 2012]. Compared Tables 2 and
Table 3 with those in [Li, Huang, Liaw, Lee*, 2012], we can see that the leading coefficients
$p_0% and $p_19% also have the same 18 significant digits. Since $\bar p_ 0 =-2.5 p_0$, the
leading coefficient $\bar p_0$ also has the same 18 significant digits exactly. From the
computed results, we conclude that the accuracy of the solutions by the conservative schemes
retains the optimal convergence rates, but the stability is unexpectedly deteriorating as

$M$ increases!

inequalities,

0 < I-'T:mn[ = ”n} < T,

i =12, ..

f}[ll,.":”-!'”_].l. |H,;

l:”.’l-f N h’"| x5

n—1.

0(0.503".

Let us scrutinize the numerical singular values $\sigma_i$, there exist the
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Only the infinitesimal $\sigma {\min}$ causes the severe instability of discrete matrices,
which is called the pseudo-singularity in this report. This is a new kind of numerical
instability found in the collocation Trefftz method. Next, in order to overcome this kind
of instability, we use the following over-determined system with collocation equations on
the circles of $\partial S R$ and $\partial S {R_1}$, which were used for the original NFM
equations in [Li, Huang, Liaw, Lee%, 2012],

Overdetermined Scheme:

A new system of 2(M+N)+1 equations, with 2(M+N)+2 field nodes,

W Ler™(R+¢€,i06,0,6)=0, i= 0,12, (29)

Xt
WLS™=Yp 6. R -F,iA8)=0, i= 01,2, (30)

where W are some weight function to balance the different boundary conditions.

For $(\epsilon, \bar \epsilon)= (0,0)$, the numerical results are given in Table 4, we can

See

w— (upr—n)loos = O(0.494M), |luy — (tar—n o llc.os = O(0.491M),
Cond = O(M), Cond_eff = O(M).

Remarkably, the good stability of Cond $= O(M)$ is recovered successfully, while the high
convergence rates retain. Compared Tables 4 with those in [Li, Huang, Liaw, Lee¥, 2012], both
errors and condition numbers are small. Note that all

coefficients $p_k$ and $\bar p_k$ in Tables 5 and 6 monotonously decrease in magnitude, but
the last few coefficients $\bar p_k (k = 29, 30)$ in Table 3 alter slightly increasingly in
magnitude due to the severe instability (i.e., the pseudo-singularity). Hence, the

instability is successfully recovred by using the over-determined system Equations 29 and

30.
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Table 4: Errors and condition numbers for Model Problem by the conservative schemes
with M = 2N and e = € =0 by the over-determined system.

(M. N) (4,2) | (10, 5) | (20, 10) [ (30, 15) | (40, 20) | (50, 25) | (60, 30)

T —um—nllos | 2.65(-2) | 2.20(-4) | 1.24(-7) | 8.24(-11) | 5.95(-14) | 4.58(-17) | 3.05(-20)
i

Mtw — (a1 —n )wlcns | 1.26(-1) | 2.05(-3) | 2.04(-6) | 2.01(-0) | 1.03(-12) | 1.85(-15) | L.OI(-18)

) (-

lu—um—nlloss | 3.68(-2) | 3.11(-4) | 1.68(-7) | 1.12(-10) | 8.31(-14) | 6.54(-17) | 5.35(-20)
) k-
)

tte — Ginr—n)ulloss | 1.85(-1) | 2.96(-3) | 2.06(-6) | 2.93(-9) | 2.88(-12) | 2.82(-15) | 2.76(-18)

T 5.90 806 | L.24(1) | 151(1) | L.74(1) | 1.94(1) | 2.12(1)
P 3.54(-1) | 2.34(-1) | 1.63(-1) | 1.31(-1) | L.I3(-1) | LOI(-1) | 9.20(-2)
Cond 1.69(1) | 3.83(1) | 7.66(1) | LI5(2) | L53(2) | L92(2) | 2.30(2)
Cond_efl 557 | L23(1) | 2.45(1) | 3.68(1) | 4.00(1) | 6.13(1) | 7.35(1)

Table 5: The coefficients p. for Model Problem by the conservative schemes with

(M,N)=(60,30) and € = € = 0 by the over-determined system.

E P fe D

0 0.57707801635558536204130699 31 | 5.374457830462760797566000(-10)
1 —0.5770780163555853620130600 32 | 2.687228010731384888542087(-10)
2 0.285530008177 702658147 10540 33 | -1.343614450865602423072643 (- 10)
3 —0.1442695040883063407350025 34 | 6.718072200328461683515886(-11)
a 0.0721347520444481 7036799623 35 | -3.350036140664220070853775(-11)
5 —0.03606737602222405515300512 36 | 1.679518074832113305705264(-11)
6 0.01803368801 111204250100006 37 | -8.307500371160534180348073(-12)
T —0.0090168110055560212050009520 | 38 | 4.1087905187080205638250550(-12)
S 0.0045084220027 750 10647990765 30 | -2.009307593530086102581286(-12)
g —0.002254211001380005323000882 | 40 | 1.0406087067697 70105330740(-12)
10 | 0.001127105500694502661999941 41 | -5.248403083844534393743016(-13)

11 -0.00056355275034725 133099997006 42
12 0.00025177637517362566564999853 43
13 00001408881 87T586812832740909206 R

]

6242469919137 75442262780(-13)
.312123495939928592490997 (-13)
SE061TATO35GT1IGA55426653(-14)

|
=Y

o}

14 0.00007044409379340641637409632 45 | -3.280303738397T8606242769966(-14)
15 | —“0.00003522204680967T0320818749816 | 46 1.640154368052798450419112(-14)
16 0.00001 761102344835 160409374908 7T | -B.200771810665351894154779(-15)
17 -8.805511724175802046874540(-6) 48 4. 1003858442 1886042896916 7(-15)
12 4.40275586208790102343727T0(-6) 49 | -2.050192795789315252377309(-15)
19 ~2.20137793104395051 1 TIRG35(-6) 50 1.025096 1 366623673509804075(-15)
20 1.100682965521975255350317(-6) 51 -5.1254T52803T74284479266831(-16G)
21 -5.50344482T6095T62T9206533(-T) 52 2.56272646509T763259029627TT(-16)
22 2.751722413804938139648285(-7) 53 | -1.2813401203976741 19089631 (-16)
23 ~-1.A75861206902469069824129(-7) 54 6. 40622264456 1658881927048 (-17)
24 6.879306034512345349120369(-8) 55 | -3.202123004881339257912907(-17)
25 -3.4396530172561 T26T45500608(-8) 56 1.5990180435686732021094417(-17)
26 1.71982650862808633727T2600(-8) 57 | -7.95284245285666T00383617T6(-18)
27 -5.5090132543140431686367759(-9) 58 3.82905043846536TS05393052(-18)
28 4.290566271570215843130914(-9) 59 | -1.76309835340969611314000036(-18)
29 -2.149783135785107921454235(-9) (i8] 5.08740868643160440521 7349(-19)

30 1.074591567892553960493535(-9)
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Table 6: The coefficients p, for Model Problem by the conservative schemes with
(M,N) = (60,30) and € = € = 0 by the over-determined system.

k Pk k Pk

1 0.721347520444481 7036799623 16 | -6.718072299328462242649207(-10)
2 -0,18033688011112042591 99906 17 | 1.679518074832115518124494(-10)
3 0.04508422002773010647999765 18 | -4.198705187080287137406514(-11)
| -0.01127105500694502661 90909941 10 | 1LO49698796770065049200202(-11)
5 0002817763751 736256654000853 20 | -2.6242469019248813638700807(-12)
6 | -0.0007044400379340641637499632 | 21 | 6.56061T47T0800278347229T38(-13)
T 0.0001761102344835160409374908 22 | -1.640154369899151407T001643(-13)
8 | 0.0000440275586208T7001023437270 | 23 | 4.1003850225682455T1104681(-14)

9 | 0.00001100688965521975255850318 | 24 | -1.0250064T71307767525854802(-14)
10| -2.751722413804938130648203(-6) | 25 | 2.562740778681797250478746(-15)
11 6.879306034512345349120710(-7) 26 | -6.406834851346377639025390(-16)
12 | -1.719826508628086337280007(-7) | 27 | 1.60163561759425T072769615(-16)
13 | 4.299566271570215843197466(-8) 28 | -4.000965180428373746972636(-17)
14 | -1.074891567892553960780913(-8) | 29 | 9.868054502550073501948267(-18)
15 | 2.687228919731384901650330(-9) 30 | -1L.8YT1805T931 7880522087191 (-18)

In order to test the way it should be to put the field nodes at the exterior of domain, we
implement the Model problem by using a match of $(\epsilon, \bar \epsilon) = (0.5,0.2)$,

according to the design given in [Li, Huang, Liaw, Lee*, 2012]. From Table 7, we can find
the following asymptotes,

HH. — {HM Iﬂ.,f}”_-\.mq = ﬂ{ﬂ—i%“ ), ||”-;r == f_‘.'.".'l..lr N _}IJH 20,08 — f;'[[-]-l(_}l'”},
Cond = O(M x 1.2M).

The growth rate of the condition number in Table 7 is the same as that in [Li, Huang, Liaw,
Lee*, 2012]. From the computed results, we conclude that good stability of conservative

schemes has been restored by using the strategy of the over-determined system, as given in
Equations 29 and 30. In fact, we may add more collocation equations (i.e., m >2(M+N)+1 )as

done in the collocation Trefftz method (CTM) in [LLHC2008]. The computed results are similar.
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with M = 2N and (e, €) = (0.5,0.2) by the over-determined system.

Table 7: Errors and condition numbers for Model Problem by the conservative schemes

(M,N) (4, 2) (10, 5) | (20, 10) | (30, 15) (40, 20) (50, 25) (60, 30)
[lu—up—w|loc.s 2.98(-2) | 1.91(-4) | 1.02(-7) | 6.82(-11) | 4.96(-14) | 3.82(-17) | 3.26(-20)
||u— ups—nl|lo.as 3.38(-2) | 2.81(4) | 1.50(-T) | 1.00(-10) | T.44(-14) | 5.85(-17) | 4.78(-20)

[l — (s N u||cas | 1.14(-1) | L77(-3) | L.72(-6) | 1.69(-0) | 1.63(-12) | 1.56(-15) | 1.59(-18)
[y, — (ar—n)ulloas | 1.72(-1) | 2.71(-3) | 2.69(-6) | 2.65(-9) | 2.60(-12) | 2.54(-15) | 2.49(-18)
Cnax 5.75 5.58 1.19(1) L44(1) 1.66(1) 1.85(1) 2.03(1)

Ogin 2.95(-1) | 6.54(-1) | 7.38(-3) | 9.69(-4) | 1.35(4) | 1.05(-5) | 2.88(-6)

Cond 2.65(1) | 1.31(2) | 1.61(3) 1.49(4) 1.23(5) 9.49(5) 7.05(6)
Cond_eff R.73 1.40(1) | 5.38(2) | 4.958(3) 4.10(4) 3.17(5) 2.35(6)

At last, an alternative method is also implemented which is called the Truncation Singular
Value Decomposition (TSVD). The numerical results by the TSVD are listed in Table 8. We can
see almost the same accuracy and good stability for those obtained from the over-determined
system Equations 29 and 30. In particular, the modified condition numbers in Table 8 display

the nearly linear growth for $(\epsilon, \bar \epsilon) = (0,0)$ as,

Cond™(A) = O(M), Cond_eff*(A)=0(M),

to restore a good stability. Also by the TSVD, for $(\epsilon, \bar \epsilon) = (0.5, 0.2)$,
Table 9 provides almost the same rates as those given in Table 7 by the over-determined system.
However, 1f carefully comparing the results from these two techniques, the errors and

condition numbers from the over-determined system are slightly better than the TSVD. As a
result, we will recommend the engineers to use the simple overdetermined system to overcome

the instability of the psudo-singularity of the collocation method from the conservative NFM.
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Table 8

with M = 2N and (¢,€) =

: Errors and condition numbers for Model Problem by the conservative schemes

(0,0) by the TSVD.

(M, N) (4,2) | (10,5) | (20, 10) | (30, 15) | (40, 20) | (50, 25) | (GO, 30)
[lu—vpr—n||oc.s 6.36(-2) | 5.54(-4) | 2.95(-7) | 1.96(-10) | 1.44(-13) | 1.12(-16) | 9.27(-20)
llu —upswlloas 1.00(-1) | B.08(-4) | 4.18(-7) | 2.76(-10}) | 2.03(-13) | 1.59(-16) | 1.30(-19)

|ty — (tar—n |08 | 3.51(-1) | 5.87(-3) | 5.94(-6) | 5.87(-9) | 5.75(-12) | 5.60(-15) | 5.57(-18)
[y — (far—n)vlloss | 4.90(-1) | B.20(-3) | B.21(-6) | 8.10(-9) | 7.94(-12) | 7.78(-15) | 7.61(-18)
Omnx 5.53 8.66 1.22(1) | 1.49(1) 1.72(1) 1.92(1) | 2.11(1)

Tmin 1.58(-3) | 9.77(-6) | 4.23(-0) | 2.40(-12) | 1.52(-15) | 1.03(-18) | 7.25(-22)
Tmini—next 4.35(-1) | 2.75(-1) | 1.76(-1) | 1.38(-1) | L.18(-1) | 1.04(-1) | 9.44(-2)

Coned 3.50(3) | 8.86(5) | 2.88(9) | 6.22(12) | 1.13(16) | 1.B7(19) | 2.91(22)

Cond_eff 1.13(3) | 2.80(5) | 9.15(R) | L98(12) | 3.50(15) | 5.94(18) | 9.26(21)

Cond* L27(1) | 3.14(1) | 6.94(1) | 1.08(2) 1.46(2) 1.85(2) | 2.23(2)

Cond_eff* 417 9.95 2.21(1) | 3.43(1) 4.66(1) | 5.88(1) | 7.11(1)

Table 9. Errors and condition numbers for Model problem by the

g (66 =(05,02)

conservative schemes with M=2N

by the TSVD.
(M, N) (4.2) [ (10,5) [ (20, 10y | (30, 15) | (40, 20) | (50, 25) | (60, 30)
T — tagr—n||ocs 6.48(-2) | 5.49(-4) | 2.85(-7) | L.8T(-10) | 1.36(-13) | 1.0G(-16) | 8.76(-20)
|| — wpar—n||o.8s 1.04(-1}) | 8.30(-4) | 4.21(-7) | 2.78(-10) | 2.01(-13) | 1.57(-16) | 1.28(-19)
Tty — (Gar—n o llec6s | 3-54(-1) | 5.84(-3) | 5.77(-6) | 5.63(-9) | 5.48(-12) | 5.32(-15) | 5.27(-18)
lletwr — (ar—n)wlloas | 5.01(-1) | 8.42(-3) | 8.32(-6) | 8.11(-9) | 7.91(-12) | 7.72(-15) | 7.53(-18)
i 5.26 826 | 1.16(1) | 143(1) | 1.65(1) | L84(1) [ 2.01(1)
O min 3.07(-4) | 2.12(-7) | 2.40(-12) | 3.55(-17) | 5.88(-22) | 1.04(-26) | 1.90(-31)
Fonih et 3.16(-1) | 6.54(-2) | 7.38(-3) | 9.69(4) | 1.35(-4) | 1.95(-5) | 2.88(-6)
Cond 1.71(4) | 3.80(T) | 4.85(12) | 4.01(17) | 2.80(22) | L.77(27) | 1.06(32)
Cond_eff 5.81(3) | 1.20(7) | 1.61(12) | 1.34(17) | 9.32(21) | 5.91(26) | 3.53(31)
Cond* 167(1) | 1.26(2) | 1.58(3) | 147(4) | 1.22(5) | 942(5) | 7.00(6)
Cond_eff* 572 | 4.19(1) | 5.25(2) | 4.90(3) | 4.05(4) | 3.14(5) | 2.33(6)

(2) Interior Field Method

In Theorem A of section 2.2, when UOH?*(@S)0 y O H(@ 9, the NFM (Equations 15-16) works
for field nodes QOOJS, that is, p=R and p=R on 0S; and 0591, respectively. So for
Equations 15-16 should still hold on the condition of p=R and p=R on 0S; and 0S;. The

solution of the field nodes inside domain should be able to obtain by Equation 21, 1i.e.,
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Uy -y = Uy_n(0,60) = uy,_ (P, 5): a-RinRp- RIn B p

+§ 4 i( ](pk coskd )+ q, sinfd )i — Z( éﬂj @ cost@ ¥ b sin@ )) (31)
+%ZN:%[%] (P coskd )+ T sinfd )+ — > EN: J @ coX@)+h sin(kd))

And those unknown coefficients [a,h, R, ¢, b, P, can be obtained by suitable collocation

scheme. The main idea is that when Equation 31 with =R, then we can have the following

equations:
_ M
uwﬂgaﬁﬂy:H®:%+zﬁqu6+Q§nWLond% (32)
k=1

and similarly, when ©o=R, we have,

Uy_y(0,6,0,8)=96)= §O+i{@cosk§+ﬁsin 9}, on 0S, (33)
k=1
Equations 32-33 can be used to solve the unknown coefficients, without having to solve
Equations 15-16 first and then substitute into Equation 21 to find the solutions for field
nodes inside domain. This is the new Interior Field Method, we name this method because we
use directly the first equation of the Green formula in Equation 9, that the field nodes are

located inside domain S.

The following numerical experiment and analysis also have been done in the research.
1. Can we rewrite the Interior Field Method (that is, Equations 32-33) by the conservative
scheme (after some manipulation of Equation 26)?
The answer is yes.
After we have obtained the results of the variables, we can also derive the interior solution,

which i1s a conservative interior solution
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onser onse| onsgr—= R
Uy = U™ (0,0) = u “"(p,0) = g - F(Ing) R

(%J(pk coske J+ g sind )ﬁgﬂ F’;ﬂ] @ cosié ¥ b sin@ ) (33-1)

[%j (P, coskd )+ T, sin(@ )ﬁgi( gk_lj@ coskd )+ b, sin(@ )

Equation 33-1 can be used to derive the Interior field method and their conservative scheme
further. In the next section, we like to compare some boundary methods, such as the Collocation
Trefftz method, Null field method, and Interior field method, etc.
(3) Collocation Trefftz Method

A collocation Trefftz method can be implemented to compare numerical solutions with NFM,
Conservative scheme NFM, IFM, and Conservative Interior Field Method.
By [Li, 2009], the particular solutions of Collocation Trefftz Method can be given as:

u,_(0,6,0,8)= 3, +i(§j (3 cosi@+ b sin@ »
= . p<R p=R (34)

a,In p+i(%} (3 cosid +1 sini@ )

i=1

where (a,h,@,b) are unknown coefficients to be determined.
We can examine if Equation 31 (the interior field method) and Equation 34 are similar, so
we can say that IFM is a special case of CTM. Some relations between these coefficients between
[FM and CTM have been carried out in the project to reassure the finding that IFM is a special

case of CIM. We have drawn a figure to demonstrate the relationship between several boundary

methods, such as NFM, IFM, CIM, and BIE, and is given as the following Figure 3..
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(4) Some error analysis

Error analysis of the case for eccentric circular domain is also studied in the project.
Some Sobolev norms for Fourier functions are provided in [Canuto, Quarteroni, 1982]. The

analysis is difficult as it always should be, we have studied and give the result given as

the following, and the proof is skip here.

Theorem A: For the concentric circular domain when $R. \neq. 1$, the leading coefficients are

exact by the NFM, and the solution errors are resulted only from the truncations of their

Fourier expansions.

The convergence of the numerical result by the NFM is given by the Theorem B and is proved

by the following two lemmas.

Lemma 4.1 Let (4.1) be given, for 85 = R, there exist the bounds of the remainders of (4.7)

and (4.8)

1
M P 3
lu — @™ llg0sn < Cqppglulpose, 0<q=p

—M : '
HuP — U, Hq.c'}S,q = CW|UP|P—L35H-

where C' is a constant independent of M.

D<g<p-1,
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Lemma 4.2 Let (4.1) be given, for 9Sp, = €y, . there exist the bounds of the remainders of
(4.13) and (4.14),

i ; 1 > .
|u — @™ |1‘J~“-“'Jz; <C——— Ni= | P@Sk, » 0<gq<np, (4.15)
" N . 1 ! ,
lus — @y |lg.085, < C mh"p p-1,05rs 0<¢<p—1, (4.16)

where C' is a constant independent of N.

Theorem 4.1 Let (4.1) and R ## 1 hold. For the solution uy ay from the TM in (2.40), there
exists the error bound,

HH—HNAMMﬂSECWE%ﬂMp&m+j§;Wha&hL (4.17)
where C' is a constant independent of N and M.
(5) Numerical Experiments for IFM and its Conservative scheme.
For Equations 1-3, the Model problem, we choose £€=& =0, and use the IFM in Equation
31, and the conservative scheme in Equation 26 with symmetry, the explicit equation for the

interior field solution is rewritten as:

U, =Uin(00)=u,(p.0)=3-RinB p- Rin B

R _ (35-a)
L) ok 35 o)
Also the conservative IFM solution can be used and is given as:
uer =1, (0,6) =Yy (0,0)= - F‘(Inﬁ)m
(36-a)

L

The computation is similar to Equation 32-33, but with £=¢& =0.

Also, two conservative IFM solutions can be obtained as the following:
_ R R 1 RY1(RY. _
LR, 8,R,8)=-RIn—) p+—>» — pcos(lg = —(T] cos(B ¥ C
3 YAPPrL 22 5) P
where (r,8) on 0S; (37-a)

conse¥ R, 0,R,8) = 271R(In%) R+ Rri%((%)k pcos(& » fiN:—l %} —pcos(& ¥ (
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where (r,6) on 0S; (37-b)

An algorithm like the Conservative NFM Scheme is designed but with €= =0. That is a new

system with 2(M+N)+1 equations, of 2(M+N)+1 field nodes,

Conservative IFM scheme:

wLE™Y(R, i86,7,,8)=0, i= 0,1,2,.., (38-a)

Xt

wL*(0,6,R,i00)=0, i=012,. R~ (39-a)

Afterward, some comparisons between the IFM and the NFM have been made, both with and
without conservative scheme.

Based on the work in [Li, Huang, Liaw, Lee*, 2012], we have the similar theorems.
Theorem B: Let uOHP(0S 0 yO H™@ 9( =2) be given. The Interior Field Method is just a

special case of NFM with €= =0 (in Equations 17-18 or 27-30).

Theorem C: Let S be a simple annular domain with symmetric solution to x-axis. When R#1,

for the algebraic equations F x=b obtained by Equation 17-18 or Equation 27-28 or Equation

29-30, there exists the bound

Cond( F) =jm_ax—8;§ =QN (40-a)

The importance of this project is to let us understand more on the performance of the
conventional Null Field Method and to examine its variation such as the IFM and their
conservative schemes, and study their numerical performance, and compare these new methods
by the criteria of stability and convergence rates. Hope the results can help engineers know

better of these methods and to implement in their applications properly.
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