
行政院國家科學委員會專題研究計畫 成果報告

行為層高效能處理器的容錯設計及快速驗證與容錯能力分
析(I)

研究成果報告(精簡版)

計 畫 類 別 ：個別型

計 畫 編 號 ： NSC 95-2221-E-216-015-

執 行 期 間 ： 95年 08 月 01 日至 96年 07 月 31 日

執 行 單 位 ：中華大學資訊工程學系

計 畫主持人：陳永源

計畫參與人員：碩士班研究生-兼任助理：張坤鈞、石孟儒、吳耿偉

報 告 附 件 ：出席國際會議研究心得報告及發表論文

處 理 方 式 ：本計畫可公開查詢

中 華 民 國 96年 10 月 31 日

The following report contains two parts: The first part is based on the fault injection approach to verify the
capability of a fault-tolerant system. In this part, we propose a system-level simulation-based fault injection framework in
SystemC design platform to assist the dependability assessment. The second part is going to discuss how to analyze the
error coverage without using the fault injection and fault simulation mechanisms in order to save the development efforts
and simulation time. Our idea is to devise a high-level abstract model to represent the fault-tolerant systems including the
interconnection structure of the functional blocks, the propagation tables expressing the relationship between inputs and
outputs for each functional block and the Petri Net to model the functional behavior of the fault-tolerant systems.

Abstract (first part)
This report describes the results achieved in the first year of three-year research proposal. As mentioned in the

proposal, an important issue in the design of SoC with fault tolerance is how to verify the feasibility of the fault-robust
design as early in the development phase to reduce the re-design cost. Therefore, a system-level fault-tolerant verification
platform is required to assist the designers in assessing the dependability of a system with an efficient manner. The first
part of this study is to propose a system-level simulation-based fault injection framework in SystemC design platform to
assist the dependability assessment. The proposed fault injection framework is able to inject the faults into the systems
modeled at the following levels of abstraction: register-transfer level (RTL)/bus-cycle accurate level, untimed functional
transaction-level modeling with primitive channel sc_fifo, and timed functional transaction-level modeling with
hierarchical channel. We devise a distributed injection control approach instead of using one centralized control unit to
control the injection activity. The proposed distributed injection control approach, which consists of the time-triggered and
event-triggered injection technologies, is capable of injecting single or multiple faults with diverse fault types into
different abstraction levels. We demonstrate the feasibility of the proposed fault injection framework with the modules
modeled at different levels of abstraction.

Another work of this study is to characterize the dependability of fault-tolerant systems modeled at different
hardware design environments, SystemC and VHDL. For SystemC, we inject errors into the components’ outputs, whereas
faults into the inside of components for VHDL. The difference of the simulation results between SystemC and VHDL is
discussed thoroughly through observing two parameters: one is the probability of a fault causing an effective error and
another is the relationship between fault duration and error duration. The above two parameters dominate the discrepancy
as seen between the two different design platforms. The experimental results show the effect of the fault attributes on the
error coverage. This study can promote the fault-tolerant design and verification environment to a higher abstraction level.
The preliminary results can be found in the appendix.

Keywords: fault-tolerant design, high-level abstraction modeling, high-level rapid verification, SystemC, system-level
fault injection, system-on-chip (SoC), transient fault (soft error or SEU).

I. INTRODUCTION

As system-on-chip (SoC) becomes more and more
complicated, and contains a large number of transistors, the
SoC could encounter the reliability problem due to the
increased likelihood of faults or radiation-induced soft
errors especially when the chip fabrication enters the very
deep submicron technology [1-3]. Thus, it is essential to
employ the fault-tolerant techniques in the design of SoC to
guarantee a high operational reliability in critical
applications. However, due to the high complexity of the
SoC, the incorporation of the fault-tolerant demand into the
SoC will further raise the design complexity. Therefore, we
need to adopt the behavioral level or higher level of
abstraction to describe/model the SoC, such as using
SystemC, to tackle the complexity of the SoC design and
verification [4]. An important issue in the design of SoC
with fault tolerance is how to validate the feasibility of the
fault-robust design as early in the development phase to
reduce the re-design cost. As a result, a system-level
fault-tolerant verification platform is required to assist the
designers in assessing the dependability of a system with
an efficient manner. Normally, the fault injection approach
is employed to verify the robustness of a fault-tolerant
system.

SystemC [5], a system-level modeling language,
provides a wide variety of modeling levels of abstraction
and allows us to model a system utilizing one or a mixture
of various abstraction levels. It is quite common that the

modules within a fault-tolerant SoC are modeled at
different levels of abstraction using SystemC design
language. Therefore, the fault injection framework for
SystemC design platform must offer the methodologies to
inject the faults into the different modeling levels.

Most of the previous fault injection studies focus on the
VHDL design platform, whereas only a few works [6-9]
address the fault injection issue in SystemC design
platform. In our previous paper [9], we proposed a fault
injection methodology for cycle-accurate register-transfer
level (RTL) and compared the results of injection
campaigns with the outcomes derived from the VHDL RTL.
The comparisons show the accuracy and feasibility of our
approach. However, the scheme presented in [9] can only
apply to RTL, which limits the scope of application. In [6,
7], the authors proposed a fault injection framework that is
applicable to functional level and transaction layer 1 in
SystemC [10]. The mechanism presented in [6, 7] is based
on the insertion of fault injection modules (FIMs) into the
interconnections of the functional blocks, where a FIM is to
control the fault injection activity for a selected fault target.
The injection activity of a fault can be characterized by the
following attributes: time instant, fault type/value, and fault
duration. A centralized fault injection control unit is used to
control the FIMs. So, the centralized control unit is
responsible for the determination when to inject a fault into
which target and for what fault value and duration. Once
the centralized control unit decides to inject a fault, the
related control signals are sent to the designated FIM. The

merit of [6, 7] scheme is no need to modify the SystemC
source code for each fault injection campaign once the
FIMs have been inserted into the simulation model. The
only source to be prepared for each injection campaign is
the fault injection controller that implements the injection
script commands.

Several interesting issues deserved to be explored
further are described as follows. One is the control
complexity of the centralized injection control
methodology and its effect on the simulation time. As
system is getting more complex, the injection control
complexity rises too. Consequently, the simulation
performance could be degraded significantly. Another is
how to inject the faults into the systems modeled using
mixed levels of abstraction. Since it is rare that all
modules within a system are modeled at the same level of
abstraction, the injection approach developed should
possess the ability to inject the faults into different levels
of abstraction. Third is how to generate the fault injection
script file at higher levels of abstraction in SystemC
design platform, which represents the fault scenario for
each injection campaign. The last issue is the feasibility of
fault/error model employed at high level of abstraction.
The precision of fault/error model will affect the accuracy
of the results of injection campaign. Paper [9] presents a
preliminary study of this fault/error modeling issue.

In this work, we propose an effective system-level
simulation-based fault injection framework in SystemC
design platform to assist the dependability assessment. The
framework of fault injection proposed consists of the
following modeling levels of abstraction: bus-cycle
accurate (BCA) level, untimed functional transaction-level
modeling (TLM) with primitive channel sc_fifo, and timed
functional transaction-level modeling with hierarchical
channel. We devise a distributed injection control approach
instead of using one centralized control unit to control the
injection activity. The proposed distributed injection
control approach is capable of injecting single or multiple
faults with diverse fault types into different abstraction
levels. Our scheme can inject the faults into a system
modeled at mixed levels of abstraction in SystemC. As we
see, the control of injection activity is distributed to the
fault injection modules (FIMs), which may lower the
control complexity of fault injection and the simulation
time compared to the centralized control approach.
However, our approach needs to construct the source code
of SystemC simulation model for each fault injection
campaign because the fault injection script commands are
distributively implemented in each FIM. The comparison
of our distributed approach with the centralized control
method in terms of experiment setup, compiling time, fault
injection efficiency and simulation time will be discussed
in the future.

The remaining report is organized as follows. In
Section 2, the fault injection framework is presented. We
demonstrate the feasibility of our fault injection approach
in Section 3. The conclusions and future work appear in
Section 4.

II. FAULT INJECTION FRAMEWORK IN SYSTEMC

In this section, we consider the fault injection into the
communication channels at the following abstraction levels.

The first one is sc_signal at BCA level; the second one is
the primitive channel sc_fifo at untimed functional
transaction level and the last on is the hierarchical channel
[5, 10] at timed functional transaction level. The principal
idea of our approach is based on the insertion of FIMs into
the interconnections of the functional blocks, where a FIM
is to control the fault injection activity for the selected fault
target. Since we distribute the injection control to each FIM,
the FIMs are responsible for the determination of the fault
injection activity including when to inject a fault, what the
fault value and its duration. The core of the FIM design is
how to decide when to activate a fault injection.

A. Fault injection at BCA level

Fig. 1 shows the fault injection structure for BCA level
that includes a FIM used for the control of fault injection.
The FIM contains an injection list of the faults, which
depicts the injection activity for each fault collected in the
injection list. Since the BCA level is clock-cycle accurate,
the FIM can use the sc_simulation_time () to get the time
instant of the beginning of each clock cycle. Then, the FIM
checks the current time instant obtained with the injection
time list of the faults pre-specified in the FIM. If the time
instant is equal to the injection time of a fault, FIM will
activate the fault injection by generating the desired fault
type/value to the ‘MUX’ input port and keep the fault
stayed active for a pre-defined length of time; otherwise,
the original signal is delivered.

Fig. 1. Fault injection structure for BCA level.

B. Fault injection at untimed functional transaction level

As no clock exists in this level of abstraction, the
event-driven method is utilized to trigger the FIM as
illustrated in Fig. 2. An event is used to represent a
condition that may occur during the course of simulation
and to control the triggering of fault injection. We create
the ‘Event Check’ module to monitor the occurrence of a
specific event to control the FIM when to trigger the fault
injection. The event could be, for example, a particular
instruction address or a counter whose value reaches to a
specific count. When the declared event occurs, the ‘Event
Check’ module will send a trigger signal ‘Enable’ to FIM to
activate the fault injection.

Fig. 2(b) exhibits the circuit diagram of ‘Event Check’
block. The ‘Data Check’ module can check the data-related
events, such as a particular address and data. The ‘Count
Check’ can check, for example, whether the number of data
read out from the FIFO channel has reached to a specific
count. Table I presents the operation of ‘Event Check’.
‘Event Check’ is expandable if more types of events need
to check.

(a)

(b)

Fig. 2. (a) Fault injection structure for channel sc_fifo. (b)
The circuit diagram of ‘Event Check’

TABLE I THE OPERATION OF ‘Event Check’.

0 0 0
Error data2 Duration2 Enable2
Error data1 Duration1 Enable1
Error data1 Duration1 Enable1

0 0
0 1
1 0
1 1

Data Duration Enable
Data Count
Enable1 Enable 2

0 0 0
Error data2 Duration2 Enable2
Error data1 Duration1 Enable1
Error data1 Duration1 Enable1

0 0
0 1
1 0
1 1

Data Duration Enable
Data Count
Enable1 Enable 2

C. Fault injection at timed functional transaction level

Fig. 3 shows the transaction-level channel structure.
Fault injection structure for transaction-level hierarchical
channel is illustrated in Fig. 4. We note that a redundant
channel is inserted between FIM and Slave modules. It is
because the port of Slave module is the connection type for
channel. To keep the original source code unchanged, we
add one more channel to connect the FIM and Slave
modules. This redundant channel is injection-induced
component. Apparently, the input port and output port of
FIM are slave port and master port for channel connection.
Here, the concept of FIM is similar to that of sc_fifo.

In next section, we will exploit a popular hierarchical
channel: AMBA bus to demonstrate the fault injection
platform displayed in Fig. 4. We use the AMBA bus library
[12] and AMBA bus API (Application Programming
Interface) [13] provided by CoWare Platform Architect to
implement the FIM as shown in Fig. 4.

Fig. 3. Transaction-level channel structure.

Fig. 4. Fault injection structure for transaction-level
hierarchical channel.

III. FAULT INJECTION DEMONSTRATION

The following experimental studies were performed to
validate the feasibility of our fault injection framework
proposed in Section II. Fig. 5 shows a common circuit
structure used in fault injection experiments. In Fig. 5,
‘Driver’ module is responsible for generating the augend
and addend to the adder; ‘Monitor’ module is for printing
out the results of adder. We employ the CoWare Platform
Architect v2005.1.1 to build up the experimental
environment.

A. Experiment at BCA level

Fig. 6 illustrates the fault injection structure of Fig. 5
circuit, where the modeling level of this experiment is BCA
style. The clock cycle is 5 ns in this fault injection
experiment. ‘Driver’ module sends out the augend and
addend to the adder every 5 ns, where we assign zero to
augend all the time and one to eight in sequence to addend.
Two faults are injected into the augend through FIM at
different simulation time. The first fault is injected at 15 ns.
At that time, FIM delivers the fault value twelve to ‘MUX’
input port and sets ‘select’ signal to pass the fault value to
the input port of ‘Adder’. The duration of this fault is two
clock cycles. The second fault is injected at 30 ns with fault
value twenty and lasts one clock cycle. Fig. 7 presents the
simulation results of fault-free and fault injection
experiments. As can be seen from Fig. 7, it is evident that
the first fault appears at time 15 ns and sustains two clock
cycles. Another fault happens at time 30 ns and lasts one
cycle. The injection capability of our approach at BCA
level is justified from the results of fault injection
campaign as shown in Fig. 7.

B. Experiment at untimed functional transaction level

Fig. 8 illustrates the fault injection structure at untimed
functional transaction level. Table II lists a fault scenario
for the injection campaign. From Table II, we see that the
‘Count Check’ will activate the fault injection while the
‘Count’ event , i.e. the number of augend data read out
from the FIFO channel, has reached to a particular count, 1,
4 and 7, respectively. In this experiment, the augend values
are (0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16) and the
addend values are (1, 0, 3, 0, 5, 0, 7, 0, 9, 0, 11, 0, 13, 0, 15,
0). Fig. 9 shows the results of the fault-free and fault
injection experiments. From Fig. 9, it is easy to see that the

first three faults are count-triggered faults and sustain one,
two and three transactions, respectively. The last fault is
data-triggered fault and maintains two transactions long.
The simulation outcomes of Fig. 9 confirm the feasibility
of event-triggered injection approach for untimed
functional transaction level.

C. Experiment at timed functional transaction level

In this experiment, we employ the AMBA bus to
demonstrate the injection of faults into the hierarchical
channels modeled at timed functional transaction level.
Since hierarchical channel plays an important role in SoC,
offering the injection capability of faults into the
hierarchical channels is imperative in SystemC design
platform. We utilize the AMBA bus library [12] and AMBA
bus API [13] furnished by CoWare Platform Architect to
implement the circuit diagram shown in Fig. 10. The
‘Driver (master)’ and ‘Display (slave)’ modules in Fig. 10
are responsible for sending data to AHB and receiving plus
printing data from AHB respectively. The concept of FIM
module is like ‘AHB to AHB Bridge’ except FIM is able to
pollute the bus data during the fault injection campaign.
The count of data transaction in AHB is used in FIM to
decide the injection time of faults. In this demonstration,
two faults are injected into the AHB channel. The first fault
occurs at the second data transaction and lasts the length of
two data transactions. The second fault happens at the tenth
data transaction and sustains one data transaction. The
simulation results of fault-free and fault injection
experiments are exhibited in Fig. 11.

D. Experiment at mixed levels of abstraction

SystemC, as a system-level design platform, employs
the concepts of intellectual property (IP) reuse and
hierarchical channel to reduce the SoC design complexity,
effort and time. However, the provided IP modules may be
modeled at various levels of abstraction such that a system
is often modeled at mixed abstraction levels. Therefore, the
inclusion of fault injection at mixed levels of abstraction is
important in the development of system-level fault
injection framework. The goal of this experiment is to
show the feasibility of our fault injection framework, which
is capable of injecting the faults into a system modeled at
mixed levels of abstraction.

Fig. 12 demonstrates a fault injection structure at
mixed levels of abstraction. In Fig. 12, ‘Driver_1’ module
modeled at RTL provides the augend data for ‘Adder’;
‘Driver_2’ module modeled at timed functional transaction
level offers the addend data through the AHB channel to
‘Adder’, and right part of Fig. 12 including ‘Adder’ and
‘Monitor’ modules is modeled at untimed functional
transaction level with primitive channel sc_fifo. ‘Driver_1’
sends out an augend every 5 ns following the data sequence
0 ~ 14. ‘Driver_2’ sends out an addend every 10 ns
following the data sequence 0 ~ 14. The ‘Adder’ module
synchronizes the input sequences of augend and addend,
and therefore, the results of ‘Adder’ are .14 to0 ,2 =× ii
The fault scenario for this experiment is as follows: ‘FIM’
in ‘Driver_1’ part injects faults into augend at time 15ns
and 25 ns; ‘FIM’ in ‘Driver_2’ part injects faults into
addend at transaction count 6 and 9; ‘FIM’ in ‘Monitor’
part injects faults into ‘Monitor’ input at transaction count
11 and 12, and at ‘Adder’ output data equal to 28. Fig. 13

illustrates the simulation results of fault-free and fault
injection experiments. As can be seen from Fig. 13(a), a
situation of multiple faults occurs when augend is 55 and
addend is 200. This confirms the multiple fault injection
ability of our mechanism.

Fig. 5. A common circuit structure for injection

experiments.

Driver Adder Monitor

select
FIM

MUX

Fig. 6. Fault injection structure of Fig. 5 circuit modeled at

BCA level.

Fig. 7. Simulation results of fault-free (left side) and fault

injection (right side) experiments at BCA level.

Fig. 8. Fault injection structure at untimed functional

transaction level.

TABLE II FAULT EVENTS, VALUES AND DURATION

Count check Fault value Fault duration

1 11 1

4 44 2

7 77 3

Data check Fault value Fault duration

12 222 2

Fig. 10. Fault injection structure at timed functional
transaction level.

Fig. 11. Simulation results of the fault-free and fault
injection experiments at timed functional transaction level. Fig. 9. Simulation results of the fault-free and fault

injection experiments at untimed functional transaction
level.

Monitor

Adaptor_1

Driver_2 FIM

Adder

A
H
B

F
I
F
O

F
I
F
O

F
I
F
O

selectFIM

MUX

Driver_1

Adaptor_2
A
H
B

FIMEvent
Check

F
I
F
O

Fig. 12. Fault injection structure at mixed levels of abstraction.

(a)

(b)

 Fig. 13. (a) Fault injection scenario. (b) Simulation results of fault-free and fault injection experiments.

IV. CONCLUSIONS AND FUTURE WORK

In this report, a system-level fault injection framework
in SystemC design platform is presented. The proposed
fault injection framework provides the methodologies for
injecting the faults into various levels of abstraction. Three
modeling levels considered in the framework are BCA
level, untimed functional transaction level, and timed
functional transaction level. The experiments based on
CoWare Architect Platform were conducted to validate the
feasibility of our fault injection approach. Contributions of
this work are first to present the idea of distributed fault
injection control to lower the control complexity of the
fault injection compared to the centralized fault injection
control; to develop the methodologies, including the
time-triggered and event-triggered concepts, to inject the
faults into different abstraction levels, and importantly to
provide a solution for injection of faults into a system
modeled at various levels of abstraction.

In the future, we will further explore the approach of
distributed control of fault injection and compared to the
method of centralized control of fault injection in terms of
the complexity of experiment setup, compiling time, fault
injection efficiency and simulation time. In addition, we
will implement the proposed fault injection framework in
the EDA tool of CoWare Architect Platform.

REFERENCES

[1] C. Constantinescu, “Impact of Deep Submicron
Technology on Dependability of VLSI Circuits,” IEEE
Intl. Conf. On Dependable Systems and Networks
(DSN), pp. 205-209, 2002.

[2] P. Shivakumar et al., “Modeling the Effect of
Technology Trends on the Soft Error Rate of
Combinational Logic,” DSN, pp. 389-398, 2002.

[3] T. Karnik, P. Hazucha, and J. Patel, “Characterization
of Soft Errors Caused by Single Event Upsets in
CMOS Processes,” IEEE Trans. on Dependable and

Secure Computing, Vol. 1, No. 2, pp. 128-143,
April-June 2004.

[4] A. Fin, F. Fummi and G. Pravadelli, “AMLETO: a
Multilanguage environment for functional test
generation”, 2001 International Test Conference, pp.
821-829, Nov. 2001.

[5] Grotker Thorsten et al., “System Design with
SystemC,” Kluwer Academic Publishers, 2002.

[6] K. Rothbart et al., “High Level Fault Injection for
Attack Simulation in Smart Cards,” 13th Asian Test
Symposium, pp. 118-121, Nov. 2004.

[7] K. Rothbart et al., “A Smart Card Test Environment
Using Multi-Level Fault Injection in SystemC”, 6th
IEEE Latin-American Test Workshop, pp. 103-108,
March-April 2005.

[8] K. Rothbart et al., “Power Consumption Profile
Analysis for Security Attack Simulation in Smart
Cards at High Abstraction Level,” EMSOFT, pp.
214-217, Sept. 2005.

[9] Kuen-Long Leu, Yung-Yuan Chen, and Jwu-E Chen,
“A Comparison of Fault Injection Experiments under
Different Verification Environments”, IEEE Fourth
International Conference on Information Technology
and Applications, pp. 582-587, Jan. 2007.

[10] Open SystemC Initiative (OSCI), “SystemC 2.0
Language Reference Manual,” Revision 1.0,
www.systemc.org, 2003.

[11] Bhasker Jayaram and J. Bhasker, “A SystemC
Primer,” Star Galaxy Publisher, 2004.

[12] CoWare Model Library, “AMBA Bus Library,”
Product Version V2005.2.2.

[13] CoWare Model Library, “TLM API Manual,” Product
Version V2005.

http://www.systemc.org/

Abstract (second part)
This report describes the results achieved in the first year of three-year research proposal. As mentioned in the

proposal, an important issue in the design of SoC with fault tolerance is how to verify the feasibility of the fault-robust
design as early in the development phase to reduce the re-design cost. Therefore, a system-level fault-tolerant verification
platform is required to assist the designers in assessing the dependability of a system with an efficient manner. The second
part is going to discuss how to analyze the error coverage without using the fault injection and fault simulation
mechanisms in order to save the development efforts and simulation time. Our idea is to devise a high-level abstract model
to represent the fault-tolerant systems including the interconnection structure of the functional blocks, the propagation
tables expressing the relationship between inputs and outputs for each functional block and the Petri Net to model the
functional behavior of the fault-tolerant system. The fault-tolerant verification platform proposed here can save the time of
detailed hardware implementation, benchmark program development, and fault injection campaigns. As a result, it is
efficient to reduce the implementation and validation efforts. However, since our approach employs a high level of
abstraction to model the fault-robust systems, the accuracy of the simulation results will decrease. A fault-tolerant VLIW
core developed by our team is used to demonstrate the feasibility of our approach by comparing the results obtained from
this approach with the results derived from the simulation-based fault injection technique by VHDL.

Keywords: error propagation path, high-level abstraction modeling, high-level rapid verification, Petri Net,
system-on-chip (SoC), transient fault (soft error or SEU).

INTRODUCTION

Due to the high complexity of the system-on-chip (SoC),
the behavioral level or higher abstraction level are used to
model the SoC so as to tackle the complexity of the SoC
design. It is well known that the rate of radiation-induced
soft errors increases rapidly especially in combinational
logic while the chip fabrication enters the deep submicron
technology [1-3]. Such influences raise the urgent need to
incorporate the fault tolerance into the high-performance
systems [4-7]. However, the incorporation of the
fault-tolerant demand into the SoC will further complicate
the design problem. Importantly, we need to verify the
feasibility of the fault-robust design as early in the
development phase to reduce the re-design cost. Therefore,
a system-level fault-tolerant verification platform is
required to assist the designers in assessing the
dependability of a system with an efficient manner.

We can validate the dependability of fault-tolerant
systems by fault injection campaigns [8-10]. In general,
the verification process of system robustness is performed
by injecting the faults into the system and monitoring
whether the faults are detected/recovered or cause the
system failure, etc. The fault injection techniques
presented in the previous literature can be classified as
physical [11], software-implemented [12] and
simulation-based [13, 14] fault injection approaches. The
different classes of fault injection approaches provide a
compromise between implementation efforts, simulation
time and the accuracy of the experimental results. A major
limitation of physical and software-implemented
approaches is that dependability evaluation is performed
after physical systems have been built. While
dependability evaluation is necessary after systems have
been built, the costs of re-designing systems due to
inadequate dependability can be prohibitively expensive.
The simulation-based fault injection uses the simulation to
inject faults in simulation models of systems. The
simulation model of systems can be described in hardware
description language like VHDL. The advantage of
simulation-based mechanism is that the system
dependability can be assessed as early in the design phase,
and if necessary to re-design the system, the cost of
re-design is reduced significantly. Although the

simulation-based approach shows a valuable means to
support the validation of the fault-tolerant systems, it still
requires considerable efforts to model the system
implementation at different abstraction levels, to develop
the benchmark programs as well as the fault injection tools,
and to perform the fault injection campaigns. The goal of
this study is to propose a new fault-tolerant verification
approach that can significantly reduce the validation
efforts compared to the simulation-based approach.

As discussed before, several issues should be
addressed in the fault-tolerant verification process: First is
the way of faults/errors injected; second is the paths of
faults/errors propagated and third is the outcomes of
faults/errors processed and analyzed. It is clear that the
verification efficiency can be enhanced if we can more
effectively cope with the above issues. For this purpose,
we devise a high-level abstract modeling methodology to
modeling the fault-tolerant systems where the emphasis of
system modeling is more on the error propagation and
error handling, and less on the details of the
implementation of the functional units. Since the proposed
modeling methodology focuses on the function of
fault-robust validation only, the complexity of system
models will decrease. Therefore, it reduces the efforts to
modeling the systems and the time to performing the fault
injection campaigns and error coverage analysis. However,
since our fault-tolerant verification approach employs a
high level of abstraction to modeling the systems, the
accuracy of the simulation results could be hurt.

The rest of the report is organized as follows: In
Section 2, the methodology to modeling the fault-robust
systems is proposed. Section 3 uses a fault-tolerant VLIW
core to demonstrate the proposed fault-tolerant verification
approach. In Section 4, the simulation results are provided
and compared with the results derived from the
simulation-based fault injection approach by VHDL. The
conclusions appear in Section 5.

FAULT-ROBUST SYSTEM MODELING
METHODOLOGY

The goal of the modeling methodology is to lower the
complexity of the modeling, simulation and analysis of the
fault-tolerant systems. The basic idea is to find out the
data flow paths of each system operation. Then, locate all

possible errors which could occur in the data flow paths
for a particular operation under a specific error model. For
each operation, we can inject the desired errors from the
error model into the corresponding data flow paths and
check whether the detection and recovery schemes
embedded in the system can tolerate the errors or not. To
support the validation of system robustness, the proposed
system model must have the capability to propagate the
errors while the system is executed.

Based on the above discussion, we develop a
high-level abstract model to modeling the fault-robust
systems. The simulation model of systems comprises the
following three parts:
1. the interconnection structure of the functional units;
2. the propagation tables expressing the relationship

between inputs and outputs for each functional unit;
3. the Petri net structure [15] to model the functional

behavior of the fault-tolerant systems.
More specifically, the propagation tables can be

utilized to propagate the errors from the inputs to the
outputs of each functional unit. And through the
interconnections of the functional units, the effect of errors
will be propagated. An abstract error model is exploited to
generate the desired error patterns for the system under
validation. The function of Petri net model is to control the
operations of the system. For each operation represented
by a place in the Petri net graph, we also need to store its
control signals for the corresponding functional units
which are responsible for the execution of the operation.
We can count on the Petri net model and the control
signals for each operation to derive the corresponding data
flow paths for a particular operation. Then, all possible
errors which could happen in those data flow paths for a
specific operation can be located. In that way, we can
generate the error list for each operation. In other words,
our verification approach can produce the propagation
paths for each error to see whether the paths of error
propagation have the detection and recovery protection or
not. Therefore, we can examine the error patterns one by
one for a particular operation to acquire the dependability
data for robustness validation. Finally, the error coverage
of a system can be derived from the detailed analysis of
the error coverage related to each operation. In addition to
the error coverage evaluation, the analysis can also
discover the single failure points or weak points of the
systems that can be utilized to improve the system
dependability further.

CASE STUDY

A fault-tolerant VLIW core [16] is used to demonstrate the
concept of our approach. For simplicity of demonstration,
we adopt the portion of the execution stage of VLIW core
as shown in Figure 1 to illustrate the modeling
methodology and the fault-robust verification process. In
Figure 1, ‘CP’ and ‘TMR_MV’ denote the ‘comparator’
and ‘triple modular redundancy majority voter’,
respectively. The fault-tolerant scheme employed in [16] is
briefly described as follows:

while (not end of program)
{switch (Number of instructions in an execution packet

for ALU.)
{case ‘1’: TMR_MV(ALU_1, ALU_2, ALU_3); if

(TMR_MV detects more than one ALU
failure) then the “Error-recovery process”
is activated to recover the failed
instruction.

case ‘2’: the execution packet contains two
instructions: I1 and I2.
I1: CP1(ALU_1, ALU_2);
I2: CP2(ALU_3, ALU_4);
if (I1 fails) then the “Error-recovery
process” is activated to recover I1.
if (I2 fails) then the “Error-recovery
process” is activated to recover I2.

case ‘3’:the packet is divided to two packets and
executed sequentially.

}}

Error-recovery process:
1←i ;

While (number of retries) 0_ >nor
{TMR_MV(ALU_i, ALU_ , ALU_1+i 2+i);

 if (TMR_MV succeeds) then the error recovery
succeeds Æ exit;

 else { 1__ −← nornor ; 1+← ii ; if
() then 3≥i 1←i ;}}

recovery failure and the system enters the fail-safe
state.

Figure 2 exhibits the simulation model of the system
illustrated in Figure 1, where . In this case
study, there are two normal system operations: an
execution packet containing one ALU instruction or two
ALU instructions. As can be seen from Figure 2(b), these
two operations termed as target operations are notated by
the places of ‘P1inst’ and ‘P2inst’, respectively. The other
places are used to model the operations/functions of the
fault-tolerant scheme presented above. We now exploit
Figure 2 to explain the modeling methodology and
fault-robust verification approach.

2_ =nor

Modeling methodology:

1. The interconnection description of the functional units;
we create a file to describe the interconnection
relationship among the functional units.

2. Figure 2(a) shows the propagation tables for the
functional units, where ‘eq’ and ‘neq’ represent
‘equal’ and ‘not equal’, respectively.

3. Figure 2(b) shows the Petri net graph created to model
the system as exhibited in Figure 1. The control
signals for target operation ‘P1inst’ and its associated
operations ‘Prc1’ and ‘Prc2’ are provided in the
control table as displayed in Figure 2(c). For example,
when the operation ‘P1inst’ is executed, the control
table is employed to produce the corresponding
control signals, such as Sch_control = ‘000’ and
mux_a = ‘0’, to perform the execution of one ALU
instruction with TMR protection. Figure 2(d) gives
the conditions for firing the transition from the input
place to the output place.

 8

M
ux

m
ux_a

Sch_control

Func_B

Func_D
Func_C

Select_sel

Func_A

TM
R

_E
rr

or
C

P2
_E

rr
or

C
P1

_E
rro

r

In the following, the target operation ‘P1inst’ is

employed to explain our fault-tolerant verification
approach.

Step 1: The current place in Figure 2 (b) is ‘P1inst’. The

data flow paths of this operation can be generated by
applying the required control signals offered in Figure 2(c),
i.e. Sch_control = ‘000’ and mux_a = ‘0’. The procedure
of path generation is briefly depicted below (note that the
interconnections of the functional units are implicitly

Figure 1. Fault-robust case study.

(c). Control table

(d). Transition fire condition table

(a). Propagation tables

(b). Petri net system modeling

Figure 2. The simulation model of the system illustrated in Figure 1, where . 2_ =nor

 9

applied in the following demonstration of path
generation).
z Schedule: Since Sch_control = ‘000’, according to the

propagation table of Schedule, I1_in1 (data1) is
propagated to Sch_A1_Out, Sch_B1_Out and
Sch_C1_Out, and I1_in2 (data2) is propagated to
Sch_A2_Out, Sch_B2_Out and Sch_C2_Out.

z ALU: Based on the propagation table of ALU,
ALU_A_Out, ALU_B_Out and ALU_C_Out are all
equal to ‘data1 op data2’.

z Mux: mux_a = ‘0’, and therefore, ‘data1 op data2’ is
propagated to Mux_Out1, Mux_Out2 and Mux_Out3.

z TMR_MV: According to the propagation table of
TMR_MV, TMR_Out is ‘data1 op data2’ and
TMR_Error is 0.

Step 2: In Step 1, we have collected the data flow paths for
the operation ‘P1inst’. Then, find out all possible errors
which could occur in the data flow paths for ‘P1inst’ under
a selected error model. Here, we adopt the following error
model to generate the error patterns that will be used to
check the system robustness while ‘P1inst’ operation is
executed.
Error model: To simplify the modeling complexity and
reduce the simulation time, we omit the details of the
functional units in the system modeling. However, there is
no way to inject the faults into the inside of the functional
units. Therefore, the errors only can be injected in the
outputs of the units. We consider the errors either
occurring in a single output port or in the two different
output ports.

According to the above error model, we can create the
possible errors, which could happen in the data flow paths
of the operation ‘P1inst’. So, if an error occurs in the
‘P1inst’ paths and meanwhile the system is executing the
operation of ‘P1inst’, then this error could affect the
execution result. For each operation, we can inject the
possible errors from the error model into the
corresponding data flow paths and investigate whether the
detection and recovery schemes built in the system can
tolerate the errors or not.
Case 1: A single output port error; an error is injected into
the Sch_A1_out port as shown in Figure 2(a), propagation
table of Schedule unit. As can be seen from Step 1, ‘data1’
is changed to ‘wrong_data’. Clearly, the error will be
propagated to Mux_Out1, then TMR1. So, TMR1
becomes ‘wrong_data op data2’. In the meantime, TMR2
and TMR3 contain the expression ‘data1 op data2’. As a
result, TMR_Out is ‘data1 op data2’ and TMR_Error is 0.
It means that the error can be overcome. Next, there are
two output places, ‘Prc1’ and ‘Ptmrs’, for input place
‘P1inst’, where the outcome of TMR_Error decides which
transition will be enabled. Since TMR_Error is 0, from
Figure 2(d), the transition ‘Ttmrs’ is fired and the place is
transited from ‘P1inst’ to ‘Ptmrs’. There is no more
transition when the place is in ‘Ptmrs’. Record the result
and activate the next error injection.
Case 2: Two output port errors; an error is injected into the
Sch_A1_out port and the other into Sch_B1_out port.
Similarly, the errors will be propagated to TMR_MV
inputs, and they are ‘wrong_data1 op data2’,
‘wrong_data2 op data2’, and ‘data1 op data2’, respectively.

Consequently, TMR_MV fails to produce the correct
answer, and sets TMR_Error is one. Next, the transition
‘Ttmrf’ is fired and the place ‘Prc1’ is executed. The
operation ‘Prc1’ is the first error recovery, and if it
succeeds, then the transition ‘Trc1s’ is fired; else, the
operation of second recovery ‘Prc2’ will be activated.
Finally, if error recovery succeeds, then the system enters
the place ‘Prc2s’; else, the system goes into the fail-safe
state.
Figure 3 illustrates the complete fault-robust verification
process. A platform based on the verification process is
developed and used to evaluate the error coverage of the
fault-tolerant systems.

Figure 3. The complete fault-robust verification process.

SIMULATION RESULTS

In this section, we use the proposed verification platform
to assess the error coverage of system as shown in Figure
1. The design metrics as described below are exploited to
justify our approach:
z : Error-detection coverage, i.e. probability of

errors detected;
det−eC

z : Error-recovery coverage, i.e. probability of
errors recovered given errors detected;

receC −

z : Error coverage, i.e. probability of errors detected
and recovered;

eC

z : Probability of system entering the
fail-unsafe state;

unsfP −

z : State transition probability from
‘detected’ state to ‘fail-safe’ state.

sftP −−− det

Table 1 presents the simulation results of the design
metrics. The data shown in Model1 are derived from the
assumption that the occurring probability is the same for

 10

each error in the error model. As shown in [2], the
fault/error rate is proportional to the circuit area. Therefore,
the occurring probability for the errors located at various
functional units should not be identical. The data shown in
Model2 take the area effect on the error rate into account.
However, the proposed high-level modeling methodology
is for the verification purpose of the system robustness. It
cannot be used to estimate the area of the functional units.
The VHDL design flow is adopted to obtain the area of the
units as displayed in Figure 1. To justify the feasibility of
our approach and the accuracy of the simulation results,
we also conduct the simulation-based fault injection
campaigns at RTL level by VHDL design language. Table
2 lists the experimental results.

Table 1. The simulation results based on our method.

 Ce-det Ce-rec Ce Pt-det-f-s Pf-uns

Model1 0.9269 0.8710 0.8073 0.0358 0.1595
Model2 0.9971 0.9187 0.9160 0.0390 0.0450

Table 2. Results from simulation-based approach.

0.0034120.0070170.9895880.9920200.997549w3-3 1 fault : 10%
2 faults : 90%

0.0025290.0041150.9933640.9952150.998140w3-2 1 fault : 50%
2 faults : 50%

0.0020060.0014860.9965100.9979000.998607w3-1 1 fault : 90%
2 faults : 10%Workload3

Inst1 : 20%
Inst2 : 80%

0.0016730.0063010.9919340.9932680.998657w2-3 1 fault : 10%
2 faults : 90%

0.0016580.0042140.9941330.9953740.998754w2-2 1 fault : 50%
2 faults : 50%

0.0013790.0015010.9971220.9981100.999010w2-1 1 fault : 90%
2 faults : 10%Workload2

Inst1 : 50%
Inst2 : 50%

0.0014030.0059860.9926160.9933930.999217w1-3 1 fault : 10%
2 faults : 90%

0.0012230.0036620.9951180.9958100.999305w1-2 1 fault : 50%
2 faults : 50%

0.0010760.0012380.9976880.9983760.999311w1-1 1 fault:90%
2 faults:10%Workload1

Inst1 : 80%
Inst2 : 20%

Pf-unsPt-det-fsCeCe-recCe-detFaults rate

0.0034120.0070170.9895880.9920200.997549w3-3 1 fault : 10%
2 faults : 90%

0.0025290.0041150.9933640.9952150.998140w3-2 1 fault : 50%
2 faults : 50%

0.0020060.0014860.9965100.9979000.998607w3-1 1 fault : 90%
2 faults : 10%Workload3

Inst1 : 20%
Inst2 : 80%

0.0016730.0063010.9919340.9932680.998657w2-3 1 fault : 10%
2 faults : 90%

0.0016580.0042140.9941330.9953740.998754w2-2 1 fault : 50%
2 faults : 50%

0.0013790.0015010.9971220.9981100.999010w2-1 1 fault : 90%
2 faults : 10%Workload2

Inst1 : 50%
Inst2 : 50%

0.0014030.0059860.9926160.9933930.999217w1-3 1 fault : 10%
2 faults : 90%

0.0012230.0036620.9951180.9958100.999305w1-2 1 fault : 50%
2 faults : 50%

0.0010760.0012380.9976880.9983760.999311w1-1 1 fault:90%
2 faults:10%Workload1

Inst1 : 80%
Inst2 : 20%

Pf-unsPt-det-fsCeCe-recCe-detFaults rate

Three workloads are developed for the experiments.
For fair comparison, three workloads have the various
ratios of one and two ALU instructions in an execution
packet. According to Table 2, we confirm that the area
factor plays an important role in the evaluation of the error
coverage. The comparison results between VHDL and our
approach with area consideration are summarized as
follows (represented by the percentage of the difference):
-0.17 ~ 0.05% for error-detection coverage, -7.24 ~
-6.64% for error-recovery coverage, and -7.4 ~ -6.64 % for
error coverage.

CONCLUSIONS

A new fault-tolerant verification platform has been
proposed to drastically reduce the validation effort and
time compared to the previous methodologies. Our
fault-tolerant verification platform does not require the
detailed hardware implementation, benchmark program
development, and fault injection campaigns. However,
since our verification approach employs a high level of
abstraction to model the fault-robust system, the accuracy
of the simulation results will decrease. The preliminary
results show that the accuracy of our approach is

acceptable, and the verification flow can achieve a rapid
dependability assessment. Such a verification flow can
significantly decrease the iteration time between different
design levels.

REFERENCES

[1] C. Constantinescu, “Impact of Deep Submicron
Technology on Dependability of VLSI Circuits,” IEEE
Intl. Conf. On Dependable Systems and Networks
(DSN’02), pp. 205-209, 2002.

[2] P. Shivakumar et al., “Modeling the Effect of
Technology Trends on the Soft Error Rate of
Combinational Logic,” DSN’02, pp. 389-398, 2002.

[3] T. Karnik, P. Hazucha, and J. Patel, “Characterization
of Soft Errors Caused by Single Event Upsets in
CMOS Processes,” IEEE Trans. on Dependable and
Secure Computing, Vol. 1, No. 2, pp. 128-143,
April-June 2004.

[4] N. Quach, “High Availability and Reliability in The
Itanium Processor,” IEEE Micro, Vol. 20, issue: 5, pp.
61-69, September-October 2000.

[5] J. B. Nickle and A. K. Somani, “REESE: A Method of
Soft Error Detection in Microprocessors,” DSN’01, pp.
401-410, 2001.

[6] S. Mitra et al., “Robust System Design with Built-In
Soft-Error Resilience”, IEEE computer, pp. 43-52, Feb.
2005.

[7] M. K. Qureshi, O. Mutlu and Y. N. Patt,
“Microarchitecture-Based Introspection: A Technique
for Transient-Fault Tolerance in Microprocessors”,
DSN’05, pp. 434 – 443, June-July 2005.

[8] J. Clark and D. Pradhan, “Fault Injection: A Method
for Validating Computer-System Dependability,”
IEEE Computer, 28(6), pp. 47-56, June 1995.

[9] M. C. Hsueh, T. K. Tsai and R. K. Iyer, “Fault
Injection Techniques and Tools,” IEEE Computer,
30(4), pp. 75-82, April 1997.

[10] C. Constantinescu, “Experimental Evaluation of
Error-Detection Mechanisms,” IEEE Trans. on
Reliability, Vol. 52, No. 1, pp. 53-57, March 2003.

[11] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson and
U. Gunneflo, Using Heavy-Ion Radiation to Validate
Fault-Handling Mechanisms, IEEE Micro, 14(1), Feb.
1994, 8-23.

[12] G. A. Kanawati, N. A. Kanawati and J. A. Abraham,
FERRARI: A Tool for the Validation of System
Dependability Properties, FTCS-22, 1992, 336-344.

[13] E. Jenn et al., “Fault Injection into VHDL Models:
The MEFISTO Tool,” 24th IEEE FTCS, pp. 66-75,
1994.

[14] J. Gracia et al., “Comparison and Application of
Different VHDL-Based Fault Injection Techniques,”
DFT’01, pp. 233-241, 2001.

[15] J. L. Peterson, “Petri Net Theory and the Modeling of
System”, Prentice-Hall, Inc., Englewood Cliffs, New
York (1981).

[16] Yung-Yuan Chen, Kuen-Long Leu and Chao-Sung
Yeh, “Fault-Tolerant VLIW Processor Design and
Error Coverage Analysis,” The 2006 IFIP
International Conference on Embedded and
Ubiquitous Computing, pp. 754-765, August 2006.

 11

 12

Self-Evaluation of Research Results:
z The above report summarizes the first-year

results accomplished from this three-year
research project. It is evident that 99% of the
work has been achieved and the preliminary
results have been published. The extended
versions of the results will be submitted to be
considered for journal publication. However, the
subjects described in our proposal are big and
deserve to be further explored. We definitely
achieve the first-year goals set in the proposal.

z We are going to develop a system-level
fault-injection tool, which exploits the
simulation-based fault injection scheme proposed
in this research and can be installed in the
CoWare Architect Platform. The tool takes the
fault scenario description from the user and then
automatically generates the system platform
supplemented with the fault injection capability.
This kind of fault injection tool can not only
facilitate the failure mode and effect analysis
(FMEA) and the fault-tolerant validation process,
but raise the validation efficiency. The embedded
fault-tolerant systems have found fertile ground
in intelligent system applications, such as
intelligent driver assistance system or intelligent
robot system, which require a stringent
dependability while the systems are in operation.
Since more works depend on the intelligent
machines, the reliability issue becomes more
important than ever. The fault-tolerant
verification platform developed from this
research can be applied to the design and
analysis of the fault-tolerant systems modeled at
high level of abstraction to enhance the overall
system dependability. The previous study for the
fault injection approach mainly focuses on the
VHDL modeling level and rarely discusses the
fault injection in system-level design. We want to
fulfill this lack.

Publications associated with this research:
z Kuen-Long Leu, Yung-Yuan Chen and Jwu-E

Chen, “A Comparison of Fault Injection
Experiments under Different Verification
Environments”, IEEE Fourth International
Conference on Information Technology &
Applications, pp. 582-587, Jan. 2007. (EI)

z Yung-Yuan Chen and Geng-Wei Wu,
“Fault-Tolerant Verification Platform for
Systems Modeled at High Level of Abstraction”,
1st IEEE Systems conference, pp. 1-7, April 2007.
(EI)

z Kun-Jun Chang and Yung-Yuan Chen,
“System-Level Fault Injection in SystemC

Design Platform,” 8th International Symposium
on Advanced Intelligent Systems, pp. 354-359,
Sept. 2007.

1Department of Electrical Engineering
National Central University

Tao-Yuan, Taiwan
E-mail: 945401025@cc.ncu.edu.tw

jechen@ee.ncu.edu.tw

2Department of Computer Science
and Information Engineering

Chung-Hua University
Hsin-Chu, Taiwan

E-mail: chenyy@chu.edu.tw

Abstract--The main work of this paper is to characterize the
dependability of fault-tolerant systems by using two different
hardware design environments (SystemC and VHDL). For
SystemC, we inject errors into the components’ outputs, whereas
faults into the inside of components for VHDL. The difference of
the simulation results between SystemC and VHDL is discussed
thoroughly through observing two parameters: one is the
probability of a fault causing an effective error and another is
the relationship between fault duration and error duration. The
above two parameters dominate the discrepancy between the
two different platforms. The experimental results show the
effect of the parameters on the error coverage. This study can
promote the fault-tolerant design and verification environment
to a higher abstraction level.
Index Terms--Error/fault injection, fault-tolerant verification
platform, hardware design language, SystemC.

I. INTRODUCTION

cA
s system-on-chip (SoC) becomes more and more
omplicated, and contains a large number of transistors, the

SoC could encounter the reliability problem due to the
increased likelihood of faults or radiation-induced soft errors
especially when the chip fabrication enters the deep
submicron technology [1]-[3]. Thus, it is essential to employ
the fault-tolerant techniques in the design of SoC to guarantee
a high operational reliability in critical applications. Recently,
the reliability issue in high-end processors is getting more and
more attention [4]-[7]. For example, the Intel Itanium
processor provides fault-tolerant features [7], such as
enhanced machine check abort (MCA) architecture with
extensive error correcting code (ECC), to maximize system
reliability and availability.

Generally, there are two kinds of methodologies used to
verify the dependability of fault-tolerant systems. One is
physical fault injection [2] that injects the faults at the IC
pin-level, by heavy-ion radiation, by interference with the IC
power supplies, or by mutating code and corrupting program
state variables. The other is simulated fault injection [8]-[10]
that uses the simulation to inject faults in simulation model of
systems. We can describe the simulation model of systems by
hardware description language like VHDL and SystemC. The
advantage of simulated fault injection mechanism is that the
system dependability can be assessed as early in the design
phase, and if necessary to re-design the system, the cost of
re-design is reduced significantly.

Recently, the development and verification environment is
gradually promoted from RTL to behavioral or system level
due to the complexity of SoC design. Two popular hardware

description languages, Verilog and VHDL, are not adequate
to support the system-level design in more abstract
description. The SystemC comes to fill the need of system
design [11]-[14]. Because each component developed by
SystemC may only contain its behavioral description, the
detailed hardware structure is not definite at this level.
Therefore, it is impossible to inject a fault into the inside of
components. Instead, only the errors can be injected into the
components’ outputs. The pity is that previous literatures
seldom mention the relationship between the fault and error.
So designers who want to develop a fault-tolerant system
upon higher level of abstraction have no idea about how to
link the error scenario to fault scenario. For above reason, this
paper wants to propose some practical suggestions to help
designers derive more actual simulation results when they are
verifying their fault-tolerant systems.

The remaining sections are organized as follows. We
briefly introduce the existing error injection methodologies in
Section 2 and present ours in Section 3. In Section 4, we
discuss and compare the fault injection results derived from
the VHDL and SystemC simulation models of a 32-bit
fault-tolerant VLIW processor. Finally we propose some
valuable conclusions in Section 5 to help derive more
accurate experimental results of error simulation at higher
abstraction levels.

II. RELATED WORK
There are only a few approaches of error injection at high

abstraction level based on SystemC. Rothbart et al. [12]
inserted fault injection modules (FIM) into the
interconnection of the function blocks and fault injection
ports (FIP) in the Memory. A fault-injection control unit
(FICU) to accomplish the fault simulation at high abstraction
level controls the FIM and FIP. Although this methodology
will not modify the component description, the FICU will
become very complicated if the tested system contains many
functional blocks. Fin et al. [13] performed the error injection
into SystemC models by presenting a multi-language
environment for functional test generation, but they did not
observe the behavior of the faulty system. Reference [14]
proposed an automated synthesis of single-event upset (SEU)
Tolerant architecture based on SystemC environment.
Moreover, a tool is provided to allow performing error
injecting at behavioral level to validate the SEU tolerant
circuits. However, the error injection targets only focus on the
storage elements.

A Comparison of Fault Injection Experiments
under Different Verification Environments

1Kuen-Long Leu, 2Yung-Yuan Chen and 1Jwu-E Chen

 13

mailto:945401025@cc.ncu.edu.tw
mailto:jechen@ee.ncu.edu.tw
mailto:chenyy@chu.edu.tw

III. ERROR INJECTION METHODOLOGY IN
SYSTEMC

A basic simulation model of SystemC involves three
blocks including “Stimulus”, “HW/SW” and “Monitor” [11].
The “Stimulus” is responsible for reading the test input file
and passing the test patterns at each clock cycle to “HW/SW”
which contains the system description and the “Monitor”
records systems’ outputs. Because all of the three blocks are
established upon the C/C++ platform, every signal and
input/output port in real hardware can be viewed as a variable
in high-level language. If a certain signal is selected to be the
fault or error injection target, its value can be altered
arbitrarily by declaring its scope as global. According to this
principle, we append another block called “Error injection
file” to construct our error simulation model as shown in Fig.
1. This file specifies the information for each error injection
including the injection time instant, injection target, error
type and the error duration. Once the simulation time reaches
the injection time of an error, the erroneous value will replace
the content of the corresponding port or signal.

Test input
file

Fault
Injection

File

stimulus HW/SW Monitor

clk

clk

clk clk
SystemC main

Output
files

Test input
file

Test input
file

Fault
Injection

File

stimulus HW/SW Monitor

clk

clk

clk clk
SystemC main

Output
files

Error

Test input
file

Fault
Injection

File

stimulus HW/SW Monitor

clk

clk

clk clk
SystemC main

Output
files

Test input
file

Test input
file

Fault
Injection

File

stimulus HW/SW Monitor

clk

clk

clk clk
SystemC main

Output
files

Error

Fig. 1: Error simulation model.

A. Timing Model of SystemC
In SystemC, each process will be triggered by certain

events. Each event is assigned to a virtual time delay ∆.

10ns 30ns20ns 40ns 50ns
1Δ

2Δ
1Δ

10ns 30ns20ns 40ns 50ns
1Δ

2Δ
1Δ

Fig. 2: Virtual timing model and ∆ delay of SystemC.

The ∆ is used to illustrate the relation between cause and
effect of real hardware components. As Fig. 2 depicts, there is
an event triggered at 20ns, and this event will activate the
second event at 20+1∆ ns. Then the second event further
activates the third event at 20+2∆ ns, and so on. Such ripple
effect will persist until no more events happen for current
iteration.

Due to the ∆ delay, the following situation will result in
the error injection fail: Assume an error is injected into an
ALU output at 20 ns and this error will be propagated to the
next stage at 30 ns. However, ALU is triggered until 20+2∆
ns such that the error injected at 20 ns will be overwritten by
the new result. Thus, the error injected becomes ineffective.
To solve this problem, each component that could be an
injection target needs modifying as illustrated in Fig. 3.

ALU_in_A

ALU_in_B ALU M
U

X

Erroneous
value

aluout

flagALU_in_A

ALU_in_B ALU M
U

X

Erroneous
value

aluout

flag

Fig. 3: A modified ALU block for error injection.

We declare the ‘flag’ and ‘Erroneous value’ in Fig. 3 as
global variables so that we can control their values easily. Fig.
4 is an error injection file with flag insertion. Once the
simulation time reaches 90 ns, the flag will be set to one, and
the multiplexer will choose the erroneous value as the output.
The flag will return to zero at 110 ns and at that time the ALU
block restores to its normal operation. In this case, the error
duration is 20 ns.
#include “error_injection_file.h"
#include “system_top.h"
extern systemc_top S1 ;
void Error_in::prc_error_in() {

run_time = sc_simulation_time() ;
switch(run_time) {
case 90 : {
S1.ALU_top_unit->ALU->flag.write(1) ;
S1.ALU_top_unit->ALU->erroneous_value = 1001987144 ;

} break ;
case 110 : {
S1.ALU_top_unit->ALU->flag.write(0) ;

} break ;
}

}

Fig. 4: An error injection file example.

Although this methodology will modify the original
component description, the modification is very slight.
Furthermore, the insertion of flags and multiplexers can be
performed automatically due to its regularity, thus there is no
additional burden to designers. In addition, this methodology
can apply to not only ALU but also any other functional
blocks and storage elements. We have integrated this error
injection process into our development and verification
framework for the validation of the fault-tolerant systems. We
describe the framework next.

B. Development and Verification framework

SystemC code
(Original)

Verified ?

SystemC code
(Fault tolerant)

Insert error-injection-
assisted flag and multiplexer

to specified components

Error simulation Error free
simulation

Error coverage
analysis

Use error injection
tool to generate

error injection files
Testbench

Modify
fault-tolerant

algorithm
Desired ?

Synthesize to
RTL

Failure sensitivity
analysis

Yes
No

Yes

No

SystemC code
(Original)

Verified ?

SystemC code
(Fault tolerant)

Insert error-injection-
assisted flag and multiplexer

to specified components

Error simulation Error free
simulation

Error coverage
analysis

Use error injection
tool to generate

error injection files
Testbench

Modify
fault-tolerant

algorithm
Desired ?

Synthesize to
RTL

Failure sensitivity
analysis

Yes
No

Yes

No

Fig. 5: Development and Verification framework.

Fig. 5 shows the framework to develop and validate the
fault-tolerant systems based on SystemC platform. After the

 14

original design has been verified to meet its functional
specification, the failure sensitivity analysis will generate a
report providing which components with the higher
probability of causing the system failure due to the errors.
According to this report, designers can add the protection
mechanisms to those vulnerable components to re-build an
enhanced design with fault-tolerant capability. Next, the
fault-tolerant design is analyzed to determine which
components should be inserted the error-injection-assisted
flag and multiplexer to facilitate the fault simulation. To
generate the error injection file mentioned earlier, we have
developed an error injection tool to produce the error
injection file automatically. By giving four parameters
including the total number of errors injected, error duration,
simulation time and quantity of experiments, designer can use
this tool to not only generate the error injection files but also
derive the analysis about the degree of error overlapping as
shown in Fig. 6. The Weibull distribution is utilized for
determining the occurring time of each error. Numbers on the
top of Fig. 6 represent how many errors overlap over a certain
time fraction. The various degrees of error overlapping
represent the different error environments. Designers can
alter the parameters stated above to generate the desired error
environment.

Next, the error-free simulation and error simulation can be
performed with the specified workloads. Both simulation
results are used for error coverage analysis. The designer
should revise his/her fault-tolerant algorithm and re-run the
implementation and simulation iteration until the error
coverage reaches the desired level. After that, the design can
be synthesized to RTL for further process.

1

2

3

4

5

6

5 10 15 20 25 30 35 40 45 50 55 60 65 70

1 2 10 1 2 3 1 20

Fa
ul

t i
nj

ec
tio

n
se

gu
en

ce

Time

E
rr

or

1

2

3

4

5

6

5 10 15 20 25 30 35 40 45 50 55 60 65 70

1 2 10 1 2 3 1 20

Fa
ul

t i
nj

ec
tio

n
se

gu
en

ce

Time

E
rr

or

Fig. 6: Error overlapping degree.

The VHDL platform-based framework is similar to the
SystmeC except that flag and multiplexer are not required.

IV. EXPERIMENTAL RESULTS

A. Fault-Tolerant VLIW Data Path Design
To validate the proposed approach, an experimental

fault-tolerant VLIW architecture is developed [15]. This
experimental architecture as displayed in Fig. 7 can issue at
most three ALU and three load/store instructions per cycle.
For simplicity of demonstration, the concurrent error
detection and recovery do not apply to the load/store units.
The fault-tolerant VLIW processor is briefly described as
follows:
1. For only one ALU instruction executed in current clock

cycle, the ‘Dispatch’ circuit will duplicate this
instruction to three ALUs simultaneously. Then, the

TMR_MV will check the consistency of the ALUs’
outputs.

2. For two ALU instructions in current execution slot, the
‘Dispatch’ circuit will duplicate the first instruction to
ALU_1 and ALU_2 and the second to ALU_3 and
ALU_4, respectively, and then the CP1 and CP2 will
check the consistency of ALUs’ outputs, respectively.

3. For three ALU instructions in an execution slot, they
will be partitioned into two execution slots. At the first
slot, two instructions will be processed like case 2 and
then the remaining slot will be processed like case 1 at
the second cycle.

4. If there is any inconsistency, the recovery mechanism is
activated. The consistency will be checked again by
TMR_MV. If the inconsistency disappears, then VLIW
can continue to process the next instruction(s); else the
whole VLW idles.

Note that the ‘Error Analysis’ block in execution stage,
which was created only to facilitate the measurement of the
error coverage during the fault and error injection campaigns,
is not a component for the VLIW processor displayed in Fig.
7.

The fault-tolerant VLIW processor based on the
architecture of Fig. 7 was realized in VHDL and SystemC,
respectively.

B. Fault-tolerant design metrics
The design metrics as described below are exploited to
justify our fault-tolerant approach:
� : Probability of system entering the fail-unsafe

state;
unsfP −

� : Error-detection coverage, i.e. probability of errors
detected;

det−eC

� : Error-recovery coverage, i.e. probability of errors
recovered given errors detected;

receC −

� : Error coverage, i.e. probability of errors detected and
recovered;

eC

� : Probability of system entering the fail- safe state; sfP −

� : State transition probability from ‘detected’
state to ‘fail-safe’ state.

sftP −−− det

� : State transition probability from
‘detected’ state to ‘fail-unsafe’ state.

unsftP −−− det

� : Probability of system entering the
fail-unsafe state due to the detection defects;

det−− unsfP

� : Probability of system entering the
fail-unsafe state due to the recovery defects;

recunsfP −−

� : Probability of a fault causing an effective error. etofP −−

The following parameters Ne, Ne-det, Ne-esc-det,
Ne-rec, Ne-nrec-f-s and Ne-nrec-f-uns (called the
error-related parameters) represent the total number of errors
occurred, the number of errors detected, the number of errors
escape being detected, the number of errors recovered, the
number of errors not recovered and system enters the
‘fail-safe’ state and the number of errors not recovered and
system enters the ‘fail-unsafe’ state, respectively. The design
metrics can be expressed as follows:

 15

;;1;
det

det
det

det
det

det
−

−
−−−

−
−

−−
−− =−===

e

rece
receunsf

e

e
e

e

esce
unsf

N
NCP

N
NC

N
NP (1)

;detdet
det

det
det

det ;; unsfterecunsf
e

unsfnrece
unsft

e

sfnrece
sft PCP

N
NP

N
NP −−−−−−

−

−−−
−−−

−

−−−
−−− ×===

 (2)

;;; detdetdetdet receeerecunsfunsfunsfsftesf CCCPPPPCP −−−−−−−−−−−− ×=+=×=
unsfnrecesfnrecereceeesceee NNNNNNN −−−−−−−−−−− ++=+= detdetdet ; (3)

errors detected correct

fail-safe

Ce-det

Pf-uns-det

fail-unsafe

Pt-det-f-uns

Ce-rec

Pt-det-f-s

OR

Out

F

B

A 5

-1

-

2

1

5

+

4

3

7

7

Fault duration

Error duration

20ns 30ns 40ns 50ns 60ns

OR

Out

F

B

A 5

-1

-

2

1

5

+

4

3

7

7

Fault duration

Error duration

OR

Out

F

B

A 5

-1

-

2

1

5

+

4

3

7

7

Fault duration

Error duration

20ns 30ns 40ns 50ns 60ns

Fig. 8: Predicate graph of fault-tolerant mechanism. Fig. 9: Fault duration and error duration for an ALU example.

Fig. 8 illustrates the error handling process in our

fault-tolerant system. From Fig. 8, if errors occur, the system
could enter one of the following states: ‘correct’, ‘fail-safe’
and ‘fail-unsafe’ states.

C. Experimental Setup
Three benchmarks including N! (N = 10), 5×5 matrix

multiplication, and have been applied to generate

the testbench by copying each benchmark program four times
and then combine the twelve programs in random sequence.
We first perform the fault simulation based on VHDL
simulation platform comprising a simulated fault injection
tool, ModelSim VHLD simulator and data analyzer. The
common rules of fault injection campaigns are: 1) value of a
fault is selected randomly from the s-a-1 and s-a-0; 2)
injection targets cover the entire ‘EXE’ stage as shown in Fig.
7. The common data of fault injection parameters are: α=1
(useful-life), failure rate (λ) = 0.001, probability of permanent
fault occurrence = 0, fault duration = 5 clock cycles. To
generate various fault scenarios, we inject 100, 500, 1000,
1500 and 2000 faults for each injection campaign to represent
from slight to serious fault environments. Likewise, various
error scenarios are also generated similarly. There are still
two parameters required to be determined; one is the

 and the other is error duration. For the former we
give an initial value 0.6. For the latter, each error will choose
one value between one and four clocks. The reason is
described as follows:

∑
=

×
5

1
2

i
ii BA

etofP −−

Fig. 9 shows an ALU waveform and the notations ｀A＇,
｀B＇ and ｀F＇ represent the inputs involving two
operands and specified operation respectively, and ｀Out＇
represents the operating result. As exhibited in Fig. 9, a fault
is injected into the adder at 30 ns; therefore, the operating

result is incorrect because the addition operation is affected
by this fault. However, the OR operation is still correct
because no fault is injected into the logical operator. This
situation causes the un-equivalence between the fault duration
and error duration. It is worthy to note that the error duration
will be always equal to or smaller than the fault duration.
That’s why we don’t apply the error duration to a constant.

D. Analysis and Discussion of Simulation Results
Table 1 illustrates the difference in error coverage between

VHDL and System C simulation results. The difference is
represented as the deviation calculated by the following
expression:

%100(%) ×
−

=
VHDL

VHDLSystemCDeviation (4)

Table 1: The deviation between SystemC and VHDL design
environments.

 16

43.6794432.3378113.6472518.9976812.36416Deviation (%)
0.0248960.0134270.0129830.0076610.0069VHDLPf-uns

0.0357710.0177690.0147550.0091170.007753SystemC
63.5822914.69876-32.6439-50.6293Deviation (%)
0.0176690.0116760.0035640.001790VHDLPf-s

0.0289040.0133920.00240.0008840SystemC
-2.30919-0.62142-0.06188-0.05546-0.08591Deviation (%)
0.9574350.9748970.9834530.9905490.9931VHDLCe

0.9353260.9688390.9828450.9899990.992247SystemC
-1.20745-0.182110.1178470.0913510Deviation (%)
0.981880.9881650.996390.9981961VHDLCe-rec

0.9700240.9863660.9975640.9991081SystemC
-1.11521-0.44011-0.17951-0.14667-0.08591Deviation (%)
0.9751040.9865730.9870170.9923390.9931VHDLCe-det

0.9642290.9822310.9852450.9908830.992247SystemC

2000
1200

1500
900

1000
600

500
300

100
60

VHDL
SystemC

43.6794432.3378113.6472518.9976812.36416Deviation (%)
0.0248960.0134270.0129830.0076610.0069VHDLPf-uns

0.0357710.0177690.0147550.0091170.007753SystemC
63.5822914.69876-32.6439-50.6293Deviation (%)
0.0176690.0116760.0035640.001790VHDLPf-s

0.0289040.0133920.00240.0008840SystemC
-2.30919-0.62142-0.06188-0.05546-0.08591Deviation (%)
0.9574350.9748970.9834530.9905490.9931VHDLCe

0.9353260.9688390.9828450.9899990.992247SystemC
-1.20745-0.182110.1178470.0913510Deviation (%)
0.981880.9881650.996390.9981961VHDLCe-rec

0.9700240.9863660.9975640.9991081SystemC
-1.11521-0.44011-0.17951-0.14667-0.08591Deviation (%)
0.9751040.9865730.9870170.9923390.9931VHDLCe-det

0.9642290.9822310.9852450.9908830.992247SystemC

2000
1200

1500
900

1000
600

500
300

100
60

VHDL
SystemC

Several notable points are observed from Table 1; firstly,

the deviations of , and are all very
small and the maximum is only about 2.3%. This means that
the simulation results based on the fault and error injections
are quite similar. Nevertheless, the deviations of and

 are very large. It is because the value itself is too
small, so a slight difference can cause a serious influence to
the deviation; secondly, the deviation rises as the number of
injected faults and errors increases especially when the
number of faults is greater than 1000. To further understand
the influence of error duration and on deviation,
we conduct two additional experiments. One focuses on the
former and the other focuses on the latter.

det−eC receC − eC

sfP −

unsfP −

etofP −−

E. Error Simulation with Various Error Durations

Table 2: Error duration from 2 to 5 based on 300 errors
injected using SystemC platform.

0.0043790.011420.0091170.0079060.007041Pf-uns

0.001470.001470.0008840.0004510Pf-s

0.98711

0.998513

0.98858

5

0.005849

0.001487

0.004379

Max diff.

0.9899990.9916430.992959Ce

0.9991080.9995451Ce-rec

0.9908830.9920940.992959Ce-det

432

0.0043790.011420.0091170.0079060.007041Pf-uns

0.001470.001470.0008840.0004510Pf-s

0.98711

0.998513

0.98858

5

0.005849

0.001487

0.004379

Max diff.

0.9899990.9916430.992959Ce

0.9991080.9995451Ce-rec

0.9908830.9920940.992959Ce-det

432

Table 3: Error duration from 2 to 5 based on 900 errors

injected using SystemC platform

0.2286440.023740.0177690.0117890.008756Pf-uns

0.017940.017940.0133920.008830Pf-s

0.032924

0.018376

0.014984

Max diff.

0.95832

0.981624

0.97626

5

0.9688390.9793810.991244 Ce

0.9863660.9910651Ce-rec

0.9822310.9882110.991244Ce-det

432

0.2286440.023740.0177690.0117890.008756Pf-uns

0.017940.017940.0133920.008830Pf-s

0.032924

0.018376

0.014984

Max diff.

0.95832

0.981624

0.97626

5

0.9688390.9793810.991244 Ce

0.9863660.9910651Ce-rec

0.9822310.9882110.991244Ce-det

432

Tables 2 and 3 illustrate the influence of error duration

under slight (300 errors injected) and serious (900 errors
injected) error scenarios on the error coverage. We observe
that values in the Max diff. (maximal difference) field of
Table 2 are all smaller than those in Table 3. This means that

the influence of the error duration becomes higher when the
error environment becomes worse.

F. Error Simulation with Various etofP −−

Table 4: Pf-to-e = 0.5, 0.55, and 0.6 based on 500 faults
experiments.

0.000658

0.000433

0.001091

0.000437

0.000658

Max-Min

0.9923390.9908830.9911820.991541Ce-det

0-0.146724-0.116593-0.080416Deviation (%)

0.9981960.9991080.999130.999545Ce-rec

00.913650.0935690.135144Deviation (%)

0.9905490.9899990.9903210.99109Ce

0

0.007661

0

0.00179

0

500
faults

19.00535215.10246710.416395Deviation (%)

0.0091170.0088180.008459Pf-uns

-50.614525-51.843575-74.804469Deviation (%)

0.0008840.0008620.000451Pf-s

-0.055525-0.0230180.054616Deviation (%)

300
errors

275
errors

250
errors

0.000658

0.000433

0.001091

0.000437

0.000658

Max-Min

0.9923390.9908830.9911820.991541Ce-det

0-0.146724-0.116593-0.080416Deviation (%)

0.9981960.9991080.999130.999545Ce-rec

00.913650.0935690.135144Deviation (%)

0.9905490.9899990.9903210.99109Ce

0

0.007661

0

0.00179

0

500
faults

19.00535215.10246710.416395Deviation (%)

0.0091170.0088180.008459Pf-uns

-50.614525-51.843575-74.804469Deviation (%)

0.0008840.0008620.000451Pf-s

-0.055525-0.0230180.054616Deviation (%)

300
errors

275
errors

250
errors

Table 5: Pf-to-e = 0.5, 0.55, and 0.6 based on 1500 faults

experiments.

0.007061

0.006863

0.013924

0.007034

0.007061

Max-Min

0.9865730.9822310.9847490.989292Ce-det

00.4401090.184882-0.2756Deviation (%)

0.9881650.9863660.9882220.9934Ce-rec

00.182055-0.005768-0.529770Deviation (%)

0.9748970.9688390.9731510.982763Ce

0

0.013427

0

0.011676

0

1500
faults

-32.337827-13.58456820.250242Deviation (%)

0.0177690.0152510.010708Pf-uns

-14.9698140.66803744.081877Deviation (%)

0.0133920.0115980.006529Pf-s

0.6213990.179096-0.806854Deviation (%)

900
errors

825
errors

750
errors

0.007061

0.006863

0.013924

0.007034

0.007061

Max-Min

0.9865730.9822310.9847490.989292Ce-det

00.4401090.184882-0.2756Deviation (%)

0.9881650.9863660.9882220.9934Ce-rec

00.182055-0.005768-0.529770Deviation (%)

0.9748970.9688390.9731510.982763Ce

0

0.013427

0

0.011676

0

1500
faults

-32.337827-13.58456820.250242Deviation (%)

0.0177690.0152510.010708Pf-uns

-14.9698140.66803744.081877Deviation (%)

0.0133920.0115980.006529Pf-s

0.6213990.179096-0.806854Deviation (%)

900
errors

825
errors

750
errors

Tables 4 and 5 illustrate the influence of various

 on the error coverage. From Tables 4 and 5, we
observe the similar phenomenon as shown in Tables 2 and 3.

etofP −−

Summarizing the four tables, we derive an important
conclusion: error duration and are two key factors,
which lead to the difference between fault and error
simulation results. Furthermore, the influence of error
duration on the simulation results is greater than .

etofP −−

etofP −−

V. CONCLUSIONS
From the simulation results, we recommend the following

experimental rules during the fault/error injection campaigns:
1. Do not assign the error duration to a constant value.

The error duration for each error should be a random
value selected from a range of values, for example, one
to four clock cycles for our injection campaigns.
Normally, the error duration should be equal to or less
than the fault duration.

2. won’t be a constant. It should be adjusted as
the degree of fault or error overlapping varies.

etofP −−

3. The various fault/error environments will affect the
deviation between different platforms. Worse
environment will cause a greater deviation between
VHDL and SystemC.

With these rules, designers can set the suitable error duration

 17

and for their own error simulation to gain a better
quality of simulation results.

etofP −−

ACKNOWLEDGEMENTS
The authors would like to thank Shang-Yu Tao for his help

in generating experimental results and acknowledge the
support of the National Science Council, Republic of China,
under Contract No. NSC 95-2221-E-216-015.

REFERENCES
[1] C. Constantinescu, “Impact of Deep Submicron

Technology on Dependability of VLSI Circuits,” IEEE Intl.
Conf. On Dependable Systems and Networks (DSN’02), pp.
205-209, 2002.

[2] P. Shivakumar et al., “Modeling the Effect of Technology
Trends on the Soft Error Rate of Combinational Logic,”
DSN’02, pp. 389-398, 2002.

[3] T. Karnik, P. Hazucha, and J. Patel, “Characterization of
Soft Errors Caused by Single Event Upsets in CMOS
Processes,” IEEE Trans. on Dependable and Secure
Computing, Vol. 1, No. 2, pp. 128-143, April-June 2004.

[4] D. M. Blough et al., “Fault Tolerance in Super-scalar and

VLIW Processors,” IEEE Workshop on Fault Tolerant
Parallel and Distributed Systems, pp. 193-200, 1992.

[5] N. Saxena et al., “Error Detection and Handling in a
Superscalar, Speculative Out-of-Order Execution
Processor System,” 25th IEEE FTCS, pp. 464-471, 1995.

[6] A. P. Pawlovsky and M. Hanawa, “A Concurrent Fault
Detection Method for Superscalar Processors,” IEEE
ATS’92, pp.139-144, 1992.

[7] N. Quach, “High Availability and Reliability in The
Itanium Processor,” IEEE Micro, Vol. 20, issue: 5, pp.

61-69, September-October 2000.
[8] Ward, P.C.; Armstrong, J.R.;” Behavioral fault simulation

in VHDL”, Design Automation Conference, 1990.
Proceedings. 27th ACM/IEEE 24-28 June 1990
Page(s):587 – 593

[9] A. L. White, “Transient Faults and Network Reliability”,
IEEE Aerospace Conference, pp. 78-83, 2004.

[10] Ejlali, A.; Miremadi, S.G.; Zarandi, H.; Asadi, G.; Sarmadi,
S.B.; “A Hybrid Fault Injection Approach Based on
Simulation and Emulation Co-operation”, Dependable
Systems and Networks, 2003. Proceedings. 2003
International Conference on 22-25 June 2003
Page(s):479 – 488.

[11] Open SystemC Initiative (OSCI), “SystemC 2.0 Language
Reference Manual”, Revision 1.0, www.systemc.org,
2003.

[12] Rothbart, K.; Neffe, U.; Steger, Ch.; Weiss, R.; Rieger, E.;
Muehlberger, A.;” High level fault injection for attack
simulation in smart cards”, Test Symposium, 2004. 13th
Asian 15-17 Nov. 2004 Page(s):118 – 121

[13] A. Fin, F. Fummi, G. Pravadelli, “AMLETO: a
Multilanguage environment for functional test generation”,
Test Conference, 2001. Proceedings. International , 30
Oct.-1 Nov. 2001, Pages:821 – 829.

[14] S. Chiusano, S. Di Carlo, P. Prinetto, “Automated
synthesis of SEU tolerant architectures from OO
descriptions”, On-Line Testing Workshop, 2002.
Proceedings of the Eighth IEEE International , 8-10 July
2002, Pages:26 – 31.

[15] Yung-Yuan Chen, Kuen-Long Leu, and Chao-Sung Yeh,
“Fault-Tolerant VLIW Processor Design and Error
Coverage Analysis”, International Conference, EUC 2006
Seoul, Korea, August 2006 Proceeding, pp. 754-765.

 18

Instruction
Memory

Next
address
selector

Instruction D
ispatch

Shared R
egister File

Select

ALU_1

ALU_2

ALU_3

L/S
Unit

L/S
Unit

L/S
Unit

0
1
2
3

CP1

CP2

TMR
_MV

D
ata M

em
ory

D
ispatch

op_1(I1)

op_2(I1)

op_1(I2)

op_2(I2)

ALU_4

ALU_Control

I1_
out

I2_
out

Sel

D
is_control

Func_2

Func_4
Func_3

Select_sel

Stage Idle

Safe failure

IF & ID DRF EXE MEM WB

Func_I1

Func_I2

Inst_
count

Func_1
Error Analysis

op_1(I3)

op_2(I3)

Instruction Partition

Forw
arding

Result_
(I1)
Result_
(I2)
Result_
(I3)

Func_I3

Error_signal

Ne

Ne-det

Ne-esc-det

N
ext sequential

Jum
p address

B
ranch address

Main_Control
Recovery IdleExtra-slot Idle

Present Inst_count

Present Func_I2
Present Func_I1

Note: CP (ComParator), MV (Majority Voter)

0
1DFF

0
1DFF

5x32-bit

5x32-bit

Ne-nrec-f-uns

Ne-rec

Ne-nrec-f-s

Fig. 7: Fault-tolerant VLIW architecture.

 19

行政院國家科學委員會補助國內專家學者出席國際學術會議報告

 95 年 08 月 17 日

報告人姓名

陳永源

服務機構

及職稱

中華大學資訊工程學系

副教授

 時間

會議

 地點

08 月 01-04, 2006

韓國首爾

本會核定

補助文號

NSC 95-2221-E-216-015

會議

名稱

 (中文)

 (英文) The 2006 IFIP International Conference on Embedded And
Ubiquitous Computing

發表

論文

題目

 (中文)

 (英文) Fault-Tolerant VLIW Processor Design and Error Coverage Analysis

附
件
三

表 Y04

表 Y04

報告內容應包括下列各項：

一、 參加會議經過

此會議是在韓國首爾舉行，作者是搭華航班機到首爾。此會議共有110篇

regular papers發表，錄取率低於25%，發表的論文收錄在Lecture Notes in
Computer Science，為一SCI indexed的會議。論文的主題範圍包括了power
aware computing, Security and fault tolerance, agent and distributed computing,
wireless communication, real-time systems, embedded software optimization,
embedded architecture, mobile computing and embedded systems。參加的學者

來自美國，台灣，韓國，大陸以及歐洲的國家。作者的論文被安排在第三天

下午報告，講題是 “Fault-Tolerant VLIW Processor Design and Error Coverage
Analysis”。當天晚上參加會議所舉辦的晚宴，欣賞了韓國的傳統舞蹈，並與

來自西班牙、韓國、大陸以及蘇俄的學者聊天交換研究心得。

二、 與會心得

此會議為一 SCI indexed 的會議，錄取率低於 25%，發表的論文收錄在 Lecture
Notes in Computer Science。所以其錄取的論文是經過一嚴格的評審，來達到

一高品質的會議。可以透過此會議與其他國家的學者討論交流並且掌握最

新的研究題材與研究結果，可以用來檢視作者目前及未來的研究方向與課

題的價值性，對於以後的研究有相當的幫助。另外也有機會請教一些國際級

的學者，傾聽他們對一些議題的意見及看法，可以幫助作者對一些困惑的

地方及觀念做一釐清，對於往後的研究也是有相當的幫助。研究心得是未來

輻射線粒子對於深次微米製程的晶片影響力越來越大，造成暫時性錯誤的

機率也 越來越高，此問題將會影響處理器晶片的可靠度。所以有幾個問題

值得進一步的探討(針對深次微米製程的晶片): fault model 的完整性，容

錯技術的有效性，灌錯及錯誤模擬分析工具環境的建立，系統驗證分析等

等。

三、 攜回資料名稱及內容

一本會議的論文集

E. Sha et al. (Eds.): EUC 2006, LNCS 4096, pp. 754 – 765, 2006.
© IFIP International Federation for Information Processing 2006

Fault-Tolerant VLIW Processor Design and Error
Coverage Analysis

Yung-Yuan Chen, Kuen-Long Leu, and Chao-Sung Yeh

Department of Computer Science and Information Engineering
Chung-Hua University, Hsin-Chu, Taiwan

chenyy@chu.edu.tw

Abstract. In this paper, a general fault-tolerant framework adopting a more rigid
fault model for VLIW data paths is proposed. The basic idea used to protect the
data paths is that the execution result of each instruction is checked immediately
and if errors are discovered, the instruction retry is performed at once to
overcome the faults. An experimental architecture is developed and implemented
in VHDL to analyze the impacts of our technique on hardware overhead and
performance degradation. We also develop a comprehensive fault tolerance
verification platform to facilitate the assessment of error coverage for the
proposed mechanism. A paramount finding observed from the experiments is
that our system is still extremely robust even in a very serious fault scenario. As a
result, the proposed fault-tolerant VLIW core is quite suitable for the highly
dependable real-time embedded applications.

1 Introduction

In recent years, VLIW processor has become a major architectural approach for
high-performance embedded computing systems. Several notable examples of VLIW
are Intel and HP IA-64 [1], TI TMS320C62x/67x DSP devices and Fujitsu FR500. As
processor chips become more and more complicated, and contain a large number of
transistors, the processors have a limited operational reliability due to the increased
likelihood of faults or radiation-induced soft errors especially when the chip fabrication
enters the deep submicron technology [2]. Also indicated specifically in [3], it is
expected that the bit error rate in a processor will be about ten times higher than in a
memory chip due to the higher complexity of the processor. And a processor may
encounter a bit flip once every 10 hours. Thus, it is essential to employ the fault-tolerant
techniques in the design of high-performance superscalar or VLIW processors to
guarantee a high operational reliability in critical applications. Recently, the reliability
issue in high-end processors is getting more and more attention [3-9].

The previous researches in reliable microprocessor design are mainly based on the
concept of time redundancy approach [3-9] that uses the instruction replication and
recomputation to detect the errors by comparing the results of regular and duplicate
instructions. The instruction replication, recomputation schedule and result comparison
of regular and duplicate instructions can be accomplished either in software level −
source code compilation phase to generate redundant code for fault detection [4], [7],
[8] or in hardware level [3], [5], [6], [9]. In [7], [8], the authors adopted software

 Fault-Tolerant VLIW Processor Design and Error Coverage Analysis 755

techniques for detecting the errors in superscalar and VLIW processors respectively.
The compiler-based software redundancy schemes have the advantage of no hardware
modifications required, but the performance degradation and code growth increase
significantly as pointed out in [3], [5]. The hardware redundancy approach requires
extra hardware and architectural modification to manage the instruction replication,
recomputation and comparison to detect the errors.

The deficiencies in previous studies are summarized as follows. First, most of the
studies in the literature focus only on the aspect of error detection and neglect the issue
of error recovery; thereby, those designs are incomplete so that we have difficulty in
investigating the effectiveness of the error detection scheme without considering the
error recovery jointly. Second, they lack the precise evaluation of the hardware
overhead caused by the incorporation of fault tolerance; therefore, it is hard to justify
the soundness of the approaches. Thirdly, the performance degradation due to the error
detection and error recovery is significant during program execution. Moreover, the
performance analysis only takes the performance degradation resulting from the fault
detection into account. They are short of the analysis of error recovery time demanded
to overcome the transient faults. The error recovery time mainly depends on the
error-detection latency, which can be calculated from the time of regular instruction
execution to the time of duplicate instruction recomputation. Owing to variable latency,
the analysis of latency effect on performance is quite involved, and therefore, it
complicates the analysis of the impact of error recovery on performance. Further, the
latency may be unacceptably long. If an error cannot be detected in a short time, it will
increase the error recovery time as well as program execution time. Such a lengthy
recovery may be detrimental to the real-time applications. Last but not least, the
previous studies rarely perform the quantitative evaluation of error coverage and the
probability of common-mode failures [10] for the systems in various fault
environments. Thus, it is hard to validate the fault tolerance ability of the schemes due
to lack of the measures of error coverage.

This work is going to address the issues stated above. In Section 2, a fault-tolerant
approach concentrating on the dependable data path design of VLIW processors is
proposed. The approach proposed is quite comprehensive in that it comprises the error
detection and error recovery. Hardware architecture and the measurements of hardware
overhead and performance degradation are presented in Section 3. In Section 4, a
thorough error coverage analysis is conducted to validate our scheme. The conclusions
appear in Section 5.

2 Fault-Tolerant Data Path Design

Two types of faults described below are addressed in the error detection and error
recovery: 1. Correlated transient faults [11] (e.g., a burst of electromagnetic radiation)
which could cause multiple module failures. 2. Near-coincident faults [12] – recovery
can be affected by this kind of faults. It is evident that the adopted fault model in this
study is more rigid and complete compared to the single-fault assumption commonly
applied before. Besides the concern of the fault model, an important goal for the design
of error-recovery process is to simplify its complexity and meanwhile achieve the time

756 Y.-Y. Chen, K.-L. Leu, and C.-S. Yeh

efficiency to recover the errors. Overall, the design concern here is to propose a
fault-tolerant VLIW core for the highly dependable real-time embedded applications.
However, we note that due to the more rigid fault model and severe fault situations
considered, it requires developing a more powerful fault-tolerant scheme to raise the
system reliability to a sound level.

A VLIW processor core may possess several different types of functional modules in
the data paths, such as integer ALU and load/store units. A couple of identical modules
are provided for a specific functional type. We assume that the register file is protected
by an error-correcting code. In the following, we present the main ideas employed in
our scheme to detect and recover errors occurring in the data paths and then use three
identical modules to demonstrate our fault-tolerant approach.

2.1 Concurrent Error Detection and Real-Time Error Recovery

We note that the length of error recovery time mainly depends on the error-detection
latency. Hence, the error-detection scheme has a significant impact on the efficiency of
the error recovery. Most of the previous studies may suffer the lengthy error recovery
because the execution results of each instruction cannot be checked immediately.
Therefore, to achieve the real-time error recovery, the execution results of each
instruction must be examined immediately and if errors are found, the erroneous
instruction is retried at once to overcome the errors. So, the error-detection problem can
be formalized as how to verify the execution results instantly for each instruction, i.e.
how to achieve no error-detection latency. We develop a simple concurrent
error-detection (CED) scheme, which combines the duplication with comparison,
henceforth referred to as comparison, and majority voting methodologies to solve the
above error-detection problem.

CED Scheme. The following notations are developed

 n : Number of identical modules for a specific functional type (we call it type x). n
is also the maximum number of instructions that can be executed concurrently in the
modules of type x;

 s : Number of spare modules added to the type x, s ≥ 0;
 m : Number of instructions in an execution packet for type x, m ≤ n .

An execution packet is defined as the instructions in the same packet can be
executed in parallel. There are sn + modules for type x. As we know, if

snm +>× 2 then it is clear that the system won’t have the enough resources to check
the instructions of an execution packet concurrently. Under the circumstances, the
current execution packet needs to be partitioned into several packets that will be
executed sequentially. Given an execution packet, there are three cases to consider:

Case 1: snm +=× 2 . In this case, each instruction can be checked by the comparison
scheme.
Case 2: snm +<× 2 . We can divide the instructions into two groups: G(1) and G(2).
There are 1m instructions and 2m instructions in G(1) and G(2) respectively, where

mmm =+ 21 , 0, 21 ≥mm . Each instruction in G(1) and G(2) can be examined by the

 Fault-Tolerant VLIW Processor Design and Error Coverage Analysis 757

triple modular redundancy (TMR) scheme and duplication with comparison,
henceforth referred to as comparison, scheme respectively. It is worth noting that to
deal with the correlated transient faults, which may cause the multiple module failures,
the TMR scheme is enhanced to have the ability to detect the multiple module errors.
The following equations and criterion are used to decide 1m and 2m . The equations
are snmm +≤×+× 23 21 ; mmm =+ 21 ; 0, 21 ≥mm . There may have several solutions
derived from the equations. Since TMR can tolerate and locate one faulty module
compared to the comparison, the criterion employed is to choose a solution which has
the maximal value of m1 among the feasible solutions. In other words, TMR has the
benefit to avoid activating the procedure of error recovery while only one faulty module
occurs. In contrast to TMR, comparison scheme needs to spend time for error recovery.
The concern here is again the consideration of real-time applications.
Case 3: snm +>× 2 . Due to limited resources, m instructions cannot be all checked
at the same cycle by TMR and/or comparison schemes. Therefore, we need to partition
m instructions into several sequential execution packets such that the instructions in
each packet can be examined concurrently. However, some extra cycles are required to
guarantee that each instruction can be verified while it is executed. This implies that the
performance of program execution will be degraded. The degree of performance
degradation depends on the occurring frequency of the Case 3 during the program
execution. The compromise between hardware overhead and performance degradation
can be accomplished by choosing a proper s .

In general, the performance degradation for program execution in our dependable
VLIW processor stems mainly from two sources: first is the extra cycles demanded for
detecting the errors; second is the time for error recovery in order to overcome the
effect of errors in the system. The error-recovery scheme is presented next.

Error-Recovery Scheme. Since each instruction is executed and verified at the same
time, the instruction retry can be adopted to overcome the errors in an effective manner.
When control unit of data paths receives the abnormal signals from the detection
circuits, the procedure of error recovery will be activated immediately to recover the
erroneous instructions. The following notations are used to explain the proposed
error-recovery scheme:

 mx(i): The ith module of type x, where sni +≤≤1 ;

 TMR(mx(i), mx(j), mx(k)): TMR using mx(i), mx(j), mx(k), where kji ≠≠ . In the

following, the term of TMR(mx(i), mx(j), mx(k)) is abbreviated to TMR_x(i, j, k);

 r_no: Number of retries permitted for an incorrect instruction, where 0_ >nor .

During the error recovery, each erroneous instruction is retried individually with the
TMR scheme. We allow performing r_no retries for an instruction to conquer the errors
before declaring fail-safe. Since TMR scheme represented as TMR_x(i, j, k) is
employed for the instruction retry, an issue arises as how to determine the (i, j, k) for

each retry. As we know, there are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
3

sn
 combinations of (i, j, k). Let S_TMR be a set

that contains ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
3

sn
 combinations of TMR_x(i, j, k). Hence, S_TMR can be

758 Y.-Y. Chen, K.-L. Leu, and C.-S. Yeh

represented as {TMR_x(1, 2, 3), …, TMR_x(1, 2, sn +), …, TMR_x(1, 1−+ sn ,
sn +), TMR_x(2, 3, 4), …, TMR_x(2, 1−+ sn , sn +), …, TMR_x(2−+ sn ,

1−+ sn , sn +)}, where 3≥+ sn . It is clear that selecting the TMR_x(1, 2, 3)
constantly for each retry, for example, is the simplest approach, which has the
advantage of simple implementation but can only tolerate one faulty module during
the recovery process. In contrast to that, selecting elements one by one based on the
element sequence in S_TMR for the retries is the highly complicated approach. Such an
approach suffers from the high implementation cost, but on the other hand it can

tolerate 2−+ sn faulty modules if we set ≥nor _ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
3

sn
. The remaining question in

the design of selection policy for TMR retry is how to compromise between the
implementation complexity and the number of faulty modules being tolerated. A sound
selection policy for TMR retry is presented next.

Selection Policy. On the basis of the above discussion, a set named SS_TMR, a subset
of S_TMR, is created to guide the instruction-retry process. SS_TMR is given below:
SS_TMR= {TMR_x(i , 1+i , 2+i), where 21 −+≤≤ sni }. As seen from
SS_TMR, the proposed retry process possesses a high regularity in its selection policy.
So, it is easy to implement the SS_TMR policy compared to the S_TMR.

After the analyses for some values of n and s, we decide to adopt the SS_TMR
selection policy due to the following reasons: first, we note that the probability of three
or more modules failed concurrently should be low; second, most of the faults are
transient type, which may disappear during the recovery process; and last one is the low
implementation complexity compared to the S_TMR policy. From the first two
reasons, we can infer that both selection policies have the similar fault tolerance
capabilities. It is evident that the SS_TMR selection policy can utilize the module
resources efficiently so as to recover the errors in a short time. Thus, the program
execution can continue without lengthy error-recovery process. In summary, our
error-recovery scheme can provide the capability of real-time error recovery, which is
particularly important for the applications demanding the reliable computing as well as
real-time concern.

2.2 Reliable Data Path Design: Case Study

In the following illustration, without loss of generality, we assume only one type of
functional module, namely ALU, in the data paths. In this case study, the original
VLIW core contains three ALUs (3=n) and therefore, three ALU instructions can be
issued at most per cycle. A spare ALU (1=s) is added to prevent the severe
performance degradation as explained below. From CED scheme described in Section
2.1, we note that if no spare is added then 2=m or 3 execution packets will fall into
Case 3. Consequently, the performance may be degraded significantly. Hence, the cost
of a spare is paid to lower the performance degradation. Clearly, adding three spares in
order to eliminate the performance degradation completely is not a feasible choice.

According to CED scheme with 3=n and 1=s , 1=m falls into Case 2. The
(21,mm) can be (1, 0) or (0, 1). Clearly, (1, 0) is selected as the final solution. So, if an
execution packet contains only one ALU instruction then it will be checked by TMR

 Fault-Tolerant VLIW Processor Design and Error Coverage Analysis 759

scheme. For 2=m , it is Case 1. Each instruction will be checked by comparison
scheme. For 3=m , it is Case 3. The three concurrent ALU instructions need to be
scheduled to two sequential execution packets where one packet contains two
instructions and the other holds the rest one; and therefore, one extra ALU cycle is
required to complete the execution of three concurrent ALU instructions for
error-detection purpose.

CED Process. Given 3=n and 1=s , the notation CMP_ALU(i, j) is used to denote an
instruction executed with the comparison scheme using the ith and jth ALUs.

while (not end of program)
{switch (m)
{case ‘1’:

TMR_ALU(1, 2, 3); if (TMR_ALU detects more than one
ALU failure) then the “Error-recovery process” is
activated to recover the failed instruction.

case ‘2’:
the execution packet contains two instructions: I1
and I2.
I1: CMP_ALU(1, 2); I2: CMP_ALU(3, 4);
if (I1 fails) then the “Error-recovery process” is
activated to recover I1.
if (I2 fails) then the “Error-recovery process” is
activated to recover I2.

case ‘3’:
the packet is divided to two packets and executed
sequentially.

}}

Error-recovery process:
1←i ;

While (0_ >nor)

{TMR_ALU(i, 1+i , 2+i);
 if (TMR_ALU succeeds) then the error recovery succeeds

 exit;

 else { 1__ −← nornor ; 1+← ii ; if (3≥i) then

1←i ;}}
recovery failure and the system enters the fail-safe
state.

3 Hardware Implementation and Performance Evaluation

To validate the proposed approach, an experimental fault-tolerant VLIW architecture
based on the scheme presented in Section 2.2 is developed. Figure 1 illustrates the
architecture implementation, where 3=n , and 1=s for ALUs. The features of this
32-bit VLIW processor are stated as follows: • the instruction set is composed of
twenty-five 32-bit instructions; • each ALU includes a 32x32 multiplier. For simplicity

760 Y.-Y. Chen, K.-L. Leu, and C.-S. Yeh

of demonstration, the proposed approach does not apply to the load/store units; • a
register file containing thirty-two 32-bit registers with 12 read and 6 write ports is
shared with modules and designed to have bypass multiplexors that bypass written data
to the read ports when a simultaneous read and write to the same entry is commanded; •
data memory is 1K x 32 bits. The structure consists of five pipeline stages: ‘instruction
fetch and dispatch’, ‘decode and operand fetch from register file’, ‘execution’, ‘data
memory reference’ and ‘write back into register file’ stages. This experimental
architecture can issue at most three ALU and three load/store instructions per cycle.
Note that the ‘Error Analysis’ block in execution stage, which was created only to
facilitate the measurement of the error coverage during the fault injection campaign, is
not a component for the VLIW processor displayed in Figure 1.

A fault-tolerant VLIW processor based on the architecture of Figure 1 and the
features mentioned previously was realized in VHDL. The implementation data by
UMC 0.18μm process are shown in Table 1. The area does not include the instruction
memory as well as the ‘Error Analysis’ block. For performance consideration, we
require that the clock frequency of the fault-tolerant VLIW processor must retain the
same as that of non fault-tolerant one. It is worth noting that the overhead of
‘ALU_Control’ unit is only 0.26 percent compared to the area of the non fault-tolerant
VLIW core. This implies that the control task of our scheme is simple and easy to
implement. The performance degradation caused from the CED demand is between
0.6% and 34.3% for eight benchmark programs, including heapsort, quicksort, FFT,
5×5 matrix multiplication and IDCT (8×8) etc..

Instruction D
ispatch

Shared R
egister File

Select

D
ata M

em
ory

Sel

Sch_sel

Func_2

Func_4
Func_3

Select_sel

Safe failure

Func_1

Instruction Partition

Forw
arding

Error_signal

N
ext sequential

Jum
p address

B
ranch address

Extra-slot Idle

Fig. 1. Fault-tolerant VLIW architecture

 Fault-Tolerant VLIW Processor Design and Error Coverage Analysis 761

Table 1. Comparing our approach with non fault-tolerant VLIW core

 Area (μm2) Overhead ALU_Control(μm2) System clock (MHz)
Non fault-tolerant

VLIW
9319666 128

Our approach 10708296 14.9% 24215 128

4 Error Coverage Analysis

In this section, the error coverage analysis based on the fault injection [13] is conducted
to validate our scheme. A comprehensive fault tolerance verification platform
comprising a simulated fault injection tool, ModelSim VHDL simulator and data
analyzer has been built. It offers the capability to effectively handle the operations of
fault injection, simulation and error coverage analysis. The core of the verification
platform is the fault injection tool that can inject the transient and permanent faults into
VHDL models of digital systems at chip, RTL and gate levels during the design phase.
The tool adopts the built-in commands of VHDL simulators to inject the faults into
VHDL simulation models. Injection tool can inject the following classes of faults: ‘0’
and ‘1’ stuck-at faults, ‘Z’: high-impedance and ‘X’: unknown faults. Weibull fault
distribution is employed to decide the time instant of fault injection.

Our tool supports a fault injection analysis, which can provide us the useful statistics
for each injection campaign. The statistical data for each injection campaign represents
a fault scenario. We can exploit the injection tool to produce a variety of fault scenarios
such that the fault-tolerant systems can be thoroughly validated. The injection tool can
assist us in creating the proper fault environments that can be used to effectively
validate the capability of a fault-tolerant system and examine the strength of a
fault-tolerant system under various fault scenarios. Therefore, the proposed verification
platform helps us raise the efficiency and validity of dependability analysis.

4.1 Fault-Tolerant Design Metrics

Figure 2 illustrates the error handling process in our fault-tolerant system. CED scheme
uses the comparison and TMR to detect the errors. Hence, the following types of errors
will escape being detected and such detection defects will result in the unsafe failures
(or called common-mode failures [10]): one is the two ALUs produce the same,
erroneous results to comparator; another is two or three of ALUs produce the identical,
erroneous results to TMR. Once errors are detected and need to be recovered, the
error-recovery process is activated. Three possible outcomes could happen for each
instruction retry using TMR scheme. One possibility is that the recovery is successful;
another is retry fails and the system enters the fail-safe state; the last possibility is two
or three of ALUs produce the identical, erroneous results to TMR such that the system
encounters the fail-unsafe hazard. From Figure 2, if errors happen, the system could
enter one of the following states: ‘successful recovery and restore the normal
operation’, ‘fail-safe’ and ‘fail-unsafe’ states.

762 Y.-Y. Chen, K.-L. Leu, and C.-S. Yeh

The design metrics as described below are exploited to justify our approach:

 unsfP − : Probability of system entering the fail-unsafe state;

 det−eC : Error-detection coverage, i.e. probability of errors detected;

 receC − : Error-recovery coverage, i.e. probability of errors recovered
given errors detected;

 eC : Error coverage, i.e. probability of errors detected and recovered;

 sfP − : Probability of system entering the fail- safe state;

 sftP −−− det : State transition probability from ‘detected’ state to

‘fail-safe’ state.
 unsftP −−− det : State transition probability from ‘detected’ state to

‘fail-unsafe’ state.
 det−− unsfP : Probability of system entering the fail-unsafe state due to the

detection defects stated earlier;
 recunsfP −− : Probability of system entering the fail-unsafe state due to the

recovery defects stated earlier;

The parameters eN , det−eN , det−− esceN , receN − , sfnreceN −−− and

unsfnreceN −−− (called the error-related parameters) represent the total number of

errors occurred, the number of errors detected, the number of errors escape being
detected, the number of errors recovered, the number of errors not recovered and
system enters the ‘fail-safe’ state and the number of errors not recovered and system
enters the ‘fail-unsafe’ state, respectively. The design metrics can be expressed as
follows

.;1;
det

det
det

det
det

det
−

−
−−−

−
−

−−
−− =−===

e

rece
receunsf

e

e
e

e

esce
unsf

N

N
CP

N

N
C

N

N
P (1)

.detdet

det
det

det
det ;;

unsfterecunsf

e

unsfnrece
unsft

e

sfnrece
sft

PCP
N

N
P

N

N
P

−−−−−−
−

−−−
−−−

−

−−−
−−−

×=

==
 (2)

.det

detdetdet

detdetdet

;;

;;

unsfnrecesfnrecerecee

esceeereceee

recunsfunsfunsfsftesf

NNNN

NNNCCC

PPPPCP

−−−−−−−−

−−−−−

−−−−−−−−−−

++=
+=×=

+=×=
 (3)

errors detected correct

fail-safe

Ce-det

Pf-uns-det

fail-unsafe

Pt-det-f-uns

Ce-rec

Pt-det-f-s

Fig. 2. Predicate graph of fault-tolerant mechanism

 Fault-Tolerant VLIW Processor Design and Error Coverage Analysis 763

4.2 Simulation Results and Discussion

We have conducted a huge amount of fault injection campaigns to validate the
proposed fault-tolerant VLIW scheme under various fault situations. We performed a
comprehensive experiment to explore a particular fault-related parameter, namely
fault-occurring frequency, to see its impact on the fault-tolerant metrics. By adjusting
the fault-occurring frequency, we can create a variety of fault scenarios, which can be
used to measure how robust can our fault-tolerant system reach under the different fault
environments? The common rules of fault injection campaigns are: 1) value of a fault is
selected randomly from the s-a-1 and s-a-0; 2) injection targets cover the entire ‘EXE’
stage as shown in Figure 1. The common data of fault injection parameters are: α=1
(useful-life), failure rate (λ) = 0.001, probability of permanent fault occurrence = 0,
fault duration = 5 clock cycles. In addition, the number of retries r_no is set to four.
Next, we discuss the outcomes obtained from the experiments.

Fault-Occurring Frequency. The goal of this experiment is to observe the effect of
the fault-occurring frequency on the design metrics depicted in Section 4.1. In this
experiment, we copy each of the following benchmark programs: ‘N! (N=10)’, ‘5×5

matrix multiplication’, ‘ ∑
=

×
5

1
2

i
ii BA ’, four times and then the twelve programs are

combined in random sequence to form a workload for the fault simulation. The length
of workload is equal to 4384 (clocks) ×30 (ns/clock).

Note that if workload and fault duration are constant, the quantity of faults injected,
i.e. fault-occurring frequency, will influence the degree of fault overlap. For instance,
while the quantity of faults injected increases, the degree of fault overlap will become
more serious. In other words, the various fault-occurring frequencies will lead to the
different fault environments. Hence, in order to investigate the effect of the
fault-occurring frequency on error coverage, we conduct five fault injection campaigns
with various numbers of faults injected. The statistical analysis of an injection
campaign is able to disclose the fault activity within the simulation. Clearly, the larger
the number of faults injected (i.e. higher fault-occurring frequency), the worse of fault
environment will be due to a higher occurring frequency of multiple faults including
correlated, mutually independent and near-coincident transient faults. Therefore, the
statistical analysis helps designers choose a set of desired fault scenarios to test the
ability of fault-tolerant systems. As a result, the proposed fault-tolerant verification
platform can furnish more comprehensive and solid error coverage measurements.

Figure 3 characterizes the effect of fault-occurring frequency on the fault-tolerant
design metrics. The experimental results obtained have 95% confidence interval of
±0.138% to ±0.983%. The outcomes shown in Figure 3 reveal the fault tolerance
capability of our scheme in the various fault environments. It is evident that the error
coverage decreases with the increase of fault-occurring frequency. Meanwhile, the
system has a higher chance to enter the fail-safe and fail-unsafe states when
the probability of occurrence of multiple faults rises. The safe failure occurs once the
error-recovery process cannot overcome the errors due to a serious fault situation.
Overall, the results presented in Figure 3 are quite positive and sound those declare the
effectiveness of our fault-tolerant scheme even in a very bad fault environment.

764 Y.-Y. Chen, K.-L. Leu, and C.-S. Yeh

0.955
0.96

0.965
0.97

0.975
0.98

0.985
0.99

0.995
1

100 500 1000 1500 2000

Number of faults

Ce-det

Ce-rec

Ce

0
0.0025
0.005

0.0075
0.01

0.0125
0.015

0.0175
0.02

0.0225
0.025

100 500 1000 1500 2000

Number of faults

Pf-s

Pf-uns

 (a) (b)

Fig. 3. Fault-tolerant metric analysis. (a) coverage. (b) probabilities of fail-safe and fail-unsafe.

5 Conclusions

This paper presents a new fault-tolerant framework for VLIW processors that focuses
mainly on the reliable data path design. Based on a more rigid fault model, a CED and
real-time error recovery scheme is proposed to enhance the reliability of the data paths.
Our approach provides the design compromise between hardware overhead,
performance degradation and fault tolerance capability. This framework is quite useful
in that it can give the designers an opportunity to choose an appropriate solution to meet
their need. Several significant contributions of this study are: 1. Integrate the error
detection and error recovery into VLIW cores with reasonable hardware overhead and
performance degradation. It is worth noting that the proposed fault-tolerant framework
can achieve no error-detection latency and real-time error recovery. Consequently, our
scheme is suitable for the real-time computing applications that demand the stringent
dependability. 2. Conduct a thorough fault injection campaigns to assess the
fault-tolerant design metrics under a variety of fault environments. Importantly, we
provide not only the error-detection and error-recovery coverage, but also the fail-safe
and fail-unsafe probabilities. Acquiring the fail-unsafe probability is crucial for us to
understand how much possibility the system could fail without notice once the errors
occur. Moreover, a couple of fault environments, which represent the various degrees of
fault’s severity, were constructed to validate our scheme so as to realize the capability of
our scheme in different fault scenarios. So, such experiments can give us more realistic
and comprehensive simulation results. The effectiveness of our mechanism even in a
very severe fault environment is justified from the experimental results.

Acknowledgments. The authors acknowledge the support of the National Science
Council, Republic of China, under Contract No. NSC 92-2213-E-216-005 and NSC
93-2213-E-216-019.

References

1. Huck, J. et al.: Introducing the IA-64 Architecture. IEEE Micro, Vol. 20, issue: 5, pp. 12-23,
Sep.-Oct. 2000.

2. Karnik, T., Hazucha, P., Patel, J.: Characterization of Soft Errors Caused by Single Event
Upsets in CMOS Processes. IEEE Trans. on Dependable and Secure Computing, Vol. 1,
issue: 2, pp. 128-143, April-June 2004.

 Fault-Tolerant VLIW Processor Design and Error Coverage Analysis 765

3. Nickle, J. B., Somani, A. K.: REESE: A Method of Soft Error Detection in Microprocessors.
DSN’01, pp. 401-410, 2001.

4. Holm, J. G., Banerjee, P.: Low Cost Concurrent Error Detection in A VLIW Architecture
Using Replicated Instructions. Intl. Conf. on Parallel Processing, pp. 192-195, 1992.

5. Franklin, M.: A Study of Time Redundant Fault Tolerance Techniques for Superscalar
Processors. IEEE Intl. Workshop on Defect and Fault Tolerance in VLSI Systems (DFT’95),
pp. 207-215, 1995.

6. Kim, S., Somani, A. K.: SSD: An Affordable Fault Tolerant Architecture for Superscalar
Processors. Pacific Rim Intl. Symposium. On Dependable Computing, pp. 27-34, 2001.

7. Oh, N., Shirvani, P. P., McCluskey, E. J.: Error Detection by Duplicated Instructions in
Super-Scalar Processors. IEEE Trans. on Reliability, Vol. 51, (1), pp. 63-75, March 2002.

8. Bolchini, C.: A Software Methodology for Detecting Hardware Faults in VLIW Data Paths.
IEEE Trans. on Reliability, Vol. 52, (4), pp. 458-468, December 2003.

9. Qureshi, M. K., Mutlu, O., Patt, Y. N.: Microarchitecture-Based Introspection: A Technique
for Transient-Fault Tolerance in Microprocessors. DSN’05, pp. 434 – 443, June-July 2005.

10. Mitra, S., Saxena, N. R., McCluskey, E. J.: Common-Mode Failures in Redundant VLSI
Systems: A Survey. IEEE Trans. on Reliability, Vol. 49, (3), pp. 285 – 295, Sept. 2000.

11. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Trans. on Dependable and Secure Computing,
Vol. 1, issue: 1, pp. 11-33, Jan.-March 2004.

12. Dugan, J. B., Trivedi, K. S.: Coverage Modeling for Dependability Analysis of
Fault-Tolerant Systems. IEEE Trans. on Computers, Vol. 38, (6), pp. 775-787, June 1989.

13. Clark, J., Pradhan, D.: Fault Injection: A Method for Validating Computer-System
Dependability. IEEE Computer, 28(6), pp. 47-56, June 1995.

