
行政院國家科學委員會專題研究計畫 成果報告

適應於異質性網格計算環境上複合式資源排程技術之設計
與研發(第 2年)

研究成果報告(完整版)

計 畫 類 別 ：個別型

計 畫 編 號 ： NSC 95-2221-E-216-011-MY2

執 行 期 間 ： 96年 08 月 01 日至 97年 07 月 31 日

執 行 單 位 ：中華大學資訊工程學系

計 畫主持人：許慶賢

計畫參與人員：碩士班研究生-兼任助理人員：李開文

碩士班研究生-兼任助理人員：郁家豪

博士班研究生-兼任助理人員：陳世璋

博士班研究生-兼任助理人員：陳泰龍

處 理 方 式 ：本計畫涉及專利或其他智慧財產權，2年後可公開查詢

中 華 民 國 97年 10 月 30 日

行政院國家科學委員會補助專題研究計畫 █ 成 果 報 告
□期中進度報告

適應於異質性網格計算環境上複合式資源排

程技術之設計與研發

計畫類別： 個別型計畫 □ 整合型計畫

計畫編號：NSC95-2221-E-216-011-MY2
執行期間：95 年 8 月 1 日至 97 年 7 月 31 日

計畫主持人：許慶賢 中華大學資訊工程學系副教授

共同主持人：

計畫參與人員： 陳世璋、陳泰龍 (中華大學工程科學研究所博士生)

 李開文、郁家豪 (中華大學資訊工程學系研究生)

成果報告類型(依經費核定清單規定繳交)：□精簡報告 完整報告

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、列

管計畫及下列情形者外，得立即公開查詢

 □涉及專利或其他智慧財產權，□一年 二年後可公開查詢

執行單位：中華大學資訊工程學系

中 華 民 國 97 年 10 月 31 日

 1

行政院國家科學委員會專題研究計畫成果報告
 適應於異質性網格計算環境上複合式資源排程技術

之設計與研發

Design, Analysis and Implementation of Composite Multiple
Resource Scheduler for Heterogeneous Grid Computing

計畫編號：NSC95-2221-E-216-011-MY2

執行期限：95 年 8 月 1 日至 97 年 7 月 31 日
主持人：許慶賢 中華大學資訊工程學系副教授

計畫參與人員：中華大學資訊工程學系研究生

陳世璋(博三)、李開文(研二)、陳泰龍(博二)、郁家豪(研二)

一、中文摘要

本報告是有關於在異質性網格環境上開

發複合式資源排程技術之設計，並且發展具有

平台透通性的分析工具。本計畫有三個主要的

研究課題：一、發展適應於叢集網格環境之主

從式工作排程技術。此項成果可以直接移植到

叢集網格的工作排程系統。二、發展複合式資

源排程的核心技術。針對異質的計算網格系統

與網格拓僕，開發最佳化的評估模組；並以實

際的 work load trace tape，分析系統的效能。

三、發展具有平台透通性的系統資源排程、調

整與學習工具。鑒於網格平台在大量計算與高

性能科學應用上漸漸普及，本計畫之研究成果

可以直接應用在發展高效能叢集式與網格計

算之實驗環境。

關鍵詞：異質計算、網格計算、複合式排程、

資源排程、工作排程、主從式架構。

Abstract

This report presents the project to design
analysis and implement a composite resource
scheduler and a platform mutual analysis tool on
heterogeneous grids. There are three major
subjects in this research: first, we will develop
master-slave task scheduling technologies which
can be directly incorporated on cluster grid;

second, we will develop the main technique of
composite resource scheduler. For
heterogeneous grid and its topology, we will
devise optimized performance analysis model
and analyze system efficiency according to a set
of real work load trace tape from SDSC; third,
we will develop platform mutual resource
scheduling and learning tool. Whereas the grid
computing becomes widespread for massive
computing and high performance scientific
applications, the achievements of this research
will facilitate constructing high performance
cluster and grid systems.

Keywords: Heterogeneous Computing, Grid
Computing, Composite Scheduling, Resource
Scheduling, Task Scheduling, Master Slave.

二、緣由與目的

 格網計算的技術在近幾年被運用在整合

各種類型網路環境下的各種資源，其目標在於

讓使用者將來處理大量資料和龐大的計算時

能在最短的時間內獲得最有效率的執行成

果，所以格網運算技術簡單的說就是利用大規

模整合的電腦系統，搭配有效率的網路傳輸，

可依照使用者的需求，提供大量的資料處理功

能。在異質網路架構下，資源排程的技術是很

 2

重要的，排程的主要目的即是讓參與執行工作

的眾多處理器發揮最大的效能，配合網路頻寬

做最佳化的傳輸，並且必需讓各處理器閒置時

間降到最低，以及降低處理器的閒置時間。這

些研究的方向使得格網的高效能運算技術有

更多的發展空間。為了結合格網環境與最佳化

的資源排程技術，在主從式架構下的網路計算

環境所從事的大量工作排程運算技術所延伸

的相關問題就是相當值得研究的課題。在格網

與主從式架構下，工作排程的良好與否直接影

響了程式的完成時間與是否有妥善的運用系

統資源。主從式架構下的資源排程可以避免單

一個處理器負擔太重，而增加整個工作的結束

時間，以達到高效能的計算原則。另一方面，

在主從式架構與格網計算的環境下，要有效率

的執行主機交付的工作，適當的資料傳輸排程

配合執行排班也是很重要的。在異質性的網路

計算環境上的研究資源的配置，動態的新增閒

置的處理器，以及工作環境的管理，甚至資料

安全性的問題都是及待解決與改良的問題。另

一方面、過去許多研究根據處理器的異質性來

安排工作排程，或根據網路頻寬來執行工作排

程。這些研究通常就單一系統因素來考量工作

排程，然而，在某些情況下可能無法達到系統

的 公 平 性 (fairness) 與 最 佳 效 率 與 產 能

(throughput)。在這一個研究計畫中，我們將探

討複合式的工作排程技術(composite resource
scheduler)，將異質性的 CPU 運算、以及異質

性網路頻寬，同時納入考量，作為執行工作分

派的主要核心技術。複合式工作排程技術的主

要優點可以提升系統整體的公平性，降低反應

與延遲時間(delay guarantee)以及提升系統的

整體產能。

三、研究方法與成果

由於處理器需要收到連續工作資料

(Task)，如果處理器數量增加，則某些演算法

不容易有效率地執行資料傳輸和執行。為了降

低處理器所浪費的閒置時間，發展有效率的工

作排程演算法是必需的。主要研究工作包含處

理器運算能力配置對整體程式執行的必要性

及其在效能上的影響，以及現有資源排程的技

術移植與測試。針對 CPU、頻寬的異質性開

發複合式資源排程技術。研究的重點有系統產

能的提升，資源使用率的提升，系統閒滯、反

應、與延遲時間的縮短，此一部分也包含了資

料傳輸最佳化與工作排程演算法的最佳化；此

外，我們也將探討如何將前述發展的技術應用

在異質性網格拓僕架構，其中除了異質性工作

分割的探討之外，還包含工作重新分派排程的

技術。
執行工作排程時，需考量處理器與異質性

網路頻寬以及資料量大小，圖一顯示，叢集式

網格系統上工作分派示意圖，不同的網格計算

節點的運算能力是不同的。在一個網格系統

中，Master 表示資源分派節點，亦可視為

Resource Scheduler。異質的工作佇列將由

Master 分派至各個運算節點。在這一個部分的

系統架構之下，我們假設工作的執行是不可以

插隊的，也就是說系統資源一旦分配給某個工

作，其他的工作不可以同時使用。在通訊的部

分，網格系統上Resource Scheduler與 Peer Node
之間的 communication 亦視為 Heterogeneous。
而其之間的 communication 則假設需要彼此互

斥(Exclusive)。

圖一、叢集式網格系統工作分派示意圖

處理器與工作排程的關係主要是由兩個

變數 Ti_comm (單元工作傳輸時間)與 Ti (單元工

作執行時間) 所組成。如圖二所示，C1 到 C4

為四個不同區域中的子處理器連結至

Master-Server，而 P1到 P4表示子處理器皆有

 3

不同的運算能力，所需的傳送時間為 T1 到
T2，T1_comm到 T4_comm即為 Master-Server 傳送一

個工作到各區域之處理器所需之單位時間。
本計畫第一年所提出的資源排程演算法

為 Shortest Communication Ratio (SCR)，主要

分為三個部份。第一個部分先對需要參與計算

的節點處理器排程，如圖一中的 P1到 P4，排

序依序為處理器中擁有最快執行效能 P1 到最

慢 P4 處理器執行效能。

Master Server

C1 : P1 C2 : P2

C3 : P3 C4 : P4

圖二、異質性處理器與異質性網路頻寬示意圖

第二部份使用參與運算的處理器之

(Ti_comm + Ti) 計算其最小公倍數的概念將計

算出每一個處理器在每一個基本排程週期

(Basic Scheduling Cycle)將接收多少數量的工

作以利於系統的排程。
第三部份依照所計算出的基本排程週期

內每個處理器所佔的資料傳輸時間比例大小

來分配，讓資料傳輸時間比例小(換言之為資

料執行時間比例較長)的處理器優先接收工作

以利於提早執行，如此一來可以讓每個處理器

減少等待時間。
本計畫在第二年提出了三個改良的 SCR

資 源 排 程 演 算 法 分 別 為 SCR-Best-fit 、
SCR-Worst-fit and Extended SCR (ESCR)，除了

先前的三個部份，第四部份分別利用 Best-fit、
Worst-fit 與二元逼進法(Binary approximation
method)使每個處理器在有限的排程週期

(Scheduling Cycle)、或者在有限的工作結束時

間內(Deadline)增加最大的工作接收與處理數

量而不會造成資源的閒置與浪費。
SCR 演 算 法 與 Greedy, FPF (Fast

Processor First) 演算法 [5,6]最大的不同在於

Greedy 演算法為工作單一傳送至處理器做運

算，在系統執行期間會因為沒有考慮到工作整

批傳送的優點產生許多零碎的系統閒置時

間，而 FPF 演算法雖然考慮到工作整批傳送,
但忽略的異質性網路頻寬所造成的影響，導致

有效率的處理器雖然收到比較多工作，但相對

的也增加傳輸負載，如此一來其他的處理器必

需等待更長的時間才可以接收工作。所以 SCR
演算法減少的處理器等待時間與閒置時間，進

而提升整體輸出效能。
舉例說明 SCR 排程演算法，如圖二之架

構，假設 T1_comm=5， T2_comm=2， T3_comm=1，
T4_comm=3； T1=3，T2=6， T3=11， T4=13，

分述如下：
第一步：在圖中，處理器依照單位工作執

行時間(Ti)排序。假設有 n 個節點，則對處理

器排序完後得到集合為<P1, P2, …, Pn>。

第二步：由步驟一排序節點的結果中所需

之 Ti 與各節點之單位工作傳輸時間 Ti_comm
計算其最小公倍數 LCM=(5+3, 2+6, 1+11,
3+13)= 48，計算出處理器 P1到 P4在每一個基

本排程週期(BSC)接收(6, 6, 4, 3)個單位數量

的工作。
第三步：依照所計算出的基本排程週期內

每個處理器所佔的資料傳輸時間比例大小來

分配，P3 資料傳輸時間比例小(換言之為資料

執行時間比例較長)優先接收工作以利於提早

執行，如此一來可以讓每個處理器減少等待時

間，執行順序依序為 P3, P4, P2 , P1。
如圖三中所顯示，SCR 演算法讓資料傳

輸時間比例小的節點先接收工作，所以減少其

他節點的等待時間，而參與計算的節點皆有接

收工作並參與執行進而提升系統效能。
在此範例中工作排程為有限的三個排程

週期(BSC)而工作結束時間(Deadline)為 183。
在 P1的最後一個排程週期結束之前，P2 ,P3, P4,

 4

皆有些許的閒置時間在等待 P1 結束正在執行的

工作。為了善用這些可用的處理器資源，必需

在 183 單位時間內增加傳送些許工作給 P2 ,P3,

P4。改良的 SCR 資源排程演算法 SCR-Best-fit
與 SCR-Worst-fit 將可解決這個問題。

圖三、SCR 排程演算法模擬示意圖。

如圖四中所顯示，SCR-Best-fit 演算法除了

讓資料傳輸時間比例小的節點先接收工作之

外，每個運算節點逼近 Deadline = 183 時皆有

接收工作並參與執行進而提升系統效能。最後

一個週期的閒置時間為 22 單位時間。

圖四、SCR-Best-fit 排程演算法模擬示意圖。

如圖五中所顯示，SCR-Worst-fit 演算法

中，每個運算節點逼近 Deadline = 183 時皆有

接收工作並參與執行進而提升系統效能。與

SCR-Best-fit 演算法的不同僅在於最後的工作

分配順序不同導致系統閒置時間(idle)有些微

差異。最後一個週期的閒置時間為 24。
為了證實本計畫開發的排程演算法為有

效率的排程演算法，我們利用同一個架構下的

範例之 Largest Communication Ratio (LCR)與
FPF 演算法排程結果做為比較。可以觀察到在

同一個架構下，LCR 與 FPF 演算法著重於較高

的執行節點優先接收工作導致處理器閒置時間

與系統初始等待時間皆大於 SCR 演算法。

圖五、SCR-Worst-fit 排程演算法模擬示意圖。

如圖六(a)與(b)所示，依照處理器效能排

序，執行順序依序為 P1, P2, P3,, P4，而 P2, P3,, P4

的初始等待時間總合 Wi大於 SCR 演算法，某些情

況甚至 FPF 演算法的閒置時間過長導致 P4 無

法參與計算而造成浪費，降低系統效能。

(a)

(b)

圖六、(a) SCR 排程演算法模擬示意圖、
(b) FPF 排程演算法模擬示意圖。

 5

 為了讓整體系統效能更加提升與具有彈

性，我們設計了 Extended SCR (ESCR)的演算

法，在 SCR 排程中的閒置空間，利用二元逼

進法使每個處理器在系統所設定的排程週期

內與在有限的工作結束時間內增加最大的工

作處理數量。
如圖七中所顯示，此範例中，ESCR 演算

法利用二元逼進法使每個處理器在第 j-1 到

j+1 的排程週期內指定完成 66 個工作。每個

運算節點逼近 Deadline = 199 時皆有接收工作

並參與執行進而提升系統效能。ESCR 可依照

使用者指定固定的工作數量或最後的截止時

間，最後一個週期的閒置時間為 12。

圖七、ESCR 排程演算法模擬示意圖。

如圖八中 ESCR 的二元逼進法，當指定固

定的工作數量時，系統會自動辨別工作完成時

間落在那一個週期，並且找出 Makespan 將可

確保最短的時間內完成指定的工作數量。

圖八、ESCR 的二元逼進演算法

 我們針對不同的處理器配置情形與格網

異質性網路環境和各個工作排程演算法進行

分析，發現排程演算法最佳化或與花費最少排

程時間與處理器的異質性有關聯。
圖九的數據模擬為設定每個處理器取得

的計算能力為正負十，而網路頻寬差距為正負

四，系統執行週期設定為 1 到 5 的基本排程週

期，處理器的節點數量為五個節點的平均系統

效能輸出比較。

圖九、不同基本排程週期下的 FPF，SCR_W，LCR，
SCR，SCR_B 排程步驟效能輸出數據比較

圖十的數據模擬為設定每個處理器取得

的計算能力為正負十，而網路頻寬差距為正負

四，系統執行週期設定為 1 到 5 的基本排程週

期，處理器的節點數量為五個節點的處理器等

待時間比較。

圖十、不同基本排程週期下的 FPF，SCR_W，LCR，
SCR，SCR_B 排程步驟處理器等待時間比較

圖十一的數據模擬為設定每個處理器取

得的計算能力為正負十，而網路頻寬差距為正

負四，系統執行時間設定為 50 到 2000，處理

器的節點數量為五個節點的處理器系統效能

Algorithm_ESCR_Binary_Approcimation (Ti, Ti_comm, Qtask)

// Qtask is the amount of tasks to be processed

01. While (!(ESCR
finishTask (x) = Qtask)) {

02. Left_t=)(1−j
SCR
finish BSCT ;

03. Right_t=)(1+j
SCR
finish BSCT ;

04. x=1/2(Left_t+ Right_t);
05. if (ESCR

finishTask (x) > Qtask)

06. x=1/2(x+ Right_t)

07. else if (ESCR
finishTask (x)< Qtask)

08. x=1/2(Left_t+x) }

09. makespan = x;
End_of_ESCR_Binary_Approcimation

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 BSC

T
hr

ou
gh

pu
t

FPF SCR_W LCR

SCR SCR_B

0

50

100

150

200

250

1 2 3 4 5 BSC

T
ot

al
 p

ro
ce

ss
or

 id
le

FPF SCR_W

LCR SCR

SCR_B

 6

輸出比較。

0

0.1

0.2

0.3

0.4

50 100 500 1000 2000
Deadline

Th
ro

ug
hp

ut

ESCR Greedy FPF

圖十一、不同系統執行時間下的 ESCR，Greedy，
FPF 排程步驟效能輸出數據比較

圖十二的數據模擬為設定每個處理器取

得的計算能力為正負十，而網路頻寬差距為正

負四，系統執行時間設定為 50 到 2000，處理

器的節點數量為五個節點的處理器等待時間

比較。

0
500

1000
1500
2000
2500
3000

50 100 500 1000 2000

Deadline

To
ta

l i
dl

e
tim

e

ESCR Greedy FPF

圖十二、不同節點數目下的 ESCR，Greedy，FPF
排程步驟處理器等待時間比較

圖十三的數據模擬為設定每個處理器取

得的計算能力為正負五至正負十，而網路頻寬

差距為正負五至正負十，系統執行時間設定為

10000，處理器的節點數量為五個節點至二十

五個節點的處理器系統平均效能輸出比較。

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

5 10 15 20 25

of node

 A
ve

ra
ge

 T
hr

ou
gh

pu
t

Greedy FPF SCR ESCR

圖十三、不同節點數目下的 Greedy、FPF，SCR，
ESCR 排程步驟平均效能輸出數據比較

圖十四的數據模擬為設定每個處理器取

得的計算能力為正負十，而網路頻寬差距為正

負五，系統執行時間設定為 5000 至 25000，
處理器的節點數量為二十五個節點的處理器

系統平均效能輸出比較。

0

0.2

0.4

0.6

0.8

5000 10000 15000 20000 25000
Deadline

A
ve

ra
ge

 T
hr

ou
gh

pu
t

Greedy FPF SCR ESCR

圖十四、不同系統執行時間下的 Greedy、FPF，
SCR，ESCR 排程步驟平均效能輸出數據比較

圖十五的數據模擬為設定每個處理器取

得的計算能力為正負十，而網路頻寬差距為正

負五，系統工作數量設定為 50 至 6400，處理

器的節點數量為十個節點的處理器系統平均

效能輸出比較。

0
0.1
0.2
0.3
0.4
0.5
0.6

50 200 800 1600 6400

of task

 A
ve

ra
ge

 T
hr

ou
th

pu
t

Greedy FPF SCR ESCR

圖十五、不同工作數量下的 Greedy、FPF，SCR，
ESCR 排程步驟平均效能輸出數據比較

圖十六的數據模擬為設定每個處理器取得

的計算能力為正負十，而網路頻寬差距為正負

十，系統工作數量設定為 50 至 6400，處理器

的節點數量為十個節點的處理器系統平均錯誤

比較。平均錯誤的定義為參與運算的所有處理

器節點中，沒有收到工作的節點數量，SCR 與

ESCR 演算法每個節點皆有接受工作並且執

行，不會產生系統錯誤。

 7

0
1
2
3
4
5
6
7
8

50 200 800 1600 6400
of task

 A
ve

ra
ge

 m
ea

n
er

ro
r

Greedy FPF SCR ESCR

圖十六、不同工作數量下的 Greedy、FPF，SCR，
ESCR 排程步驟平均錯誤數據比較

在比較這些結果後，我們發現不管節點數

量多或少、網路異質性的高與低、工作數量多

寡，ESCR 仍然比其他演算法有更高的效能，

本計畫中提出 ESCR 排程演算法明顯地勝出其

他演算法許多，尤其在節點數量多的時候，

ESCR 演算法與其他演算法有更大的系統效能

輸出差距，並且有最少的系統等待時間。

四、結論與討論

下面我們歸納本計畫主要的成果:
 完成發展單一叢集網格系統之主從式工

作 排 程 、 並 且 實 作 應 用 在 HPHC
(Heterogeneous Processor with
Heterogeneous Communication) 架構下，

以實現在異質性叢及網格計算環境中高

效率的執行工作排班程式。
 完成 SCR-scheduler 之演算法實作

我們完成 SCR 之演算法實作，可用來判

斷資料傳送與執行的最少排程步驟。針對

不同數量大小的工作與資料分配性的問

題，設計一套處理器優先序列的計算模

式、以及基本排程週期計算的公式，研究

效能評估機制對整體網路架構的必要性

及其在效能上影響。
 完成 SCR-Best-fit 與 SCR-Worst-fit 之演

算法實作
完成 SCR-Best-fit 與 SCR-Worst-fit 之演

算法實作，用來增加資料傳送量。與 SCR
比較以相同執行環境下，增加了利用

Best-fit 與 Worst-fit 兩種演算法評估週

期計算的最佳化，使排程系統善用整體網

路資源，比單純使用SCR-scheduler有更好

的效能。
 完成ESCR-scheduler 之演算法實作

完成ESCR-scheduler 之演算法實作，用來

增加資料傳送與減少執行時間，以彌補

SCR-Best-fit 與 SCR-Worst-fit 之演算法

的不足之處。除了先前設計的處理器優先

序列的計算模式、更增加了利用二元逼近

演算法評估週期計算的最佳化，使排程系

統對整體網路資源有最高的使用率。
 完成Minimum-Deadline資料分配之排程

演算法實作
針對最短時間排程步驟分析，所設計的排

程演算法可以找出最短的系統執行時間

(Makespan) 以確保在固定工作量的系統

運作下，處理器的運作時間與閒置時間比

其他演算法更短。
 完成Maximum-Job資料分配之排程演算

法實作
針對最大工作量排程步驟分析，所設計的

排程演算法可以在指定的系統執行時間

(Makespan)內，確保在長系統運作時，處

理器可以做出最有效率的系統輸出，亦及

在時間內與其他演算法比較起來可以完

成最多的工作數量。
 完成動態網格拓僕模擬。

針對不同叢集式計算網格架構、我們建立

一個可以動態評估外部通訊效能的模

式。這一個部分的工作包括，閘道計算、

網路基礎頻寬拓樸模擬、即時網路資訊擷

取、與權重計算方法。
 完成Greedy, FPF (Fast Processor First)

algorithm [5,6], 以 及 LCR (Largest
Communication Ratio) [1] 之實作。
為了證實本計畫開發的排程演算法為有

效率的排程演算法，需實做其他排程演算

法以便進行實驗。

 8

 完成用於分析工作排程步驟與網路傳輸

頻寬的理論模組
為了比較排程演算法的優缺點，我們完成

了資料傳輸模擬的理論模組，用以判斷排

程結果的好壞。
 完成資料傳送所引起的頻寬競爭之研究

資料傳送至處理器的過程中會引起處理

器互相競爭，增加了系統閒置時間。我們

的排程演算法成功地減少了資料傳送時

引起的通訊競爭與初始等待時間。
 完成處理器與網路頻寬配置變數產生器

為了模擬實際的異質性處理器運算變

數，我們實做了一個子處理器與網路模擬

產生器，產生高效能運算單元集中於某些

處理器與異質性網路頻寬集中或平均分

散在各個處理器上的配置變數。

五、計畫成果自評

 本計畫兩年之研究成果已達到計畫預期

之目標。第一年度、在這一個研究主題上共計

發表兩篇研討會論文[1, 2]。其中成果 [2]
Performance Effective Pre-scheduling Strategy
for Heterogeneous Communication Grid
Systems 已經被接受於 Future Generation
Computer Science 期刊 (SCI)。 第二年度共

計發表兩篇研討會論文[3, 4]。其中成果 [4]
An Efficient Job Allocation Method for Master
Slave Paradigm with Heterogeneous Networks
in Ubiquitous Environments 已經被接受於

Journal of Supercomputing 期刊 (SCI)。

六、參考文獻

[1] Tai-Lung Chen and Ching-Hsien Hsu, "An

Efficient Processor Selection Scheme for Master

Slave Paradigm on Heterogeneous Networks,"

Proceedings of Network and Parallel Computing

(NPC＇06), Oct. 2006.

[2] Ching-Hsien Hsu, Tai-Lung Chen and

Kuan-Ching Li, "Performance Effective

Pre-scheduling Strategy for Heterogeneous

Communication Grid Systems," Future

Generation Computer Science, Elsevier, Vol. 23,

Issue 4, pp. 569-579, May 2007. Elsevier, (SCI,

EI)

[3] Ching-Hsien Hsu and Tai-Lung Chen, "An

Efficient Task Dispatching Method in

Heterogeneous Networks," IEEE Proceedings of

the 2007 International Conference on Multimedia

and Ubiquitous Engineering (MUE’07), pp. 17-22,

April 2007. (EI)

[4] Ching-Hsien Hsu, Tai-Lung Chen and Jong-Hyuk

Park, “On improving resource utilization and

system throughput of master slave jobs scheduling

in heterogeneous systems,” Journal of

Supercomputing, Springer, Vol. 45, No. 1, pp.

129-150, July 2008. (SCI, EI)

[5] Oliver Beaumont, Arnaud Legrand and Yves

Robert, “The Master-Slave Paradigm with

Heterogeneous Processors,” IEEE Trans. on

parallel and distributed systems, Vol. 14, No.9,

pp. 897-908, September 2003.

[6] Cyril Banino, Olivier Beaumont, Larry Carter,

Fellow, Jeanne Ferrante, Senior Member, Arnaud

Legrand and Yves Robert, ”Scheduling Strategies

for Master-Slave Tasking on Heterogeneous

Processor Platforms,” IEEE Trans. on parallel and

distributed systems, Vol. 15, No.4, pp.319-330,

April 2004.

[7] Oliver Beaumont, Arnaud Legrand and Yves

Robert, “Pipelining Broadcasts on Heterogeneous

Platforms,” IEEE Trans. on parallel and

distributed systems, Vol. 16, No.4, pp. 300-313

April 2005.

[8] Francine Berman, Richard Wolski, Hernri

Casanova, Walfredo Cirne, Holly Dail, Marcio

Faerman, Silvia Figueira, Jim Hayes, Graziano

Obertelli, Jennifer Schopf, Gary Shao, Shava

Smallen, Neil Spring, Alan Su, and Dmitrii

 9

Zagorodnov, ”Adaptive Computing on the Grid

Using AppLeS,” IEEE Trans. on parallel and

distributed systems, Vol. 14, No. 4, pp.369-379,

April 2003.

[9] S. Bataineh, T.Y. Hsiung and T.G. Robertazzi,

“Closed Form Solutions for Bus and Tree

Networks of Processors Load Sharing a Divisible

Job,” IEEE Trans. Computers, Vol. 43, No. 10, pp.

1184-1196, Oct. 1994.

[10] A.T. Chronopoulos and S. Jagannathan, “A

Distributed Discrete-Time Neural Network

Architecture for Pattern Allocation and Control,”

Proc. IPDPS Workshop Bioinspired Solutions to

Parallel Processing Problems, 2002.

[11] Atakan Dogan, Fusun Ozguner, ”Matching and

Scheduling Algorithms for Failure Probability of

Applications in Heterogeneous Computing,” IEEE

Trans. on parallel and distributed systems, Vol. 13,

No. 3, pp. 308-323, March 2002.

[12] Ching-Chin Han, Kang G. Shin, Jian Wu, ”A

Fault-Tolerant Scheduling Algorithm for

Real-Time Periodic Tasks with Possible Software

Faults,” IEEE Trans. on computers, Vol. 52, No. 3,

pp.362-372, March 2003.

[13] Tarek Hagras, Jan Janecek, ”A High Performance,

Low Complexity Algorithm for Compile-Time

Task Scheduling in Heterogeneous Systems,”

Proceedings of the 18th International Parallel and

Distributed Processing Symposium (IPDPS’04).

[14] Jennifer M. Schopf, “A General Architecture for

Scheduling on the Grid,”

TR-ANL/MCS-P1000-1002, special issue of JPDC

on Grid Computing, April, 2002.

[15] Rui Min and Muthucumaru Maheswaran,

“Scheduling Co-Reservations with priorities in

grid computing systems,” Proceedings of the 2nd

IEEE/ACM International Symposium on Cluster

Computing and the Grid (CCGRID’02), pp.

250-251, May 2002.

[16] Muhammad K. Dhodhi, Imtiaz Ahmad Anwar

Yatama, Anwar Yatama and Ishfaq Ahmad, “An

integrated technique for task matching and

scheduling onto distributed heterogeneous

computing systems,” Journal of Parallel and

DistributedComputing, Vol. 62, No. 9, pp.

1338–1361, 2002.

[17] Ching-Hsien Hsu and Tai-Long Chen, “Grid

Enabled Master Slave Task Scheduling for

Heterogeneous Processor Paradigm,” Grid and

Cooperative Computing - Lecture Notes in

Computer Science, Vol. 3795, pp. 449-454,

Springer-Verlag, Dec. 2005. (GCC’05) (SCI

Expanded)

[18] G. Aloisio, M. Cafaro, E. Blasi and I. Epicoco,

“The Grid Resource Broker, a Ubiquitous Grid

Computing Framework,” Journal of Scientific

Programming, Vol. 10, No. 2, pp. 113-119, 2002.

[19] W. E. Allcock, I. Foster, R. Madduri. “Reliable

Data Transport: A Critical Service for the Grid.”

Building Service Based Grids Workshop, Global

Grid Forum, June 2004.

[20] B. Allcock, J. Bester, J. Bresnahan, A. L.

Chervenak, I. Foster, C. Kesselman, S. Meder, V.

Nefedova, D. Quesnal, S. Tuecke. “Data

Management and Transfer in High Performance

Computational Grid Environments.” Parallel

Computing Journal, Vol. 28 (5), May 2002.

[21] O. Beaumont, A. Legrand and Y.Robert, “Optimal

algorithms for scheduling divisible workloads on

heterogeneous systems, “Proceedings of the 12th

Heterogeneous Computing Workshop, IEEE

Computer Press 2003.

[22] J. Blythe, E. Deelman, Y. Gil, C. Kesselman,

A.Agarwal, G. Mehta and K. Vahi, “The role of

planning in grid computing,” Proceedings of

ICAPS’03, 2003.

[23] H. Casanova, “Simgrid: A Toolkit for the

Simulation of Application Scheduling,”

 10

Proceeding in IEEE Int’l Symp. Cluster

Computing and the Grid (CCGrid ’01), pp.

430-437, May 2001.

[24] L. J. Chang, H.Y. Chen, H.C. Chang, K.C. Li, and

C.T. Yang, "The Visuel Performance Analysis and

Monitoring Tool for Cluster Environments",

Proceedings of ICS'2004 International Computer

Symposium, Taipei, Taiwan, 2004.

[25] M. Cai, A. Chervenak, M. Frank. “A

Peer-to-Peer Replica Location Service Based on A

Distributed Hash Table.” Proceedings of the

SC2004 Conference (SC2004), November 2004.

[26] M. Faerman, A. Birnbaum, H. Casanova and F.

Berman, “Resource Allocation for Steerable

Parallel Parameter Searches,” Proceedings of

GRID’02, 2002.

[27] I. Foster, “Building an open Grid,” Proceedings of

the second IEEE international symposium on

Network Computing and Applications, 2003.

[28] James Frey, Todd Tannenbaum, M. Livny, I.

Foster and S. Tuccke, “Condor-G: A Computation

Management Agent for Multi-Institutional Grids,”

Journal of Cluster Computing, vol. 5, pp. 237 –

246, 2002.

[29] N. Fujimoto, K. Hagihara, A Comparison among

Grid Scheduling Algorithms for Independent

Coarse-Grained Tasks, Applicatios and the Internet

Workshops, 26-30 Jan. 2004, pp.629-35.

[30] J. Nabrzyski, J.M. Schopf, J. Weglarz (Eds), “Grid

Resource Management” Kluwer Publishing, Fall

2003.

[31] K. Ranganathan and I. Foster. “Identifying

Dynamic Replication Strategies for High

Performance Data Grids” Proceedings of

International Workshop on Grid Computing,

Denver, CO, November 2002.

[32] D. P. Spooner, S.A. Jarvis, J. Caoy, S. Saini and

G.R. Nudd, “Local Grid Scheduling Techniques

using Performance Prediction,” IEE Proc.

Computers and Digital Techniques, 150(2):87-96,

2003.

[33] Ming Wu and Xian-He Sun, “A General

Self-adaptive Task Scheduling System for

Non-dedicated Heterogeneous Computing,”

Proceeding in IEEE International Conference on

Cluster Computing, 2003.

[34] Hui Wang, Minyi Guo, Sushil K. Prasad, Yi Pan,

Wenxi Chen,” An Efficient Algorithm for Irregular

Redistributions in Parallelizing Compilers”

Proceedings of the 2003 International Symposium

on Parallel and Distributed Processing and

Applications, pp. 76-87, July 2003.

[35] Chao-Tung Yang, Yu-Lun Kuo, and Chuan-Lin

Lai, “Designing Computing Platform for BioGrid,”

International Journal of Computer Applications in

Technology (IJCAT), Inderscience Publishers,

ISSN (Paper): 0952-8091, UK, 2004.

[36] X. Zhang and J. Schopf. “Performance Analysis of

the Globus Toolkit Monitoring and Discovery

Service, MDS2,” Proceedings of the International

Workshop on Middleware Performance (MP2004),

part of the 23rd International Performance

Computing and Communications Workshop

(IPCCC), April 2004.

 11

行政院所屬各機關人員出國報告書提要
 撰寫時間： 96 年 6 月 20 日
姓 名 許慶賢 服 務 機 關 名 稱

中華大學

資工系
連絡電話、
電子信箱

03-5186410
chh@chu.edu.tw

出 生 日 期 62 年 2 月 23 日 職 稱 副教授
出席國際會議

名 稱
2007 International Conference on Algorithms and Architecture for Parallel

Processing, June 11 -14 2007.

到 達 國 家

及 地 點
Hangzhou, China 出 國

期 間

自 96 年 06 月 11 日

迄 96 年 06 月 19 日

內 容 提 要

這一次在杭州所舉行的國際學術研討會議共計四天。第一天下午本人抵達會

場辦理報到。第二天各主持一場 invited session 的論文發表。同時，自己也

在上午的場次發表了這依次被大會接受的論文。第一天也聽取了 Dr.
Byeongho Kang 有關於 Web Information Management 精闢的演說。第二天許

多重要的研究成果分為六個平行的場次進行論文發表。本人選擇了

Architecture and Infrastructure、Grid computing、以及 P2P computing 相關場

次聽取報告。晚上本人亦參加酒會，並且與幾位國外學者及中國、香港教授

交換意見，合影留念。第三天本人在上午聽取了 Data and Information
Management 相關研究，同時獲悉許多新興起的研究主題，並了解目前國外

大多數學者主要的研究方向，並且把握最後一天的機會與國外的教授認識，

希望能夠讓他們加深對台灣研究的印象。三天下來，本人聽了許多優秀的論

文發表。這些研究所涵蓋的主題包含有：網格系統技術、工作排程、網格計

算、網格資料庫以及無線網路等等熱門的研究課題。此次的國際學術研討會

議有許多知名學者的參與，讓每一位參加這個會議的人士都能夠得到國際上

最新的技術與資訊。是一次非常成功的學術研討會。參加本次的國際學術研

討會議，感受良多。讓本人見識到許多國際知名的研究學者以及專業人才，

得以與之交流。讓本人與其他教授面對面暢談所學領域的種種問題。看了眾

多研究成果以及聽了數篇專題演講，最後，本人認為，會議所安排的會場以

及邀請的講席等，都相當的不錯，覺得會議舉辦得很成功，值得我們學習。

出 席 人 所 屬 機

關 審 核 意 見

層 轉 機 關

審 核 意 見

研 考 會

處 理 意 見

 12

(出席 ICA3PP-07 研討會所發表之論文)

A Generalized Critical Task Anticipation Technique for DAG
Scheduling

Ching-Hsien Hsu1, Chih-Wei Hsieh1 and Chao-Tung Yang2

1 Department of Computer Science and Information Engineering

Chung Hua University, Hsinchu, Taiwan 300, R.O.C.
chh@chu.edu.tw

2 High-Performance Computing Laboratory

Department of Computer Science and Information Engineering
Tunghai University, Taichung City, 40704, Taiwan R.O.C.

ctyang@thu.edu.tw

Abstract. The problem of scheduling a weighted directed acyclic graph
(DAG) representing an application to a set of heterogeneous processors to
minimize the completion time has been recently studied. The
NP-completeness of the problem has instigated researchers to propose different
heuristic algorithms. In this paper, we present a Generalized Critical-task
Anticipation (GCA) algorithm for DAG scheduling in heterogeneous
computing environment. The GCA scheduling algorithm employs task
prioritizing technique based on CA algorithm and introduces a new processor
selection scheme by considering heterogeneous communication costs among
processors for adapting grid and scalable computing. To evaluate the
performance of the proposed technique, we have developed a simulator that
contains a parametric graph generator for generating weighted directed acyclic
graphs with various characteristics. We have implemented the GCA
algorithm along with the CA and HEFT scheduling algorithms on the simulator.
The GCA algorithm is shown to be effective in terms of speedup and low
scheduling costs.

1. Introduction

The purpose of heterogeneous computing system is to drive processors
cooperation to get the application done quickly. Because of diverse quality among
processors or some special requirements, like exclusive function, memory access speed,
or the customize I/O devices, etc.; tasks might have distinct execution time on
different resources. Therefore, efficient task scheduling is important for achieving
good performance in heterogeneous systems.

The primary scheduling methods can be classified into three categories, dynamic
scheduling, static scheduling and hybrid scheduling according to the time at which the
scheduling decision is made. In dynamic approach, the system performs
redistribution of tasks between processors during run-time, expect to balance
computational load, and reduce processor’s idle time. On the contrary, in static

 13

approach, information of applications, such as tasks execution time, message size of
communications among tasks, and tasks dependences are known a priori at
compile-time; tasks are assigned to processors accordingly in order to minimize the
entire application completion time and satisfy the precedence of tasks. Hybrid
scheduling techniques are mix of dynamic and static methods, where some
preprocessing is done statically to guide the dynamic scheduler [8].

A Direct Acyclic Graph (DAG) [2] is usually used for modeling parallel
applications that consists a number of tasks. The nodes of DAG correspond to tasks
and the edges of which indicate the precedence constraints between tasks. In
addition, the weight of an edge represents communication cost between tasks. Each
node is given a computation cost to be performed on a processor and is represented by
a computation costs matrix. Figure 1 shows an example of the model of DAG
scheduling. In Figure 1(a), it is assumed that task nj is a successor (predecessor) of
task ni if there exists an edge from ni to nj (from nj to ni) in the graph. Upon task
precedence constraint, only if the predecessor ni completes its execution and then its
successor nj receives the messages from ni, the successor nj can start its execution.
Figure 1(b) demonstrates different computation costs of task that performed on
heterogeneous processors. It is also assumed that tasks can be executed only on
single processor with non-preemptable style. A simple fully connected processor
network with asymmetrical data transfer rate is shown in Figures 1(c) and 1(d).

 P1 P2 P3 iw

n1 14 19 9 14

n2 13 19 18 16.7

n3 11 17 15 14.3

n4 13 8 18 13

n5 12 13 10 11.7

n6 12 19 13 14.7

n7 7 16 11 11

n8 5 11 14 10

n9 18 12 20 16.7

n10 17 20 11 16
(a) (b)

 (c) (d)

Figure 1: An example of DAG scheduling problem (a) Directed Acyclic Graph (DAG-1) (b)
computation cost matrix (W) (c) processor topology (d) communication weight.

The scheduling problem has been widely studied in heterogeneous systems where

 14

the computational ability of processors is different and the processors communicate
over an underlying network. Many researches have been proposed in the literature.
The scheduling problem has been shown to be NP-complete [3] in general cases as
well as in several restricted cases; so the desire of optimal scheduling shall lead to
higher scheduling overhead. The negative result motivates the requirement for
heuristic approaches to solve the scheduling problem. A comprehensive survey about
static scheduling algorithms is given in [9]. The authors of have shown that the
heuristic-based algorithms can be classified into a variety of categories, such as
clustering algorithms, duplication-based algorithms, and list-scheduling algorithms.
Due to page limitation, we omit the description for related works.

In this paper, we present a Generalized Critical task Anticipation (GCA) algorithm,
which is an approach of list scheduling for DAG task scheduling problem. The main
contribution of this paper is proposing a novel heuristic for DAG scheduling on
heterogeneous machines and networks. A significant improvement is that
inter-processor communication costs are considered into processor selection phase
such that tasks can be mapped to more suitable processors. The GCA heuristic is
compared favorable with previous CA [5] and HEFT heuristics in terms of schedule
length and speedup under different parameters.

The rest of this paper is organized as follows: Section 2 provides some
background, describes preliminaries regarding heterogeneous scheduling system in
DAG model and formalizes the research problem. Section 3 defines notations and
terminologies used in this paper. Section 4 forms the main body of the paper,
presents the Generalized Critical task Anticipation (GCA) scheduling algorithm and
illustrating it with an example. Section 5 discusses performance of the proposed
heuristic and its simulation results. Finally, Section 6 briefly concludes this paper.

2. DAG Scheduling on Heterogeneous Systems
The DAG scheduling problem studied in this paper is formalized as follows. Given
a parallel application represented by a DAG, in which nodes represent tasks and
edges represent dependence between these tasks. The target computing architecture
of DAG scheduling problem is a set of heterogeneous processors, M = {Pk: k = 1: P}
and P = |M|, communicate over an underlying network which is assumed fully
connected. We have the following assumptions:

 Inter-processor communications are performed without network contention
between arbitrary processors.

 Computation of tasks is in non-preemptive style. Namely, once a task is
assigned to a processor and starts its execution, it will not be interrupted until its
completion.

 Computation and communication can be worked simultaneously because of the
separated I/0.

 If two tasks are assigned to the same processor, the communication cost between
the two tasks can be discarded.

 A processor is assumed to send the computational results of tasks to their
immediate successor as soon as it completes the computation.
Given a DAG scheduling system, W is an n × P matrix in which wi,j indicates

estimated computation time of processor Pj to execute task ni. The mean execution
time of task ni can be calculated by the following equation:

 15

∑=
=

P

j

ji
i P

w
w

1

, (1)

Example of the mean execution time can be referred to Figure 1(b).

For communication part, a P × P matrix T is structured to represent different

data transfer rate among processors (Figure 1(d) demonstrates the example). The
communication cost of transferring data from task ni (execute on processor px) to task
nj (execute on processor py) is denoted by ci,j and can be calculated by the following
equation,

yxjimji tMsgVc ,,, ×+= , (2)

Where:
Vm is the communication latency of processor Pm,
Msgi,j is the size of message from task ni to task nj,
tx,y is data transfer rate from processor px to processor py, 1≤ x, y ≤P.

In static DAG scheduling problem, it was usually to consider processors’
latency together with its data transfer rate. Therefore, equation (2) can be
simplified as follows,

yxjiji tMsgc ,,, ×= , (3)

Given an application represented by Directed Acyclic Graph (DAG), G = (V, E),
where V = {nj: j = 1: v} is the set of nodes and v = |V|; E = {ei,j = <ni, nj>} is the set
of communication edges and e =|E|. In this model, each node indicates least
indivisible task. Namely, each node must be executed on a processor from the start
to its completion. Edge <ni, nj> denotes precedence of tasks ni and nj. In other
words, task ni is the immediate predecessor of task nj and task nj is the immediate
successor of task ni. Such precedence represents that task nj can be start for
execution only upon the completion of task ni. Meanwhile, task nj should receive
essential message from ni for its execution. Weight of edge <ni, nj > indicates the
average communication cost between ni and nj.

Node without any inward edge is called entry node, denoted by nentry; while node
without any outward edge is called exit node, denoted by nexit. In general, it is supposed
that the application has only one entry node and one exit node. If the actual application
claims more than one entry (exit) node, we can insert a dummy entry (exit) node with
zero-cost edge.

3. Preliminaries
This study concentrates on list scheduling approaches in DAG model. List
scheduling was usually distinguished into list phase and processor selection phase.
Therefore, priori to discuss the main content, we first define some notations and
terminologies used in both phases in this section.

3.1 Parameters for List Phase

Definition 1: Given a DAG scheduling system on G = (V, E), the Critical Score of task
ni denoted by CS(ni) is an accumulative value that are computed recursively traverses
along the graph upward, starting from the exit node. CS(ni) is computed by the
following equations,

 16

⎪⎩

⎪
⎨
⎧

++
=

=
∈

otherwise))((
)i.e.(ndoeexittheisif

)(
,)(jjinsucni

exitiiexit
i nCScMaxw

nnnw
nCS

ij

 (4)

where exitw is the average computation cost of task nexit, iw is the average computation
cost of task ni, suc(ni) is the set of immediate successors of task ni,

jic , is the average communication cost of edge <ni, nj> which is defined as follows,

)(2
, 1

,,

, PP

tMsg
c Pyx

yxji

ji −

×

=
∑

≤≤ , (5)

3.2 Parameters for Processor Selection Phase

Most algorithms in processor selection phase employ a partial schedule scheme to
minimize overall schedule length of an application. To achieve the partial
optimization, an intuitional method is to evaluate the finish time (FT) of task ni
executed on different processors. According to the calculated results, one can select
the processor who has minimum finish time as target processor to execute the task ni.
In such approach, each processor Pk will maintain a list of tasks, task-list(Pk), keeps
the latest status of tasks correspond to the EFT(ni, Pk), the earliest finish time of task ni
that is assigned on processor Pk.

Recall having been mentioned above that the application represented by DAG
must satisfy the precedence relationship. Taking into account the precedence of tasks
in DAG, a task nj can start to execute on a processor Pk only if its all immediate
predecessors send the essential messages to nj and nj successful receives all these
messages. Thus, the latest message arrive time of node nj on processor Pk, denoted
by LMAT(nj, Pk), is calculated by the following equation,

() () ())processoron executedfor task,(, , uikuinprednkj PncnEFTMaxPnLMAT
ji

+=
∈

 (6)

where pred(nj) is the set of immediate predecessors of task nj. Note that if tasks ni
and nj are assigned to the same processor, kuc , is assumed to be zero because it is
negligible.
Because the entry task nentry has no inward edge, thus we have

() 0, =kentry PnLMAT (7)
for all k = 1 to P.
Definition 2: Given a DAG scheduling system on G = (V, E), the Start Time of task nj
executed on processor Pk is denoted as ST(nj, Pk).
Estimating task’s start time (for example, task nj) will facilitate search of available
time slot on target processors that is large enough to execute that task (i.e., length of
time slot > wj,k). Note that the search of available time slot is started from

()kj PnLMAT , .
Definition 3: Given a DAG scheduling system on G = (V, E), the finish time of task nj
denoted by),(kj PnFT , represents the completion time of task nj executed on processor
Pk.),(kj PnFT is defined as follows,

kjkjkj wPnSTPnFT ,),(),(+= (8)
Definition 4: Given a DAG scheduling system on G = (V, E), the earliest finish time of

 17

task nj denoted by)(jnEFT , is formulated as follows,

)},({)(kjPpj PnFTMinnEFT
k∈

= (9)

Definition 5: Based on the determination of)(jnEFT in equation (9), if the earliest finish

time of task nj is obtained upon task nj executed on processor pt, then the target processor of
task nj is denoted by TP(nj), and TP(nj) = pt.

4. The Generalized Critical-task Anticipation Scheduling Algorithm
Our approach takes advantages of list scheduling in lower algorithmic complexity and
superior scheduling performance and furthermore came up with a novel heuristic
algorithm, the generalized critical task anticipation (GCA) scheduling algorithm to
improve the schedule length as well as speedup of applications. The proposed
scheduling algorithm will be verified beneficial for the readers while we delineate a
sequence of the algorithm and show some example scenarios in three phases,
prioritizing phase, listing phase and processor selection phase.

In prioritizing phase, the CS(ni) is known as the maximal summation of scores
including the average computation cost and communication cost from task ni to the
exit task. Therefore, the magnitude of the task’s critical score is regarded as the
decisive factor when determining the priority of a task. In listing phase, an ordered
list of tasks should be determined for the subsequent phase of processor selection. The
proposed GCA scheduling technique arranges tasks into a list L, not only according to
critical scores but also considers tasks’ importance.

Several observations bring the idea of GCA scheduling method. Because of
processor heterogeneity, there exist variations in execution cost from processor to
processor for same task. In such circumstance, tasks with larger computational cost
should be assigned higher priority. This observation aids some critical tasks to be
executed earlier and enhances probability of tasks reduce its finish time.
Furthermore, each task has to receive the essential messages from its immediate
predecessors. In other words, a task will be in waiting state when it does not collect
complete message yet. For this reason, we emphasize the importance of the last
arrival message such that the succeeding task can start its execution earlier.
Therefore, it is imperative to give the predecessor who sends the last arrival message
higher priority. This can aid the succeeding task to get chance to advance the start
time. On the other hand, if a task ni is inserted into the front of a scheduling list, it
occupies vantage position. Namely, ni has higher probability to accelerate its
execution and consequently the start time of suc(ni) can be advanced as well.

In most list scheduling approaches, it was usually to demonstrate the algorithms
in two phases, the list phase and the processor selection phase. The list phase of
proposed GCA scheduling algorithm consists of two steps, the CS (critical score)
calculation step and task prioritization step.

Let’s take examples for the demonstration of CS calculation, which is performed
in level order and started from the deepest level, i.e., the level of exit task. For
example, according to equation (4), we have CS(n10)= 10w = 16. For the upper

level tasks, n7, n8 and n9, CS(n7) =))((1010,77 nCScw ++ = 47.12, CS(n8) =

))((1010,88 nCScw ++ =37.83, CS(n9) =))((1010,99 nCScw ++ =49.23. The other
tasks can be calculated by the same methods. Table 1 shows complete calculated

 18

critical scores of all tasks for DAG-1.

Table 1: Critical Scores of tasks in DAG-1 using GCA algorithm
Critical Scores of tasks in GCA algorithm

n1 n2 n 3 n 4 n 5 n 6 n 7 n 8 n 9 n 10

120.13 84.83 88.67 89.45 76.28 70.25 47.12 37.83 49.23 16.00

Follows the critical score calculation, the GCA scheduling method considers both

tasks’ importance (i.e., critical score) and its relative urgency for prioritizing tasks.
Based on the results obtained previously, we use the same example to demonstrate task
prioritization in GCA. Let’s start at the exit task n10, which has the lowest critical
score. Assume that tasks will be arranged into an ordered list L, therefore, we have L
= {n10} initially. Because task n10 has three immediate predecessors, with the order
CS(n9) > CS(n7) > CS(n8), the list L will be updated to L={n9, n7, n8, n10}. Applying
the same prioritizing method by taking the front element of L, task n9; because task n9
has three immediate predecessors, with the order CS(n4) > CS(n2) > CS(n5), we have
the updated list L = { n4, n2, n5, n9, n7, n8, n10}. Taking the same operations, insert
task n1 in front of task n4, insert task n3 in front of task n7, insert tasks n4, n2, n6
(because CS(n4) > CS(n2) > CS(n6)) in front of task n8; we have the list L = { n1, n4, n2,
n5, n9, n3, n7, n6, n4, n2, n6, n8, n10}. The final list L = {n1, n4, n2, n5, n9, n3, n7, n6, n8,
n10} can be derived by removing duplicated tasks.

In listing phases, the GCA scheduling algorithm proposes two enhancements from
the majority of literatures. First, GCA scheduling technique considers various
transmission costs of messages among processors into the calculation of critical scores.
Second, the GCA algorithm prioritizes tasks according to the influence on its
successors and devotes to lead an accelerated chain while other techniques simply
schedule high critical score tasks with higher priority. In other words, the GCA
algorithm is not only prioritizing tasks by its importance but also by the urgency
among task. The prioritizing scheme of GCA scheduling technique can be
accomplished by using simple stack operations, push and pop, which are outlined in
GCA_List_Phase procedure as follows.

Begin_GCA_List_Phase
1. Initially, construct an array of Boolean QV and a stack S.
2. QV[nj] = false,∀ nj∈V.
3. Push nexit on top of S.
4. While S is not empty do
5. Peek task nj on the top of S;
6. If(all QV[ni] are true, for all ni∈pred(nj) or task nj is nentry) {
7. Pop task nj from top of S and put nj into scheduling list L;
8. QV[nj] = true; }
9. Else /* search the CT(nj) */
10. For each task ni, where ni∈pred(nj) do
11. If(QV[ni] = false)
12. Put CS(ni) into container C;
13. Endif
14. Push tasks pred(nj) from C into S by non-decreasing order according to their

critical scores;
15. Reset C to empty;

 19

16. /* if there are 2+ tasks with same CS(ni), task ni is randomly pushed into S.
17. EndWhile
End_GCA_List_Phase

In processor-selection phase, tasks will be deployed from list L that obtained in

listing phase to suitable processor in FIFO manner. According to the ordered list L =
{n1, n4, n2, n5, n9, n3, n7, n6, n8, n10}, we have the complete calculated EFTs of tasks in
DAG-1 and the schedule results of GCA algorithm are listed in Table 2 and Figure 2(a),
respectively.

Table 2: Earliest Finish Time of tasks in DAG-1 using GCA algorithm

Earliest Finish Time of tasks in GCA algorithm

n1 n2 n 3 n 4 n 5 n 6 n 7 n 8 n 9 n 10
9 27 42 19.7 32.7 47.6 53 65.7 54.7 84.7

P1 P2 P3 P1 P2 P3 P1 P2 P3

1

10

20

30

40

50

60

70

80

90

100

110

1

2
4

5
6

9

8

3

7

10

1

3
4

2

5

6

9

7

8

10

(a) (b) (c)

2
4

5

9

3

7

6

8

10

Figure 2: Schedule results of three algorithms on DAG-1 (a) GCA (makespan = 84.7) (b)
CA (makespan = 92.4) (c) HEFT (makespan = 108.2).

In order to profile significance of the GCA scheduling technique, the schedule

results of other algorithms, CA and HEFT are depicted in Figure 2(b) and 2(c),
respectively. The GCA scheduling techniques incorporates the consideration of
heterogeneous communication costs among processors in processor selection phase.
Such enhancement facilitates the selection of best candidate of processors to execute
specific tasks.

5. Performance Evaluation

5.1 Random Graph Generator
We implemented a Random Graph Generator (RGG) to simulate application graphs
with various characteristics. RGG uses the following input parameters to produce
diverse graphs.

 Weight of graph (weight), which is a constant = {32, 128, 512, 1024}.

 20

 Number of tasks in the graph (n), where n = {20, 40, 60, 80, 100}.
 Graph parallelism (p), the graph parallelism determines shape of a graph. p is

assigned for 0.5, 1.0 and 2.0. The level of graph is defined as ⎣ ⎦pv / . For
example, graph with p = 2.0 has higher parallelism than graph with p = 1.0.

 Out degree of a task (d), where d = {1, 2, 3, 4, 5}. The out degree of a task
indicates relationship with other tasks, the larger degree of a task the higher task
dependence.

 Heterogeneity (h), determines computational cost of task ni executed on processor
Pk, i.e., wi,k, which is randomly generated by the following formula.

.
2

1
2

1 , ⎟
⎠
⎞

⎜
⎝
⎛ +×≤≤⎟

⎠
⎞

⎜
⎝
⎛ −×

hwwhw ikii
 (10)

RGG randomizes wi from the interval [1, weight]. Note that larger value of
weight represents the estimation is with higher precision. In our simulation, h was
assigned by 0.1, 0.25, 0.5, 0.75 and 1.0.

 Communication to Computation Ratio (CCR), where CCR = {0.1, 0.5, 1, 2, 10}.

5.2 Comparison Metrics
As mentioned earlier, the objective of DAG scheduling problem is to minimize the

completion time of an application. To verify the performance of a scheduling
algorithm, several comparative metrics are given below for comparison:

 Makespan, also known as schedule length, which is defined as follows,
))(max(exitnEFTMakespan = (11)

 Speedup, defined as following equation,

makespan

w
Speedup Vn jiMP

ij
}{min ,∑ ∈∈

= , where M is the set of processors (12)

The numerator is the minimal accumulated sum of computation cost of tasks
which are assigned on one processor. Equation (12) represents the ratio of sequential
execution time to parallel execution time.

 Percentage of Quality of Schedules (PQS)
The percentage of the GCA algorithm produces better, equal and worse quality of

schedules compared to other algorithms.

5.3 Simulation Results
The first evaluation aims to demonstrate the merit of the GCA algorithm by showing
quality of schedules using RGG. Simulation results were obtained upon different
parameters with totally 1875 DAGs. Figure 3 reports the comparison by setting
different weight = {32, 128, 512, 1024}. The term “Better” represents percentage of
testing samples the GCA algorithm outperforms the CA algorithm. The term “Equal”
represents both algorithm have same makespan in a given DAG. The tem “Worse”
represents opposite results to the “Better” cases. Figure 4 gives the PQS results by
setting different number of processors. Overall, the GCA scheduling algorithm
presents superior performance for 65% test samples.

Speedup of the GCA, CA and HEFT algorithms to execute 1875 DAGs with fix
processor number (P=16) under different number of task (n) are shown in Figure 5.
The speedup of these algorithms show placid when number of task is small and
increased significantly when number of tasks becomes large. In general, the GCA
algorithm has better speedup than the other two algorithms. Improvement rate of the
GCA algorithm in terms of average speedup is about 7% to the CA algorithm and 34%

 21

to the HEFT algorithm. The improvement rate (IRGCA) is estimated by the following
equation:

IRGCA =
∑

∑∑ −
)(

)()(
CAorHEFTSpeedup

CAorHEFTSpeedupGCASpeedup (13)

Figure 3: PQS: GCA compared with CA (3 processors)

Figure 4: PQS: GCA compared with CA (weight = 128)

16 processors

2.00

3.50

5.00

6.50

8.00

20 40 60 80 100

task

sp
ee

du
p

GCA

CA

HEFT

Figure 5: Speedup of GCA, CA and HEFT with different number of tasks (n).

3.50

4.50

5.50

6.50

7.50

3 4 5 6 7 8

degree

sp
ee

du
p

GCA CA HEFT

Figure 6: Speedup of GCA, CA and HEFT with different out-degree of tasks (d)

 22

Speedup of the GCA, CA and HEFT algorithms to execute different DAGs with fix processor number (P=16) and

task number (n=60) under different out-degree of tasks (d) are shown in Figure 6. The results of Figure 6 demonstrate
the speedup influence by task dependence. We observe that speedups of scheduling algorithms are less dependent on
tasks’ dependence. Although the speedups of three algorithms are stable, the GCA algorithm outperforms the other
two algorithms in most cases. Improvement rate of the GCA algorithm in terms of average speedup is about 5% to the
CA algorithm and 80% to the HEFT algorithm.

Figure 7 shows simulation results of three algorithms upon different processor number and degree of parallelization.
It is noticed that, graphs with larger value of p tends to with higher parallelism. As shown in Figures 7(a) and (b), the
GCA algorithm performs well in linear graphs (p=0.5) and general graphs (p=1.0). On the contrary, Figure 7(c) shows
that the HEFT scheduling algorithm has superior performance when degree of parallelism is high. In general, for
graphs with low parallelism (e.g., p = 0.5), the GCA algorithm has 33% improvement rate in terms of average speedup
compare to the HEFT algorithm; for graphs with normal parallelism (e.g., p = 1), the GCA algorithm has 20%
improvement rate. For graphs with high parallelism (e.g., p = 2), the GCA algorithm performs worse than the HEFT by
3% performance.

Speedup of the GCA, CA and HEFT algorithms to execute different DAGs with fix processor number (P=16) and
task number (n=60) under different out-degree of tasks (d) are shown in Figure 6. The results of Figure 6 demonstrate
the speedup influence by task dependence. We observe that speedups of scheduling algorithms are less dependent on
tasks’ dependence. Although the speedups of three algorithms are stable, the GCA algorithm outperforms the other
two algorithms in most cases. Improvement rate of the GCA algorithm in terms of average speedup is about 5% to the
CA algorithm and 80% to the HEFT algorithm.

(a) (b) (c)

Figure 7: Speedup with different degree of parallelism (p) (a) p = 0.5 (b) p = 1 (c) p = 2.
The impact of communication overheads on speedup are plotted in Figure 8 by setting different value of CCR. It

is noticed that increase of CCR will downgrade the speedup we can obtained. For example, speedup offered by CCR =
0.1 has maximal value 8.3 in GCA with 12 processors; for CCR = 1.0, the GCA algorithm has maximal speedup 6.1
when processor number is 12; and the same algorithm, GCA, has maximal speedup 3.1 for CCR = 5 with 12 processors.
This is due to the fact that when communication overheads higher than computational overheads, costs for tasks
migration will offset the benefit of moving tasks to faster processors.

(a) (b) (c)

Figure 8: Speedup results with different CCR (a) CCR=0.5 (b) CCR = 1 (c) CCR = 5.

6. Conclusions

The problem of scheduling a weighted directed acyclic graph (DAG) to a set of heterogeneous processors to
minimize the completion time has been recently studied. Several techniques have been presented in the literature to
improve performance. This paper presented a general Critical-task Anticipation (GCA) algorithm for DAG scheduling

 23

system. The GCA scheduling algorithm employs task prioritizing technique based on CA algorithm and introduces a
new processor selection scheme by considering heterogeneous communication costs among processors. GCA
scheduling algorithm is a list scheduling approach with simple data structure and profitable for grid and scalable
computing. Experimental results show that GCA has superior performance compare to the well known HEFT
scheduling heuristic algorithm and our previous proposed CA algorithm which did not incorporate the consideration of
heterogeneous communication costs into processor selection phase. Experimental results show that GCA is equal or
superior to HEFT and CA scheduling algorithms in most cases and it enhances to fit more real grid system.

Acknowledgements
This paper is based upon work supported by National Science Council (NSC), Taiwan, under grants no.
NSC95-2213-E-216-006. Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the NSC.

References
[1] R. Bajaj and D. P. Agrawal, “Improving Scheduling of Tasks in a Heterogeneous Environment,” IEEE Trans. on PDS, vol. 15,

no. 2, pp. 107-118, 2004.
[2] S. Behrooz, M. Wang, and G. Pathak, “Analysis and Evaluation of Heuristic Methods for Static Task Scheduling,” Jounal of

Parallel and Distributed Computing, vol. 10, pp. 222-232, 1990.
[3] M.R Gary and D.S. Johnson, “Computers and Interactability: A guide to the Theory of NP-Completeness”, W.H. Freeman and

Co., 1979.
[4] T. Hagras and J. Janecek,” A High Performance, Low Complexity Algorithm for Compile-Time Task Scheduling in

Heterogeneous Systems,” Parallel Computing, vol. 31, Issue 7, pp. 653-670, 2005.
[5] Ching-Hsieh Hsu and Ming-Yuan Weng, “An Improving Critical-Task Anticipation Scheduling Algorithm for Heterogeneous

Computing Systems”, Proceedings of the Eleventh Asia-Pacific Computer Systems Architecture Conference, LNCS 4186, pp.
97-110, 2006.

[6] E. Ilavarasan P. Thambidurai and R. Mahilmannan, “Performance Effective Task Scheduling Algorithm for Heterogeneous
Computing System,” IEEE Proceedings of IPDPS, pp. 28-38, 2005.

[7] S. Ranaweera and D. P. Agrawal, “A Task Duplication Based Scheduling Algorithm for Heterogeneous Systems,” IEEE
Proceedings of IPDPS, pp. 445-450, 2000.

[8] Rizos Sakellariou and Henan Zhao, “A Hybrid Heuristic for DAG Scheduling on Heterogeneous Systems”, Proc. of the IEEE
IPDPS Workshop 1, pp. 111b, 2004.

[9] H. Topcuoglu, S. Hariri and W. Min-You, “Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous
Computing,” IEEE Transactions on PDS, vol.13, no. 3, pp. 260-274, 2002.

 24

行政院所屬各機關人員出國報告書提要
 撰寫時間： 97 年 4 月 20 日
姓 名 許慶賢 服 務 機 關 名 稱

中華大學

資工系
連絡電話、
電子信箱

03-5186410
chh@chu.edu.tw

出 生 日 期 62 年 2 月 23 日 職 稱 副教授
出席國際會議

名 稱

The 22nd International Conference on Advanced Information Networking and

Applications (AINA-08), March 25 -28 2008.

到 達 國 家

及 地 點
Okinawa, Japan 出 國

期 間

自 97 年 03 月 25 日

迄 97 年 03 月 28 日

內容提要

一、主要任務摘要（五十字以內）

 AINA-08 是網路相關研究領域一個大型的研討會。這一次參與AINA-08除了發表

相關研究成果以外，也在會場上看到許多新的研究成果與方向。此外，也與許多學術

界的朋友交換研究心得。

二、對計畫之效益（一百字以內）

 這一次參與 AINA-08 除了發表我們在此一計劃最新的研究成果以外，也在會場

中，向多位國內外學者解釋我們的研究內容，彼此交換研究心得。除了讓別的團隊

知道我們的研究方向與成果，我們也可以學習他人的研究經驗。藉此，加強國際合

作，提升我們的研究質量。

三、經過

 這一次在 Okinawa 所舉行的國際學術研討會議共計四天。第一天是 Workshop
Program。第二天，由Dr. Michel Raynal的專題演講， “Synchronization is Coming Back,
But is it the Same?” 作為研討會的開始。緊接著是五個平行的場次，分為上下午進

行。本人全程參與研討會的議程。晚上在大會的地點舉行歡迎晚宴。晚上本人亦參

加酒會，並且與幾位國外學者及中國、香港教授交換意見，合影留念。第三天，專

題演講是由 Dr. Shigeki Yamada 針對 “Cyber Science Infrastructure (CSI) for
Promoting Research Activities of Academia and Industries in Japan”發表演說。本人也參

 25

與的第三天全部的大會議程。晚宴，大會安排交通車到市郊一個花園餐廳舉行。最

後一天，本人亦參與了所有的場次，並且發表了這一次的論文。本人主要聽取 GRID
相關研究，同時獲悉許多新興起的研究主題，並了解目前國外大多數學者主要的研

究方向，並且把握最後一天的機會與國外的教授認識，希望能夠讓他們加深對台灣

研究的印象。四天下來，本人聽了許多優秀的論文發表。這些研究所涵蓋的主題包

含有：無線網路技術、網路安全、GRID、資料庫以及普及運算等等熱門的研究課題。

此次的國際學術研討會議有許多知名學者的參與，讓每一位參加這個會議的人士都

能夠得到國際上最新的技術與資訊。是一次非常成功的學術研討會。

四、心得

 參加本次的國際學術研討會議，感受良多。讓本人見識到許多國際知名的研究

學者以及專業人才，得以與之交流。讓本人與其他教授面對面暢談所學領域的種種

問題。看了眾多研究成果以及聽了數篇專題演講，最後，本人認為，會議所安排的

會場以及邀請的講席等，都相當的不錯，覺得會議舉辦得很成功，值得我們學習。

五、建議與結語

 出席國際會議，註冊費越來越貴(AINA-08 約兩萬元)，若會議在亞州舉行，補

助的經費免強足夠，但是若在歐美，經費往往不足。降低同學參與歐美的會議。
大會安排的會場以及邀請的講席等，都相當的不錯，覺得會議舉辦得很成功，

值得我們學習。

六、攜回資料

 論文集光碟片

七、出國行程表

3/25 前往 Okinawa 下午研討會報到，參與 AINA-08 Workshop Progra,
3/26 全日參與研討會
3/27 全日參與研討會
3/28 全日參與研討會、晚上飛機返回台灣

 26

(出席 AINA-08 研討會所發表之論文)

Towards Improving QoS-Guided Scheduling in Grids

Ching-Hsien Hsu1, Justin Zhan2, Wai-Chi Fang3
 and Jianhua Ma4

1Department of Computer Science and Information Engineering, Chung Hua University, Taiwan
chh@chu.edu.tw

2Heinz School, Carnegie Mellon University, USA
justinzh@andrew.cmu.edu

3Department of Electronics Engineering, National Chiao Tung University, Taiwan
wfang@mail.nctu.edu.tw

4Digital Media Department, Hosei University, Japan
jianhua@hosei.ac.jp

Abstract

With the emergence of grid technologies, the
problem of scheduling tasks in heterogeneous systems has
been arousing attention. In this paper, we present two
optimization schemes, Makespan Optimization
Rescheduling (MOR) and Resource Optimization
Rescheduling (ROR), which are based on the QoS
Min-Min scheduling technique, for reducing the
makespan of a schedule and the need of total resource
amount. The main idea of the proposed techniques is to
reduce overall execution time without increasing resource
need; or reduce resource need without increasing overall
execution time. To evaluate the effectiveness of the
proposed techniques, we have implemented both
techniques along with the QoS Min-Min scheduling
algorithm. The experimental results show that the MOR
and ROR optimization schemes provide noticeable
improvements.

1. Introduction

With the emergence of IT technologies,
the need of computing and storage are rapidly
increased. To invest more and more
equipments is not an economic method for an
organization to satisfy the even growing
computational and storage need. As a result,

grid has become a widely accepted paradigm
for high performance computing.

To realize the concept virtual organization,
in [13], the grid is also defined as “A type of
parallel and distributed system that enables the
sharing, selection, and aggregation of
geographically distributed autonomous and
heterogeneous resources dynamically at
runtime depending on their availability,
capability, performance, cost, and users'
quality-of-service requirements”. As the grid
system aims to satisfy users’ requirements with
limit resources, scheduling grid resources plays
an important factor to improve the overall
performance of a grid.

In general, grid scheduling can be
classified in two categories: the performance
guided schedulers and the economy guided
schedulers [16]. Objective of the performance
guided scheduling is to minimize turnaround
time (or makespan) of grid applications. On the
other hand, in economy guided scheduling, to
minimize the cost of resource is the main
objective. However, both of the scheduling

 27

problems are NP-complete, which has also
instigated many heuristic solutions [1, 6, 10, 14]
to resolve. As mentioned in [23], a complete
grid scheduling framework comprises
application model, resource model,
performance model, and scheduling policy. The
scheduling policy can further decomposed into
three phases, the resource discovery and
selection phase, the job scheduling phase and
the job monitoring and migration phase, where
the second phase is the focus of this study.

Although many research works have been
devoted in scheduling grid applications on
heterogeneous system, to deal with QOS
scheduling in grid is quite complicated due to
more constrain factors in job scheduling, such
as the need of large storage, big size memory,
specific I/O devices or real-time services,
requested by the tasks to be completed. In this
paper, we present two QoS based rescheduling
schemes aim to improve the makespan of
scheduling batch jobs in grid. In addition,
based on the QoS guided scheduling scheme,
the proposed rescheduling technique can also
reduce the amount of resource need without
increasing the makespan of grid jobs. The
main contribution of this work are twofold, one
can shorten the turnaround time of grid
applications without increasing the need of grid
resources; the other one can minimize the need
of grid resources without increasing the
turnaround time of grid applications, compared
with the traditional QoS guided scheduling
method. To evaluate the performance of the
proposed techniques, we have implemented our
rescheduling approaches along with the QoS
Min-Min scheduling algorithm [9] and the
non-QoS based Min-Min scheduling algorithm.
The experimental results show that the
proposed techniques are effective in
heterogeneous systems under different
circumstances. The improvement is also
significant in economic grid model [3].

The rest of this paper is organized as
follows. Section 2 briefly describes related
research in grid computing and job scheduling.
Section 3 clarifies our research model by
illustrating the traditional Min-min model and

the QoS guided Min-min model. In Section 4,
two optimization schemes for reducing the total
execution time of an application and reducing
resource need are presented, where two
rescheduling approaches are illustrated in detail.
We conduct performance evaluation and
discuss experiment results in Section 5. Finally,
concluding remarks and future work are given
in Section 6.

2. Related Work

Grid scheduling can be classified into traditional grid
scheduling and QoS guided scheduling or economic based
grid scheduling. The former emphasizes the
performance of systems of applications, such as system
throughput, jobs’ completion time or response time.
Swany et al. provides an approach to improving
throughput for grid applications with network logistics by
building a tree of “best” paths through the graph and has
running time of O(NlogN) for implementations that keep
the edges sorted [15]. Such approach is referred as the
Minimax Path (MMP) and employs a greedy,
tree-building algorithm that produces optimal results [20].
Besides data-parallel applications requiring high
performance in grid systems, there is a Dynamic Service
Architecture (DSA) based on static compositions and
optimizations, but also allows for high performance and
flexibility, by use of a lookahead scheduling mechanism
[4]. To minimizing the processing time of extensive
processing loads originating from various sources, the
approaches divisible load model [5] and single level tree
network with two root processors with divisible load are
proposed [12]. In addition to the job matching algorithm,
the resource selection algorithm is at the core of the job
scheduling decision module and must have the ability to
integrate multi-site computation power. The CGRS
algorithm based on the distributed computing grid model
and the grid scheduling model integrates a new
density-based internet clustering algorithm into the
decoupled scheduling approach of the GrADS and
decreases its time complexity [24]. The scheduling of
parallel jobs in a heterogeneous multi-site environment,
where each site has a homogeneous cluster of processors,
but processors at different sites has different speeds, is
presented in [18]. Scheduling strategy is not only in batch
but also can be in real-time. The SAREG approach
paves the way to the design of security-aware real-time
scheduling algorithms for Grid computing environments
[21].

For QoS guided grid scheduling,
apparently, applications in grids need various
resources to run its completion. In [17], an

 28

architecture named public computing utility
(PCU) is proposed uses virtual machine (VMs)
to implement “time-sharing” over the resources
and augments finite number of private resources
to public resources to obtain higher level of
quality of services. However, the QoS
demands maybe include various packet-type
and class in executing job. As a result, a
scheduling algorithm that can support multiple
QoS classes is needed. Based on this demand,
a multi-QoS scheduling algorithm is proposed
to improve the scheduling fairness and users’
demand [11]. He et al. [7] also presented a
hybrid approach for scheduling moldable jobs
with QoS demands. In [9], a novel framework
for policy based scheduling in resource
allocation of grid computing is also presented.
The scheduling strategy can control the request
assignment to grid resources by adjusting usage
accounts or request priorities. Resource
management is achieved by assigning usage
quotas to intended users. The scheduling
method also supports reservation based grid
resource allocation and quality of service
feature. Sometimes the scheduler is not only
to match the job to which resource, but also
needs to find the optimized transfer path based
on the cost in network. In [19], a distributed
QoS network scheduler (DQNS) is presented to
adapt to the ever-changing network conditions
and aims to serve the path requests based on a
cost function.

3. Research Architecture

Our research model considers the static
scheduling of batch jobs in grids. As this
work is an extension and optimization of the
QoS guided scheduling that is based on
Min-Min scheduling algorithm [9], we briefly
describe the Min-Min scheduling model and the
QoS guided Min-Min algorithm. To simplify
the presentation, we first clarify the following
terminologies and assumptions.

 QoS Machine (MQ) – machines can provide
special services.

 QoS Task (TQ) – tasks can be run
completion only on QoS machine.

 Normal Machine (MN) – machines can only
run normal tasks.

 Normal Task (TN) – tasks can be run
completion on both QoS machine and
normal machine.

 A chunk of tasks will be scheduled to run
completion based on all available machines
in a batch system.

 A task will be executed from the beginning
to completion without interrupt.

 The completion time of task ti to be
executed on machine mj is defined as

CTij = dtij + etij (1)

Where etij denotes the estimated execution time
of task ti executed on machine mj; dtij is the
delay time of task ti on machine mj.

The Min-Min algorithm is shown in Figure
1.

Algorithm_Min-Min()
{

while there are jobs to schedule
for all job i to schedule

for all machine j
Compute CTi,j = CT(job i, machine j)

end for
Compute minimum CTi,j

end for
Select best metric match m
Compute minimum CTm,n
Schedule job m on machine n

end while
} End_of_ Min-Min

Figure 1. The Min-Min Algorithm

Analysis: If there are m jobs to be scheduled in
n machines, the time complexity of Min-Min
algorithm is O(m2n). The Min-Min algorithm
does not take into account the QoS issue in the
scheduling. In some situation, it is possible
that normal tasks occupied machine that has
special services (referred as QoS machine).
This may increase the delay of QoS tasks or
result idle of normal machines.

The QoS guided scheduling is proposed to resolve
the above defect in the Min-Min algorithm. In QoS
guided model, the scheduling is divided into two classes,
the QoS class and the non-QoS class. In each class, the
Min-Min algorithm is employed. As the QoS tasks have
higher priority than normal tasks in QoS guided
scheduling, the QoS tasks are prior to be allocated on
QoS machines. The normal tasks are then scheduled to

 29

all machines in Min-Min manner. Figure 2 outlines the
method of QoS guided scheduling model with the
Min-Min scheme.

Analysis: If there are m jobs to be scheduled in
n machines, the time complexity of QoS guided
scheduling algorithm is O(m2n).

Figure 3 shows an example demonstrating
the Min-Min and QoS Min-Min scheduling
schemes. The asterisk * means that
tasks/machines with QoS demand/ability, and
the X means that QoS tasks couldn’t be
executed on that machine. Obviously, the
QoS guided scheduling algorithm gets the
better performance than the Min-Min algorithm
in term of makespan. Nevertheless, the QoS
guided model is not optimal in both makespan
and resource cost. We will describe the
rescheduling optimization in next section.

Algorithm_QOS-Min-Min()
{

for all tasks ti in meta-task Mv (in an arbitrary order)
for all hosts mj (in a fixed arbitrary order)

 CTij = etij + dtj
end for

end for
do until all tasks with QoS request in Mv are mapped

for each task with high QoS in Mv,
find a host in the QoS qualified host set that obtains
the earliest completion time

end for
find task tk with the minimum earliest completion time
assign task tk to host ml that gives the earliest completion
time
delete task tk from Mv
update dtl
update CTil for all i

end do
do until all tasks with non-QoS request in Mv are mapped

for each task in Mv
find the earliest completion time and the
corresponding host

 end for
find the task tk with the minimum earliest completion time
assign task tk to host ml that gives the earliest completion
time
delete task tk from Mv
update dtl

 update CTil for all i
end do

} End_of_ QOS-Min-Min

Figure 2. The QoS Guided Algorithm

4. Rescheduling Optimization

Grid scheduling works as the mapping of individual
tasks to computer resources, with respecting service level
agreements (SLAs) [2]. In order to achieve the
optimized performance, how to mapping heterogeneous

tasks to the best fit resource is an important factor. The
Min-Min algorithm and the QoS guided method aims at
scheduling jobs to achieve better makespan. However,
there are still having rooms to make improvements. In
this section, we present two optimization schemes based
on the QoS guided Min-Min approach.

 *M1 M2

T1 7 4

T2 3 3

T3 9 5

*T4 5 X

Machine

Makespan

A. The Min-Min algorithm B. The QOS guided scheduling algorithm

M3

7

5

7

X

T5 9 8 6

*T6 5 X X

Machine
0

M1 M2

*T4

*T6

T1

3

8

12

M3

T3

T5

Makespan

T2

0
M1 M2

T2

*T4

*T6

T13

8

13

M3

T3

T5

Figure 3. Min-Min and QoS Guided Min-Min

4.1 Makespan Optimization Rescheduling (MOR)

The first one is Makespan Optimization Rescheduling
(MOR), which focuses on improving the makespan to
achieve better performance than the QoS guided
scheduling algorithm. Assume the makespan achieved by
the QoS guided approach in different machines are CT1,
CT2, …, CTm, with CTk = max { CT1, CT2, …, CTm },
where m is the number of machines and 1 ≤ k ≤ m. By
subtracting CTk – CTi, where 1 ≤ i ≤ m and i ≠ k, we can
have m-1 available time fragments. According to the
size of these available time fragments and the size of tasks
in machine Mk, the MOR dispatches suitable tasks from
machine Mk to any other machine that has available and
large enough time fragments. Such optimization is
repeated until there is no task can be moved.

 30

 12

 *M1 M2

T1 7 4

T2 3 3

T3 9 5

*T4 5 X

B. The Makespan Optimization
Rescheduling (MOR) algorithm

M3

7

5

7

X

T5 9 8 6

*T6 5 X X

Machine 0
*M1 M2

*T4

*T6

T1 3

8

11

M3

T3

T5

Makespan

T2

Machine

T1

T2

T3

M2

T5

M3

A. The QOS guided scheduling
algorithm

*T6

*T4

*M1

Makespan

12

8

3

Figure 4. Example of MOR

Recall the example given in Figure 3,

Figure 4 shows the optimization of the MOR
approach. The left side of Figure 4
demonstrates that the QoS guided scheme gives
a schedule with makespan = 12, wheremachine
M2 presents maximum CT (completion time),
which is assembled by tasks T2, T1 and T3.
Since the CT of machine ‘M3’ is 6, so ‘M3’ has
an available time fragment (6). Checking all
tasks in machine M2, only T2 is small enough
to be allocated in the available time fragment in
M3. Therefore, task M2 is moved to M3,
resulting machine ‘M3’ has completion time
CT=11, which is better than the QoS guided
scheme.

As mentioned above, the MOR is based on the QoS
guided scheduling algorithm. If there are m tasks to be
scheduled in n machines, the time complexity of MOR is
O(m2n). Figure 5 outlines a pseudo of the MOR scheme.

Algorithm_MOR()
{

for CTj in all machines
find out the machine with maximum makespan CTmax and
set it to be the standard

end for
do until no job can be rescheduled

for job i in the found machine with CTmax
 for all machine j

 according to the job’s QOS demand, find the
adaptive machine j

if (the execute time of job i in machine j + the
CTj < makespan)

 rescheduling the job i to machine j
 update the CTj and CTmax

 exit for
end if

 next for
 if the job i can be reschedule

find out the new machine with maximum CTmax
 exit for

end if
next for

end do
} End_of_ MOR

Figure 5. The MOR Algorithm

4.2 Resource Optimization Rescheduling (ROR)

Following the assumptions described in MOR, the main
idea of the ROR scheme is to re-dispatch tasks from the
machine with minimum number of tasks to other
machines, expecting a decrease of resource need.
Consequently, if we can dispatch all tasks from machine
Mx to other machines, the total amount of resource need
will be decreased.

Figure 6 gives another example of QoS scheduling,
where the QoS guided scheduling presents makespan = 13.
According to the clarification of ROR, machine ‘M1’ has
the fewest amount of tasks. We can dispatch the task
‘T4’ to machine ‘M3’ with the following constraint

CTij + CTj <= CTmax (2)

The above constraint means that the rescheduling can be
performed only if the movement of tasks does not
increase the overall makespan. In this example, CT43 = 2,
CT3=7 and CTmax=CT2=13. Because the makespan of
M3 (CT3) will be increased from 7 to 9, which is smaller
than the CTmax, therefore, the task migration can be
performed. As the only task in M1 is moved to M3, the
amount of resource need is also decreased comparing
with the QoS guided scheduling.

 31

 M1 *M2

T1 3 4

T2 6 6

*T3 X 7

T4 4 6

B. The Resource Optimization Rescheduling
(ROR) Algorithm

M3

2

3

X

2

T5 5 7 2

*T6 X 6 X

Machine
0

M1 *M2

*T6

T1

4

8

13

M3

*T3

T5

T2

Makespan

Machine

T4

M1

A. The QOS guided scheduling

0
*M2

T4
*T6

T1

4

8

13

M3

*T3

T5

T2

Makespan

Figure 6. Example of ROR

The ROR is an optimization scheme which aims to

minimize resource cost. If there are m tasks to be
scheduled in n machines, the time complexity of ROR is
also O(m2n). Figure 7 depicts a high level description of
the ROR optimization scheme.

Algorithm_MOR()
{

for m in all machines
 find out the machine m with minimum count of jobs

end for
do until no job can be rescheduled

for job i in the found machine with minimum count of jobs
 for all machine j

according to the job’s QOS demand, find the
adaptive machine j
if (the execute time of job i in machine j + the

CTj <= makespan CTmax)
 rescheduling the job i to machine j
 update the CTj
 update the count of jobs in machine m and

machine j
 exit for

end if
 next for

next for
end do

} End_of_ MOR

Figure 7. The ROR Algorithm
5. Performance Evaluation

5.1 Parameters and Metrics

To evaluate the performance of the proposed
techniques, we have implemented the Min-Min
scheduling algorithm and the QoS guided Min-Min
scheme. The experiment model consists of heterogeneous
machines and tasks. Both of the Machines and tasks are
classified into QoS type and non-QoS type. Table 1
summarizes six parameters and two comparison metrics
used in the experiments. The number of tasks is ranged
from 200 to 600. The number of machines is ranged from
50 to 130. The percentage of QoS machines and tasks are
set between 15% and 75%. Heterogeneity of tasks are
defined as Ht (for non-QoS task) and HQ (for QoS task),
which is used in generating random tasks. For example,
the execution time of a non-QoS task is randomly
generated from the interval [10, Ht×102] and execution
time of a QoS task is randomly generated from the
interval [102, HQ×103] to reflect the real application world.
All of the parameters used in the experiments are
generated randomly with a uniform distribution. The
results demonstrated in this section are the average values
of running 100 random test samples.

Table 1: Parameters and Comparison Metrics

Task number (NT) {200, 300, 400, 500, 600}

Resource number (NR) {50, 70, 90, 110, 130}

Percentage of QOS resources (QR %) {15%, 30%, 45%, 60%, 75%}

Percentage of QOS tasks (QT %) {15%, 30%, 45%, 60%, 75%}

Heterogeneity of non-QOS tasks (HT) {1, 3, 5, 7, 9}

Heterogeneity of QOS tasks (HQ) {3, 5, 7, 9, 11}

Makespan The completion time of a set of
tasks

Resource Used (RU) Number of machines used for
executing a set of tasks

5.2 Experimental Results of MOR

Table 2 compares the performance of the MOR, Min-Min
algorithm and the QoS guided Min-Min scheme in term
of makespan. There are six tests that are conducted with
different parameters. In each test, the configurations are
outlined beside the table caption from (a) to (f). Table (a)
changes the number of tasks to analyze the performance
results. Increasing the number of tasks, improvement of
MOR is limited. An average improvement ratio is from
6% to 14%. Table (b) changes the number of machines.
It is obvious that the MOR has significant improvement in
larger grid systems, i.e., large amount of machines. The
average improvement rate is 7% to 15%. Table (c)
discusses the influence of changing percentages of QoS
machines. Intuitionally, the MOR performs best with
45% QoS machines. However, this observation is not
always true. By analyzing the four best ones in (a) to (d),
we observe that the four tests (a) NT=200 (NR=50, QR=30%,
QT=20%) (b) NR=130 (NT=500, QR=30%, QT=20%) (c)

 32

QR=45% (NT=300, NR=50, QT=20%) and (d) QT=15%
(NT=300, NR=50, QR=40%) have best improvements. All of
the four configurations conform to the following relation,

0.4 × (NT × QT) = NR × QR (3)

This observation indicates that the improvement of MOR
is significant when the number of QoS tasks is 2.5 times
to the number of QoS machines. Tables (e) and (f)
change heterogeneity of tasks. We observed that
heterogeneity of tasks is not critical to the improvement
rate of the MOR technique, which achieves 7%
improvements under different heterogeneity of tasks.

Table 2: Comparison of Makespan

(a) (NR=50, QR=30%, QT=20%, HT=1, HQ=1)
Task Number (NT) 200 300 400 500 600

Min-Min 978.2 1299.7 1631.8 1954.6 2287.8

QOS Guided Min-Min 694.6 917.8 1119.4 1359.9 1560.1

MOR 597.3 815.5 1017.7 1254.8 1458.3

Improved Ratio 14.01% 11.15% 9.08% 7.73% 6.53%

(b) (NT=500, QR=30%, QT=20%, HT=1, HQ=1)
Resource Number (NR) 50 70 90 110 130

Min-Min 1931.5 1432.2 1102.1 985.3 874.2

QOS Guided Min-Min 1355.7 938.6 724.4 590.6 508.7

MOR 1252.6 840.8 633.7 506.2 429.4

Improved Ratio 7.60% 10.42% 12.52% 14.30% 15.58%

(c) (NT=300, NR=50, QT=20%, HT=1, HQ=1)
QR% 15% 30% 45% 60% 75%

Min-Min 2470.8 1319.4 888.2 777.6 650.1

QOS Guided Min-Min 1875.9 913.6 596.1 463.8 376.4

MOR 1767.3 810.4 503.5 394.3 339.0

Improved Ratio 5.79% 11.30% 15.54% 14.99% 9.94%

(d) (NT=300, NR=50, QR=40%, HT=1, HQ=1)
QT% 15% 30% 45% 60% 75%

Min-Min 879.9 1380.2 1801.8 2217.0 2610.1

QOS Guided Min-Min 558.4 915.9 1245.2 1580.3 1900.6

MOR 474.2 817.1 1145.1 1478.5 1800.1

Improved Ratio 15.07% 10.79% 8.04% 6.44% 5.29%

(e) (NT=500, NR=50, QR=30%, QT=20%, HQ=1)
HT 1 3 5 7 9

Min-Min 1891.9 1945.1 1944.6 1926.1 1940.1

QOS Guided Min-Min 1356.0 1346.4 1346.4 1354.9 1357.3

MOR 1251.7 1241.4 1244.3 1252.0 1254.2

Improved Ratio 7.69% 7.80% 7.58% 7.59% 7.59%

(f) (NT=500, NR=50, QR=30%, QT=20%, HT=1)
HQ 3 5 7 9 11

Min-Min 1392.4 1553.9 1724.9 1871.7 2037.8

QOS Guided Min-Min 867.5 1007.8 1148.2 1273.2 1423.1

MOR 822.4 936.2 1056.7 1174.3 1316.7

Improved Ratio 5.20% 7.11% 7.97% 7.77% 7.48%

5.3 Experimental Results of ROR

Table 3 analyzes the effectiveness of the ROR technique
under different circumstances.

Table 3: Comparison of Resource Used

(a) (NR=100, QR=30%, QT=20%, HT=1, HQ=1)
Task Number (NT) 200 300 400 500 600

QOS Guided Min-Min 100 100 100 100 100

ROR 39.81 44.18 46.97 49.59 51.17

Improved Ratio 60.19% 55.82% 53.03% 50.41% 48.83%

(b) (NT=500, QR=30%, QT=20%, HT=1, HQ=1)
Resource Number (NR) 50 70 90 110 130

QOS Guided Min-Min 50 70 90 110 130

ROR 26.04 35.21 43.65 50.79 58.15

Improved Ratio 47.92% 49.70% 51.50% 53.83% 55.27%

(c) (NT=500, NR=50, QT=20%, HT=1, HQ=1)

QR% 15% 30% 45% 60% 75%

QOS Guided Min-Min 50 50 50 50 50

ROR 14.61 25.94 35.12 40.18 46.5

Improved Ratio 70.78% 48.12% 29.76% 19.64% 7.00%

(d) (NT=500, NR=100, QR=40%, HT=1, HQ=1)

QT% 15% 30% 45% 60% 75%

QOS Guided Min-Min 100 100 100 100 100

ROR 57.74 52.9 48.54 44.71 41.49

Improved Ratio 42.26% 47.10% 51.46% 55.29% 58.51%

(e) (NT=500, NR=100, QR=30%, QT=20%, HQ=1)

HT 1 3 5 7 9

QOS Guided Min-Min 100 100 100 100 100

ROR 47.86 47.51 47.62 47.61 47.28

Improved Ratio 52.14% 52.49% 52.38% 52.39% 52.72%

(f) (NT=500, NR=100, QR=30%, QT=20%, HT=1)
HQ 3 5 7 9 11

QOS Guided Min-Min 100 100 100 100 100

ROR 54.61 52.01 50.64 48.18 46.53

Improved Ratio 45.39% 47.99% 49.36% 51.82% 53.47%

 33

Similar to those of Table 2, Table (a) changes the

number of tasks to verify the reduction of resource that
needs to be achieved by the ROR technique. We noticed
that the ROR has significant improvement in minimizing
grid resources. Comparing with the QoS guided
Min-Min scheduling algorithm, the ROR achieves 50% ~
60% improvements without increasing overall makespan
of a chunk of grid tasks. Table (b) changes the number
of machines. The ROR retains 50% improvement ratio.
Table (c) adjusts percentages of QoS machine. Because
this test has 20% QoS tasks, the ROR performs best at
15% QoS machines. This observation implies that the
ROR has significant improvement when QoS tasks and
QoS machines are with the same percentage. Table (d)
sets 40% QoS machine and changes the percentages of
QoS tasks. Following the above analysis, the ROR
technique achieves more than 50% improvements when
QoS tasks are with 45%, 60% and 75%. Tables (e) and
(f) change the heterogeneity of tasks. Similar to the
results of section 5.2, the heterogeneity of tasks is not
critical to the improvement rate of the ROR technique.
Overall speaking, the ROR technique presents 50%
improvements in minimizing total resource need compare
with the QoS guided Min-Min scheduling algorithm.

6. Conclusions
In this paper we have presented two optimization

schemes aiming to reduce the overall completion time
(makespan) of a chunk of grid tasks and minimize the
total resource cost. The proposed techniques are based
on the QoS guided Min-Min scheduling algorithm. The
optimization achieved by this work is twofold; firstly,
without increasing resource costs, the overall task
execution time could be reduced by the MOR scheme
with 7%~15% improvements. Second, without increasing
task completion time, the overall resource cost could be
reduced by the ROR scheme with 50% reduction on
average, which is a significant improvement to the state of
the art scheduling technique. The proposed MOR and
ROR techniques have characteristics of low complexity,
high effectiveness in large-scale grid systems with QoS
services.

References

[1] A. Abraham, R. Buyya, and B. Nath, "Nature’s Heuristics for

Scheduling Jobs on Computational Grids", Proc. 8th IEEE
International Conference on Advanced Computing and
Communications (ADCOM-2000), pp.45-52, 2000.

[2] A. Andrieux, D. Berry, J. Garibaldi, S. Jarvis, J. MacLaren, D.
Ouelhadj, D. Snelling, "Open Issues in Grid Scheduling",
National e-Science Centre and the Inter-disciplinary Scheduling
Network Technical Paper, UKeS-2004-03.

[3] R. Buyya, D. Abramson, Jonathan Giddy, Heinz Stockinger,

“Economic Models for Resource Management and Scheduling
in Grid Computing”, Journal of Concurrency: Practice and
Experience, vol. 14, pp. 13-15, 2002.

[4] Jesper Andersson, Morgan Ericsson, Welf Löwe, and Wolf
Zimmermann, "Lookahead Scheduling for Reconfigurable
GRID Systems", 10th International Europar'04: Parallel
Processing, vol. 3149, pp. 263-270, 2004.

[5] D Yu, Th G Robertazzi, "Divisible Load Scheduling for Grid
Computing", 15th IASTED Int’l. Conference on Parallel and
Distributed Computing and Systems, Vol. 1, pp. 1-6, 2003

[6] Fangpeng Dong and Selim G. Akl, "Scheduling Algorithms for
Grid Computing: State of the Art and Open Problems",
Technical Report No. 2006-504, 2006.

[7] Ligang He, Stephen A. Jarvis, Daniel P. Spooner, Xinuo Chen,
Graham R. Nudd, "Hybrid Performance-oriented Scheduling of
Moldable Jobs with QoS Demands in Multiclusters and Grids",
Grid and Cooperative Computing (GCC 2004), vol. 3251, pp.
217–224, 2004.

[8] Xiaoshan He, Xian-He Sun, Gregor Von Laszewski, "A QoS
Guided Scheduling Algorithm for Grid Computing", Journal of
Computer Science and Technology, vol.18, pp.442-451, 2003.

[9] Jang-uk In, Paul Avery, Richard Cavanaugh, Sanjay Ranka,
"Policy Based Scheduling for Simple Quality of Service in Grid
Computing", IPDPS 2004, pp. 23, 2004.

[10] J. Schopf. "Ten Actions when Superscheduling: A Grid
Scheduling Architecture", Scheduling Architecture Workshop,
7th Global Grid Forum, 2003.

[11] Junsu Kim, Sung Ho Moon, and Dan Keun Sung, "Multi-QoS
Scheduling Algorithm for Class Fairness in High Speed
Downlink Packet Access", Proceedings of IEEE Personal,
Indoor and Mobile Radio Communications Conference (PIMRC
2005), vol. 3, pp. 1813-1817, 2005

[12] M.A. Moges and T.G. Robertazzi, "Grid Scheduling Divisible
Loads from Multiple Sources via Linear Programming", 16th
IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS), pp. 423-428, 2004.

[13] M. Baker, R. Buyya and D. Laforenza, "Grids and Grid
Technologies for Wide-area Distributed Computing", in Journal
of Software-Practice & Experience, Vol. 32, No.15, pp.
1437-1466, 2002.

[14] Jennifer M. Schopf, "A General Architecture for Scheduling on
the Grid", Technical Report ANL/MCS, pp. 1000-1002, 2002.

[15] M. Swany, "Improving Throughput for Grid Applications with
Network Logistics", Proc. IEEE/ACM Conference on High
Performance Computing and Networking, 2004.

[16] R. Moreno and A.B. Alonso, "Job Scheduling and Resource
Management Techniques in Economic Grid Environments",
LNCS 2970, pp. 25-32, 2004.

[17] Shah Asaduzzaman and Muthucumaru Maheswaran,
"Heuristics for Scheduling Virtual Machines for Improving QoS
in Public Computing Utilities", Proc. 9th International
Conference on Computer and Information Technology
(ICCIT’06), 2006.

[18] Gerald Sabin, Rajkumar Kettimuthu, Arun Rajan and P
Sadayappan, "Scheduling of Parallel Jobs in a Heterogeneous
Multi-Site Environment", in the Proc. of the 9th International
Workshop on Job Scheduling Strategies for Parallel Processing,
LNCS 2862, pp. 87-104 , June 2003.

[19] Sriram Ramanujam, Mitchell D. Theys, "Adaptive Scheduling
based on Quality of Service in Distributed Environments",
PDPTA’05, pp. 671-677, 2005.

[20] T. H. Cormen, C. L. Leiserson, and R. L. Rivest, "Introduction
to Algorithms", First edition, MIT Press and McGraw-Hill,
ISBN 0-262-03141-8, 1990.

[21] Tao Xie and Xiao Qin, "Enhancing Security of Real-Time
Applications on Grids through Dynamic Scheduling", Proc. the
11th Workshop on Job Scheduling Strategies for Parallel

 34

Processing (JSSPP'05), pp. 146-158, 2005.
[22] Haobo Yu, Andreas Gerstlauer, Daniel Gajski, "RTOS

Scheduling in Transaction Level Models", in Proc. of the 1st
IEEE/ACM/IFIP international conference on Hardware/software
Codesign & System Synpaper, pp. 31-36, 2003.

[23] Y. Zhu, "A Survey on Grid Scheduling Systems", LNCS 4505,
pp. 419-427, 2007.

[24] Weizhe Zhang, Hongli Zhang, Hui He, Mingzeng Hu,
"Multisite Task Scheduling on Distributed Computing Grid",
LNCS 3033, pp. 57–64, 2004.

