

Abstract

 In this study, a fault-tolerant design framework of
VLIW processor is proposed. Specifically, this work
concentrates on the issue of dependable data path design.
We first use three identical functional modules in the
data paths to demonstrate our fault-tolerant technique.
Basically, we add one spare module in this illustration
and refine on the concepts of triple modular redundancy
and comparison to achieve fault detection, fault location
and error recovery. A real-time error recovery process is
developed to conquer the faults. Hardware architecture
and its implementation in VHDL are presented. We show
that the proposed scheme can be easily extended to data
paths, which contains more than three identical
functional modules. In addition, for a specific number of
identical modules, the fault-tolerant framework provides
a design choice among several feasible solutions in terms
of hardware overhead, performance degradation and
dependability requirements.
1. Introduction

Nowadays, VLIW processor is a major architecture
approach for high-performance computing systems. A
typical example of VLIW is Intel and HP IA-64 [1]. As
processor chips become more and more complicated, and
contain large number of transistors, the processors have a
limited operational reliability due to the increased
likelihood of faults especially when the chip fabrication
enters the deep submicron technology [2]. Thus, it is
essential to employ the fault-tolerant techniques in the
design of high-performance superscalar or VLIW
processors to guarantee a high operational reliability in
critical applications. Recently, the reliability issue in
high-end processors is getting more and more attention
[3-5].

The previous researches in reliable microprocessor
design are mainly based on the concept of time
redundancy approach [3-5] that uses the instruction
replication and recomputation to detect the errors by
comparing the results of regular and duplicate instructions.
Most of the papers adopt the hardware approach to
manage the instruction replication, recomputation and
comparison to detect the errors.

The deficiency in previous research is summarized
as follows. First, most of the studies do not perform the
evaluation of hardware overhead and do not pay their
attentions to the part of error recovery. Secondly, the
performance degradation due to the addition of fault
detection capability into the system is significant during
program execution even in fault-free situation and if the
error recovery time is counted, the performance will
become worse. Moreover, the performance analysis only
considers the performance degradation that is resulted
from the fault detection under fault-free condition. They
are short of the analysis of error recovery time needed to
overcome the transient faults.
2 Fault-Tolerant Design Framework

Before we begin introducing our approach, a fault
model adopted in this study is described below.

Fault model: a fault inside functional module can
affect either single bit or multiple bit signals
simultaneously, and multiple faults may exist and
become active at the same time. A fault could be
permanent or transient types. We assume that at most a
fault-free module can be intruded upon the faults at a
time, and independent faults in various functional
modules won’t produce identical erroneous outputs. The
assumptions are reasonable in that the probability of
violating the assumptions is expected to be very low.
Moreover, the output errors may occur simultaneously at
multiple modules.

Besides the fault model, we define a hidden fault as
the fault stays inside a module and it is not detected,
because the operations performed in the module cannot
trigger this fault. Consequently, the fault hides inside the
module
2.1 Reliable Data Path Design: A Case Study

In this illustration, three ALU modules plus one
spare ALU are offered in the VLIW processor core. The
four ALU modules are termed ALU_A to ALU_D. At
most three ALU instructions can be issued concurrently.
The fault-tolerant approach is presented as follows.
Fault-tolerant approach:

Each ALU module uses an error flag to record its
faulty status. If error flag is zero, it indicates that this
module contains either no faults or hidden faults. Once
the faults are detected, the error flag is set to one. This
module could be retested later and if faults disappear or
faults still exist but not detected by this retest, the error
flag is reset to zero again. The error flag will remain at
one, if faults do not vanish and detected from the retest
step or faults disappear but no retest applies. Figure 1
shows the states of an error flag.

Error Flag = 0 Error Flag = 1

(1) (2)

(3)

(4)

(1): No fault or hidden faults; (2): Faults detected;
(3): Faults disappear or faults not detected by the retest;
(4): Faults detected or faults vanish and no retest applies
since faults go away.

Figure 1. States of an error flag.

The state of data paths, ALU_state, could be
S0: all error flags of ALUs are zero; S1: an error flag is
one and the rest are zero; S2: two error flags among four
are one and the other two are zero; S3: fail-safe state.

Number of instructions executed concurrently in
ALU modules can be 0/1/2/3, respectively. The basic
idea of our approach is to recover the execution errors
promptly for each instruction run. In other words, the
execution result of each instruction is checked
immediately and if errors are discovered, the instruction
retry is performed at once to overcome the faults inside

the ALUs. For one or two instructions executed at the
same cycle, we develop the fault-tolerant schemes based
on the refined TMR and comparison mechanisms to
achieve fault detection, fault location and error recovery.
Three concurrent ALU instructions need to be scheduled
to two sequential execution slots where a slot contains
two instructions and the other slot contains the rest one;
and therefore one extra ALU cycle is needed to complete
it under the fault-free condition.

Even though the probability is expected to be quite
low in that the hidden faults exist in some modules plus
new faults occur in a faulty-free module, and the faults
become effective errors concurrently at several modular
outputs, we still take the situations into account for
stringent dependability and safety consideration. Also, it
is difficult to distinguish the permanent faults from
transient faults. For performance consideration, when
control unit of data paths receives an abnormal signal
from ALU modules to indicate that at least an instruction
is not correctly executed in ALU modules, the control
unit will try to recover the errors by using other same
kind of functional modules to assist the system in
generating the correct results in the subsequent one or
two ALUs’ cycles. In other words, while some of ALUs
could have transient or permanent faults inside, the top
priority of control unit is to utilize the ALU resources as
much as possible and to aid the system in producing the
right outputs as quick as possible. Thus, the program
execution can carry on without lengthy error recovery
process. A retest can be applied to a module detected
faulty before and if faults disappear or the present
operation cannot stir up the faults, this previous faulty
module is restored to its operation. Our approach
provides the capabilities of on-line fault diagnosis and
real-time error recovery. Its complete algorithm is
described in the following.

 ALU_instruction_number: number of instructions
issued to ALU modules simultaneously;

{Case ALU_state in

S0: if (ALU_instruction_number = 1)

then { TMR(ALU_A, ALU_B, ALU_C);

if (a faulty module is discovered) then ALU_state is
changed to S1;

if (TMR output is not correct) then control unit is
responsible for invoking an error recovery procedure
termed retry(ALU_A, ALU_B, ALU_C, ALU_D); }

else /* this is the case of two ALU
instructions run at the same cycle. */
Basically, we assign each instruction to two ALU
modules and adopt a comparator to detect the errors.
There are four possible outcomes for the executions.
 1. Two comparator results are correct;
2. One of comparator detects an error and informs
control unit about this error. The control unit discards the
incorrect result first, and sends a recovery signal out. In
addition, the control unit activates an error recovery by
reassigning the failed instruction to the other two

modules where the instruction is executed correctly at
last run. The rerun may succeed or not. If rerun is
successful, the correct output is utilized to identify the
faulty modules in the previous run and the data path state
changes to S1 or S2 that depends on the comparison
outcomes. The rerun may fail due to the hidden faults
and/or new faults occur during the recovery process.
Under the circumstances, control unit is responsible for
invoking an error recovery procedure called
retry(ALU_A, ALU_B, ALU_C, ALU_D);
3. Two comparator results are incorrect; the control unit
will try to conquer this situation by rerunning both
instructions sequentially and each instruction is
recomputed by retry(ALU_A, ALU_B, ALU_C,
ALU_D).

S1: if (ALU_instruction_number = 1)

then { TMR(using three modules having zero in their
error flag);

if (a faulty module is discovered) then
ALU_state transits to S2.

if (TMR operation fails) then control unit is
responsible for invoking an error recovery procedure
called retry(ALU_A, ALU_B, ALU_C, ALU_D); /*TMR
operation could fail because two or three modules
become faulty. In this situation, it is worth to rerun the
instruction by all ALUs, since the module whose error
flag is one does not retest in this run and its faults may
vanish already or the current instruction won’t stir up the
faults in this module. Thus, the system still has an
opportunity to overcome this crisis. Moreover, most of
faults are transient kind, so it is expected that a faulty
module has a high probability to be restored later. The
control unit will update the ALU_state according to the
results of retry(ALU_A, ALU_B, ALU_C, ALU_D). */}

else Basically, we assign each instruction to two ALU
modules and adopt a comparator to detect the errors.
There are four possible outcomes for the executions.
4. Two comparator results are correct; it means that a
module whose error flag is one is retested and the retest
does not discover an error at the modular output; so, its
corresponding error flag is reset to zero and the state
changes to S0. One thing should be pointed out that this
retest result is only based on the current instruction
executed in that module. Obviously, it is not thorough
test for the module and therefore we cannot assert
whether the faults disappear or they become hidden
faults from this retest point of view.
5. The same as item 2 except ALU_state may transit to S0
or S2.
6. Two comparator results are incorrect: the same as 3.
S2: This part is similar to S1;
S3: Fail-safe state;

Case End}

TMR(ALU_X, ALU_Y, ALU_Z): The concept of triple
module redundancy (TMR) is employed to mask a single
modular failure. In addition, we enhance the TMR
methodology by supplementing the following functions.

The output of TMR compares with each ALU output. If
an ALU output disagrees with TMR output, the faulty
module can be identified and its error flag is set to one.
Error recovery is not required under the circumstances.
While more than one ALU output disagree with TMR
output, at least two modules have encountered the faults,
because we assume that the independent faults in various
ALUs won’t produce identical faulty outputs. It should
be emphasized that due to the phenomenon of hidden
faults, there is a probability in which the hidden faults
exist in some modules and/or new faults intrude into a
fault-free module that could cause more than one ALU
producing the erroneous outputs. Consequently, TMR
approach cannot cope with this situation. Instead, TMR
will inform the control unit of data paths about the
situation.

retry(ALU_A, ALU_B, ALU_C, ALU_D): Control
unit sends out a recovery signal to previous stages and
discards the TMR output; invoke the instruction retry to
deal with this faulty condition. Under the existing
conditions, multiple ALU modules fail to operate
correctly at last execution. Therefore, the failed
instruction is recomputed by all ALUs, and all execution
results are fed into a selection circuit, which can produce
a correct output if at least two of four inputs are correct;
the correct output is used to locate the faulty modules if
any, and reflect present faulty status by updating the state
to S0 or S1 or S2 if necessary; otherwise, the selection
circuit generates an invalid signal to control unit; once
the control unit receives this kind of information, it will
force the system into fail-safe state, S3.
End /* end of our approach illustration */

2.2 General Framework

In last section, we use three identical modules to
demonstrate our approach. The number of identical
modules could be various in data paths of VLIW
processors. Hence, to be generic, we show how to apply
the proposed technique to 4 to 6 identical modules and
briefly discuss the design consideration in terms of
hardware overhead, performance degradation and fault-
tolerance capability. Table 1 lists the data of design
parameters for various numbers of identical ALUs.

Table 1. Data of design parameters for various numbers
of identical ALUs.

No. of

ALUs

No. of

Spares

Hardware

Overhead

Instruction

Rescheduling
Fault-Tolerant Scheme

3 1 33.3% 3→ (2, 1) 1: TMR;
2: Comparator

4 0 0% 3→ (2, 1);
4→ (2, 2)

1: TMR;
2: Comparator

4 1 25% 3→ (2, 1);
4→ (2, 2)

1: TMR;
2: (1: TMR;1:
Comparator)

4 2 50% 4→ (2, 2) 1: TMR;
2: TMR; 3: Comparator

5 0 0%

3→ (2, 1);
4→ (2, 2);
5→ (2, 2,
1)

1: TMR;
2: (1: TMR,
1: Comparator)

5 1 20% 4→ (2, 2); 1: TMR;2:TMR;

5→ (2, 3); 3: Comparator

6 0 0%
4→ (2, 2);
5→ (2, 3);
6→ (3, 3);

1: TMR;2 TMR;
3: Comparator

The ratio of hardware overhead in Table 1 simply counts
the part of ALU itself and does not include other circuit
portion resulted from the demand of fault tolerance. The
notations shown in fault-tolerant scheme column
represent the methodologies used to detect/locate/recover
the faults/errors. For instance, 2: (1: TMR, 1: Comparator)
represents an execution slot of two instructions where an
instruction is executed in TMR technology and the other
one is run in comparison scheme.

It is evident that the performance degradation due
to fault detection is caused from the partition of
instructions into several sequential execution slots. For
example, in the case of three ALUs, due to limited
resources, we need to schedule an execution slot of three
instructions into two slots where a slot contains two
instructions and the other has one instruction. We use the
notation 3→ (2, 1) to represent the partition, which will
induce an ALU cycle’s performance degradation.
Another source of performance degradation results from
the error recovery that needs one or two ALU cycles to
perform the recovery. Clearly, the error recovery is very
effective from the performance point of view. The
performance degradation depends on the frequency of
instruction rescheduling plus the error recovery time.
Since the faults occur infrequently and most of them are
transient type, so we should emphasize that the
performance degradation comes from mainly for the
purpose of fault detection. The performance degradation
caused from the error recovery is insignificant compared
with the degradation due to fault detection.

As can be seen from Table 1, our approach offers
several design options for a specific number of identical
modules. The option is based on the design metrics of
hardware overhead, performance degradation and fault-
tolerance capability. Therefore, it is quite interesting to
analyze the trade-offs among those design metrics.
Without loss of generality, we use three ALUs and four
ALUs as examples to explain the design trade-offs. First,
a spare ALU is required for the case of three identical
ALUs in order to prevent severe performance
degradation. We know that an execution slot containing
two instructions is very common and if no spare added,
one of instructions cannot perform the comparison to
check its result at once. So, the slot needs to be
partitioned into two slots and it will induce an extra ALU
cycle to achieve the fault detection for each instruction
execution. Hence, a spare cost is paid to lower the
performance degradation. Second, in four identical ALUs,
there is no difference for performance degradation caused
from fault detection between design option of no spare
and one spare. But, one spare design enjoys less error
recovery time than the design of no spare added. To
make this clear, we assume some faults intrude into a
module. For no spare option, it always requires an ALU
cycle to recover the errors while an execution slot has
two instructions. Contrarily, one spare design seldom

needs a cycle to overcome the errors because TMR
mechanism is employed here. Generally speaking, more
spares result in higher hardware overhead but lower
performance degradation and better dependability.
It is well known that the average number of instructions
issued simultaneously is restricted to 2-3. Consequently,
if number of identical modules increases, more idle
modules can be utilized per cycle to perform the error
detection and error recovery to tolerate the faults. The
necessity to add spares decreases. For instance, we allow
the instruction rescheduling to occur for execution slots
exceeding three instructions. Under this constraint, from
Table 1, we can see that two spares (50% hardware
overhead), one spare (20%) and zero spare (0%)
redundancy are required in the design of 4, 5 and 6
ALUs respectively. It is also apparent that the frequency
of instruction rescheduling affects the degree of
performance degradation and is the major contribution to
performance degradation in our fault-tolerant scheme. In
a word, hardware overhead and performance degradation
of our approach decreases while the number of identical
modules increases in the data path of VLIW processors.

3. Hardware Architecture and Performance Analysis
An experimental structure of the proposed fault-

tolerant VLIW processor is illustrated in Figure 2. The
fault-tolerant VLIW processor based on the architecture of
Figure 2 and the features mentioned previously are
realized in VHDL.

Table 2 lists the hardware overhead of the
implementation shown in Figure 2. The areas do not
include the instruction and data memory.

Table 2: Comparison of fault-tolerant and non fault-
tolerant VLIW core.

 Area (gate count) Overhead
System clk

(MHz)
Degradation

Non fault

tolerant VLIW
82852 55.6

Our approach 100727 21.6% 55.6 0 %

Instruction
Memory

Next
address
selector

ALU.A

ALU.B

ALU.C

ALU.D

0
1
2
3

CC1

CC2

TM
R

MV

Select

0
1
2
3

0
1
2
3

Schedule

op_1(I1)

op_2(I1)

op_1(I2)

op_2(I2)

Control

Func_A

Func_B
Func_C
Func_D

M
ux_A

M
ux_B

M
ux_C

TM
R

_in3
TM

R
_in2

TM
R

_in1
CC2_in2
CC2_in1
CC1_in2
CC1_in1

S_f_CC1

S_f_CC2

CC1_out
CC2_out
TM

R_out
M

V
_out

Sch_sel

S_f_TM
R

Select_sel

Funct_I1
Funct_I2
Inst_count

Idle (Recovery)

Fail_Safe

L/S
unit

L/S
unit

L/S
unit

Share
Register

File

Control

Dispatch
Unit

1. next sequential
2. jump address
3. branch address

Data
Memory

Write
Back

Control

IF DISPATCH ID EXE MEM WB

Figure 2. Fault-tolerant VLIW architecture.

Table 3 shows the results of degradation for several
programs.
Table 3. The results of performance degradation for
several programs.

 Performance Degradation

summation of product 6.1%

matrix multiplication 15%

factorial n 8.7%

4. CONCLUSIONS

This work presents a new fault-tolerant framework
for VLIW processors that focuses mainly on the reliable
data path design. Our dependable approach is able to
provide a couple of design options, which offer the
compromise between hardware overhead, performance
degradation and fault-tolerance capability. A significant
contribution of this study is to integrate the error detection
and error recovery into a complete fault-tolerant VLIW
system with less hardware overhead and performance
degradation. The preliminary results show the
effectiveness of our mechanism.
References:
[1] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder and

R. Zahir, “Introducing the IA-64 Architecture,” IEEE
Micro, vol. 20, issue: 5, pp. 12-23, Sep.-Oct. 2000.

[2] C. Constantinescu, “Impact of Deep Submicron
Techonology on Dependability of VLSI Circuits,”
Proc. Of the Int’l Conf. On Dependable Systems and
Networks, pp. 205-209, 2002.

[3] Manoj Franklin, “A Study of Time Redundant Fault
Tolerance Techniques for Superscalar Processors,”
Proc. Int. Workshop on Defect and Fault Tolerance
in VLSI Systems, pp. 207-215,1995.

[4] J. B. Nickle and A. K. Somani, “REESE: A Method
of Soft Error Detection in Microprocessors,” Int. Conf.
On Dependable Systems and Networks, pp. 401-410,
2001.

[5] S. Kim and A. K. Somani, “SSD: An Affordable
Fault Tolerant Architecture for Superscalar
Processors,” Pacific Rim Int’l Symp. On Dependable
Computing, pp. 27-34, 2001.

