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Design and Implementation of Resour ce Allocation and Job
Scheduling for Supporting SPM D Programs on Heter ogeneous
Parallel Computing Networks

Abstract

This report presents the development and implementation of runtime GEN_BLOCK
data redistribution scheduling algorithm for irregular data redistribution on distributed
memory computing environments. In this project, we developed an irregular array
redistribution scheduling algorithm, two-phase degree-reduction (TPDR) and a method to
provide better cost when computing cost of each communication, local message reduction
(LMR). TPDR is consisted of two parts. the first part schedules messages which are from
processors that have most messages to be sent or received; the second part is used to schedule
the left two scheduling steps that can’'t be completed in first part using coloring method and
an adjustable coloring mechanism. LMR estimates the difference of speed ratio between a
node transmitting data to others and to itself. After the difference is estimated, LMR lowers
cost of communications that a node transmits to itself. It helps scheduling algorithm reducing
redistribution time. It is an algorithm independent method. In this project, TPDR scheduling
algorithm and LMR can facilitate performance improvement on paralel compiler
environments because of helping shortening overall communication time, avoiding node
contention and giving better theoretical module of communication cost when performing
GEN_BLOCK data redistribution.

Keywords: GEN_BLOCK, Dynamic Data Redistribution, Distributed Memory, Scheduling
Algorithm, Theoretical module of communication cost, Parallel Compiler.



—~KhRBEH

AN HAREHBERE R, OAZEERXAPITHBRY  FERFTHYE
MEEFR > MMERASAFELRETHRESHEMNER 2R ENRETH

BREY RESFELTHEHIREZNEHNCEI FARANENRETR - AMILE
B RABDFEBER A EROIITEA > Bk $HEY T HEE KL m#HXL
RAERRY A —BERZGARLT @ - BE N RN DRBERIRLL A BT 4
ThEaR > Bk BN ENBREAREILZZFEARANG BN ENEE L - 5 @B a8
#o AR EEEE L TR BT FATER A RRRAZE EA Bk E B4 H TR
N ERARO T HACRBREERERRANE N ENREEERE X 28 AT A
DEHHRRAGEN ENRENEAERGEL L AR E T RMF LS HKR
EREBET  SAHRRARN TR BRELRE SRR EASGREEL L TR G AH
BRIVBIHEOHRY L RFH P TURARAZ EE R GaE B2 aHERY
Ko #HFE > BISHBRT RAEOREERRE > B @R AE R A & TR
B G E R B 8 MR A ARG R E AR R RISt — B8R ot a
WMEMNRESFHUAALS  UBLBERLI TR LOBRERI T LAEE -

—BREFERERFR
B ¥ GEN_BLOCK Z2HERZ X Z RS EAR A NEZEHERGEZMBRES > R
55 K R BAT R E 3 K A0 Bl £ ¥ & (Data Redistribution) < & 7 FK Bk £ #7c
BEAFCE @R BRA ARG ERIREREELLTN -
EHEHREE  REISATHAMNGMG LG RHME LT HE E % #H(Daa
Distribution scheme) #i #5 g, © 4§ 3£ 18 Bl 44 & T A — 0 B #ko B — Fiow > SPo 2] SPs & =4

B Pey—EEHzEEs(Vetex Set)» REBHAENH P EEFHORESES 5 DPy 2] DP;
AR B Pe s —BHEES REBHENIERAHREZES MBI MmA %

B ¥ ay:%(Edge) - REARIE S Z MEE A4 -

A EREMEH EHEEZHAZE LA Two-Phase Degree Reduction
(TPDR) » £ &0 Mm@ m - F— AR AHEZHERBELRFBMANLHRIES
IR APEAZ > B — P oy SPfe DP2» i R AR IE= 5 B ¥ 1A & K Degree & &
BE(R T B)A M fAehF (MR A) -



B— ~ RIESEEHE AL -

% — 183 &1 E 1Rk R Degree 8948 » &M1&k K Degree 1 85 > & B A 12 ek
H—EBEAZ S B o % ik Degree a9 A E7 2 85 > TPDR 3R E B LA E — A
Wy o B IR F SRS E — 30 B RIS SR E AL E LR
28 & U o A 18 18 & 4-(Edge Set) p Sl HEARESERZ LR - AHRET AN H =
Ay P AR A BR G5 B 0 F i@ R R 69 BE & B8 T R E IR A BN A A fE R B
1EH o

TPODR ¥ EE LN E— o R=F » pilito T :

$—F  A—mB TP Hd BAT Degree A Ao & B 0 3t BARIBAL B 1R E R
WO AR B 48 E B BE Bk R A KB & Bh ¢ Degree {5 A& 3x A 99 B B AT K Degree
BAd AHERESHRFTHRIFE —ES<Vi, Vio, ..., Vi ©

=5  aFH AP HNERT BB RRAENET I HFemn ER
FRBUNRK D EEAGREHEANB AT F dEPEEZ TP -

=% % Degree T KRN 205 » ERFH—FoF = -

B — ek Kk Degree {4 3° £ 5 —F F > P DP # AR BEHGR L 691580 2
A o B2& Mo Fo Me o 31 B SPyfn DP, A B1% 3 fo 0K 89 F B 3ERE » My fo Mg
HEWPEASRETER 3 F o bl B —F =5 B Rd ml m3-m4-m5Fe m7
Fréam by =5 B > 4B =P ©

SPy SP; SP, SP;

my mz 4 |Ms 7
(@)
DP, DP; DP, DP;

B =~ $iBE mofv meBEABER P BR 3 UB 8 — 5B - B B AT A Degree & 2> Ff
LA R 00 38 2R B b TPDR BEA2E B0k 69 5 — 3Ry 4T HEAR -



B AH&A Degree g 2 2> BEREELFEAF A Z &2 H RY:EMME G F 3ty -
HFmpsmysmsfomy g i oM LEE P EESHKREIEZTR L 2
HILTHEHRER  wE= -

AEEHBRE T R B ESERBER MR E A F —EH2 5B E mgfo ms it
BE B S RE > EAEROEEERR D Al M B EREE > Myfo ms
BEREE > HPRERME0E WHT -

Schedule Table
Step 1 my > Mz~ MmMs > Ny
Step 2 my
Step 3 mz ~ Me

B=-%&d TPDR U2 E L EHREAFRIHER -

Schedule Table
Step 1 my > My > My
Step 2 mz ~ Ms

Step3 my ~ Mg

Blvo ~ BAES EMRHIEIHRT MR mefoms /2 Stepl fv Step 2 ey & -

KA H AR EREEBE S BEIREE REToN > BRIREELLT
BHBPREXRLEERVIEFHM OGP LLERTATHEEEEA M- & K% 58
RIERZBIAFHERAFHEYNEEBE»Z =T LA E TR ERE B

WAEBHE L, BRALSBEREZF BNMHBELEIBARJRIBARMAERYAE
HRER - AMEBEHARMEKETAELE AR T L E D H RS BB EEEA

o AMTUARB LGBV PRER - AMALREEERE A3t E PREGPERZE
Bk Rt R E R % -

LMR 9@ A m it AR AME MR R R A S TR EM o Buey i F » R IR
HAREE BN - R X2 B A LR BEENEAL A CHKENE E BN ARA
URERERAMS EHATHER - Bt LMR %R &6 2% M8 4 H i 2L &
“HaTHRFE BRAZERRAAFEOERRAAT oo GBFERLLETH L
AR AR LS R B B a0 18 > RAER AR —@MBAA - LMR R4S Fehik ik
FA R AR AR 3 1R 12 0 A AR R SN R B AR A A RBATRE R - SRR R B AL
FhoE@ ML S E MR AN RITHE  eABRMENIRLER - B2 E S TPDR



#IMR $BRAL ERFLERM -
Bar@t—E—>"8 RABHEHEAANE > BHRFHEE ez B
Ry X A= 4o P~ DP 4L SPy» s/ NHER S ERA =4 - B (b))% TPDR oy 2 &
ROERBTENSEREMARAR 29T 54 EFRERGFH > Adbsn@AELT
BAKHY AR A > AR AES 211 B A(CAT » AHREKR T F ERF LR
YR -BEDRAFAZ R EL > AU EFAMmAL > B TPDRIFELLBITHAE - &
FHETENHEE R RA YR PR 155> &B ()8 211 2 T 56 - B4 TR A
PR R B R ERA R MR MR AN £ R RERAR B RTHAR AWK
BERENMSEGHAE KMETRIT I LMR R{Es & TPDR ZAEXE L1k
BB AR BIRER EM o BT F QR o & — B LA HERR R Bk e Bl o

99 10 113 114 164

Schedule Table Cost
Stepl (M3~ Mg~ Mg | 122 (mg)
Step2 [Mp~Ms~ Mg |99  (My)
Sep3 (MM~ Ny |76 (My)

132 76 144 122 26 Total cost = 297
@ (b)

Schedule Table Cost Schedule Table Cost
Sepl |Mz~me~ Mg | 122 (mg) Sepl [mp~mu-mg-mg | 122 (mg)
Sep2 [My~Ms~Mg | 13 (my) Sep2 | Mz~ my 23 (my)
Sep3 | MMy ~My |76 (mMy) Step3 | Mz > Ms > Mg 10 (my)

Tota cost = 211 Total cost = 155

(c) (d)
Bz~ @B EH Bz —/58 - (0)TPDR g HEf2 4 £ » i@k A% 297 - (O)#] A LMR

o #7 B B (b)Ae R BB A% 3% 0 ] a9 @3 A 0 BP IR My~ Ms $2 Mg = 4B AR 33 18 3R89
A SR 211 o (d)BEAZATAI A LMR 20 &38R A © 3 TPDR HE£2144F 2 8B 2.(C) £
ey @R A > 155

=~ EREHN

TaRAMFARTEEZORR:
® ZAMEEAMHERMEMN - ATHEHMYENRALRHRE  BRATRT R



BERIFERXAREANE > TRARIERMABEHRREERE -
waklnterval graph 2 B B FTAE - &I AInterval graphz /8 & AT 45 - TTA R
FI 7GR e i D PEAZ S BR o

TR GEN_BLOCK & # E# B2 HeA2 B B A B - St IR T4 T4T
B HEARZ E Bk 0 4R B &k KDegreefii ix /N BROG A 48 F 4 o B LU F R R K
Degreeits /7@ :APF#2 » 3 50 B H KB EAF -

TRE CERHATRANB RO E - AR F EERFR OB BRI
T 2 BIEF R RAKENZOIRLLER » R ATPDREZER AT > AR K
FPEPER R F B FE R E 0GRS

7% A List scheduling algorithm[22] 2 & Divide-and-conquer scheduling algorithm [20]
2B - ATET AN EHEOHRBEE L AARZOIREL L FEME L
BERRE B R MR AT E B

AR DA B AP SR ME R ERAGEGE A - A TIBRIRAT RN
Bar > RIFIT AR T @R AGIE G A A AFIBTHERR & Ray4FIE -

TR FANEABRE TR AR FZAR - WML BT RF W :BETF 5 5]
AR IR B A ARF 0 W AR A o BT PERE R AR hE & TR E ML T
fE gl AL Y@M FHH -

TREBMEELHAEAS - ATHBETRWEMNRESLH  KROETHT —EEH
BREEAAR ALATHEFNELRERS Y I BALBERES Ly EHEE
E &

TREWRFLLE R E - ATHRBANRAEETRELFETHILES
Ml > RATTAR T RWR R ey niia B R ARITE R EHAL
TR AR R R AR XX T - AR IR R b o) 304 A R EUE
ZRAREBEIR T AT FWRE

TRERBIFES VAL - HBTHBRLMRE EHREELNRE  RIMRE >4
wo s ENROES

PAT AT EAE R Z AR X Rd T

Ching-Hsien Hsu, Shih-Chang Chen and Chao-Yang Lan, "Scheduling Contention-Free Irregular

Redistribution in Paralelizing Compilers,” Accepted, The Journal of Supercomputing, Kluwer
Academic Publisher, 2006. // TPDR J#HEE

Ching-Hsien Hsu, Min-Hao Chen, Chao-Tung Yang and Kuan-Ching Li, “ Optimizing




Communications of Dynamic Data Redistribution on Symmetrical Matrices in Parallelizing
Compilers,” |EEE Transactions on Parallel and Distributed Systems, Vol. 17, No. 11, pp. -, Nov.

2006. /I EHFEAREEOR T BoRd

3. Ching-HsienHsu, “Sparse Matrix Block-Cyclic Realignment on Distributed Memory Machines," The
Journal of Supercomputing, Vol. 33, No. 3, pp. 175-196, September 2005, Kluwer Academic Publisher.
(SCI, El, NSC 93-2213-E-216-029) /I Hsii i e} s oo Be B

4. Ching-Hsien Hsu, Chao-Yang Lan and Shih-Chang Chen, “Optimizing Scheduling Stability for

Runtime Data Alignment,” Embedded System Optimization - Lecture Notes in Computer Science,
Vol. 4097, pp. 825-835, Springer-Verlag, Aug. 2006. // Local Message Reduction (J&:35 i fE4k)im:A
PR EL
5. Ching-Hsien Hsu, Shih-Chang Chen, Chao-Yang Lan, Chao-Tung Yang and Kuan-Ching Li,
“Scheduling Convex Bipartite Communications Towards Efficient GEN_BLOCK Transformations,”

Parallel and Distributed Processing and Applications - Lecture Notes in Computer Science, Vol. 3758,
pp. 419-424, Springer-Verlag, Nov. 2005. (ISPA’ 05) [/  FI]FH — 43 [El S (o P s r B R B

6. Chang Wu Yu, Ching-Hsien Hsu, Kun-Ming Yu, C.-K. Liang and Chun-l Chen, “Ilrregular

Redistribution Scheduling by Partitioning Messages,” Computer Systems Architecture - Lecture
Notes in Computer Science, Vol. 3740, pp. 295-309, Springer-Verlag, Oct. 2005. /I FI|FHFE 5 E
BB R

7. Shih-Chang Chen ([d# |- ¥ £ 4:), Ching-Hsien Hsu, Chao-Yang Lan, Chao-Tung Yang and

Kuan-Ching Li, "Efficient Communication Scheduling Methods for Irregular Array Redistribution in
Paraleizing Compilers,” Paralel Computing Technologies - Lecture Notes in Computer Science, Vol.
3606, pp. 216-225, Springer-Verlag, Sep. 2005. (PaCT’ 05) // Contention free Hf2 il

W~ AR B

A EXARARRMEYERA - F—F A - EPFAERBETHRARGE R EHNEREMR
RRESHFINRELFE—AAREIA LA N B R =BT ERIAR =R BT
WX o HFFE £ LMR B ER L > RMELELRTHREBRAKRX ° B AT B4 5T
B—WmEHHFRRE 0 5345 £ |IEEE Transactions on Paralel and Distributed Systems.
B AT 4% &2k 80%TFA3 11 A R MAAT T 4% & - AR ECLLE R > 2R K&
BRE—EAEE R ARG P AT RN R c B AATAT T UE R 1 2 2 B 4T
WX AMARREAPATHMN E  BLBEERMAETHREMT X - A3t EH LAY
RERR  RHABAFeETHRE T—EFE BB ENEH > FREFEIEZH
BB RIRIE © B WL RI EPUTRI LR E - KA RE T L HEGH -

B~ 2 3URK



10.

11.

12.

G. Banderaand E.L. Zapata, “ Sparse Matrix Block-Cyclic Redistribution,” Proceeding of
IEEE Int'l. Parallel Processing Symposium (IPPS99), San Juan, Puerto Rico, April
1999.

Frederic Desprez, Jack Dongarra and Antoine Petitet, “ Scheduling Block-Cyclic Data
redistribution,” IEEE Trans. on PDS vol. 9, no. 2, pp. 192-205, Feb. 1998.

Minyi Guo, “Communication Generation for Irregular Codes,” The Journal of
Supercomputing, vol. 25, no. 3, pp. 199-214, 2003.

Minyi Guo and |. Nakata, “A Framework for Efficient Array Redistribution on
Distributed Memory Multicomputers,” The Journal of Supercomputing, vol. 20, no. 3, pp.
243-265, 2001.

Minyi Guo, |. Nakata and Y. Yamashita, “Contention-Free Communication Scheduling
for Array Redistribution,” Parallel Computing, vol. 26, no.8, pp. 1325-1343, 2000.

Minyi Guo, |I. Nakata and Y. Yamashita, “An Efficient Data Distribution Technique for
Distributed Memory Parallel Computers,” JSPP'97, pp.189-196, 1997.

Minyi Guo, Yi Pan and Zhen Liu, “Symbolic Communication Set Generation for
Irregular Parallel Applications,” The Journal of Supercomputing, vol. 25, pp. 199-214,
2003.

C-H Hsu, S-W Bai, Y.-C Chung and C.-S Yang, “A Generalized Basic-Cycle
Calculation Method for Efficient Array Redistribution,” IEEE TPDS, val. 11, no. 12, pp.
1201-1216, Dec. 2000.

Ching-Hsien Hsu, Chao-Yang Lan and Shih-Chang Chen, “Optimizing Scheduling
Stability for Runtime Data Alignment,” Embedded System Optimization - Lecture

Notes in Computer Science, Vol. 4097, pp. 825-835, Springer-Verlag, Aug. 2006.
(ESO’ 06) (SCI Expanded, NSC92-2213-E-216-029)

Ching-Hsien Hsu, Chao-Yang Lan and Shih-Chang Chen, "Scheduling Contention-Free
Irregular Redistribution in Paralelizing Compilers,” Accepted, The Journal of
Supercomputing, Kluwer Academic Publisher. (SCI, EI, NSC93-2213-E-216-028,
NCHC-KING-010200)

C.-H Hsu, Dong-Lin Yang, Yeh-Ching Chung and Chyi-Ren Dow, “A Generalized
Processor Mapping Technique for Array Redistribution,” |EEE Transactions on Parallel
and Distributed Systems, vol. 12, vol. 7, pp. 743-757, July 2001.

Edgar T. Kalns, and Lionel M. Ni, “Processor Mapping Technique Toward Efficient
Data Redistribution,” |EEE Trans. on PDS val. 6, no. 12, December 1995.



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

S. D. Kaushik, C. H. Huang, J. Ramanujam and P. Sadayappan, “Multiphase data
redistribution: Modeling and evaluation,” Proceeding of IPPS 95, pp. 441-445, 1995.

S. Lee, H. Yook, M. Koo and M. Park, “Processor reordering algorithms toward efficient
GEN_BLOCK redistribution,” Proceedings of the ACM symposium on Applied
computing, 2001.

Y. W. Lim, Prashanth B. Bhat and Viktor and K. Prasanna, “Efficient Algorithms for
Block-Cyclic Redistribution of Arrays,” Algorithmica, vol. 24, no. 3-4, pp. 298-330,
1999.

Neungsoo Park, Viktor K. Prasanna and Cauligi S. Raghavendra, “Efficient Algorithms
for Block-Cyclic Data redistribution Between Processor Sets,” |EEE Transactions on
Parallel and Distributed Systems, vol. 10, No. 12, pp.1217-1240, Dec. 1999.

Antoine P. Petitet and Jack J. Dongarra, “Algorithmic Redistribution Methods for
Block-Cyclic Decompositions,” |EEE Trans. on PDS, vol. 10, no. 12, pp. 1201-1216,
Dec. 1999.

L. Prylli and B. Touranchean, “Fast runtime block cyclic data redistribution on
multiprocessors,” Journal of Parallel and Distributed Computing, vol. 45, pp. 63-72,
Aug. 1997.

S. Ramaswamy, B. Simons, and P. Banerjee, “Optimization for Efficient Data
redistribution on Distributed Memory Multicomputers,” Journal of Parallel and
Distributed Computing, vol. 38, pp. 217-228, 1996.

Akiyoshi Wakatani and Michael Wolfe, “Optimization of Data redistribution for
Distributed Memory Multicomputers,” short communication, Parallel Computing, vol.
21, no. 9, pp. 1485-1490, September 1995.

Hui Wang, Minyi Guo and Daming Wei, "Divide-and-conquer Algorithm for Irregular
Redistributions in Parallelizing Compilers’, The Journal of Supercomputing, vol. 29, no.
2, 2004.

Hui Wang, Minyi Guo and Wenxi Chen, “An Efficient Algorithm for Irregular
Redistribution in Parallelizing Compilers,” Proceedings of 2003 International
Symposium on Parallel and Distributed Processing with Applications, LNCS 2745,
2003.

H.-G. Yook and Myung-Soon Park, “Scheduling GEN_BLOCK Array Redistribution,”
Proceedings of the IASTED International Conference Parallel and Distributed
Computing and Systems, November, 1999.



TEIRAB A MMABEERAREERE
EPOHE © 95 fF 10 H 24 [

3

L©FRE R KM L | TERE |RETHE 03-5186410
L

% |ETEH chh@chu.edu.tw

B 4 B @ 6242 A2 B W 120

4

H & B R € 3k |Eighth International Conference on Parallel Computing Technologies (PaCT’ 05),
#& [September 5 -9 2005.

2
%3

e % |Krasnoyarsk, Russia H g 95 &+ 09 B 03 B
Z5 213 Rl 2 95 & 09 A 11 B

M

ﬂgﬁiikﬁﬁm@@’ﬁﬂﬁ%&a%%%&¢a‘é%ﬁﬁi@%%°%

B REMBIAABRITHORAEZMANCRLEFEZR - F—RLEFH
Thomas L. Casavant % 4-4t#t Genomics and Biomedical Applications for Parallel
Computing 24 % Fine Grained Parallelism in Spatial Dynamics Simulation x 28 % & 1%
B &G RN ARt @ e B4 - B RIF S E RO AR A RE-FITE5
RBATH A R - AAIESE T Architecture and Infrastructure 3=k JEER 3 & -

Z R AAL L4328 T Data and Information Management 48 i ## 7%, » [5) BS 5
AHFSLMBEYARER B THBARIRSEBREZEEZNART @ - &
RTFFHERBVOH > RAATSRR AR E - 30 B 9 %4 o B2

W XM AHEL - §HMFWARA— Ky Social Program o &3k 14
— X AAEIEME —RH & A48 e Scheduling, Fault Tolerance and
Mapping A A 5 # KXt EAREBRGBXER > L HEERE - ROEETHR
P HIIR > A LA R RE EEA RO R - ERTR > AAE
THZ2EFHHR B R BERARAGENEIRCLSE @R LAGEMN T
VEHEAZ ~ T E - ERENEUR B REBEE AP TR - bR
BIREMAN GRAF S 0L R H N5 RH— 5w ia 8 3R89 AL AR
FEFIFR AR ERMABIMTEET M - T —RIFEFT RO ZHATE - Smk
ROBBREMARNGHR RXR S - RAARLRIF I RAR LA RES
UBEBENT  FUBMZ R o FAANIEAHIR @ ¥ @938 AT S AR R0 8
A - A THRIARRRARIETEE EAE R &K AARA €3
P RBR0 G 3 A BBFH IR & 0 2 g R &  BAF R BT R R
BABRMEE -

=
it}

& 3| % o




(& A PaCT-05 Bt & AT & X3 X)

Efficient Communication Scheduling Methodsfor Irregular Array
Redistribution in Parallelizing Compilers'

Shih-Chang Chen, Ching-Hsien Hsu® and Chao-Yang Lan

Department of Computer Science and Information Engineering
Chung Hua University, Hsinchu, Taiwan 300, R.O.C.

chh@chu.edu.tw

Abstract. Many scientific problems have been solved on distributed memory multi-computers. For
solving those problems, efficient data redistribution algorithm is necessary. Irregular array
redistribution has been paid attention recently since it can distribute different size of data segment to
processors according to their own computation ability. It's also the reason why it has been kept an eye
on load balance. High Performance Fortran Version 2 (HPF2) provides GEN_BLOCK (generalized
block) distribution format which facilitates generalized block distributions. In this paper, we present a
two-phase degree-reduction (TPDR) method for scheduling HPF2 irregular array redistribution. In a
bipartite graph representation, the first phase schedules communications of processors that with degree
greater than two. Every communication step will be scheduled after a degree-reduction iteration. The
second phase schedules all messages of processors that with degree-2 and degree-1 using an adjustable
coloring mechanism. An extended algorithm based on TPDR is also presented in this paper.
Effectiveness of the proposed methods not only avoids node contention but also shortens the overall
communication length. To evaluate the performance of our methods, we have implemented both
algorithms along with the divide-and-conquer algorithm. The simulation results show improvement of
communication costs. The proposed methods are also practicable due to their low algorithmic
complexity.

Keywords: Irregular redistribution, communication scheduling, GEN_BLOCK, degree-reduction

1. Introduction

Parallel computing systems have been used to solve complex scientific problems using their powerful
computational ability. Dealing with those kinds of problems, systems must process large number of data.
For this reason, keeping load balancing is important. In order to achieve a good performance of load
balancing, using an appropriate data distribution scheme [8] when processing different phase of
application is necessary. In general, data distribution can be classified into regular and irregular. The
regular distribution usually employs BLOCK, CYCLIC, or BLOCK-CYCLIC(c) to specify array
decomposition.  The irregular distribution uses user-defined functions to specify unevenly array
distribution.

To map unequa sized continuous segments of array onto processors, High Performance Fortran version 2
(HPF2) provides GEN_BLOCK distribution format which facilitates generalized block distributions.
GEN_BLOCK allows unequal sized data segments of an array to be mapped onto processors. This makes it
possible to let different processors dealing with appropriate data quantity according to their computation ability.

In some agorithms, an array distribution that is well-suited for one phase may not be good for a subsequent
phase in terms of performance. Array redistribution is needed when applications running from one
sub-algorithm to another during run-time [6]. Therefore, many data parallel programming languages support
run-time primitives for changing a program’s array decomposition. Since array redistribution is performed at
run-time, there is a performance trade-off between the efficiency of the new data decomposition for a subsequent
phase of an algorithm and the cost of redistributing array among processors. Thus efficient methods for
performing array redistribution are of great importance for the development of distributed memory compilers for
those languages.

Communication scheduling is one of the most important issues on developing runtime array redistribution
techniques. In this paper, we present a two-phase degree reduction (TPDR) agorithm to efficiently perform
GEN_BLOCK array redistribution. The main idea of the two-phase degree reduction method is to schedules
communications of processors that with degree greater than two in the first phase (degree reduction phase).

1 The work of this paper was supported by NSC, National Science Council of Taiwan, under grant number NSC-93-2213-E-216-029.

2 The correspondence address



Every communication step will be scheduled after a degree-reduction iteration. The second phase (coloring
phase) schedules all messages of processors that with degree-2 and degree-1 using an adjustable coloring
mechanism. Based on the TPDR method, we aso present an extended TPDR agorithm (E-TPDR). The
proposed techniques have the following characteristics:

® |tisasimple method with low agorithmic complexity to perform GEN_BLOCK array redistribution.

® The two-phase degree reduction technique can avoid node contentions while performing irregular array
redistribution.

® The two-phase degree reduction method is a single pass scheduling technique. It does not need to
re-schedule / re-allocate messages. Therefore, it is applicable to different processor groups without
increasing the scheduling compl exity.

The rest of this paper is organized asfollows. In Section 2, a brief survey of related work will be presented.
In section 3, we will introduce an example of GEN_BLOCK array redistribution as preliminary. Section 4
presents two communication scheduling algorithms for irregular redistribution problem. The performance
analysis and simulation results will be presented in section 5. Finally, the conclusions will be given in section 6.

2. Related Work

Many methods for performing array redistribution have been presented in the literature. These researches are
usually developed for regular or irregular problems [5] in multi-computer compiler techniques or runtime support
techniques. We briefly describe the related works in these two aspects.

Techniques for regular array redistribution, in general, can be classified into two approaches. the
communication sets identification techniques and communication optimizations. The former includes the
PITFALLS[17] and the ScaLAPACK [16] methods for index sets generation; Park et al. [14] devised algorithms
for BLOCK-CYCLIC Data redistribution between processor sets; Dongarra et al. [15] proposed agorithmic
redistribution methods for BLOCK-CYCLIC decompositions, Zapata et al. [1] proposed paralel sparse
redistribution code for BLOCK-CYCLIC data redistribution based on CRS structure. The Generalized
Basic-Cycle Calculation method was presented in [3].

Techniques for communication optimizations category, in general, provide different approaches to reduce
the communication overheads in aredistribution operation. Examples are the processor mapping techniques [ 10,
12, 4] for minimizing data transmission overheads, the multiphase redistribution strategy [11] for reducing
message startup cost, the communication scheduling approaches [2, 7, 13, 21] for avoiding node contention and
the strip mining approach [18] for overlapping communication and computational overheads.

Onirregular array redistribution, some work has concentrated on the indexing and message generation while
some has addressed on the communication efficiency. Guo et al. [9] presented a symbolic analysis method for
communication set generation and to reduce communication cost of irregular array redistribution. On
communication efficiency, Lee et al. [12] presented a logical processor reordering algorithm on irregular array
redistribution.  Four agorithms were discussed in this work for reducing communication cost. Guo et al. [19,
20] proposed a divide-and-conquer algorithm for performing irregular array redistribution. In this method,
communication messages are first divided into groups using Neighbor Message Set (NMS), messages have the
same sender or receiver; the communication steps will be scheduled after those NM Ss are merged according to
the relationship of contention.  In [21], arelocation algorithm was proposed by Yook and Park. The relocation
agorithm consists of two scheduling phases, the list scheduling phase and the relocation phase. The list
scheduling phase sorts global messages and allocates them into communication steps in decreasing order.
Because of conventional sorting operation, list scheduling indeed performs well in term of algorithmic
complexity. If a contention happened, the relocation phase will perform a seria of re-schedule operations.
While algorithm flow goes to the relocation phase, it has to allocate an appropriate location for the messages that
can't be scheduled at that moment. This leads to high scheduling overheads and degrades the performance of a
redistribution algorithm.

3. GEN_BLOCK Array Redistribution

In this section, we will present some properties of irregular array redistribution. To simplify the presentation,
notations and terminologies used in this paper are prior defined as follows.

Definition 1. Given an irregular GEN_BLOCK redistribution on a one-dimension array A[1:N] over P
processors, the source processors of array elements A[1:N] is denoted as SP;; the destination processors of array
elements A[1:N] is denoted as DP; where 0 < i < P-1.

Definition 2: A bipartite graph G = (V, E) is used to represent the communications of an irregular array
redistribution on A[1:N] over P processors. Vertices of G are used to represent the source and destination
processors. Edge g; in G denotes the message sent from SP; to DP;, where g; € E.  |E| is given as the total
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number of communication messages through the redistribution.

Figure 1(a) shows an example of redistributing two GEN_BLOCK distributions on an array A[1:100].
Distributions | and 11 are mapped to source processors and destination processors, respectively. The
communications between source and destination processor sets are depicted in Figure 1(b). There are totaly
eleven communication messages (|[E[=11), m;, m,, ms..., My; among processors involved in the redistribution.
In general, to avoid conflict communication or node contention, a processor can only send one message to
destination processors at a communication step. Similarly, one can only receive a message from source
processors at any communication step. In other words, messages sent or received by the same processor can’t
be scheduled in the same communication step. The messages which can not be scheduled in the same
communication step are called conflict tuple [19]. For instance, {m;, my} is a conflict tuple since they have
common destination processor DPy; {m,, ms} is aso a conflict tuple because of the common source processor
SP,.  Figure 1(c) shows a simple schedule for this example.

Unlike regular problem, there is no repetition communication pattern in irregular GEN_BLOCK array
redistribution. It is also noticed that if SP; sends messages to DP;.; and DP;,,, the communication between SP;
and DP; must exist, where 0< i, j < P-1. This result was mentioned as the consecutive communication property
[12].

Distribution | ( Source Processor )
sP SDO S:)l S:)z 833 S:)4 SDS
Size 7 16 11 10 7 49

Distribution 11 ( Destination Processor )
DP | DP, | DP, | DP, | DP; | DP, | DPs
Size | 15 16 10 16 15 28
@
7 16 11 10 7 49

Q@ Q
DP, DP, DP DP, DP,  DPs

15 16 10 16 15 28
(b)
Schedule Table
Sep 1 My > Mg~ Ms > My > My
Sep 2 My~ My~ Mg~ Mg~ My
Sep 3 Mgy

(©
Figure 1: An example of irregular array redistribution. (a) The source and destination distributions. (b)
Bipartite representation of communications between source and destination processors. (¢) A simple schedule
of irregular array redistribution.

4. Communication Scheduling

The communication time depends on total number of communication steps and the length of these steps. In
general, the message startup cost is direct proportional to the number of communication steps. The length of
these steps determines the data transmission overheads. A minimal steps scheduling can be obtained using the
coloring mechanism. However, there are two drawbacks in this method; it can not minimize total size of
communication steps; the graph coloring algorithmic complexity is often high.  In the following subsections, we
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will present two low complexity and high availability scheduling methods.

4.1 The Two-Phase Degree Reduction M ethod

The Two-Phase Degree Reduction (TPDR) method consists of two parts. The first part schedules
communications of processors that with degree greater than two. In a bipartite graph representation, the TPDR
reduces the degree of maximum degree nodes by one in each reduction iteration. The second part schedules all
messages of processors that with degree-2 and degree-1 using an adjustable coloring mechanism. The degree
reduction is performed as follows.

Stepl: Sort the vertices that with maximum degree d by total size of messages in decreasing order. Assume
there are k nodes with degree d.  The sorted vertices would be <V, Vi, ..., Vi>.

Step2: Schedule the minimum message my = min{my, my, ..., My} into step d for vertices Vi, Vip, ..., Vi
wherel1<j<d.

Step3: Maximum degreed = d-1.  Repeat Steps 1 and 2.

We first use an example to demonstrate the degree reduction technique without considering the coloring
scheme. Figure 2(a) shows the communication patternsinitially. The source GEN_BLOCK distribution is of (7,
10, 4, 18, 7, 18, 36). The destination GEN_BLOCK distribution is of (10, 14, 18, 14, 14, 12, 18). The
redistribution is carried out over seven processors with maximum degree 3. Therefore, the communications can
be scheduled in three steps. According to the above description in step 1, there are two nodes with degree 3,
SPg and DP;,.

The total message size of SPg (36) is greater than DP; (14). Thus, SPs is the first candidate to select a
minimum message (my;) of it into step 3. A similar selection is then performed on DP;. Since my is the
minimum message of DP; at present, therefore, ms is scheduled into step 3 aswell.  Asmessages my; and mg are
removed from the bipartite graph, adjacent nodes of edges my; and m, i.e., SPs, DP,4, DP; and SP; should update
their total message size. After the degree reduction iteration, the maximum degree of the bipartite graph will
become 2. Figures 2(b) to 2(d) show this scenario. Figures 2(e) and 2(f) show the similar process of above on
degree = 2 bipartite graph. In Figure 2(e), vertices SPs, SPs, P4, SP;, DP3, DP,, DP; and DP, have the
maximum degree 2 and are candidates to schedule their messages into step 2. According to the degree
reduction method, my,, My, and m; are scheduled in order. The next message to be selected is mg.  However,
both messages of DP; will result node contention (one with SP, and one with SPs) if we are going to schedule
one of DP3's messages. This means that the degree reduction method might not reduce degree-2 edges
completely when the degreeis 2.
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Figure 2: The process of degree reduction (a) A bipartition graph showing communications between
source processors and destination processors. (b) SPs and DP; have the maximum degree 3, they are
marked blue. (c) my; and ms are scheduled. Total message size of adjacent nodes of edges my; and ms
(SPs, DP,4, DP; and SP3) should be updated. (d) my; and ms are removed from the bipartite graph. The
maximum degree is 2 after degree reduction. (e) SPe, SPs, SP,4, SP1, DP3;, DP,, DP; and DP, have the
maximum degree 2, they are marked blue. (f) my,, My, My, m, and m, are scheduled. Adjacent nodes of
edges myy, My, My, my and my (SPe, DPs, SPs, DP4, DP,, SP4,...) should be updated. After remove
messages m; and my,, the degree of DP; can’t be reduced.



To avoid the above situation, an adjustable coloring mechanism to schedule degree-2 and degree-1
communications in bipartite graph can be applied.

Since the consecutive edges must be scheduled into two steps, there is no need to care about the size of
messages. That means we don’'t have to schedule the large messages together on purpose.

18 | 30
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Figure 3. Adjustable coloring mechanism for scheduling degree-2 and degree 1 communications. The
bipartite graph has three CSs. Row 1 is the schedule tables of CS; and CS,. Row 2 is the schedule table
consisted of CS; and CS;, and a schedule table of CS;. Row 3 is the same as Row 2 but the schedule
table of CS;.  The messages m;, and my; are exchanged. Row 4 is the schedule table consisted of CS; ~

CS; and CS;.

Let’'s consider again the example in Figure 2(e). Figure 3 demonstrates scheduling of the coloring
phase for communication steps 1 and 2. To facilitate our illustration, we denote each connected
component in G’ as a Consecutive Section (CS). In Figure 3, there are three Consecutive Sections, the
CS, is consisted of four messages my, m,, mg and my; the CS; is consisted of five messages mg, m;, mg, Mg
and my,; the CS; is consisted of two messages m;, and mys. A simple coloring scheme is to use two
colors on adjacency edges alternatively. For example, we first color m;, mg and my, red; then, color m,,
m; and my3 blue; and so on.  The scheduling results for CS; and CS,; are given as shown in Row 1. Row
2 shows the merging result of CS; with CS, and the schedule of CS;.  In Row 2, messages mg (15) and my;
(18) dominate the communication time at steps 1 and 2, respectively. This results total communication
cost = 33. If we change the order of steps 1 and 2 in CS;, it becomes m;; dominates the communication
time in step 1 and my, dominates the communication timein step 2. This will result total communication
cost = 30. Therefore, the colors of two stepsin CS; are exchanged in Row 3 for less communication cost.
Row 4 shows communication scheduling of the adjustable coloring phase for degree-2 and degree-1
communications. The complete scheduling for this example is shown in Figure 4.
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Figure 4: The scheduling of communications for the example in Figure 2.

The main idea of the two-phase degree reduction technigue is to reduce degree of nodes by one for those
nodes that have maximum degree at each reduction iteration.  The following lemma states this property.

Lemma 1. Given a bipartite graph G = (V, E) denotes the communications of irregular array redistribution.
Let d be the maximum degree of vertices v, for al v e V, abipartite graph G’ that with maximum degree 2 will
be resulted after performing d-2 times degree-reduction iterations.

Proof Sketch:

We use an example of degree 3 to demonstrate the above statement. For the cases of bipartite graphs with
degree larger than 3, the proof can be established in a similar way.

According to the characteristic of communications in irregular array redistribution we noticed that two
communication links in a bipartite graph will not intersect with each other. Figure 5 shows a typical example of
bipartite graph with maximum degree node is 3. There are three contiguous nodes have maximum degree 3,
P, SPand SP.;.  SP; has out-degree 3, i.e., it has three outgoing messages, m.;, m, and my,; for destination
processors DP;.;, DP; and DP;,, respectively. The worst case for SP; is to incur communication conflicts with
its neighboring nodes and induces itself can not schedule any communication message at the same
communication step.  For this scenario, we assume that if m, and my,, are schedule at communication step 3
(the current maximum degree is 3), this will result messages m,.; and my,; can not be scheduled in the same
communication step (because they have common destination processor). Even so, the degree reduction
operation will select my of SP; into step 3.

Enlarge the maximum degree = d > 2, i.e.,, SP; will send messages to DP;j, DP}1..., DPjiq» and DPjq.1.
Because no two communication links would be intersected, SP; has at most two communications go into conflicts
with other processors (DP; and DP;.41). Therefore, the TPDR algorithm can schedule one of the remaining d-2
messages of SP; into the same communication step. Therefore, we conclude that the TPDR algorithm reduces
node degree by one in each degree reduction iteration. That is, a bipartite graph G’ with maximum degree 2
will be resulted after performing d-2 times degree-reduction iterations. ®

SP. SP SPa

DP, DP DP.

Figure 5: Contiguous nodes have the same maximum degree.

The agorithm of the two-phase degree reduction method is given as follows.

Algorithm two_phase_degree_reduction (P, GEN_BLOCK)

1. generating messages;
2, while ( messages != null)
3.
4, step = d = maximal degree;
5. while ( step > 2)
6.
7. find_mark_blue(a);

// marking degree—d nodes blue
8. sort_marked_blue_node();

// sorting blue nodes in decreasing order by message size
9. while(marked node !=null)
10.
11. choose_marked_node();

// selecting a marked node, assume Vv

12. pick_minimal_message();



// schedule the minimum message (assume g;) of v into step

13. mark_red();
// mark adjacent vertices of edge g; as red to avoid conflict communication

14. update schedule(sfep, message );
15. }
16. step——;
17.
18. coloring_message();

// color the remaining messages with maximal degree is 2
19. merge_Schedule();

// merge schedules of consecutive sections into communication steps 1 and 2
20. update schedule(sfep, message);
21. '}

end_of_two_phase_degree_reduction

4.2 Extended TPDR

Based on TPDR, we present an extended two-phase degree reduction (E-TPDR) agorithm.  An
edge-complement operation is added in the degree-reduction phase. As the TPDR agorithm stated, the original
degree-reduction operation only schedul es degree-k nodes' messages into communication step k. This might not
fully utilize the available space in step k and remains heavy communications in the previous steps (less than k).
Therefore, aprinciple for adding extra messages into these steps is to select the maximum message that is smaller
than the length of current step and with un-marked adjacent vertices.

The key concept of this modification is to schedule messages into communication steps during reduction
phase as many as possible. Because the additional scheduled messages are with smaller message size than the
current step length, the edge-complement operation will not influence the cost of original scheduling from TPDR.
Figure 6 shows the communication schedule of the example given in Figure 2 using E-TPDR.  Although this
example does not reflect lower total cost of E-TPDR, section 5 will demonstrate the improvement of E-TPDR
method from the simulation results.

St my(7), me(7), Me(15), Mo(10), My3(18)
1 My(4), My(3), Muo(8), Mix(12)

Figure 6: The E-TPDR scheduling of communications for the example in Figure 2.

The agorithm of the extended two-phase degree reduction method is given as follows.

Algorithm E_TPDR (P, GEN_BLOCK)

1. generating messages;
2, while ( messages != null)
3. {
4, step = d = maximal degree;
5. while (sfep > 2 )
6.
7. find_mark_blue(d);
// marking degree—d nodes blue
8. sort_marked_blue_node();
// sorting blue nodes in decreasing order by message size

9. while(marked node !=null)
10.
11. choose_marked_node();

// selecting a marked node, assume Vv
12. pick_minimal_message();

// schedule the minimum message (assume g;) of v into step
13. mark_red();

// mark adjacent vertices of edge g; as red to avoid conflict communication
14. update schedule(sfep, message );
15. step_length(a);

// determine the length £ of current step
16. sort_small_message();

// sort all messages with unmarked adjacent vertices and message size is smaller than L
17. pick_message();
// schedule the selected messages into current step if there is no contention

18. mark_red();
// mark adjacent vertices of the scheduled edges as red
19. update schedule( step, message );



20. }

21. step——;
22.
23. coloring_message();
// color the remaining messages with maximal degree is 2
24. merge_Schedule();
// merge schedules of consecutive sections into communication steps 1 and 2
25. update schedule(sfep, message);
26

.1
end_of_ E_TPDR

4.3 Algorithmic Complexity Analysis

Definition 3: Given a bipartite graph G to represent the communications of an irregular array redistribution,
G’ and |E’'| are denoted as the graph and the number of edgesin G’ after edges are removed in degree reduction
phase by TPDR, respectively.

TPDR agorithm can be divided into three stages. The first part is to schedule communication messages of
processors who's degree is greater than 2. Because the scheduling in this stage is size-oriented, the time
complexity of this stage is O(dPlogP), where d is the maximum degree of processors. The second stage is to
schedule remaining messages after the degree reduction phase using the coloring scheme. Since we need to
color al remaining edges once, according to definition 3, the time complexity in this stage is O([E’'|). The last
stage is to combine scheduled tables of consecutive sections. This can be done in O(logS) via the winner tree
data structure, where Sis the number of consecutive sections.

For the E-TPDR agorithm, the time complexity of the first stage in worst case is O(dEIogE), which is
different from E-TPDR algorithm. The other stages have the same complexities as TPDR algorithm.

5. Performance Evaluation

To evaluate the performance of the proposed methods, we have implemented the TPDR and E-TPDR along with
the divide-and-conquer agorithm [19]. The performance simulation is discussed in two classes, even
GEN_BLOCK and uneven GEN_BLOCK distributions.  In even GEN_BLOCK distribution, each processor owns
similar size of data. The communication cost will not be dominated by specific processor, because the size of
messages between processors could be very close. Contrast to even distribution, few processors might be
alocated grand volume of data in uneven distribution. Since array elements could be centralized to some
specific processors, it is also possible for those processors to have the maximum degree of communications.
Therefore, the communication cost will be dominated by these processors. To accomplish an optimal
scheduling, it is obvious that even distribution case is more difficult than uneven distribution.  This observation
was comprehended by that communication cost could be determined by one processor that with maximum degree
or maximum total message size in uneven distribution; consequently, it leads high probability to achieve a
schedule that has the same cost as the processor’ s total message size.

To determine the redistribution is on even GEN_BLOCK or uneven GEN_BLOCK, we define upper and lower
bounds of data size in GEN_BLOCK distribution. Given an irregular array redistribution on A[1:N] over P
processors, the average block size will be N/P.  In even distribution, the range of upper and lower bounds is set
to £30%. Thus, size of data blocks could be 130% N/P ~ 70% N/P.  In uneven distribution, the range of upper
and lower bounds is set to £100%. Thus, size of data blocks could be 200% N/P ~ 1.

5.1 Simulation A

Simulation A is carried out to examine the performance of TPDR and E-TPDR algorithms on uneven cases. We
use arandom generator to generate 10,000 test data sets.

Figure 7 shows the comparisons of TPDR agorithm and the divide-and-conquer (DC) algorithm.  We run
tests by different processor numbers from 4 to 24. In 10,000 samples, the number of cases of TPDR better than
DC, DC better than TPDR and the same are counted. When the number of processors is 4, there are lots of
cases both agorithms have the same result. This is because that the size of messages could be larger when
number of processors is less. It's easier to derive schedules that have minimum size of total communication
steps.  When the number of processors becomes numerous, the TPDR provides significant improvements
generaly. This phenomenon can be explained by the statistic of degree-2 nodes for 10,000 test samples as
shown in Figure 8. When number of processors is large, size of data blocks in these processors are relative
small. Therefore, processors have lower possibility to have high degree of communication links. In other
words, the number of degree-2 nodes increases largely. Since the TPDR uses an optimal adjustable coloring
mechanism for scheduling degree-2 and degree-1 communications, therefore, we expect that TPDR performs
better when the number of degree-2 nodes is large. This observation also matches the simulation results in
Figures 7 and 9.
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Figure 9 gives the comparisons of the E-TPDR algorithm and the divide-and-conquer algorithm.  When the
number of processors is 4, there are about 60% cases has the same result by both agorithms. Similar to the
previous observations, the E-TPDR performs well when number of processors is numerous.

5.2 Simulation B

Simulation B is carried out to examine the performance of TPDR and E-TPDR agorithms on even cases. We
a so use the random generator to produce 10,000 data sets for this test.

Figures 10 and 11 show the performance comparisons of TPDR and DC, E-TPDR and DC, respectively.
Overall speaking, we have similar observations as those described in Figures 7 and 9. The E-TPDR performs
better than TPDR. When number of processors is large, the TPDR and E-TPDR both provide significant
improvements. Compare to the results in uneven cases (simulation A), the ratio of our agorithms outperform
the DC agorithm become lower. We move our focus to Figure 12 to explain this phenomenon.  Figure 12
gives the statistics of different degree nodes for even distribution test data.  We observed that there is no nodes
with degree higher than 4.  In other words, the maximum degree of nodes of these 10,000 test samplesis3. On
this aspect, the DC agorithm and the TPDR methods have more cases that are the same. Thisis aso why the
TPDR and E-TPDR have better ratio from 99% to 93%.

From the above performance analysis and simulation results, we have the following remarks.

Remark 1. The TPDR and E-TPDR agorithms perform better in uneven cases than in even cases.

Remark 2: The TPDR and E-TPDR algorithms perform well when number of processorsislarge.

TPDR vs DC with uncven data distribution scheme
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Figure 7: The E-TPDR scheduling of communications for the example in Figure 2.
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Figure 8: Statistic of degree-2 nodes in 10,000 uneven GEN_BLOCK test samples.
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E-TPDR vs DC with uncven data distribution scheme
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Figure 9: Comparison of the E-TPDR method and the divide-and-conquer algorithm on 10,000 uneven
data sets (1 MB).
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Figure 10: Comparison of the TPDR method and the divide-and-conquer algorithm on 10,000 even
GEN_BLOCK test samples (1 MB).
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Figure 11: Comparison of the E-TPDR method and the divide-and-conquer algorithm on 10,000 even
GEN_BLOCK test samples (1 MB).
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Statistics of degree with even data distribution scheme
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Figure 12: Statistic of degree-2 nodesin 10,000 even GEN_BLOCK test samples.

6. Conclusions

In this paper, we have presented a two-phase degree-reduction (TPDR) scheduling technique to efficiently
perform HPF2 irregular array redistribution on distributed memory multi-computer. The TPDR is a simple
method with low a gorithmic complexity to perform GEN_BLOCK array redistribution. An extended algorithm
based on TPDR is also presented. Effectiveness of the proposed methods not only avoids node contention but
also shortens the overall communication length. The simulation results show improvement of communication
costs and high practicability on different processor hierarchy.

In HPF, it supports array redistribution with arbitrary source and destination processor sets. The
technique developed in this paper assumes that the source and the destination processor sets are the same. In
the future, we will study efficient methods for array redistribution with arbitrary source and destination processor
sets.  Besides, the issues of scheduling irregular problems on grid system and considering network
communication latency in heterogeneous environments are also interesting and will be investigated. Also, we
will also study realistic applications and analyze their performance.
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