
 
Abstract 

 In this study, a fault-tolerant design framework of 
VLIW processor is proposed. Specifically, this work 
concentrates on the issue of dependable data path design. 
We first use three identical functional modules in the 
data paths to demonstrate our fault-tolerant technique. 
Basically, we add one spare module in this illustration 
and refine on the concepts of triple modular redundancy 
and comparison to achieve fault detection, fault location 
and error recovery. A real-time error recovery process is 
developed to conquer the faults. Hardware architecture 
and its implementation in VHDL are presented. We show 
that the proposed scheme can be easily extended to data 
paths, which contains more than three identical 
functional modules. In addition, for a specific number of 
identical modules, the fault-tolerant framework provides 
a design choice among several feasible solutions in terms 
of hardware overhead, performance degradation and 
dependability requirements.  
1. Introduction 

Nowadays, VLIW processor is a major architecture 
approach for high-performance computing systems. A 
typical example of VLIW is Intel and HP IA-64 [1]. As 
processor chips become more and more complicated, and 
contain large number of transistors, the processors have a 
limited operational reliability due to the increased 
likelihood of faults especially when the chip fabrication 
enters the deep submicron technology [2]. Thus, it is 
essential to employ the fault-tolerant techniques in the 
design of high-performance superscalar or VLIW 
processors to guarantee a high operational reliability in 
critical applications. Recently, the reliability issue in 
high-end processors is getting more and more attention 
[3-5].  

The previous researches in reliable microprocessor 
design are mainly based on the concept of time 
redundancy approach [3-5] that uses the instruction 
replication and recomputation to detect the errors by 
comparing the results of regular and duplicate instructions. 
Most of the papers adopt the hardware approach to 
manage the instruction replication, recomputation and 
comparison to detect the errors.  

The deficiency in previous research is summarized 
as follows. First, most of the studies do not perform the 
evaluation of hardware overhead and do not pay their 
attentions to the part of error recovery. Secondly, the 
performance degradation due to the addition of fault 
detection capability into the system is significant during 
program execution even in fault-free situation and if the 
error recovery time is counted, the performance will 
become worse. Moreover, the performance analysis only 
considers the performance degradation that is resulted 
from the fault detection under fault-free condition. They 
are short of the analysis of error recovery time needed to 
overcome the transient faults.  
2 Fault-Tolerant Design Framework  

Before we begin introducing our approach, a fault 
model adopted in this study is described below.   

Fault model: a fault inside functional module can 
affect either single bit or multiple bit signals 
simultaneously, and multiple faults may exist and 
become active at the same time. A fault could be 
permanent or transient types. We assume that at most a 
fault-free module can be intruded upon the faults at a 
time, and independent faults in various functional 
modules won’t produce identical erroneous outputs. The 
assumptions are reasonable in that the probability of 
violating the assumptions is expected to be very low. 
Moreover, the output errors may occur simultaneously at 
multiple modules.  

Besides the fault model, we define a hidden fault as 
the fault stays inside a module and it is not detected, 
because the operations performed in the module cannot 
trigger this fault. Consequently, the fault hides inside the 
module 
2.1 Reliable Data Path Design: A Case Study 

In this illustration, three ALU modules plus one 
spare ALU are offered in the VLIW processor core. The 
four ALU modules are termed ALU_A to ALU_D. At 
most three ALU instructions can be issued concurrently.  
The fault-tolerant approach is presented as follows. 
Fault-tolerant approach:  

Each ALU module uses an error flag to record its 
faulty status. If error flag is zero, it indicates that this 
module contains either no faults or hidden faults. Once 
the faults are detected, the error flag is set to one. This 
module could be retested later and if faults disappear or 
faults still exist but not detected by this retest, the error 
flag is reset to zero again. The error flag will remain at 
one, if faults do not vanish and detected from the retest 
step or faults disappear but no retest applies. Figure 1 
shows the states of an error flag.  

Error Flag = 0 Error Flag = 1

(1) (2)

(3)

(4)

 

(1): No fault or hidden faults; (2): Faults detected; 
(3): Faults disappear or faults not detected by the retest; 
(4): Faults detected or faults vanish and no retest applies 
since faults go away. 

Figure 1. States of an error flag. 

The state of data paths, ALU_state, could be 
S0: all error flags of ALUs are zero;  S1: an error flag is 
one and the rest are zero; S2: two error flags among four 
are one and the other two are zero; S3: fail-safe state. 

Number of instructions executed concurrently in 
ALU modules can be 0/1/2/3, respectively. The basic 
idea of our approach is to recover the execution errors 
promptly for each instruction run. In other words, the 
execution result of each instruction is checked 
immediately and if errors are discovered, the instruction 
retry is performed at once to overcome the faults inside 



the ALUs. For one or two instructions executed at the 
same cycle, we develop the fault-tolerant schemes based 
on the refined TMR and comparison mechanisms to 
achieve fault detection, fault location and error recovery. 
Three concurrent ALU instructions need to be scheduled 
to two sequential execution slots where a slot contains 
two instructions and the other slot contains the rest one; 
and therefore one extra ALU cycle is needed to complete 
it under the fault-free condition.  

Even though the probability is expected to be quite 
low in that the hidden faults exist in some modules plus 
new faults occur in a faulty-free module, and the faults 
become effective errors concurrently at several modular 
outputs, we still take the situations into account for 
stringent dependability and safety consideration. Also, it 
is difficult to distinguish the permanent faults from 
transient faults. For performance consideration, when 
control unit of data paths receives an abnormal signal 
from ALU modules to indicate that at least an instruction 
is not correctly executed in ALU modules, the control 
unit will try to recover the errors by using other same 
kind of functional modules to assist the system in 
generating the correct results in the subsequent one or 
two ALUs’ cycles. In other words, while some of ALUs 
could have transient or permanent faults inside, the top 
priority of control unit is to utilize the ALU resources as 
much as possible and to aid the system in producing the 
right outputs as quick as possible. Thus, the program 
execution can carry on without lengthy error recovery 
process. A retest can be applied to a module detected 
faulty before and if faults disappear or the present 
operation cannot stir up the faults, this previous faulty 
module is restored to its operation. Our approach 
provides the capabilities of on-line fault diagnosis and 
real-time error recovery. Its complete algorithm is 
described in the following.  

 ALU_instruction_number: number of instructions 
issued to ALU modules simultaneously; 

{Case ALU_state in  

S0: if (ALU_instruction_number = 1)  

then { TMR(ALU_A, ALU_B, ALU_C);  

if (a faulty module is discovered) then ALU_state is 
changed to S1; 

if (TMR output is not correct) then control unit is 
responsible for invoking an error recovery procedure 
termed retry(ALU_A, ALU_B, ALU_C, ALU_D); } 

else  /* this is the case of two ALU 
instructions run at the same cycle. */ 
Basically, we assign each instruction to two ALU 
modules and adopt a comparator to detect the errors. 
There are four possible outcomes for the executions. 
 1. Two comparator results are correct; 
2. One of comparator detects an error and informs 
control unit about this error. The control unit discards the 
incorrect result first, and sends a recovery signal out. In 
addition, the control unit activates an error recovery by 
reassigning the failed instruction to the other two 

modules where the instruction is executed correctly at 
last run. The rerun may succeed or not. If rerun is 
successful, the correct output is utilized to identify the 
faulty modules in the previous run and the data path state 
changes to S1 or S2 that depends on the comparison 
outcomes. The rerun may fail due to the hidden faults 
and/or new faults occur during the recovery process. 
Under the circumstances, control unit is responsible for 
invoking an error recovery procedure called 
retry(ALU_A, ALU_B, ALU_C, ALU_D); 
3. Two comparator results are incorrect; the control unit 
will try to conquer this situation by rerunning both 
instructions sequentially and each instruction is 
recomputed by retry(ALU_A, ALU_B, ALU_C, 
ALU_D).  

S1: if (ALU_instruction_number = 1)  

then { TMR(using three modules having zero in their 
error flag); 

if (a faulty module is discovered) then 
ALU_state transits to S2. 

if (TMR operation fails) then control unit is 
responsible for invoking an error recovery procedure 
called retry(ALU_A, ALU_B, ALU_C, ALU_D); /*TMR 
operation could fail because two or three modules 
become faulty. In this situation, it is worth to rerun the 
instruction by all ALUs, since the module whose error 
flag is one does not retest in this run and its faults may 
vanish already or the current instruction won’t stir up the 
faults in this module. Thus, the system still has an 
opportunity to overcome this crisis. Moreover, most of 
faults are transient kind, so it is expected that a faulty 
module has a high probability to be restored later. The 
control unit will update the ALU_state according to the 
results of retry(ALU_A, ALU_B, ALU_C, ALU_D). */} 

else  Basically, we assign each instruction to two ALU 
modules and adopt a comparator to detect the errors. 
There are four possible outcomes for the executions. 
4. Two comparator results are correct; it means that a 
module whose error flag is one is retested and the retest 
does not discover an error at the modular output; so, its 
corresponding error flag is reset to zero and the state 
changes to S0. One thing should be pointed out that this 
retest result is only based on the current instruction 
executed in that module. Obviously, it is not thorough 
test for the module and therefore we cannot assert 
whether the faults disappear or they become hidden 
faults from this retest point of view. 
5. The same as item 2 except ALU_state may transit to S0 
or S2.  
6. Two comparator results are incorrect: the same as 3.  
S2: This part is similar to S1; 
S3: Fail-safe state;  

Case End} 

TMR(ALU_X, ALU_Y, ALU_Z): The concept of triple 
module redundancy (TMR) is employed to mask a single 
modular failure. In addition, we enhance the TMR 
methodology by supplementing the following functions. 



The output of TMR compares with each ALU output. If 
an ALU output disagrees with TMR output, the faulty 
module can be identified and its error flag is set to one. 
Error recovery is not required under the circumstances. 
While more than one ALU output disagree with TMR 
output, at least two modules have encountered the faults, 
because we assume that the independent faults in various 
ALUs won’t produce identical faulty outputs. It should 
be emphasized that due to the phenomenon of hidden 
faults, there is a probability in which the hidden faults 
exist in some modules and/or new faults intrude into a 
fault-free module that could cause more than one ALU 
producing the erroneous outputs. Consequently, TMR 
approach cannot cope with this situation. Instead, TMR 
will inform the control unit of data paths about the 
situation.  

retry(ALU_A, ALU_B, ALU_C, ALU_D): Control 
unit sends out a recovery signal to previous stages and 
discards the TMR output; invoke the instruction retry to 
deal with this faulty condition. Under the existing 
conditions, multiple ALU modules fail to operate 
correctly at last execution. Therefore, the failed 
instruction is recomputed by all ALUs, and all execution 
results are fed into a selection circuit, which can produce 
a correct output if at least two of four inputs are correct; 
the correct output is used to locate the faulty modules if 
any, and reflect present faulty status by updating the state 
to S0 or S1 or S2 if necessary; otherwise, the selection 
circuit generates an invalid signal to control unit; once 
the control unit receives this kind of information, it will 
force the system into fail-safe state, S3. 
End /* end of our approach illustration */ 

2.2 General Framework 

In last section, we use three identical modules to 
demonstrate our approach. The number of identical 
modules could be various in data paths of VLIW 
processors. Hence, to be generic, we show how to apply 
the proposed technique to 4 to 6 identical modules and 
briefly discuss the design consideration in terms of 
hardware overhead, performance degradation and fault-
tolerance capability. Table 1 lists the data of design 
parameters for various numbers of identical ALUs. 

Table 1. Data of design parameters for various numbers 
of identical ALUs. 

No. of 

ALUs 

No. of 

Spares 

Hardware 

Overhead 

Instruction 

Rescheduling 
Fault-Tolerant Scheme 

3 1 33.3% 3→ (2, 1) 1: TMR;  
2: Comparator 

4 0 0% 3→ (2, 1);  
4→ (2, 2) 

1: TMR; 
2: Comparator 

4 1 25% 3→ (2, 1);  
4→ (2, 2) 

1: TMR; 
2: (1: TMR;1: 
Comparator) 

4 2 50% 4→ (2, 2) 1: TMR; 
2: TMR;  3: Comparator 

5 0 0% 

3→ (2, 1); 
4→ (2, 2); 
5→ (2, 2, 
1) 

1: TMR; 
2: (1: TMR, 
1: Comparator) 

5 1 20% 4→ (2, 2); 1: TMR;2:TMR; 

5→ (2, 3); 3: Comparator 

6 0 0% 
4→ (2, 2); 
5→ (2, 3); 
6→ (3, 3); 

1: TMR;2 TMR; 
3: Comparator 

The ratio of hardware overhead in Table 1 simply counts 
the part of ALU itself and does not include other circuit 
portion resulted from the demand of fault tolerance. The 
notations shown in fault-tolerant scheme column 
represent the methodologies used to detect/locate/recover 
the faults/errors. For instance, 2: (1: TMR, 1: Comparator) 
represents an execution slot of two instructions where an 
instruction is executed in TMR technology and the other 
one is run in comparison scheme. 

It is evident that the performance degradation due 
to fault detection is caused from the partition of 
instructions into several sequential execution slots. For 
example, in the case of three ALUs, due to limited 
resources, we need to schedule an execution slot of three 
instructions into two slots where a slot contains two 
instructions and the other has one instruction. We use the 
notation 3→ (2, 1) to represent the partition, which will 
induce an ALU cycle’s performance degradation. 
Another source of performance degradation results from 
the error recovery that needs one or two ALU cycles to 
perform the recovery. Clearly, the error recovery is very 
effective from the performance point of view. The 
performance degradation depends on the frequency of 
instruction rescheduling plus the error recovery time. 
Since the faults occur infrequently and most of them are 
transient type, so we should emphasize that the 
performance degradation comes from mainly for the 
purpose of fault detection. The performance degradation 
caused from the error recovery is insignificant compared 
with the degradation due to fault detection.  

As can be seen from Table 1, our approach offers 
several design options for a specific number of identical 
modules. The option is based on the design metrics of 
hardware overhead, performance degradation and fault-
tolerance capability. Therefore, it is quite interesting to 
analyze the trade-offs among those design metrics. 
Without loss of generality, we use three ALUs and four 
ALUs as examples to explain the design trade-offs. First, 
a spare ALU is required for the case of three identical 
ALUs in order to prevent severe performance 
degradation. We know that an execution slot containing 
two instructions is very common and if no spare added, 
one of instructions cannot perform the comparison to 
check its result at once. So, the slot needs to be 
partitioned into two slots and it will induce an extra ALU 
cycle to achieve the fault detection for each instruction 
execution. Hence, a spare cost is paid to lower the 
performance degradation. Second, in four identical ALUs, 
there is no difference for performance degradation caused 
from fault detection between design option of no spare 
and one spare. But, one spare design enjoys less error 
recovery time than the design of no spare added. To 
make this clear, we assume some faults intrude into a 
module. For no spare option, it always requires an ALU 
cycle to recover the errors while an execution slot has 
two instructions. Contrarily, one spare design seldom 



needs a cycle to overcome the errors because TMR 
mechanism is employed here. Generally speaking, more 
spares result in higher hardware overhead but lower 
performance degradation and better dependability.  
It is well known that the average number of instructions 
issued simultaneously is restricted to 2-3. Consequently, 
if number of identical modules increases, more idle 
modules can be utilized per cycle to perform the error 
detection and error recovery to tolerate the faults. The 
necessity to add spares decreases. For instance, we allow 
the instruction rescheduling to occur for execution slots 
exceeding three instructions. Under this constraint, from 
Table 1, we can see that two spares (50% hardware 
overhead), one spare (20%) and zero spare (0%) 
redundancy are required in the design of 4, 5 and 6 
ALUs respectively. It is also apparent that the frequency 
of instruction rescheduling affects the degree of 
performance degradation and is the major contribution to 
performance degradation in our fault-tolerant scheme. In 
a word, hardware overhead and performance degradation 
of our approach decreases while the number of identical 
modules increases in the data path of VLIW processors. 

3. Hardware Architecture and Performance Analysis 
An experimental structure of the proposed fault-

tolerant VLIW processor is illustrated in Figure 2. The 
fault-tolerant VLIW processor based on the architecture of 
Figure 2 and the features mentioned previously are 
realized in VHDL.  

Table 2 lists the hardware overhead of the 
implementation shown in Figure 2. The areas do not 
include the instruction and data memory.  

Table 2: Comparison of fault-tolerant and non fault-
tolerant VLIW core. 

 Area (gate count) Overhead 
System clk 

(MHz) 
Degradation 

Non fault 

tolerant VLIW 
82852  55.6  

Our approach 100727 21.6% 55.6 0 % 
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Figure 2. Fault-tolerant VLIW architecture. 

Table 3 shows the results of degradation for several 
programs.  
Table 3. The results of performance degradation for 
several programs. 

 Performance Degradation

summation of product 6.1% 

matrix multiplication 15% 

factorial n 8.7% 

4. CONCLUSIONS 

This work presents a new fault-tolerant framework 
for VLIW processors that focuses mainly on the reliable 
data path design. Our dependable approach is able to 
provide a couple of design options, which offer the 
compromise between hardware overhead, performance 
degradation and fault-tolerance capability. A significant 
contribution of this study is to integrate the error detection 
and error recovery into a complete fault-tolerant VLIW 
system with less hardware overhead and performance 
degradation. The preliminary results show the 
effectiveness of our mechanism.  
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