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一、中文摘要 

 
本報告是有關於在異質性網格環境上開

發複合式資源排程技術之設計，並且發展具有

平台透通性的分析工具。本計畫有三個主要的

研究課題：一、發展適應於叢集網格環境之主

從式工作排程技術。此項成果可以直接移植到

叢集網格的工作排程系統。二、發展複合式資

源排程的核心技術。針對異質的計算網格系統

與網格拓僕，開發最佳化的評估模組；並以實

際的 work load trace tape，分析系統的效能。

三、發展具有平台透通性的系統資源排程、調

整與學習工具。鑒於網格平台在大量計算與高

性能科學應用上漸漸普及，本計畫之研究成果

可以直接應用在發展高效能叢集式與網格計

算之實驗環境。 
 

關鍵詞：異質計算、網格計算、複合式排程、

資源排程、工作排程、主從式架構。 
 

Abstract 
 

This report presents the project to design 
analysis and implement a composite resource 
scheduler and a platform mutual analysis tool on 
heterogeneous grids.  There are three major 
subjects in this research:  first, we will develop 
master-slave task scheduling technologies which 
can be directly incorporated on cluster grid; 

second, we will develop the main technique of 
composite resource scheduler.  For 
heterogeneous grid and its topology, we will 
devise optimized performance analysis model 
and analyze system efficiency according to a set 
of real work load trace tape from SDSC; third, 
we will develop platform mutual resource 
scheduling and learning tool.  Whereas the grid 
computing becomes widespread for massive 
computing and high performance scientific 
applications, the achievements of this research 
will facilitate constructing high performance 
cluster and grid systems. 

 
Keywords: Heterogeneous Computing, Grid 
Computing, Composite Scheduling, Resource 
Scheduling, Task Scheduling, Master Slave. 
 
二、緣由與目的 
 

  格網計算的技術在近幾年被運用在整合

各種類型網路環境下的各種資源，其目標在於

讓使用者將來處理大量資料和龐大的計算時

能在最短的時間內獲得最有效率的執行成

果，所以格網運算技術簡單的說就是利用大規

模整合的電腦系統，搭配有效率的網路傳輸，

可依照使用者的需求，提供大量的資料處理功

能。在異質網路架構下，資源排程的技術是很
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重要的，排程的主要目的即是讓參與執行工作

的眾多處理器發揮最大的效能，配合網路頻寬

做最佳化的傳輸，並且必需讓各處理器閒置時

間降到最低，以及降低處理器的閒置時間。這

些研究的方向使得格網的高效能運算技術有

更多的發展空間。為了結合格網環境與最佳化

的資源排程技術，在主從式架構下的網路計算

環境所從事的大量工作排程運算技術所延伸

的相關問題就是相當值得研究的課題。在格網

與主從式架構下，工作排程的良好與否直接影

響了程式的完成時間與是否有妥善的運用系

統資源。主從式架構下的資源排程可以避免單

一個處理器負擔太重，而增加整個工作的結束

時間，以達到高效能的計算原則。另一方面，

在主從式架構與格網計算的環境下，要有效率

的執行主機交付的工作，適當的資料傳輸排程

配合執行排班也是很重要的。在異質性的網路

計算環境上的研究資源的配置，動態的新增閒

置的處理器，以及工作環境的管理，甚至資料

安全性的問題都是及待解決與改良的問題。另

一方面、過去許多研究根據處理器的異質性來

安排工作排程，或根據網路頻寬來執行工作排

程。這些研究通常就單一系統因素來考量工作

排程，然而，在某些情況下可能無法達到系統

的 公 平 性 (fairness) 與 最 佳 效 率 與 產 能

(throughput)。在這一個研究計畫中，我們將探

討複合式的工作排程技術(composite resource 
scheduler)，將異質性的 CPU 運算、以及異質

性網路頻寬，同時納入考量，作為執行工作分

派的主要核心技術。複合式工作排程技術的主

要優點可以提升系統整體的公平性，降低反應

與延遲時間(delay guarantee)以及提升系統的

整體產能。 
 
三、研究方法與成果 

 
由於處理器需要收到連續工作資料

(Task)，如果處理器數量增加，則某些演算法

不容易有效率地執行資料傳輸和執行。為了降

低處理器所浪費的閒置時間，發展有效率的工

作排程演算法是必需的。主要研究工作包含處

理器運算能力配置對整體程式執行的必要性

及其在效能上的影響，以及現有資源排程的技

術移植與測試。針對 CPU、頻寬的異質性開

發複合式資源排程技術。研究的重點有系統產

能的提升，資源使用率的提升，系統閒滯、反

應、與延遲時間的縮短，此一部分也包含了資

料傳輸最佳化與工作排程演算法的最佳化；此

外，我們也將探討如何將前述發展的技術應用

在異質性網格拓僕架構，其中除了異質性工作

分割的探討之外，還包含工作重新分派排程的

技術。 
執行工作排程時，需考量處理器與異質性

網路頻寬以及資料量大小，圖一顯示，叢集式

網格系統上工作分派示意圖，不同的網格計算

節點的運算能力是不同的。在一個網格系統

中，Master 表示資源分派節點，亦可視為

Resource Scheduler。異質的工作佇列將由

Master 分派至各個運算節點。在這一個部分的

系統架構之下，我們假設工作的執行是不可以

插隊的，也就是說系統資源一旦分配給某個工

作，其他的工作不可以同時使用。在通訊的部

分，網格系統上Resource Scheduler與 Peer Node
之間的 communication 亦視為 Heterogeneous。
而其之間的 communication 則假設需要彼此互

斥(Exclusive)。 
 

 
圖一、叢集式網格系統工作分派示意圖 

 

處理器與工作排程的關係主要是由兩個

變數 Ti_comm (單元工作傳輸時間)與 Ti (單元工

作執行時間) 所組成。如圖二所示，C1 到 C4

為四個不同區域中的子處理器連結至

Master-Server，而 P1到 P4表示子處理器皆有
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不同的運算能力，所需的傳送時間為 T1 到
T2，T1_comm到 T4_comm即為 Master-Server 傳送一

個工作到各區域之處理器所需之單位時間。 
本計畫第一年所提出的資源排程演算法

為 Shortest Communication Ratio (SCR)，主要

分為三個部份。第一個部分先對需要參與計算

的節點處理器排程，如圖一中的 P1到 P4，排

序依序為處理器中擁有最快執行效能 P1 到最

慢 P4 處理器執行效能。 

Master Server

C1 : P1 C2 : P2 

C3 : P3 C4 : P4
 

圖二、異質性處理器與異質性網路頻寬示意圖 
 

第二部份使用參與運算的處理器之

(Ti_comm + Ti) 計算其最小公倍數的概念將計

算出每一個處理器在每一個基本排程週期

(Basic Scheduling Cycle)將接收多少數量的工

作以利於系統的排程。 
第三部份依照所計算出的基本排程週期

內每個處理器所佔的資料傳輸時間比例大小

來分配，讓資料傳輸時間比例小(換言之為資

料執行時間比例較長)的處理器優先接收工作

以利於提早執行，如此一來可以讓每個處理器

減少等待時間。 
本計畫在第二年提出了三個改良的 SCR

資 源 排 程 演 算 法 分 別 為 SCR-Best-fit 、
SCR-Worst-fit and Extended SCR (ESCR)，除了

先前的三個部份，第四部份分別利用 Best-fit、
Worst-fit 與二元逼進法(Binary approximation 
method)使每個處理器在有限的排程週期

(Scheduling Cycle)、或者在有限的工作結束時

間內(Deadline)增加最大的工作接收與處理數

量而不會造成資源的閒置與浪費。 
SCR 演 算 法 與 Greedy, FPF (Fast 

Processor First) 演算法 [5,6]最大的不同在於

Greedy 演算法為工作單一傳送至處理器做運

算，在系統執行期間會因為沒有考慮到工作整

批傳送的優點產生許多零碎的系統閒置時

間，而 FPF 演算法雖然考慮到工作整批傳送,
但忽略的異質性網路頻寬所造成的影響，導致

有效率的處理器雖然收到比較多工作，但相對

的也增加傳輸負載，如此一來其他的處理器必

需等待更長的時間才可以接收工作。所以 SCR
演算法減少的處理器等待時間與閒置時間，進

而提升整體輸出效能。 
舉例說明 SCR 排程演算法，如圖二之架

構，假設 T1_comm=5， T2_comm=2， T3_comm=1， 
T4_comm=3； T1=3，T2=6， T3=11， T4=13，

分述如下： 
第一步：在圖中，處理器依照單位工作執

行時間( Ti )排序。假設有 n 個節點，則對處理

器排序完後得到集合為<P1, P2, …, Pn>。 

第二步：由步驟一排序節點的結果中所需

之 Ti 與各節點之單位工作傳輸時間 Ti_comm 
計算其最小公倍數 LCM=(5+3, 2+6, 1+11, 
3+13)= 48，計算出處理器 P1到 P4在每一個基

本排程週期(BSC)接收(6, 6, 4, 3)個單位數量

的工作。 
第三步：依照所計算出的基本排程週期內

每個處理器所佔的資料傳輸時間比例大小來

分配，P3 資料傳輸時間比例小(換言之為資料

執行時間比例較長)優先接收工作以利於提早

執行，如此一來可以讓每個處理器減少等待時

間，執行順序依序為 P3, P4, P2 , P1。 
如圖三中所顯示，SCR 演算法讓資料傳

輸時間比例小的節點先接收工作，所以減少其

他節點的等待時間，而參與計算的節點皆有接

收工作並參與執行進而提升系統效能。 
在此範例中工作排程為有限的三個排程

週期(BSC)而工作結束時間(Deadline)為 183。
在 P1的最後一個排程週期結束之前，P2 ,P3, P4, 
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皆有些許的閒置時間在等待 P1 結束正在執行的

工作。為了善用這些可用的處理器資源，必需

在 183 單位時間內增加傳送些許工作給 P2 ,P3, 

P4。改良的 SCR 資源排程演算法 SCR-Best-fit
與 SCR-Worst-fit 將可解決這個問題。 

圖三、SCR 排程演算法模擬示意圖。 

 

如圖四中所顯示，SCR-Best-fit 演算法除了

讓資料傳輸時間比例小的節點先接收工作之

外，每個運算節點逼近 Deadline = 183 時皆有

接收工作並參與執行進而提升系統效能。最後

一個週期的閒置時間為 22 單位時間。 
 

圖四、SCR-Best-fit 排程演算法模擬示意圖。 

 

如圖五中所顯示，SCR-Worst-fit 演算法

中，每個運算節點逼近 Deadline = 183 時皆有

接收工作並參與執行進而提升系統效能。與

SCR-Best-fit 演算法的不同僅在於最後的工作

分配順序不同導致系統閒置時間(idle)有些微

差異。最後一個週期的閒置時間為 24。 
為了證實本計畫開發的排程演算法為有

效率的排程演算法，我們利用同一個架構下的

範例之 Largest Communication Ratio (LCR)與
FPF 演算法排程結果做為比較。可以觀察到在

同一個架構下，LCR 與 FPF 演算法著重於較高

的執行節點優先接收工作導致處理器閒置時間

與系統初始等待時間皆大於 SCR 演算法。 

圖五、SCR-Worst-fit 排程演算法模擬示意圖。 

 
如圖六(a)與(b)所示，依照處理器效能排

序，執行順序依序為 P1, P2, P3,, P4，而 P2, P3,, P4 

的初始等待時間總合 Wi大於 SCR 演算法，某些情

況甚至 FPF 演算法的閒置時間過長導致 P4 無

法參與計算而造成浪費，降低系統效能。 

 
(a) 

(b) 

圖六、(a) SCR 排程演算法模擬示意圖、 
(b) FPF 排程演算法模擬示意圖。 
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    為了讓整體系統效能更加提升與具有彈

性，我們設計了 Extended SCR (ESCR)的演算

法，在 SCR 排程中的閒置空間，利用二元逼

進法使每個處理器在系統所設定的排程週期

內與在有限的工作結束時間內增加最大的工

作處理數量。 
如圖七中所顯示，此範例中，ESCR 演算

法利用二元逼進法使每個處理器在第 j-1 到

j+1 的排程週期內指定完成 66 個工作。每個

運算節點逼近 Deadline = 199 時皆有接收工作

並參與執行進而提升系統效能。ESCR 可依照

使用者指定固定的工作數量或最後的截止時

間，最後一個週期的閒置時間為 12。 
 

 

 
 

圖七、ESCR 排程演算法模擬示意圖。 
 

如圖八中 ESCR 的二元逼進法，當指定固

定的工作數量時，系統會自動辨別工作完成時

間落在那一個週期，並且找出 Makespan 將可

確保最短的時間內完成指定的工作數量。 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
圖八、ESCR 的二元逼進演算法 

    我們針對不同的處理器配置情形與格網

異質性網路環境和各個工作排程演算法進行

分析，發現排程演算法最佳化或與花費最少排

程時間與處理器的異質性有關聯。 
圖九的數據模擬為設定每個處理器取得

的計算能力為正負十，而網路頻寬差距為正負

四，系統執行週期設定為 1 到 5 的基本排程週

期，處理器的節點數量為五個節點的平均系統

效能輸出比較。 
 

圖九、不同基本排程週期下的 FPF，SCR_W，LCR，
SCR，SCR_B 排程步驟效能輸出數據比較 

 
圖十的數據模擬為設定每個處理器取得

的計算能力為正負十，而網路頻寬差距為正負

四，系統執行週期設定為 1 到 5 的基本排程週

期，處理器的節點數量為五個節點的處理器等

待時間比較。 
 

圖十、不同基本排程週期下的 FPF，SCR_W，LCR，
SCR，SCR_B 排程步驟處理器等待時間比較 

 
圖十一的數據模擬為設定每個處理器取

得的計算能力為正負十，而網路頻寬差距為正

負四，系統執行時間設定為 50 到 2000，處理

器的節點數量為五個節點的處理器系統效能

Algorithm_ESCR_Binary_Approcimation (Ti, Ti_comm, Qtask)

// Qtask is the amount of tasks to be processed 

01. While ( !( ESCR
finishTask (x) = Qtask) ) { 

02.    Left_t= )( 1−j
SCR
finish BSCT ; 

03.    Right_t= )( 1+j
SCR
finish BSCT ; 

04. x=1/2(Left_t+ Right_t); 
05. if ( ESCR

finishTask (x) > Qtask) 

06. x=1/2(x+ Right_t) 

07.       else if  ( ESCR
finishTask (x)< Qtask) 

08. x=1/2(Left_t+x)                   } 

09.   makespan = x; 
End_of_ESCR_Binary_Approcimation 
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輸出比較。 
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圖十一、不同系統執行時間下的 ESCR，Greedy，
FPF 排程步驟效能輸出數據比較 

 
圖十二的數據模擬為設定每個處理器取

得的計算能力為正負十，而網路頻寬差距為正

負四，系統執行時間設定為 50 到 2000，處理

器的節點數量為五個節點的處理器等待時間

比較。 
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圖十二、不同節點數目下的 ESCR，Greedy，FPF
排程步驟處理器等待時間比較 

 
圖十三的數據模擬為設定每個處理器取

得的計算能力為正負五至正負十，而網路頻寬

差距為正負五至正負十，系統執行時間設定為

10000，處理器的節點數量為五個節點至二十

五個節點的處理器系統平均效能輸出比較。 
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圖十三、不同節點數目下的 Greedy、FPF，SCR，
ESCR 排程步驟平均效能輸出數據比較 

圖十四的數據模擬為設定每個處理器取

得的計算能力為正負十，而網路頻寬差距為正

負五，系統執行時間設定為 5000 至 25000，
處理器的節點數量為二十五個節點的處理器

系統平均效能輸出比較。 
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圖十四、不同系統執行時間下的 Greedy、FPF，
SCR，ESCR 排程步驟平均效能輸出數據比較 

 

圖十五的數據模擬為設定每個處理器取

得的計算能力為正負十，而網路頻寬差距為正

負五，系統工作數量設定為 50 至 6400，處理

器的節點數量為十個節點的處理器系統平均

效能輸出比較。 
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圖十五、不同工作數量下的 Greedy、FPF，SCR，
ESCR 排程步驟平均效能輸出數據比較 

 
圖十六的數據模擬為設定每個處理器取得

的計算能力為正負十，而網路頻寬差距為正負

十，系統工作數量設定為 50 至 6400，處理器

的節點數量為十個節點的處理器系統平均錯誤

比較。平均錯誤的定義為參與運算的所有處理

器節點中，沒有收到工作的節點數量，SCR 與

ESCR 演算法每個節點皆有接受工作並且執

行，不會產生系統錯誤。 
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圖十六、不同工作數量下的 Greedy、FPF，SCR，
ESCR 排程步驟平均錯誤數據比較 

 
在比較這些結果後，我們發現不管節點數

量多或少、網路異質性的高與低、工作數量多

寡，ESCR 仍然比其他演算法有更高的效能，

本計畫中提出 ESCR 排程演算法明顯地勝出其

他演算法許多，尤其在節點數量多的時候，

ESCR 演算法與其他演算法有更大的系統效能

輸出差距，並且有最少的系統等待時間。 
 

四、結論與討論 
 

下面我們歸納本計畫主要的成果: 
 完成發展單一叢集網格系統之主從式工

作 排 程 、 並 且 實 作 應 用 在 HPHC 
(Heterogeneous Processor with 
Heterogeneous Communication) 架構下，

以實現在異質性叢及網格計算環境中高

效率的執行工作排班程式。 
 完成 SCR-scheduler 之演算法實作 

我們完成 SCR 之演算法實作，可用來判

斷資料傳送與執行的最少排程步驟。針對

不同數量大小的工作與資料分配性的問

題，設計一套處理器優先序列的計算模

式、以及基本排程週期計算的公式，研究

效能評估機制對整體網路架構的必要性

及其在效能上影響。 
 完成 SCR-Best-fit 與 SCR-Worst-fit 之演

算法實作 
完成 SCR-Best-fit 與 SCR-Worst-fit 之演

算法實作，用來增加資料傳送量。與 SCR 
比較以相同執行環境下，增加了利用

Best-fit 與  Worst-fit 兩種演算法評估週

期計算的最佳化，使排程系統善用整體網

路資源，比單純使用SCR-scheduler有更好

的效能。 
 完成ESCR-scheduler 之演算法實作 

完成ESCR-scheduler 之演算法實作，用來

增加資料傳送與減少執行時間，以彌補

SCR-Best-fit 與  SCR-Worst-fit 之演算法

的不足之處。除了先前設計的處理器優先

序列的計算模式、更增加了利用二元逼近

演算法評估週期計算的最佳化，使排程系

統對整體網路資源有最高的使用率。 
 完成Minimum-Deadline資料分配之排程

演算法實作 
針對最短時間排程步驟分析，所設計的排

程演算法可以找出最短的系統執行時間

(Makespan) 以確保在固定工作量的系統

運作下，處理器的運作時間與閒置時間比

其他演算法更短。 
 完成Maximum-Job資料分配之排程演算

法實作 
針對最大工作量排程步驟分析，所設計的

排程演算法可以在指定的系統執行時間

(Makespan)內，確保在長系統運作時，處

理器可以做出最有效率的系統輸出，亦及

在時間內與其他演算法比較起來可以完

成最多的工作數量。 
 完成動態網格拓僕模擬。 

針對不同叢集式計算網格架構、我們建立

一個可以動態評估外部通訊效能的模

式。這一個部分的工作包括，閘道計算、

網路基礎頻寬拓樸模擬、即時網路資訊擷

取、與權重計算方法。 
 完成Greedy, FPF (Fast Processor First) 

algorithm [5,6], 以 及 LCR (Largest 
Communication Ratio) [1] 之實作。 
為了證實本計畫開發的排程演算法為有

效率的排程演算法，需實做其他排程演算

法以便進行實驗。 
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 完成用於分析工作排程步驟與網路傳輸

頻寬的理論模組 
為了比較排程演算法的優缺點，我們完成

了資料傳輸模擬的理論模組，用以判斷排

程結果的好壞。 
 完成資料傳送所引起的頻寬競爭之研究 

資料傳送至處理器的過程中會引起處理

器互相競爭，增加了系統閒置時間。我們

的排程演算法成功地減少了資料傳送時

引起的通訊競爭與初始等待時間。 
 完成處理器與網路頻寬配置變數產生器 

為了模擬實際的異質性處理器運算變

數，我們實做了一個子處理器與網路模擬

產生器，產生高效能運算單元集中於某些

處理器與異質性網路頻寬集中或平均分

散在各個處理器上的配置變數。 
 
五、計畫成果自評 
 
    本計畫兩年之研究成果已達到計畫預期

之目標。第一年度、在這一個研究主題上共計

發表兩篇研討會論文[1, 2]。其中成果  [2] 
Performance Effective Pre-scheduling Strategy 
for Heterogeneous Communication Grid 
Systems 已經被接受於 Future Generation 
Computer Science 期刊 (SCI)。 第二年度共

計發表兩篇研討會論文[3, 4]。其中成果 [4] 
An Efficient Job Allocation Method for Master 
Slave Paradigm with Heterogeneous Networks 
in Ubiquitous Environments 已經被接受於

Journal of Supercomputing 期刊 (SCI)。 
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內 容 提 要 

這一次在杭州所舉行的國際學術研討會議共計四天。第一天下午本人抵達會

場辦理報到。第二天各主持一場 invited session 的論文發表。同時，自己也

在上午的場次發表了這依次被大會接受的論文。第一天也聽取了 Dr. 
Byeongho Kang 有關於 Web Information Management 精闢的演說。第二天許

多重要的研究成果分為六個平行的場次進行論文發表。本人選擇了

Architecture and Infrastructure、Grid computing、以及 P2P computing 相關場

次聽取報告。晚上本人亦參加酒會，並且與幾位國外學者及中國、香港教授

交換意見，合影留念。第三天本人在上午聽取了 Data and Information 
Management 相關研究，同時獲悉許多新興起的研究主題，並了解目前國外

大多數學者主要的研究方向，並且把握最後一天的機會與國外的教授認識，

希望能夠讓他們加深對台灣研究的印象。三天下來，本人聽了許多優秀的論

文發表。這些研究所涵蓋的主題包含有：網格系統技術、工作排程、網格計

算、網格資料庫以及無線網路等等熱門的研究課題。此次的國際學術研討會

議有許多知名學者的參與，讓每一位參加這個會議的人士都能夠得到國際上

最新的技術與資訊。是一次非常成功的學術研討會。參加本次的國際學術研

討會議，感受良多。讓本人見識到許多國際知名的研究學者以及專業人才，

得以與之交流。讓本人與其他教授面對面暢談所學領域的種種問題。看了眾

多研究成果以及聽了數篇專題演講，最後，本人認為，會議所安排的會場以

及邀請的講席等，都相當的不錯，覺得會議舉辦得很成功，值得我們學習。
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Abstract.  The problem of scheduling a weighted directed acyclic graph 
(DAG) representing an application to a set of heterogeneous processors to 
minimize the completion time has been recently studied.  The 
NP-completeness of the problem has instigated researchers to propose different 
heuristic algorithms.  In this paper, we present a Generalized Critical-task 
Anticipation (GCA) algorithm for DAG scheduling in heterogeneous 
computing environment.  The GCA scheduling algorithm employs task 
prioritizing technique based on CA algorithm and introduces a new processor 
selection scheme by considering heterogeneous communication costs among 
processors for adapting grid and scalable computing.  To evaluate the 
performance of the proposed technique, we have developed a simulator that 
contains a parametric graph generator for generating weighted directed acyclic 
graphs with various characteristics.  We have implemented the GCA 
algorithm along with the CA and HEFT scheduling algorithms on the simulator.  
The GCA algorithm is shown to be effective in terms of speedup and low 
scheduling costs. 

 
1. Introduction 

The purpose of heterogeneous computing system is to drive processors 
cooperation to get the application done quickly.  Because of diverse quality among 
processors or some special requirements, like exclusive function, memory access speed, 
or the customize I/O devices, etc.; tasks might have distinct execution time on 
different resources.  Therefore, efficient task scheduling is important for achieving 
good performance in heterogeneous systems.  

The primary scheduling methods can be classified into three categories, dynamic 
scheduling, static scheduling and hybrid scheduling according to the time at which the 
scheduling decision is made.  In dynamic approach, the system performs 
redistribution of tasks between processors during run-time, expect to balance 
computational load, and reduce processor’s idle time. On the contrary, in static 
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approach, information of applications, such as tasks execution time, message size of 
communications among tasks, and tasks dependences are known a priori at 
compile-time; tasks are assigned to processors accordingly in order to minimize the 
entire application completion time and satisfy the precedence of tasks.  Hybrid 
scheduling techniques are mix of dynamic and static methods, where some 
preprocessing is done statically to guide the dynamic scheduler [8]. 

A Direct Acyclic Graph (DAG) [2] is usually used for modeling parallel 
applications that consists a number of tasks.  The nodes of DAG correspond to tasks 
and the edges of which indicate the precedence constraints between tasks.  In 
addition, the weight of an edge represents communication cost between tasks.  Each 
node is given a computation cost to be performed on a processor and is represented by 
a computation costs matrix.  Figure 1 shows an example of the model of DAG 
scheduling.  In Figure 1(a), it is assumed that task nj is a successor (predecessor) of 
task ni if there exists an edge from ni to nj (from nj to ni) in the graph.  Upon task 
precedence constraint, only if the predecessor ni completes its execution and then its 
successor nj receives the messages from ni, the successor nj can start its execution.  
Figure 1(b) demonstrates different computation costs of task that performed on 
heterogeneous processors.  It is also assumed that tasks can be executed only on 
single processor with non-preemptable style.  A simple fully connected processor 
network with asymmetrical data transfer rate is shown in Figures 1(c) and 1(d). 

 

            

 P1 P2 P3 iw  

n1 14 19 9 14 

n2 13 19 18 16.7 

n3 11 17 15 14.3 

n4 13 8 18 13 

n5 12 13 10 11.7 

n6 12 19 13 14.7 

n7 7 16 11 11 

n8 5 11 14 10 

n9 18 12 20 16.7 

n10 17 20 11 16  
(a)                                   (b) 

                  
 (c)                                  (d) 

Figure 1: An example of DAG scheduling problem (a) Directed Acyclic Graph (DAG-1) (b) 
computation cost matrix (W) (c) processor topology (d) communication weight. 

 
The scheduling problem has been widely studied in heterogeneous systems where 
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the computational ability of processors is different and the processors communicate 
over an underlying network.  Many researches have been proposed in the literature.  
The scheduling problem has been shown to be NP-complete [3] in general cases as 
well as in several restricted cases; so the desire of optimal scheduling shall lead to 
higher scheduling overhead.  The negative result motivates the requirement for 
heuristic approaches to solve the scheduling problem.  A comprehensive survey about 
static scheduling algorithms is given in [9].  The authors of have shown that the 
heuristic-based algorithms can be classified into a variety of categories, such as 
clustering algorithms, duplication-based algorithms, and list-scheduling algorithms.  
Due to page limitation, we omit the description for related works.   

In this paper, we present a Generalized Critical task Anticipation (GCA) algorithm, 
which is an approach of list scheduling for DAG task scheduling problem.  The main 
contribution of this paper is proposing a novel heuristic for DAG scheduling on 
heterogeneous machines and networks.  A significant improvement is that 
inter-processor communication costs are considered into processor selection phase 
such that tasks can be mapped to more suitable processors.  The GCA heuristic is 
compared favorable with previous CA [5] and HEFT heuristics in terms of schedule 
length and speedup under different parameters.  

The rest of this paper is organized as follows: Section 2 provides some 
background, describes preliminaries regarding heterogeneous scheduling system in 
DAG model and formalizes the research problem.  Section 3 defines notations and 
terminologies used in this paper.  Section 4 forms the main body of the paper, 
presents the Generalized Critical task Anticipation (GCA) scheduling algorithm and 
illustrating it with an example.  Section 5 discusses performance of the proposed 
heuristic and its simulation results.  Finally, Section 6 briefly concludes this paper.  

2. DAG Scheduling on Heterogeneous Systems 
The DAG scheduling problem studied in this paper is formalized as follows.  Given 
a parallel application represented by a DAG, in which nodes represent tasks and 
edges represent dependence between these tasks.  The target computing architecture 
of DAG scheduling problem is a set of heterogeneous processors, M = {Pk: k = 1: P} 
and P = |M|, communicate over an underlying network which is assumed fully 
connected.  We have the following assumptions: 

 Inter-processor communications are performed without network contention 
between arbitrary processors.  

 Computation of tasks is in non-preemptive style.  Namely, once a task is 
assigned to a processor and starts its execution, it will not be interrupted until its 
completion. 

 Computation and communication can be worked simultaneously because of the 
separated I/0. 

 If two tasks are assigned to the same processor, the communication cost between 
the two tasks can be discarded. 

 A processor is assumed to send the computational results of tasks to their 
immediate successor as soon as it completes the computation. 
Given a DAG scheduling system, W is an n × P matrix in which wi,j indicates 

estimated computation time of processor Pj to execute task ni.  The mean execution 
time of task ni can be calculated by the following equation: 
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Example of the mean execution time can be referred to Figure 1(b).   
 
For communication part, a P × P matrix T is structured to represent different 

data transfer rate among processors (Figure 1(d) demonstrates the example).  The 
communication cost of transferring data from task ni (execute on processor px) to task 
nj (execute on processor py) is denoted by ci,j and can be calculated by the following 
equation, 

yxjimji tMsgVc ,,, ×+= ,                    (2) 

Where: 
Vm is the communication latency of processor Pm, 
Msgi,j is the size of message from task ni to task nj, 
tx,y is data transfer rate from processor px to processor py, 1≤ x, y ≤P. 
 

In static DAG scheduling problem, it was usually to consider processors’ 
latency together with its data transfer rate.  Therefore, equation (2) can be 
simplified as follows, 

yxjiji tMsgc ,,, ×= ,                     (3) 

Given an application represented by Directed Acyclic Graph (DAG), G = (V, E), 
where V = {nj: j = 1: v} is the set of nodes and v = |V|; E = {ei,j = <ni, nj>} is the set 
of communication edges and e =|E|.  In this model, each node indicates least 
indivisible task.  Namely, each node must be executed on a processor from the start 
to its completion.  Edge <ni, nj> denotes precedence of tasks ni and nj.  In other 
words, task ni is the immediate predecessor of task nj and task nj is the immediate 
successor of task ni.  Such precedence represents that task nj can be start for 
execution only upon the completion of task ni.  Meanwhile, task nj should receive 
essential message from ni for its execution.  Weight of edge <ni, nj > indicates the 
average communication cost between ni and nj. 

Node without any inward edge is called entry node, denoted by nentry; while node 
without any outward edge is called exit node, denoted by nexit.  In general, it is supposed 
that the application has only one entry node and one exit node.  If the actual application 
claims more than one entry (exit) node, we can insert a dummy entry (exit) node with 
zero-cost edge. 

 
3. Preliminaries 
This study concentrates on list scheduling approaches in DAG model.  List 
scheduling was usually distinguished into list phase and processor selection phase.  
Therefore, priori to discuss the main content, we first define some notations and 
terminologies used in both phases in this section. 

3.1 Parameters for List Phase 

Definition 1: Given a DAG scheduling system on G = (V, E), the Critical Score of task 
ni denoted by CS(ni) is an accumulative value that are computed recursively traverses 
along the graph upward, starting from the exit node.  CS(ni) is computed by the 
following equations,  
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where exitw  is the average computation cost of task nexit, iw  is the average computation 
cost of task ni, suc(ni) is the set of immediate successors of task ni, 

jic ,  is the average communication cost of edge <ni, nj> which is defined as follows, 
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3.2 Parameters for Processor Selection Phase 

Most algorithms in processor selection phase employ a partial schedule scheme to 
minimize overall schedule length of an application.  To achieve the partial 
optimization, an intuitional method is to evaluate the finish time (FT) of task ni 
executed on different processors.  According to the calculated results, one can select 
the processor who has minimum finish time as target processor to execute the task ni.  
In such approach, each processor Pk will maintain a list of tasks, task-list(Pk), keeps 
the latest status of tasks correspond to the EFT(ni, Pk), the earliest finish time of task ni 
that is assigned on processor Pk. 

Recall having been mentioned above that the application represented by DAG 
must satisfy the precedence relationship.  Taking into account the precedence of tasks 
in DAG, a task nj can start to execute on a processor Pk only if its all immediate 
predecessors send the essential messages to nj and nj successful receives all these 
messages.  Thus, the latest message arrive time of node nj on processor Pk, denoted 
by LMAT(nj, Pk), is calculated by the following equation, 

( ) ( ) ( ) )processoron  executedfor task,(, , uikuinprednkj PncnEFTMaxPnLMAT
ji

+=
∈

     (6) 

where pred(nj) is the set of immediate predecessors of task nj.  Note that if tasks ni 
and nj are assigned to the same processor, kuc ,  is assumed to be zero because it is 
negligible. 
Because the entry task nentry has no inward edge, thus we have 

( ) 0, =kentry PnLMAT                        (7) 
for all k = 1 to P. 
Definition 2: Given a DAG scheduling system on G = (V, E), the Start Time of task nj 
executed on processor Pk is denoted as ST(nj, Pk). 
Estimating task’s start time (for example, task nj) will facilitate search of available 
time slot on target processors that is large enough to execute that task (i.e., length of 
time slot > wj,k).  Note that the search of available time slot is started from 

( )kj PnLMAT , . 
Definition 3: Given a DAG scheduling system on G = (V, E), the finish time of task nj 
denoted by ),( kj PnFT , represents the completion time of task nj executed on processor 
Pk.  ),( kj PnFT  is defined as follows, 

kjkjkj wPnSTPnFT ,),(),( +=                     (8) 
Definition 4: Given a DAG scheduling system on G = (V, E), the earliest finish time of 
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task nj denoted by )( jnEFT , is formulated as follows,  

)},({)( kjPpj PnFTMinnEFT
k∈

=                      (9) 

Definition 5: Based on the determination of )( jnEFT  in equation (9), if the earliest finish 

time of task nj is obtained upon task nj executed on processor pt, then the target processor of 
task nj is denoted by TP(nj), and TP(nj) = pt. 

 
4. The Generalized Critical-task Anticipation Scheduling Algorithm 
Our approach takes advantages of list scheduling in lower algorithmic complexity and 
superior scheduling performance and furthermore came up with a novel heuristic 
algorithm, the generalized critical task anticipation (GCA) scheduling algorithm to 
improve the schedule length as well as speedup of applications.  The proposed 
scheduling algorithm will be verified beneficial for the readers while we delineate a 
sequence of the algorithm and show some example scenarios in three phases, 
prioritizing phase, listing phase and processor selection phase.  

In prioritizing phase, the CS(ni) is known as the maximal summation of scores 
including the average computation cost and communication cost from task ni to the 
exit task.  Therefore, the magnitude of the task’s critical score is regarded as the 
decisive factor when determining the priority of a task.  In listing phase, an ordered 
list of tasks should be determined for the subsequent phase of processor selection. The 
proposed GCA scheduling technique arranges tasks into a list L, not only according to 
critical scores but also considers tasks’ importance.  

Several observations bring the idea of GCA scheduling method.  Because of 
processor heterogeneity, there exist variations in execution cost from processor to 
processor for same task.  In such circumstance, tasks with larger computational cost 
should be assigned higher priority.  This observation aids some critical tasks to be 
executed earlier and enhances probability of tasks reduce its finish time.  
Furthermore, each task has to receive the essential messages from its immediate 
predecessors.  In other words, a task will be in waiting state when it does not collect 
complete message yet.  For this reason, we emphasize the importance of the last 
arrival message such that the succeeding task can start its execution earlier.  
Therefore, it is imperative to give the predecessor who sends the last arrival message 
higher priority.  This can aid the succeeding task to get chance to advance the start 
time.  On the other hand, if a task ni is inserted into the front of a scheduling list, it 
occupies vantage position.  Namely, ni has higher probability to accelerate its 
execution and consequently the start time of suc(ni) can be advanced as well.   

In most list scheduling approaches, it was usually to demonstrate the algorithms 
in two phases, the list phase and the processor selection phase.  The list phase of 
proposed GCA scheduling algorithm consists of two steps, the CS (critical score) 
calculation step and task prioritization step. 

Let’s take examples for the demonstration of CS calculation, which is performed 
in level order and started from the deepest level, i.e., the level of exit task.  For 
example, according to equation (4), we have CS(n10)= 10w = 16.  For the upper 

level tasks, n7, n8 and n9, CS(n7) = ))(( 1010,77 nCScw ++  = 47.12, CS(n8) = 

))(( 1010,88 nCScw ++ =37.83, CS(n9) = ))(( 1010,99 nCScw ++ =49.23.  The other 
tasks can be calculated by the same methods.  Table 1 shows complete calculated 
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critical scores of all tasks for DAG-1. 

Table 1: Critical Scores of tasks in DAG-1 using GCA algorithm  
Critical Scores of tasks in GCA algorithm 

n1 n2 n 3 n 4 n 5 n 6 n 7 n 8 n 9 n 10 

120.13 84.83 88.67  89.45 76.28 70.25 47.12 37.83 49.23 16.00    
 
Follows the critical score calculation, the GCA scheduling method considers both 

tasks’ importance (i.e., critical score) and its relative urgency for prioritizing tasks.  
Based on the results obtained previously, we use the same example to demonstrate task 
prioritization in GCA.  Let’s start at the exit task n10, which has the lowest critical 
score.  Assume that tasks will be arranged into an ordered list L, therefore, we have L 
= {n10} initially.  Because task n10 has three immediate predecessors, with the order 
CS(n9) > CS(n7) > CS(n8), the list L will be updated to L={n9, n7, n8, n10}.  Applying 
the same prioritizing method by taking the front element of L, task n9; because task n9 
has three immediate predecessors, with the order CS(n4) > CS(n2) > CS(n5), we have 
the updated list L = { n4, n2, n5, n9, n7, n8, n10}.  Taking the same operations, insert 
task n1 in front of task n4, insert task n3 in front of task n7, insert tasks n4, n2, n6 
(because CS(n4) > CS(n2) > CS(n6)) in front of task n8; we have the list L = { n1, n4, n2, 
n5, n9, n3, n7, n6, n4, n2, n6, n8, n10}.  The final list L = {n1, n4, n2, n5, n9, n3, n7, n6, n8, 
n10} can be derived by removing duplicated tasks. 

In listing phases, the GCA scheduling algorithm proposes two enhancements from 
the majority of literatures.  First, GCA scheduling technique considers various 
transmission costs of messages among processors into the calculation of critical scores.  
Second, the GCA algorithm prioritizes tasks according to the influence on its 
successors and devotes to lead an accelerated chain while other techniques simply 
schedule high critical score tasks with higher priority.  In other words, the GCA 
algorithm is not only prioritizing tasks by its importance but also by the urgency 
among task.   The prioritizing scheme of GCA scheduling technique can be 
accomplished by using simple stack operations, push and pop, which are outlined in 
GCA_List_Phase procedure as follows. 

 
Begin_GCA_List_Phase 
1. Initially, construct an array of Boolean QV and a stack S. 
2. QV[nj] = false,∀ nj∈V. 
3. Push nexit on top of S. 
4. While S is not empty do 
5.   Peek task nj on the top of S; 
6.   If( all QV[ni] are true, for all ni∈pred(nj) or task nj is nentry)  { 
7.     Pop task nj from top of S and put nj into scheduling list L; 
8.     QV[ nj] = true; } 
9.   Else   /* search the CT(nj) */ 
10.     For each task ni, where ni∈pred(nj) do 
11.       If(QV[ni] = false) 
12.         Put CS(ni) into container C; 
13.       Endif 
14.     Push tasks pred(nj) from C into S by non-decreasing order according to their 

critical scores; 
15.     Reset C to empty; 
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16.     /* if there are 2+ tasks with same CS(ni), task ni is randomly pushed into S. 
17. EndWhile 
End_GCA_List_Phase 

 
In processor-selection phase, tasks will be deployed from list L that obtained in 

listing phase to suitable processor in FIFO manner.  According to the ordered list L = 
{n1, n4, n2, n5, n9, n3, n7, n6, n8, n10}, we have the complete calculated EFTs of tasks in 
DAG-1 and the schedule results of GCA algorithm are listed in Table 2 and Figure 2(a), 
respectively.   

Table 2: Earliest Finish Time of tasks in DAG-1 using GCA algorithm 
 

Earliest Finish Time of tasks in GCA algorithm 

n1 n2 n 3 n 4 n 5 n 6 n 7 n 8 n 9 n 10 
9 27 42 19.7 32.7 47.6 53 65.7 54.7 84.7   
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Figure 2: Schedule results of three algorithms on DAG-1 (a) GCA (makespan = 84.7) (b) 
CA (makespan = 92.4) (c) HEFT (makespan = 108.2). 

 
In order to profile significance of the GCA scheduling technique, the schedule 

results of other algorithms, CA and HEFT are depicted in Figure 2(b) and 2(c), 
respectively. The GCA scheduling techniques incorporates the consideration of 
heterogeneous communication costs among processors in processor selection phase.  
Such enhancement facilitates the selection of best candidate of processors to execute 
specific tasks.   
 
5. Performance Evaluation 

5.1 Random Graph Generator 
We implemented a Random Graph Generator (RGG) to simulate application graphs 
with various characteristics.  RGG uses the following input parameters to produce 
diverse graphs. 

 Weight of graph (weight), which is a constant = {32, 128, 512, 1024}. 
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 Number of tasks in the graph (n), where n = {20, 40, 60, 80, 100}. 
 Graph parallelism (p), the graph parallelism determines shape of a graph.  p is 

assigned for 0.5, 1.0 and 2.0.  The level of graph is defined as ⎣ ⎦pv / .  For 
example, graph with p = 2.0 has higher parallelism than graph with p = 1.0.  

 Out degree of a task (d), where d = {1, 2, 3, 4, 5}.  The out degree of a task 
indicates relationship with other tasks, the larger degree of a task the higher task 
dependence. 

 Heterogeneity (h), determines computational cost of task ni executed on processor 
Pk, i.e., wi,k, which is randomly generated by the following formula. 
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                (10) 

RGG randomizes wi from the interval [1, weight].  Note that larger value of 
weight represents the estimation is with higher precision.  In our simulation, h was 
assigned by 0.1, 0.25, 0.5, 0.75 and 1.0. 

 Communication to Computation Ratio (CCR), where CCR = {0.1, 0.5, 1, 2, 10}.  
 

5.2 Comparison Metrics 
As mentioned earlier, the objective of DAG scheduling problem is to minimize the 

completion time of an application.  To verify the performance of a scheduling 
algorithm, several comparative metrics are given below for comparison: 

 Makespan, also known as schedule length, which is defined as follows, 
))(max( exitnEFTMakespan =                   (11) 

 Speedup, defined as following equation, 

makespan

w
Speedup Vn jiMP

ij
}{min ,∑ ∈∈

= , where M is the set of processors  (12) 

The numerator is the minimal accumulated sum of computation cost of tasks 
which are assigned on one processor.  Equation (12) represents the ratio of sequential 
execution time to parallel execution time.   

 Percentage of Quality of Schedules (PQS) 
The percentage of the GCA algorithm produces better, equal and worse quality of 

schedules compared to other algorithms. 
 

5.3 Simulation Results 
The first evaluation aims to demonstrate the merit of the GCA algorithm by showing 
quality of schedules using RGG.  Simulation results were obtained upon different 
parameters with totally 1875 DAGs.  Figure 3 reports the comparison by setting 
different weight = {32, 128, 512, 1024}.  The term “Better” represents percentage of 
testing samples the GCA algorithm outperforms the CA algorithm.  The term “Equal” 
represents both algorithm have same makespan in a given DAG.  The tem “Worse” 
represents opposite results to the “Better” cases.  Figure 4 gives the PQS results by 
setting different number of processors.  Overall, the GCA scheduling algorithm 
presents superior performance for 65% test samples.  

Speedup of the GCA, CA and HEFT algorithms to execute 1875 DAGs with fix 
processor number (P=16) under different number of task (n) are shown in Figure 5.  
The speedup of these algorithms show placid when number of task is small and 
increased significantly when number of tasks becomes large.  In general, the GCA 
algorithm has better speedup than the other two algorithms.  Improvement rate of the 
GCA algorithm in terms of average speedup is about 7% to the CA algorithm and 34% 
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to the HEFT algorithm.  The improvement rate (IRGCA) is estimated by the following 
equation: 

IRGCA = 
∑

∑∑ −
)(

)()(
CAorHEFTSpeedup

CAorHEFTSpeedupGCASpeedup         (13) 

 

 
Figure 3: PQS: GCA compared with CA (3 processors)   

 

 
Figure 4: PQS: GCA compared with CA (weight = 128) 
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Figure 5: Speedup of GCA, CA and HEFT with different number of tasks (n). 
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Figure 6: Speedup of GCA, CA and HEFT with different out-degree of tasks (d) 
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Speedup of the GCA, CA and HEFT algorithms to execute different DAGs with fix processor number (P=16) and 

task number (n=60) under different out-degree of tasks (d) are shown in Figure 6.  The results of Figure 6 demonstrate 
the speedup influence by task dependence.  We observe that speedups of scheduling algorithms are less dependent on 
tasks’ dependence.  Although the speedups of three algorithms are stable, the GCA algorithm outperforms the other 
two algorithms in most cases.  Improvement rate of the GCA algorithm in terms of average speedup is about 5% to the 
CA algorithm and 80% to the HEFT algorithm. 

Figure 7 shows simulation results of three algorithms upon different processor number and degree of parallelization.  
It is noticed that, graphs with larger value of p tends to with higher parallelism.  As shown in Figures 7(a) and (b), the 
GCA algorithm performs well in linear graphs (p=0.5) and general graphs (p=1.0).  On the contrary, Figure 7(c) shows 
that the HEFT scheduling algorithm has superior performance when degree of parallelism is high.  In general, for 
graphs with low parallelism (e.g., p = 0.5), the GCA algorithm has 33% improvement rate in terms of average speedup 
compare to the HEFT algorithm; for graphs with normal parallelism (e.g., p = 1), the GCA algorithm has 20% 
improvement rate.  For graphs with high parallelism (e.g., p = 2), the GCA algorithm performs worse than the HEFT by 
3% performance. 

Speedup of the GCA, CA and HEFT algorithms to execute different DAGs with fix processor number (P=16) and 
task number (n=60) under different out-degree of tasks (d) are shown in Figure 6.  The results of Figure 6 demonstrate 
the speedup influence by task dependence.  We observe that speedups of scheduling algorithms are less dependent on 
tasks’ dependence.  Although the speedups of three algorithms are stable, the GCA algorithm outperforms the other 
two algorithms in most cases.  Improvement rate of the GCA algorithm in terms of average speedup is about 5% to the 
CA algorithm and 80% to the HEFT algorithm. 

 

   
(a)                    (b)                     (c) 

Figure 7: Speedup with different degree of parallelism (p) (a) p = 0.5 (b) p = 1 (c) p = 2. 
The impact of communication overheads on speedup are plotted in Figure 8 by setting different value of CCR.  It 

is noticed that increase of CCR will downgrade the speedup we can obtained.  For example, speedup offered by CCR = 
0.1 has maximal value 8.3 in GCA with 12 processors; for CCR = 1.0, the GCA algorithm has maximal speedup 6.1 
when processor number is 12; and the same algorithm, GCA, has maximal speedup 3.1 for CCR = 5 with 12 processors.  
This is due to the fact that when communication overheads higher than computational overheads, costs for tasks 
migration will offset the benefit of moving tasks to faster processors.   

 

 
(a)                    (b)                     (c) 

Figure 8: Speedup results with different CCR (a) CCR=0.5 (b) CCR = 1 (c) CCR = 5. 
 
 

 
6. Conclusions 

The problem of scheduling a weighted directed acyclic graph (DAG) to a set of heterogeneous processors to 
minimize the completion time has been recently studied.  Several techniques have been presented in the literature to 
improve performance.  This paper presented a general Critical-task Anticipation (GCA) algorithm for DAG scheduling 



 23

system.  The GCA scheduling algorithm employs task prioritizing technique based on CA algorithm and introduces a 
new processor selection scheme by considering heterogeneous communication costs among processors.  GCA 
scheduling algorithm is a list scheduling approach with simple data structure and profitable for grid and scalable 
computing.  Experimental results show that GCA has superior performance compare to the well known HEFT 
scheduling heuristic algorithm and our previous proposed CA algorithm which did not incorporate the consideration of 
heterogeneous communication costs into processor selection phase.  Experimental results show that GCA is equal or 
superior to HEFT and CA scheduling algorithms in most cases and it enhances to fit more real grid system. 
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Abstract 
 

With the emergence of grid technologies, the 
problem of scheduling tasks in heterogeneous systems has 
been arousing attention. In this paper, we present two 
optimization schemes, Makespan Optimization 
Rescheduling (MOR) and Resource Optimization 
Rescheduling (ROR), which are based on the QoS 
Min-Min scheduling technique, for reducing the 
makespan of a schedule and the need of total resource 
amount. The main idea of the proposed techniques is to 
reduce overall execution time without increasing resource 
need; or reduce resource need without increasing overall 
execution time. To evaluate the effectiveness of the 
proposed techniques, we have implemented both 
techniques along with the QoS Min-Min scheduling 
algorithm. The experimental results show that the MOR 
and ROR optimization schemes provide noticeable 
improvements.  
 
1. Introduction 
 

With the emergence of IT technologies, 
the need of computing and storage are rapidly 
increased.  To invest more and more 
equipments is not an economic method for an 
organization to satisfy the even growing 
computational and storage need. As a result, 

grid has become a widely accepted paradigm 
for high performance computing.   

To realize the concept virtual organization, 
in [13], the grid is also defined as “A type of 
parallel and distributed system that enables the 
sharing, selection, and aggregation of 
geographically distributed autonomous and 
heterogeneous resources dynamically at 
runtime depending on their availability, 
capability, performance, cost, and users' 
quality-of-service requirements”.  As the grid 
system aims to satisfy users’ requirements with 
limit resources, scheduling grid resources plays 
an important factor to improve the overall 
performance of a grid.   

In general, grid scheduling can be 
classified in two categories: the performance 
guided schedulers and the economy guided 
schedulers [16]. Objective of the performance 
guided scheduling is to minimize turnaround 
time (or makespan) of grid applications. On the 
other hand, in economy guided scheduling, to 
minimize the cost of resource is the main 
objective.  However, both of the scheduling 
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problems are NP-complete, which has also 
instigated many heuristic solutions [1, 6, 10, 14] 
to resolve. As mentioned in [23], a complete 
grid scheduling framework comprises 
application model, resource model, 
performance model, and scheduling policy. The 
scheduling policy can further decomposed into 
three phases, the resource discovery and 
selection phase, the job scheduling phase and 
the job monitoring and migration phase, where 
the second phase is the focus of this study.  

Although many research works have been 
devoted in scheduling grid applications on 
heterogeneous system, to deal with QOS 
scheduling in grid is quite complicated due to 
more constrain factors in job scheduling, such 
as the need of large storage, big size memory, 
specific I/O devices or real-time services, 
requested by the tasks to be completed. In this 
paper, we present two QoS based rescheduling 
schemes aim to improve the makespan of 
scheduling batch jobs in grid.  In addition, 
based on the QoS guided scheduling scheme, 
the proposed rescheduling technique can also 
reduce the amount of resource need without 
increasing the makespan of grid jobs.  The 
main contribution of this work are twofold, one 
can shorten the turnaround time of grid 
applications without increasing the need of grid 
resources; the other one can minimize the need 
of grid resources without increasing the 
turnaround time of grid applications, compared 
with the traditional QoS guided scheduling 
method. To evaluate the performance of the 
proposed techniques, we have implemented our 
rescheduling approaches along with the QoS 
Min-Min scheduling algorithm [9] and the 
non-QoS based Min-Min scheduling algorithm. 
The experimental results show that the 
proposed techniques are effective in 
heterogeneous systems under different 
circumstances. The improvement is also 
significant in economic grid model [3]. 

The rest of this paper is organized as 
follows. Section 2 briefly describes related 
research in grid computing and job scheduling.  
Section 3 clarifies our research model by 
illustrating the traditional Min-min model and 

the QoS guided Min-min model.  In Section 4, 
two optimization schemes for reducing the total 
execution time of an application and reducing 
resource need are presented, where two 
rescheduling approaches are illustrated in detail. 
We conduct performance evaluation and 
discuss experiment results in Section 5. Finally, 
concluding remarks and future work are given 
in Section 6. 

2. Related Work 

Grid scheduling can be classified into traditional grid 
scheduling and QoS guided scheduling or economic based 
grid scheduling.  The former emphasizes the 
performance of systems of applications, such as system 
throughput, jobs’ completion time or response time.  
Swany et al. provides an approach to improving 
throughput for grid applications with network logistics by 
building a tree of “best” paths through the graph and has 
running time of O(NlogN) for implementations that keep 
the edges sorted [15].  Such approach is referred as the 
Minimax Path (MMP) and employs a greedy, 
tree-building algorithm that produces optimal results [20].  
Besides data-parallel applications requiring high 
performance in grid systems, there is a Dynamic Service 
Architecture (DSA) based on static compositions and 
optimizations, but also allows for high performance and 
flexibility, by use of a lookahead scheduling mechanism 
[4]. To minimizing the processing time of extensive 
processing loads originating from various sources, the 
approaches divisible load model [5] and single level tree 
network with two root processors with divisible load are 
proposed [12]. In addition to the job matching algorithm, 
the resource selection algorithm is at the core of the job 
scheduling decision module and must have the ability to 
integrate multi-site computation power.  The CGRS 
algorithm based on the distributed computing grid model 
and the grid scheduling model integrates a new 
density-based internet clustering algorithm into the 
decoupled scheduling approach of the GrADS and 
decreases its time complexity [24].  The scheduling of 
parallel jobs in a heterogeneous multi-site environment, 
where each site has a homogeneous cluster of processors, 
but processors at different sites has different speeds, is 
presented in [18]. Scheduling strategy is not only in batch 
but also can be in real-time.  The SAREG approach 
paves the way to the design of security-aware real-time 
scheduling algorithms for Grid computing environments 
[21].  

For QoS guided grid scheduling, 
apparently, applications in grids need various 
resources to run its completion.  In  [17], an 
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architecture named public computing utility 
(PCU) is proposed uses virtual machine (VMs) 
to implement “time-sharing” over the resources 
and augments finite number of private resources 
to public resources to obtain higher level of 
quality of services.  However, the QoS 
demands maybe include various packet-type 
and class in executing job. As a result, a 
scheduling algorithm that can support multiple 
QoS classes is needed.  Based on this demand, 
a multi-QoS scheduling algorithm is proposed 
to improve the scheduling fairness and users’ 
demand [11].  He et al. [7] also presented a 
hybrid approach for scheduling moldable jobs 
with QoS demands.  In [9], a novel framework 
for policy based scheduling in resource 
allocation of grid computing is also presented.  
The scheduling strategy can control the request 
assignment to grid resources by adjusting usage 
accounts or request priorities. Resource 
management is achieved by assigning usage 
quotas to intended users. The scheduling 
method also supports reservation based grid 
resource allocation and quality of service 
feature.  Sometimes the scheduler is not only 
to match the job to which resource, but also 
needs to find the optimized transfer path based 
on the cost in network. In [19], a distributed 
QoS network scheduler (DQNS) is presented to 
adapt to the ever-changing network conditions 
and aims to serve the path requests based on a 
cost function. 

3. Research Architecture 
  

Our research model considers the static 
scheduling of batch jobs in grids.  As this 
work is an extension and optimization of the 
QoS guided scheduling that is based on 
Min-Min scheduling algorithm [9], we briefly 
describe the Min-Min scheduling model and the 
QoS guided Min-Min algorithm.  To simplify 
the presentation, we first clarify the following 
terminologies and assumptions. 

 QoS Machine (MQ) – machines can provide 
special services. 

 QoS Task (TQ) – tasks can be run 
completion only on QoS machine. 

 Normal Machine (MN) – machines can only 
run normal tasks. 

 Normal Task (TN) – tasks can be run 
completion on both QoS machine and 
normal machine. 

 A chunk of tasks will be scheduled to run 
completion based on all available machines 
in a batch system. 

 A task will be executed from the beginning 
to completion without interrupt. 

 The completion time of task ti to be 
executed on machine mj is defined as  

 
CTij = dtij + etij              (1) 

 
Where etij denotes the estimated execution time 
of task ti executed on machine mj; dtij is the 
delay time of task ti on machine mj.   
 

The Min-Min algorithm is shown in Figure 
1. 

 
Algorithm_Min-Min()
{ 

while there are jobs to schedule 
for all job i to schedule 

for all machine j 
Compute CTi,j = CT(job i, machine j)

end for 
Compute minimum CTi,j 

end for 
Select best metric match m 
Compute minimum CTm,n 
Schedule job m on machine n 

end while 
} End_of_ Min-Min  

 
Figure 1. The Min-Min Algorithm 

 
Analysis: If there are m jobs to be scheduled in 
n machines, the time complexity of Min-Min 
algorithm is O(m2n). The Min-Min algorithm 
does not take into account the QoS issue in the 
scheduling.  In some situation, it is possible 
that normal tasks occupied machine that has 
special services (referred as QoS machine).  
This may increase the delay of QoS tasks or 
result idle of normal machines. 
 

The QoS guided scheduling is proposed to resolve 
the above defect in the Min-Min algorithm.  In QoS 
guided model, the scheduling is divided into two classes, 
the QoS class and the non-QoS class.  In each class, the 
Min-Min algorithm is employed.  As the QoS tasks have 
higher priority than normal tasks in QoS guided 
scheduling, the QoS tasks are prior to be allocated on 
QoS machines.  The normal tasks are then scheduled to 
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all machines in Min-Min manner.  Figure 2 outlines the 
method of QoS guided scheduling model with the 
Min-Min scheme.   

Analysis: If there are m jobs to be scheduled in 
n machines, the time complexity of QoS guided 
scheduling algorithm is O(m2n).  

Figure 3 shows an example demonstrating 
the Min-Min and QoS Min-Min scheduling 
schemes.  The asterisk * means that 
tasks/machines with QoS demand/ability, and 
the X means that QoS tasks couldn’t be 
executed on that machine.  Obviously, the 
QoS guided scheduling algorithm gets the 
better performance than the Min-Min algorithm 
in term of makespan.  Nevertheless, the QoS 
guided model is not optimal in both makespan 
and resource cost. We will describe the 
rescheduling optimization in next section. 
 

Algorithm_QOS-Min-Min() 
{ 

for all tasks ti in meta-task Mv (in an arbitrary order) 
for all hosts mj (in a fixed arbitrary order) 

       CTij = etij + dtj 
end for 

end for 
do until all tasks with QoS request in Mv are mapped 

for each task with high QoS in Mv,  
find a host in the QoS qualified host set that obtains 
the earliest completion time 

end for 
find task tk with the minimum earliest completion time 
assign task tk to host ml that gives the earliest completion 
time 
delete task tk from Mv 
update dtl 
update CTil for all i 

end do 
do until all tasks with non-QoS request in Mv are mapped 

for each task in Mv 
find the earliest completion time and the 
corresponding host 

       end for 
find the task tk with the minimum earliest completion time 
assign task tk to host ml that gives the earliest completion 
time 
delete task tk from Mv 
update dtl 

    update CTil for all i 
end do 

} End_of_ QOS-Min-Min 
 

Figure 2. The QoS Guided Algorithm 

 

4. Rescheduling Optimization 

Grid scheduling works as the mapping of individual 
tasks to computer resources, with respecting service level 
agreements (SLAs) [2].  In order to achieve the 
optimized performance, how to mapping heterogeneous 

tasks to the best fit resource is an important factor.  The 
Min-Min algorithm and the QoS guided method aims at 
scheduling jobs to achieve better makespan.  However, 
there are still having rooms to make improvements.  In 
this section, we present two optimization schemes based 
on the QoS guided Min-Min approach.  
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Figure 3. Min-Min and QoS Guided Min-Min 
 

4.1 Makespan Optimization Rescheduling (MOR) 

The first one is Makespan Optimization Rescheduling 
(MOR), which focuses on improving the makespan to 
achieve better performance than the QoS guided 
scheduling algorithm. Assume the makespan achieved by 
the QoS guided approach in different machines are CT1, 
CT2, …, CTm, with CTk = max { CT1, CT2, …, CTm }, 
where m is the number of machines and 1 ≤ k ≤ m.  By 
subtracting CTk – CTi, where 1 ≤ i ≤ m and i ≠ k, we can 
have m-1 available time fragments.  According to the 
size of these available time fragments and the size of tasks 
in machine Mk, the MOR dispatches suitable tasks from 
machine Mk to any other machine that has available and 
large enough time fragments.  Such optimization is 
repeated until there is no task can be moved.   
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Figure 4. Example of MOR 

 
Recall the example given in Figure 3, 

Figure 4 shows the optimization of the MOR 
approach.  The left side of Figure 4 
demonstrates that the QoS guided scheme gives 
a schedule with makespan = 12, wheremachine 
M2 presents maximum CT (completion time), 
which is assembled by tasks T2, T1 and T3.  
Since the CT of machine ‘M3’ is 6, so ‘M3’ has 
an available time fragment (6).  Checking all 
tasks in machine M2, only T2 is small enough 
to be allocated in the available time fragment in 
M3.  Therefore, task M2 is moved to M3, 
resulting machine ‘M3’ has completion time 
CT=11, which is better than the QoS guided 
scheme. 

As mentioned above, the MOR is based on the QoS 
guided scheduling algorithm.  If there are m tasks to be 
scheduled in n machines, the time complexity of MOR is 
O(m2n).  Figure 5 outlines a pseudo of the MOR scheme.   

 

Algorithm_MOR()
{ 

for CTj in all machines 
find out the machine with maximum makespan CTmax and 
set it to be the standard 

end for 
do until no job can be rescheduled 

for job i in the found machine with CTmax  
            for all machine j 

  according to the job’s QOS demand, find the 
adaptive machine j  

if (the execute time of job i in machine j + the 
CTj < makespan) 

           rescheduling the job i to machine j   
           update the CTj and CTmax 

       exit for 
end if 

            next for 
            if the job i can be reschedule 

find out the new machine with maximum CTmax
            exit for 

end if 
next for 

end do  
} End_of_ MOR  

Figure 5. The MOR Algorithm 

4.2 Resource Optimization Rescheduling (ROR) 

Following the assumptions described in MOR, the main 
idea of the ROR scheme is to re-dispatch tasks from the 
machine with minimum number of tasks to other 
machines, expecting a decrease of resource need.  
Consequently, if we can dispatch all tasks from machine 
Mx to other machines, the total amount of resource need 
will be decreased.  

Figure 6 gives another example of QoS scheduling, 
where the QoS guided scheduling presents makespan = 13. 
According to the clarification of ROR, machine ‘M1’ has 
the fewest amount of tasks.  We can dispatch the task 
‘T4’ to machine ‘M3’ with the following constraint 

 
CTij + CTj <= CTmax             (2) 

 
The above constraint means that the rescheduling can be 
performed only if the movement of tasks does not 
increase the overall makespan.  In this example, CT43 = 2, 
CT3=7 and CTmax=CT2=13.  Because the makespan of 
M3 (CT3) will be increased from 7 to 9, which is smaller 
than the CTmax, therefore, the task migration can be 
performed.  As the only task in M1 is moved to M3, the 
amount of resource need is also decreased comparing 
with the QoS guided scheduling.   
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Figure 6. Example of ROR 

 
The ROR is an optimization scheme which aims to 

minimize resource cost. If there are m tasks to be 
scheduled in n machines, the time complexity of ROR is 
also O(m2n).  Figure 7 depicts a high level description of 
the ROR optimization scheme. 

 
Algorithm_MOR() 
{ 

for m in all machines 
        find out the machine m with minimum count of jobs 

end for 
do until no job can be rescheduled 

for job i in the found machine with minimum count of jobs
            for all machine j 

according to the job’s QOS demand, find the 
adaptive machine j  
if (the execute time of job i in machine j + the 

CTj <= makespan CTmax) 
           rescheduling the job i to machine j   
           update the CTj  
           update the count of jobs in machine m and 

machine j  
       exit for 

end if 
            next for         

next for 
end do 

} End_of_ MOR 
 

Figure 7. The ROR Algorithm  
5. Performance Evaluation 

5.1 Parameters and Metrics 

 

To evaluate the performance of the proposed 
techniques, we have implemented the Min-Min 
scheduling algorithm and the QoS guided Min-Min 
scheme. The experiment model consists of heterogeneous 
machines and tasks.  Both of the Machines and tasks are 
classified into QoS type and non-QoS type.  Table 1 
summarizes six parameters and two comparison metrics 
used in the experiments.  The number of tasks is ranged 
from 200 to 600. The number of machines is ranged from 
50 to 130. The percentage of QoS machines and tasks are 
set between 15% and 75%.  Heterogeneity of tasks are 
defined as Ht (for non-QoS task) and HQ (for QoS task), 
which is used in generating random tasks.  For example, 
the execution time of a non-QoS task is randomly 
generated from the interval [10, Ht×102] and execution 
time of a QoS task is randomly generated from the 
interval [102, HQ×103] to reflect the real application world.  
All of the parameters used in the experiments are 
generated randomly with a uniform distribution.  The 
results demonstrated in this section are the average values 
of running 100 random test samples.  

 

Table 1: Parameters and Comparison Metrics 
 

Task number (NT) {200, 300, 400, 500, 600} 

Resource number (NR) {50, 70, 90, 110, 130} 

Percentage of QOS resources (QR %) {15%, 30%, 45%, 60%, 75%}

Percentage of QOS tasks (QT %) {15%, 30%, 45%, 60%, 75%}

Heterogeneity of non-QOS tasks (HT) {1, 3, 5, 7, 9} 

Heterogeneity of QOS tasks (HQ) {3, 5, 7, 9, 11} 

Makespan The completion time of a set of 
tasks 

Resource Used (RU) Number of machines used for 
executing a set of tasks  

 
5.2 Experimental Results of MOR 
 
Table 2 compares the performance of the MOR, Min-Min 
algorithm and the QoS guided Min-Min scheme in term 
of makespan.  There are six tests that are conducted with 
different parameters.  In each test, the configurations are 
outlined beside the table caption from (a) to (f).  Table (a) 
changes the number of tasks to analyze the performance 
results.  Increasing the number of tasks, improvement of 
MOR is limited. An average improvement ratio is from 
6% to 14%.  Table (b) changes the number of machines.  
It is obvious that the MOR has significant improvement in 
larger grid systems, i.e., large amount of machines.  The 
average improvement rate is 7% to 15%.  Table (c) 
discusses the influence of changing percentages of QoS 
machines.  Intuitionally, the MOR performs best with 
45% QoS machines.  However, this observation is not 
always true.  By analyzing the four best ones in (a) to (d), 
we observe that the four tests (a) NT=200 (NR=50, QR=30%, 
QT=20%) (b) NR=130 (NT=500, QR=30%, QT=20%) (c) 
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QR=45% (NT=300, NR=50, QT=20%) and (d) QT=15% 
(NT=300, NR=50, QR=40%) have best improvements.  All of 
the four configurations conform to the following relation, 
 

0.4 × (NT × QT) = NR × QR          (3) 
 

This observation indicates that the improvement of MOR 
is significant when the number of QoS tasks is 2.5 times 
to the number of QoS machines.  Tables (e) and (f) 
change heterogeneity of tasks.  We observed that 
heterogeneity of tasks is not critical to the improvement 
rate of the MOR technique, which achieves 7% 
improvements under different heterogeneity of tasks. 

 
Table 2: Comparison of Makespan 

 

(a) (NR=50, QR=30%, QT=20%, HT=1, HQ=1) 
Task Number (NT) 200 300 400 500 600 

Min-Min 978.2 1299.7 1631.8 1954.6 2287.8

QOS Guided Min-Min 694.6 917.8 1119.4 1359.9 1560.1

MOR 597.3 815.5 1017.7 1254.8 1458.3

Improved Ratio 14.01% 11.15% 9.08% 7.73% 6.53%
 

(b) (NT=500, QR=30%, QT=20%, HT=1, HQ=1) 
Resource Number (NR) 50 70 90 110 130 

Min-Min 1931.5 1432.2 1102.1 985.3 874.2 

QOS Guided Min-Min 1355.7 938.6 724.4 590.6 508.7 

MOR 1252.6 840.8 633.7 506.2 429.4 

Improved Ratio 7.60% 10.42% 12.52% 14.30% 15.58%
 

(c) (NT=300, NR=50, QT=20%, HT=1, HQ=1) 
QR% 15% 30% 45% 60% 75% 

Min-Min 2470.8 1319.4 888.2 777.6 650.1 

QOS Guided Min-Min 1875.9 913.6 596.1 463.8 376.4 

MOR 1767.3 810.4 503.5 394.3 339.0 

Improved Ratio 5.79% 11.30% 15.54% 14.99% 9.94% 
 

(d) (NT=300, NR=50, QR=40%, HT=1, HQ=1) 
QT% 15% 30% 45% 60% 75% 

Min-Min 879.9 1380.2 1801.8 2217.0 2610.1

QOS Guided Min-Min 558.4 915.9 1245.2 1580.3 1900.6

MOR 474.2 817.1 1145.1 1478.5 1800.1

Improved Ratio 15.07% 10.79% 8.04% 6.44% 5.29% 
 

(e) (NT=500, NR=50, QR=30%, QT=20%, HQ=1) 
HT 1 3 5 7 9 

Min-Min 1891.9 1945.1 1944.6 1926.1 1940.1

QOS Guided Min-Min 1356.0 1346.4 1346.4 1354.9 1357.3

MOR 1251.7 1241.4 1244.3 1252.0 1254.2

Improved Ratio 7.69% 7.80% 7.58% 7.59% 7.59% 
 

(f) (NT=500, NR=50, QR=30%, QT=20%, HT=1) 
HQ 3 5 7 9 11 

Min-Min 1392.4 1553.9 1724.9 1871.7 2037.8

QOS Guided Min-Min 867.5 1007.8 1148.2 1273.2 1423.1

MOR 822.4 936.2 1056.7 1174.3 1316.7

Improved Ratio 5.20% 7.11% 7.97% 7.77% 7.48%
 

5.3 Experimental Results of ROR 

Table 3 analyzes the effectiveness of the ROR technique 
under different circumstances.   

 
Table 3: Comparison of Resource Used 

 

(a) (NR=100, QR=30%, QT=20%, HT=1, HQ=1) 
Task Number (NT) 200 300 400 500 600 

QOS Guided Min-Min 100 100 100 100 100 

ROR 39.81 44.18 46.97 49.59 51.17 

Improved Ratio 60.19% 55.82% 53.03% 50.41% 48.83%

(b) (NT=500, QR=30%, QT=20%, HT=1, HQ=1) 
Resource Number (NR) 50 70 90 110 130 

QOS Guided Min-Min 50 70 90 110 130 

ROR 26.04 35.21 43.65 50.79 58.15 

Improved Ratio 47.92% 49.70% 51.50% 53.83% 55.27%

(c) (NT=500, NR=50, QT=20%, HT=1, HQ=1) 

QR% 15% 30% 45% 60% 75% 

QOS Guided Min-Min 50 50 50 50 50 

ROR 14.61 25.94 35.12 40.18 46.5 

Improved Ratio 70.78% 48.12% 29.76% 19.64% 7.00% 

(d) (NT=500, NR=100, QR=40%, HT=1, HQ=1) 

QT% 15% 30% 45% 60% 75% 

QOS Guided Min-Min 100 100 100 100 100 

ROR 57.74 52.9 48.54 44.71 41.49 

Improved Ratio 42.26% 47.10% 51.46% 55.29% 58.51%

(e) (NT=500, NR=100, QR=30%, QT=20%, HQ=1) 

HT 1 3 5 7 9 

QOS Guided Min-Min 100 100 100 100 100 

ROR 47.86 47.51 47.62 47.61 47.28 

Improved Ratio 52.14% 52.49% 52.38% 52.39% 52.72%

(f) (NT=500, NR=100, QR=30%, QT=20%, HT=1) 
HQ 3 5 7 9 11 

QOS Guided Min-Min 100 100 100 100 100

ROR 54.61 52.01 50.64 48.18 46.53

Improved Ratio 45.39% 47.99% 49.36% 51.82% 53.47%
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Similar to those of Table 2, Table (a) changes the 

number of tasks to verify the reduction of resource that 
needs to be achieved by the ROR technique.  We noticed 
that the ROR has significant improvement in minimizing 
grid resources.  Comparing with the QoS guided 
Min-Min scheduling algorithm, the ROR achieves 50% ~ 
60% improvements without increasing overall makespan 
of a chunk of grid tasks.  Table (b) changes the number 
of machines.  The ROR retains 50% improvement ratio.  
Table (c) adjusts percentages of QoS machine.  Because 
this test has 20% QoS tasks, the ROR performs best at 
15% QoS machines.  This observation implies that the 
ROR has significant improvement when QoS tasks and 
QoS machines are with the same percentage.  Table (d) 
sets 40% QoS machine and changes the percentages of 
QoS tasks.  Following the above analysis, the ROR 
technique achieves more than 50% improvements when 
QoS tasks are with 45%, 60% and 75%.  Tables (e) and 
(f) change the heterogeneity of tasks.  Similar to the 
results of section 5.2, the heterogeneity of tasks is not 
critical to the improvement rate of the ROR technique.  
Overall speaking, the ROR technique presents 50% 
improvements in minimizing total resource need compare 
with the QoS guided Min-Min scheduling algorithm. 

 

6. Conclusions 
In this paper we have presented two optimization 

schemes aiming to reduce the overall completion time 
(makespan) of a chunk of grid tasks and minimize the 
total resource cost.  The proposed techniques are based 
on the QoS guided Min-Min scheduling algorithm. The 
optimization achieved by this work is twofold; firstly, 
without increasing resource costs, the overall task 
execution time could be reduced by the MOR scheme 
with 7%~15% improvements. Second, without increasing 
task completion time, the overall resource cost could be 
reduced by the ROR scheme with 50% reduction on 
average, which is a significant improvement to the state of 
the art scheduling technique. The proposed MOR and 
ROR techniques have characteristics of low complexity, 
high effectiveness in large-scale grid systems with QoS 
services.  
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