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Abstract

This report presents the project to design
analysis and implement a composite resource
scheduler and a platform mutual analysis tool on
heterogeneous grids. There are three major
subjects in this research: first, we will develop
master-slave task scheduling technologies which
can be directly incorporated on cluster grid;
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second, we will develop the main technique of
composite  resource  scheduler. For
heterogeneous grid and its topology, we will
devise optimized performance analysis model
and analyze system efficiency according to a set
of real work load trace tape from SDSC; third,
we will develop platform mutual resource
scheduling and learning tool. Whereas the grid
computing becomes widespread for massive
computing and high performance scientific
applications, the achievements of this research
will facilitate constructing high performance
cluster and grid systems.

Keywords: Heterogeneous Computing, Grid
Computing, Composite Scheduling, Resource
Scheduling, Task Scheduling, Master Slave.
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Algorithm_ESCR_Binary_Approcimation (Ti, Ti_comm, Qtask)

I Qusk is the amount of tasks to be processed
01. While ( (Task ESR (X) = Qusd ) {
02. Left_t=T 5CR (BSCj_y);

finish
03.  Right t=T2 (BSC,,,);
04. x=1/2(Left_t+ Right_t);
05.  if (Task 53R (X) > Quel)
06.  x=1/2(x+ Right_t)
07. elseif (Task 5SS (X)< Qusk)

finish

08. x=1/2(Left_t+x) }

09. makespan = x;
End_of_ESCR_Binary_Approcimation
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Abstract. The problem of scheduling a weighted directed acyclic graph
(DAG) representing an application to a set of heterogeneous processors to
minimize the completion time has been recently studied. The
NP-completeness of the problem has instigated researchers to propose different
heuristic algorithms. In this paper, we present a Generalized Critical-task
Anticipation (GCA) algorithm for DAG scheduling in heterogeneous
computing environment. The GCA scheduling algorithm employs task
prioritizing technique based on CA algorithm and introduces a new processor
selection scheme by considering heterogeneous communication costs among
processors for adapting grid and scalable computing. To evaluate the
performance of the proposed technique, we have developed a simulator that
contains a parametric graph generator for generating weighted directed acyclic
graphs with various characteristics. ~ We have implemented the GCA
algorithm along with the CA and HEFT scheduling algorithms on the simulator.
The GCA algorithm is shown to be effective in terms of speedup and low
scheduling costs.

1. Introduction

The purpose of heterogeneous computing system is to drive processors
cooperation to get the application done quickly. Because of diverse quality among
processors or some special requirements, like exclusive function, memory access speed,
or the customize 1/0O devices, etc.; tasks might have distinct execution time on
different resources. Therefore, efficient task scheduling is important for achieving
good performance in heterogeneous systems.

The primary scheduling methods can be classified into three categories, dynamic
scheduling, static scheduling and hybrid scheduling according to the time at which the
scheduling decision is made. In dynamic approach, the system performs
redistribution of tasks between processors during run-time, expect to balance
computational load, and reduce processor’s idle time. On the contrary, in static
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approach, information of applications, such as tasks execution time, message size of
communications among tasks, and tasks dependences are known a priori at
compile-time; tasks are assigned to processors accordingly in order to minimize the
entire application completion time and satisfy the precedence of tasks. Hybrid
scheduling techniques are mix of dynamic and static methods, where some
preprocessing is done statically to guide the dynamic scheduler [8].

A Direct Acyclic Graph (DAG) [2] is usually used for modeling parallel
applications that consists a number of tasks. The nodes of DAG correspond to tasks
and the edges of which indicate the precedence constraints between tasks. In
addition, the weight of an edge represents communication cost between tasks. Each
node is given a computation cost to be performed on a processor and is represented by
a computation costs matrix. Figure 1 shows an example of the model of DAG
scheduling. In Figure 1(a), it is assumed that task n; is a successor (predecessor) of
task n;if there exists an edge from n; to n; (from n; to n;) in the graph. Upon task
precedence constraint, only if the predecessor n; completes its execution and then its
successor n; receives the messages from n;, the successor n; can start its execution.
Figure 1(b) demonstrates different computation costs of task that performed on
heterogeneous processors. It is also assumed that tasks can be executed only on
single processor with non-preemptable style. A simple fully connected processor
network with asymmetrical data transfer rate is shown in Figures 1(c) and 1(d).

Py P, Ps

= |

ny 14 19 9 14

n, 13 | 19 | 18 | 16.7

ns | 11 | 17 | 15 | 143
ng | 13 8 18 | 13

N 12 13 10 11.7

ng 12 19 13 14.7

n; 7 16 11 11

ng 5 11 14 10

Ny 18 12 20 16.7

(b)

DP
= by | P | Ps

P 0 |07]21

P |13 0 |08

Pl1o|o3| o

(c) (d)

Figure 1: An example of DAG scheduling problem (a) Directed Acyclic Graph (DAG-1) (b)
computation cost matrix (W) (c) processor topology (d) communication weight.

The scheduling problem has been widely studied in heterogeneous systems where
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the computational ability of processors is different and the processors communicate
over an underlying network. Many researches have been proposed in the literature.
The scheduling problem has been shown to be NP-complete [3] in general cases as
well as in several restricted cases; so the desire of optimal scheduling shall lead to
higher scheduling overhead. The negative result motivates the requirement for
heuristic approaches to solve the scheduling problem. A comprehensive survey about
static scheduling algorithms is given in [9]. The authors of have shown that the
heuristic-based algorithms can be classified into a variety of categories, such as
clustering algorithms, duplication-based algorithms, and list-scheduling algorithms.
Due to page limitation, we omit the description for related works.

In this paper, we present a Generalized Critical task Anticipation (GCA) algorithm,
which is an approach of list scheduling for DAG task scheduling problem. The main
contribution of this paper is proposing a novel heuristic for DAG scheduling on
heterogeneous machines and networks. A significant improvement is that
inter-processor communication costs are considered into processor selection phase
such that tasks can be mapped to more suitable processors. The GCA heuristic is
compared favorable with previous CA [5] and HEFT heuristics in terms of schedule
length and speedup under different parameters.

The rest of this paper is organized as follows: Section 2 provides some
background, describes preliminaries regarding heterogeneous scheduling system in
DAG model and formalizes the research problem. Section 3 defines notations and
terminologies used in this paper. Section 4 forms the main body of the paper,
presents the Generalized Critical task Anticipation (GCA) scheduling algorithm and
illustrating it with an example. Section 5 discusses performance of the proposed
heuristic and its simulation results.  Finally, Section 6 briefly concludes this paper.

2. DAG Scheduling on Heterogeneous Systems

The DAG scheduling problem studied in this paper is formalized as follows. Given

a parallel application represented by a DAG, in which nodes represent tasks and

edges represent dependence between these tasks. The target computing architecture

of DAG scheduling problem is a set of heterogeneous processors, M = {P,: k = 1: P}

and P = |M|, communicate over an underlying network which is assumed fully

connected. We have the following assumptions:

® Inter-processor communications are performed without network contention
between arbitrary processors.

® Computation of tasks is in non-preemptive style. Namely, once a task is
assigned to a processor and starts its execution, it will not be interrupted until its
completion.

® Computation and communication can be worked simultaneously because of the
separated 1/0.

® | two tasks are assigned to the same processor, the communication cost between
the two tasks can be discarded.

® A processor is assumed to send the computational results of tasks to their
immediate successor as soon as it completes the computation.

Given a DAG scheduling system, W is an n x P matrix in which w;; indicates
estimated computation time of processor P;j to execute task n;. The mean execution
time of task n; can be calculated by the following equation:
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Example of the mean execution time can be referred to Figure 1(b).

For communication part, a P x P matrix T is structured to represent different
data transfer rate among processors (Figure 1(d) demonstrates the example). The
communication cost of transferring data from task n; (execute on processor p,) to task
n; (execute on processor py) is denoted by c;; and can be calculated by the following
equation,

Ci,j :Vm+MSgi,j XtX,y’ (2)

Where:

V,, is the communication latency of processor Py,

Msg;; is the size of message from task n; to task n;,

tyy is data transfer rate from processor p, to processor p,, 1< x, y <P.

In static DAG scheduling problem, it was usually to consider processors’
latency together with its data transfer rate. Therefore, equation (2) can be
simplified as follows,

Ci,j = Msgi'j thyy, (3)

Given an application represented by Directed Acyclic Graph (DAG), G = (V, E),
where V = {n;: j = 1: v} is the set of nodes and v = |V|; E = {&;; = <n;, n;>} is the set
of communication edges and e =|E|. In this model, each node indicates least
indivisible task. Namely, each node must be executed on a processor from the start
to its completion. Edge <n;, nj> denotes precedence of tasks n; and n;. In other
words, task n; is the immediate predecessor of task n; and task n; is the immediate
successor of task ni. Such precedence represents that task n; can be start for
execution only upon the completion of task n;. Meanwhile, task n; should receive
essential message from n; for its execution. Weight of edge <n;, n; > indicates the
average communication cost between n; and n;.

Node without any inward edge is called entry node, denoted by Nenr; While node
without any outward edge is called exit node, denoted by n.. In general, it is supposed
that the application has only one entry node and one exit node. If the actual application
claims more than one entry (exit) node, we can insert a dummy entry (exit) node with
zero-cost edge.

3. Preliminaries

This study concentrates on list scheduling approaches in DAG model.  List
scheduling was usually distinguished into list phase and processor selection phase.
Therefore, priori to discuss the main content, we first define some notations and
terminologies used in both phases in this section.

3.1 Parameters for List Phase

Definition 1: Given a DAG scheduling system on G = (V, E), the Critical Score of task
n; denoted by CS(n;) is an accumulative value that are computed recursively traverses
along the graph upward, starting from the exit node. CS(n;) is computed by the
following equations,
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ot if n; is the exit ndoe (i.e. n; =n.) (4)
CSM) =W + Max (c,, +Cs(n,) otherwise

njesuc (n;)

where is the average computation cost of task N, w, is the average computation

exit

cost of task n;, suc(n;) is the set of immediate successors of task n;,

C;; Isthe average communication cost of edge <n;, n;> which is defined as follows,
Msg ,jx > t,,

Cifz 1<x,y<P , (5)
] (PZ _ P)

3.2 Parameters for Processor Selection Phase

Most algorithms in processor selection phase employ a partial schedule scheme to
minimize overall schedule length of an application. To achieve the partial
optimization, an intuitional method is to evaluate the finish time (FT) of task n;
executed on different processors. According to the calculated results, one can select
the processor who has minimum finish time as target processor to execute the task n;.
In such approach, each processor P, will maintain a list of tasks, task-list(Py), keeps
the latest status of tasks correspond to the EFT(n;, Py), the earliest finish time of task n;
that is assigned on processor Py.

Recall having been mentioned above that the application represented by DAG
must satisfy the precedence relationship. Taking into account the precedence of tasks
in DAG, a task n; can start to execute on a processor Py only if its all immediate
predecessors send the essential messages to n; and n; successful receives all these
messages. Thus, the latest message arrive time of node n; on processor Py, denoted
by LMAT(n;, P\), is calculated by the following equation,

LMAT(n,,P, )= - Max )(EFT(ni )+c, «. for task n; executed on processor P, ) (6)
i € i

where pred(n;) is the set of immediate predecessors of task n;. Note that if tasks n;
and n; are assigned to the same processor, ¢, , is assumed to be zero because it is

negligible.
Because the entry task neq, has no inward edge, thus we have

LMAT (N, P )=0 (7)
forallk=1to P.

Definition 2: Given a DAG scheduling system on G = (V, E), the Start Time of task n;
executed on processor P is denoted as ST(n;, Py).
Estimating task’s start time (for example, task n;) will facilitate search of available
time slot on target processors that is large enough to execute that task (i.e., length of
time slot > w;,). Note that the search of available time slot is started from
LMAT (n;,P, )-
Definition 3: Given a DAG scheduling system on G = (V, E), the finish time of task n;
denoted by FT(n;,R), represents the completion time of task n; executed on processor
P«.  FT(n,,R,) isdefined as follows,

FT(n;,R)=ST(n;,R)+w;, (8)
Definition 4: Given a DAG scheduling system on G = (V, E), the earliest finish time of
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task n; denoted by EFT(n,) is formulated as follows,
EFT(n,) =Min{FT(n;, )} (9)
PP
Definition 5: Based on the determination of EFT(n;) in equation (9), if the earliest finish

time of task n; is obtained upon task n; executed on processor p, then the target processor of
task n; is denoted by TP(n;), and TP(n;) = p..

4. The Generalized Critical-task Anticipation Scheduling Algorithm

Our approach takes advantages of list scheduling in lower algorithmic complexity and
superior scheduling performance and furthermore came up with a novel heuristic
algorithm, the generalized critical task anticipation (GCA) scheduling algorithm to
improve the schedule length as well as speedup of applications. The proposed
scheduling algorithm will be verified beneficial for the readers while we delineate a
sequence of the algorithm and show some example scenarios in three phases,
prioritizing phase, listing phase and processor selection phase.

In prioritizing phase, the CS(n;) is known as the maximal summation of scores
including the average computation cost and communication cost from task n; to the
exit task. Therefore, the magnitude of the task’s critical score is regarded as the
decisive factor when determining the priority of a task. In listing phase, an ordered
list of tasks should be determined for the subsequent phase of processor selection. The
proposed GCA scheduling technique arranges tasks into a list L, not only according to
critical scores but also considers tasks’ importance.

Several observations bring the idea of GCA scheduling method. Because of
processor heterogeneity, there exist variations in execution cost from processor to
processor for same task. In such circumstance, tasks with larger computational cost
should be assigned higher priority. This observation aids some critical tasks to be
executed earlier and enhances probability of tasks reduce its finish time.
Furthermore, each task has to receive the essential messages from its immediate
predecessors. In other words, a task will be in waiting state when it does not collect
complete message yet. For this reason, we emphasize the importance of the last
arrival message such that the succeeding task can start its execution earlier.
Therefore, it is imperative to give the predecessor who sends the last arrival message
higher priority. This can aid the succeeding task to get chance to advance the start
time. On the other hand, if a task n; is inserted into the front of a scheduling list, it
occupies vantage position. Namely, n; has higher probability to accelerate its
execution and consequently the start time of suc(n;) can be advanced as well.

In most list scheduling approaches, it was usually to demonstrate the algorithms
in two phases, the list phase and the processor selection phase. The list phase of
proposed GCA scheduling algorithm consists of two steps, the CS (critical score)
calculation step and task prioritization step.

Let’s take examples for the demonstration of CS calculation, which is performed
in level order and started from the deepest level, i.e., the level of exit task. For

example, according to equation (4), we have CS(ny)= Wy = 16. For the upper
level tasks, n;, ng and ng, CS(n;) = W_7+(C7’10 +CS(nyp)) = 47.12, CS(ng) =

W_8+(C8,10 +CS(n10)) =37.83, CS(ng) = W_9+(C9,10 +CS(n10)) =49.23. The other
tasks can be calculated by the same methods. Table 1 shows complete calculated
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critical scores of all tasks for DAG-1.
Table 1: Critical Scores of tasks in DAG-1 using GCA algorithm
Critical Scores of tasks in GCA algorithm
n n N3 in Ns Ne n; Ng Ng N1o
12013 | 8483| 8367| 8345| 7628| 7025| 4712 3783 4923| 16.00

Follows the critical score calculation, the GCA scheduling method considers both
tasks’ importance (i.e., critical score) and its relative urgency for prioritizing tasks.
Based on the results obtained previously, we use the same example to demonstrate task
prioritization in GCA. Let’s start at the exit task n;o, which has the lowest critical
score. Assume that tasks will be arranged into an ordered list L, therefore, we have L
= {ny} initially. Because task nio has three immediate predecessors, with the order
CS(ng) > CS(ns) > CS(ng), the list L will be updated to L={ng, n;, ng, Nyo}. Applying
the same prioritizing method by taking the front element of L, task no; because task ng
has three immediate predecessors, with the order CS(ns) > CS(n,) > CS(ns), we have
the updated list L = { n4, Ny, Ns, Ng, N7, Ng, Ny},  Taking the same operations, insert
task n, in front of task n,, insert task n; in front of task n;, insert tasks n,, n,, ng
(because CS(ny) > CS(n,) > CS(ng)) in front of task ng; we have the list L = { ny, ny, n,,
Ns, Ng, N3, N7, Ng, Ng, Ny, Ng, Ng, N1p}.  The final list L = {ny, n4, Ny, Ns, Ng, N3, N7, Ng, Ng,
nio} can be derived by removing duplicated tasks.

In listing phases, the GCA scheduling algorithm proposes two enhancements from
the majority of literatures. First, GCA scheduling technique considers various
transmission costs of messages among processors into the calculation of critical scores.
Second, the GCA algorithm prioritizes tasks according to the influence on its
successors and devotes to lead an accelerated chain while other techniques simply
schedule high critical score tasks with higher priority. In other words, the GCA
algorithm is not only prioritizing tasks by its importance but also by the urgency
among task. The prioritizing scheme of GCA scheduling technique can be
accomplished by using simple stack operations, push and pop, which are outlined in
GCA_List_Phase procedure as follows.

Begin_GCA _List_Phase

1. Initially, construct an array of Boolean QV and a stack S.

2. QV[nj] =false, V njeV.

3. Push nei: on top of S.

4. While S is not empty do

5. Peek task njon the top of S;

6. If( all QV[n;] are true, for all n; € pred(n;) or task nj is Nentry)  {

7. Pop task n; from top of S and put n; into scheduling list L;

8. QV[ nj] =true; }

9. Else  /* search the CT(n;) */

10. For each task n;, where n; € pred(n;) do

11. If(QV[n;] = false)

12. Put CS(n;) into container C;

13. Endif

14. Push tasks pred(n;) from C into S by non-decreasing order according to their
critical scores;

15. Reset C to empty;
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16. /* if there are 2+ tasks with same CS(n;), task n; is randomly pushed into S.
17.  EndWhile
End_GCA_List_Phase

In processor-selection phase, tasks will be deployed from list L that obtained in
listing phase to suitable processor in FIFO manner. According to the ordered list L =
{n1, n4, Nz, Ns, Ng, N3, N7, Ng, Ng, N1}, We have the complete calculated EFTs of tasks in
DAG-1 and the schedule results of GCA algorithm are listed in Table 2 and Figure 2(a),
respectively.

Table 2: Earliest Finish Time of tasks in DAG-1 using GCA algorithm

Earliest Finish Time of tasks in GCA algorithm

ny n, ns Ny ns Ne ny Ng Ng N1o
9 27 42 19.7 32.7 47.6 53 65.7 54.7 84.7
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Figure 2: Schedule results of three algorithms on DAG-1 (a) GCA (makespan = 84.7) (b)
CA (makespan = 92.4) (c) HEFT (makespan = 108.2).

In order to profile significance of the GCA scheduling technique, the schedule
results of other algorithms, CA and HEFT are depicted in Figure 2(b) and 2(c),
respectively. The GCA scheduling techniques incorporates the consideration of
heterogeneous communication costs among processors in processor selection phase.
Such enhancement facilitates the selection of best candidate of processors to execute
specific tasks.

5. Performance Evaluation

5.1 Random Graph Generator

We implemented a Random Graph Generator (RGG) to simulate application graphs
with various characteristics. RGG uses the following input parameters to produce

diverse graphs.
®  Weight of graph (weight), which is a constant = {32, 128, 512, 1024}.
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o Number of tasks in the graph (n), where n = {20, 40, 60, 80, 100}.
®  Graph parallelism (p), the graph parallelism determines shape of a graph. p is
assigned for 0.5, 1.0 and 2.0. The level of graph is defined as Lﬁ/ pJ. For

example, graph with p = 2.0 has higher parallelism than graph with p = 1.0.
® Out degree of a task (d), where d = {1, 2, 3, 4, 5}. The out degree of a task
indicates relationship with other tasks, the larger degree of a task the higher task
dependence.
® Heterogeneity (h), determines computational cost of task n; executed on processor
Py, i.e., w;y, whichis randomly generated by the following formula.

W.X[l—%jﬁw.,k SW.X[1+%) (10)

RGG randomizes w; from the interval [1, weight]. Note that larger value of
weight represents the estimation is with higher precision. In our simulation, h was
assigned by 0.1, 0.25, 0.5, 0.75 and 1.0.

° Communication to Computation Ratio (CCR), where CCR = {0.1, 0.5, 1, 2, 10}.

5.2 Comparison Metrics

As mentioned earlier, the objective of DAG scheduling problem is to minimize the
completion time of an application. To verify the performance of a scheduling
algorithm, several comparative metrics are given below for comparison:
® Makespan, also known as schedule length, which is defined as follows,

Makespan = max(EFT (Neyit)) (11)
® Speedup, defined as following equation,
mInPJeM{ZHIEV Wi}

makespan

The numerator is the minimal accumulated sum of computation cost of tasks
which are assigned on one processor. Equation (12) represents the ratio of sequential
execution time to parallel execution time.
® Percentage of Quality of Schedules (PQS)

The percentage of the GCA algorithm produces better, equal and worse quality of
schedules compared to other algorithms.

Speedup = , Where M is the set of processors  (12)

5.3 Simulation Results

The first evaluation aims to demonstrate the merit of the GCA algorithm by showing
quality of schedules using RGG. Simulation results were obtained upon different
parameters with totally 1875 DAGs. Figure 3 reports the comparison by setting
different weight = {32, 128, 512, 1024}. The term “Better” represents percentage of
testing samples the GCA algorithm outperforms the CA algorithm. The term “Equal”
represents both algorithm have same makespan in a given DAG. The tem “Worse”
represents opposite results to the “Better” cases. Figure 4 gives the PQS results by
setting different number of processors. Overall, the GCA scheduling algorithm
presents superior performance for 65% test samples.

Speedup of the GCA, CA and HEFT algorithms to execute 1875 DAGs with fix
processor number (P=16) under different number of task (n) are shown in Figure 5.
The speedup of these algorithms show placid when number of task is small and
increased significantly when number of tasks becomes large. In general, the GCA
algorithm has better speedup than the other two algorithms. Improvement rate of the
GCA algorithm in terms of average speedup is about 7% to the CA algorithm and 34%
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to the HEFT algorithm. The improvement rate (IRgca) is estimated by the following
equation:

IRgca = > Speedup(GCA) — > Speedup(HEFT or CA) (13)
Y Speedup(HEFT or CA)
sight | 33 128 512 1024

Better 6533% | AL.13% | 6T.07% | AT7.47%

Egual 34.40% | 38.8T7% | 32.03% | 32.53%

Wotrse 0.27% 0% 0% 0%

Figure 3: PQS: GCA compared with CA (3 processors)

cessor
5 é 7 3

Better 61.13% | 7233% | 63.27% | 4d6.60%

Equal 3B.ETH 2T.6T7% 36.73% 33.40%

Worse 0% 0% 0% 0%
Figure 4: PQS: GCA compared with CA (weight = 128)
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Figure 5: Speedup of GCA, CA and HEFT with different number of tasks (n).
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Figure 6: Speedup of GCA, CA and HEFT with different out-degree of tasks (d)
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Speedup of the GCA, CA and HEFT algorithms to execute different DAGs with fix processor number (P=16) and
task number (n=60) under different out-degree of tasks (d) are shown in Figure 6. The results of Figure 6 demonstrate
the speedup influence by task dependence. We observe that speedups of scheduling algorithms are less dependent on
tasks’ dependence. Although the speedups of three algorithms are stable, the GCA algorithm outperforms the other
two algorithms in most cases. Improvement rate of the GCA algorithm in terms of average speedup is about 5% to the
CA algorithm and 80% to the HEFT algorithm.

Figure 7 shows simulation results of three algorithms upon different processor number and degree of parallelization.
It is noticed that, graphs with larger value of p tends to with higher parallelism. As shown in Figures 7(a) and (b), the
GCA algorithm performs well in linear graphs (p=0.5) and general graphs (p=1.0). On the contrary, Figure 7(c) shows
that the HEFT scheduling algorithm has superior performance when degree of parallelism is high. In general, for
graphs with low parallelism (e.g., p = 0.5), the GCA algorithm has 33% improvement rate in terms of average speedup
compare to the HEFT algorithm; for graphs with normal parallelism (e.g., p = 1), the GCA algorithm has 20%
improvement rate. For graphs with high parallelism (e.g., p = 2), the GCA algorithm performs worse than the HEFT by
3% performance.

Speedup of the GCA, CA and HEFT algorithms to execute different DAGs with fix processor number (P=16) and
task number (n=60) under different out-degree of tasks (d) are shown in Figure 6. The results of Figure 6 demonstrate
the speedup influence by task dependence. We observe that speedups of scheduling algorithms are less dependent on
tasks’ dependence. Although the speedups of three algorithms are stable, the GCA algorithm outperforms the other
two algorithms in most cases. Improvement rate of the GCA algorithm in terms of average speedup is about 5% to the
CA algorithm and 80% to the HEFT algorithm.

]

g 0
£ p =05
e —=
LI

(a) (b) ©
Figure 7: Speedup with different degree of parallelism (p) (@) p=05(b)p=1(c)p=2.

The impact of communication overheads on speedup are plotted in Figure 8 by setting different value of CCR. It
is noticed that increase of CCR will downgrade the speedup we can obtained. For example, speedup offered by CCR =
0.1 has maximal value 8.3 in GCA with 12 processors; for CCR = 1.0, the GCA algorithm has maximal speedup 6.1
when processor number is 12; and the same algorithm, GCA, has maximal speedup 3.1 for CCR = 5 with 12 processors.
This is due to the fact that when communication overheads higher than computational overheads, costs for tasks
migration will offset the benefit of moving tasks to faster processors.

(@) (b) (©
Figure 8: Speedup results with different CCR (a) CCR=0.5 (b) CCR =1 (c) CCR =5.

6. Conclusions

The problem of scheduling a weighted directed acyclic graph (DAG) to a set of heterogeneous processors to
minimize the completion time has been recently studied. Several techniques have been presented in the literature to
improve performance. This paper presented a general Critical-task Anticipation (GCA) algorithm for DAG scheduling
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system. The GCA scheduling algorithm employs task prioritizing technique based on CA algorithm and introduces a
new processor selection scheme by considering heterogeneous communication costs among processors. GCA
scheduling algorithm is a list scheduling approach with simple data structure and profitable for grid and scalable
computing. Experimental results show that GCA has superior performance compare to the well known HEFT
scheduling heuristic algorithm and our previous proposed CA algorithm which did not incorporate the consideration of
heterogeneous communication costs into processor selection phase. Experimental results show that GCA is equal or
superior to HEFT and CA scheduling algorithms in most cases and it enhances to fit more real grid system.
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Abstract

With the emergence of grid technologies, the
problem of scheduling tasks in heterogeneous systems has
been arousing attention. In this paper, we present two
optimization schemes, Makespan Optimization
Rescheduling (MOR) and Resource Optimization
Rescheduling (ROR), which are based on the QoS
Min-Min scheduling technique, for reducing the
makespan of a schedule and the need of total resource
amount. The main idea of the proposed techniques is to
reduce overall execution time without increasing resource
need; or reduce resource need without increasing overall
execution time. To evaluate the effectiveness of the
proposed techniques, we have implemented both
techniques along with the QoS Min-Min scheduling
algorithm. The experimental results show that the MOR
and ROR optimization schemes provide noticeable
improvements.

1. Introduction

With the emergence of IT technologies,
the need of computing and storage are rapidly
increased. To invest more and more
equipments is not an economic method for an
organization to satisfy the even growing
computational and storage need. As a result,
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grid has become a widely accepted paradigm
for high performance computing.

To realize the concept virtual organization,
in [13], the grid is also defined as “A type of
parallel and distributed system that enables the
sharing, selection, and aggregation of
geographically distributed autonomous and
heterogeneous  resources dynamically at
runtime depending on their availability,
capability, performance, cost, and users'
quality-of-service requirements”. As the grid
system aims to satisfy users’ requirements with
limit resources, scheduling grid resources plays
an important factor to improve the overall
performance of a grid.

In general, grid scheduling can be
classified in two categories: the performance
guided schedulers and the economy guided
schedulers [16]. Objective of the performance
guided scheduling is to minimize turnaround
time (or makespan) of grid applications. On the
other hand, in economy guided scheduling, to
minimize the cost of resource is the main
objective. However, both of the scheduling



problems are NP-complete, which has also
instigated many heuristic solutions [1, 6, 10, 14]
to resolve. As mentioned in [23], a complete
grid  scheduling  framework  comprises
application model, resource model,
performance model, and scheduling policy. The
scheduling policy can further decomposed into
three phases, the resource discovery and
selection phase, the job scheduling phase and
the job monitoring and migration phase, where
the second phase is the focus of this study.

Although many research works have been
devoted in scheduling grid applications on
heterogeneous system, to deal with QOS
scheduling in grid is quite complicated due to
more constrain factors in job scheduling, such
as the need of large storage, big size memory,
specific 1/0 devices or real-time services,
requested by the tasks to be completed. In this
paper, we present two QoS based rescheduling
schemes aim to improve the makespan of
scheduling batch jobs in grid. In addition,
based on the QoS guided scheduling scheme,
the proposed rescheduling technique can also
reduce the amount of resource need without
increasing the makespan of grid jobs. The
main contribution of this work are twofold, one
can shorten the turnaround time of grid
applications without increasing the need of grid
resources; the other one can minimize the need
of grid resources without increasing the
turnaround time of grid applications, compared
with the traditional QoS guided scheduling
method. To evaluate the performance of the
proposed techniques, we have implemented our
rescheduling approaches along with the QoS
Min-Min scheduling algorithm [9] and the
non-QoS based Min-Min scheduling algorithm.
The experimental results show that the
proposed techniques are effective in
heterogeneous  systems  under  different
circumstances. The improvement is also
significant in economic grid model [3].

The rest of this paper is organized as
follows. Section 2 briefly describes related
research in grid computing and job scheduling.
Section 3 clarifies our research model by
illustrating the traditional Min-min model and
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the QoS guided Min-min model. In Section 4,
two optimization schemes for reducing the total
execution time of an application and reducing
resource need are presented, where two
rescheduling approaches are illustrated in detail.
We conduct performance evaluation and
discuss experiment results in Section 5. Finally,
concluding remarks and future work are given
in Section 6.

2. Related Work

Grid scheduling can be classified into traditional grid
scheduling and QoS guided scheduling or economic based
grid  scheduling. The former emphasizes the
performance of systems of applications, such as system
throughput, jobs’ completion time or response time.
Swany et al. provides an approach to improving
throughput for grid applications with network logistics by
building a tree of “best” paths through the graph and has
running time of O(NlogN) for implementations that keep
the edges sorted [15]. Such approach is referred as the
Minimax Path (MMP) and employs a greedy,
tree-building algorithm that produces optimal results [20].
Besides data-parallel applications requiring high
performance in grid systems, there is a Dynamic Service
Architecture (DSA) based on static compositions and
optimizations, but also allows for high performance and
flexibility, by use of a lookahead scheduling mechanism
[4]. To minimizing the processing time of extensive
processing loads originating from various sources, the
approaches divisible load model [5] and single level tree
network with two root processors with divisible load are
proposed [12]. In addition to the job matching algorithm,
the resource selection algorithm is at the core of the job
scheduling decision module and must have the ability to
integrate  multi-site computation power. The CGRS
algorithm based on the distributed computing grid model
and the grid scheduling model integrates a new
density-based internet clustering algorithm into the
decoupled scheduling approach of the GrADS and
decreases its time complexity [24]. The scheduling of
parallel jobs in a heterogeneous multi-site environment,
where each site has a homogeneous cluster of processors,
but processors at different sites has different speeds, is
presented in [18]. Scheduling strategy is not only in batch
but also can be in real-time. The SAREG approach
paves the way to the design of security-aware real-time
scheduling algorithms for Grid computing environments
[21].

For QoS guided grid scheduling,
apparently, applications in grids need various
resources to run its completion. In [17], an



architecture named public computing utility
(PCU) is proposed uses virtual machine (VMs)
to implement “time-sharing” over the resources
and augments finite number of private resources
to public resources to obtain higher level of
quality of services. However, the QoS
demands maybe include various packet-type
and class in executing job. As a result, a
scheduling algorithm that can support multiple
QoS classes is needed. Based on this demand,
a multi-QoS scheduling algorithm is proposed
to improve the scheduling fairness and users’
demand [11]. He et al. [7] also presented a
hybrid approach for scheduling moldable jobs
with QoS demands. In [9], a novel framework
for policy based scheduling in resource
allocation of grid computing is also presented.
The scheduling strategy can control the request
assignment to grid resources by adjusting usage
accounts or request priorities. Resource
management is achieved by assigning usage
quotas to intended users. The scheduling
method also supports reservation based grid
resource allocation and quality of service
feature. Sometimes the scheduler is not only
to match the job to which resource, but also
needs to find the optimized transfer path based
on the cost in network. In [19], a distributed
QoS network scheduler (DQNS) is presented to
adapt to the ever-changing network conditions
and aims to serve the path requests based on a
cost function.

3. Research Architecture

Our research model considers the static
scheduling of batch jobs in grids. As this
work is an extension and optimization of the
QoS guided scheduling that is based on
Min-Min scheduling algorithm [9], we briefly
describe the Min-Min scheduling model and the
QoS guided Min-Min algorithm. To simplify
the presentation, we first clarify the following
terminologies and assumptions.

® QoS Machine (Mg) — machines can provide
special services.

® QoS Task (Tg) — tasks can be run
completion only on QoS machine.

® Normal Machine (My) — machines can only
run normal tasks.

® Normal Task (Tn) — tasks can be run

completion on both QoS machine and
normal machine.
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® A chunk of tasks will be scheduled to run
completion based on all available machines
in a batch system.

® A task will be executed from the beginning

to completion without interrupt.

The completion time of task ti to be

executed on machine m; is defined as

CTy = dt; + et;; Q)

Where et;; denotes the estimated execution time
of task t; executed on machine m;; dt; is the
delay time of task t; on machine m;.

The Min-Min algorithm is shown in Figure

Algorithm_Min-Min()

while there are jobs to schedule
for all job i to schedule
for all machine j
Compute CT;; = CT(job i, machine j)
end for
Compute minimum CT; ;
end for
Select best metric match m
Compute minimum CTp,p,
Schedule job m on machine n
end while
} End_of _Min-Min

Figure 1. The Min-Min Algorithm

Analysis: If there are m jobs to be scheduled in
n machines, the time complexity of Min-Min
algorithm is O(m?n). The Min-Min algorithm
does not take into account the QoS issue in the
scheduling. In some situation, it is possible
that normal tasks occupied machine that has
special services (referred as QoS machine).
This may increase the delay of QoS tasks or
result idle of normal machines.

The QoS guided scheduling is proposed to resolve
the above defect in the Min-Min algorithm. In QoS
guided model, the scheduling is divided into two classes,
the QoS class and the non-QoS class. In each class, the
Min-Min algorithm is employed.  As the QoS tasks have
higher priority than normal tasks in QoS guided
scheduling, the QoS tasks are prior to be allocated on
QoS machines. The normal tasks are then scheduled to



all machines in Min-Min manner. Figure 2 outlines the
method of QoS guided scheduling model with the
Min-Min scheme.

Analysis: If there are m jobs to be scheduled in
n machines, the time complexity of QoS guided
scheduling algorithm is O(mn).

Figure 3 shows an example demonstrating
the Min-Min and QoS Min-Min scheduling
schemes. The asterisk * means that
tasks/machines with QoS demand/ability, and
the X means that QoS tasks couldn’t be
executed on that machine. Obviously, the
QoS guided scheduling algorithm gets the
better performance than the Min-Min algorithm
in term of makespan. Nevertheless, the QoS
guided model is not optimal in both makespan
and resource cost. We will describe the
rescheduling optimization in next section.

Algorithm_QOS-Min-Min()
{

for all tasks ti in meta-task Mv (in an arbitrary order)
for all hosts m; (in a fixed arbitrary order)
CTij=et;+ dt;
end for
end for
do until all tasks with QoS request in Mv are mapped
for each task with high QoS in My,
find a host in the QoS qualified host set that obtains
the earliest completion time
end for
find task t, with the minimum earliest completion time
assign task t; to host m, that gives the earliest completion
time
delete task t, from Mv
update dy
update CT; for all i
end do
do until all tasks with non-QoS request in Mv are mapped
for each task in Mv
find the earliest
corresponding host
end for
find the task t. with the minimum earliest completion time
assign task t; to host m, that gives the earliest completion
time
delete task t, from Mv
update dy
update CT; for all i
end do
} End_of _ QOS-Min-Min

completion time and the

Figure 2. The QoS Guided Algorithm

4. Rescheduling Optimization

Grid scheduling works as the mapping of individual
tasks to computer resources, with respecting service level
agreements (SLAs) [2]. In order to achieve the
optimized performance, how to mapping heterogeneous
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tasks to the best fit resource is an important factor. The
Min-Min algorithm and the QoS guided method aims at
scheduling jobs to achieve better makespan. However,
there are still having rooms to make improvements. In
this section, we present two optimization schemes based
on the QoS guided Min-Min approach.

*M1 M2 M3
T1 7 4 7
T2 3 3 5
T3 9 5 7
*T4 5 X X
T5 9 8 6
*T6 5 X X

Makespan Makespan

12 [—

Machine M1 Machine

B. The QOS guided scheduling algorithm

A. The Min-Min algorithm

Figure 3. Min-Min and QoS Guided Min-Min

4.1 Makespan Optimization Rescheduling (MOR)

The first one is Makespan Optimization Rescheduling
(MOR), which focuses on improving the makespan to
achieve better performance than the QoS guided
scheduling algorithm. Assume the makespan achieved by
the QoS guided approach in different machines are CT;,
CT,, ..., CTy, with CTy = max { CTy, CT,, ..., CTy },
where m is the number of machinesand 1 <k <m. By
subtracting CT, — CT;, where 1 <i <mand i #k, we can
have m-1 available time fragments. According to the
size of these available time fragments and the size of tasks
in machine My, the MOR dispatches suitable tasks from
machine My to any other machine that has available and
large enough time fragments. Such optimization is
repeated until there is no task can be moved.



*M1 M2 M3
T1 7 4 7
T2 3 3 5
T3 9 5 7
*T4 5 X X
T5 9 8 6
*T6 5 X X
Makespan
Makespan
12 +— -
T3 u T2
*T6 *T6
s 8 |— T3
Tl
5 T5
3 - [T 3= |4 [T
]
0

*M1 M2 M3 Machine *M1 M2 M3 Machine

A. The QOS guided scheduling B. The Makespan Optimization

algorithm Rescheduling (MOR) algorithm

Figure 4. Example of MOR

Recall the example given in Figure 3,
Figure 4 shows the optimization of the MOR
approach. The left side of Figure 4
demonstrates that the QoS guided scheme gives
a schedule with makespan = 12, wheremachine
M2 presents maximum CT (completion time),
which is assembled by tasks T2, T1 and T3.
Since the CT of machine ‘M3’ is 6, so ‘M3’ has
an available time fragment (6). Checking all
tasks in machine M2, only T2 is small enough
to be allocated in the available time fragment in
M3. Therefore, task M2 is moved to M3,
resulting machine ‘M3’ has completion time
CT=11, which is better than the QoS guided
scheme.

As mentioned above, the MOR is based on the QoS
guided scheduling algorithm. If there are m tasks to be
scheduled in n machines, the time complexity of MOR is
O(m?n).  Figure 5 outlines a pseudo of the MOR scheme.
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Algorithm_MOR()

for CT; in all machines
find out the machine with maximum makespan CT,x and
set it to be the standard
end for
do until no job can be rescheduled
for job i in the found machine with CT s
for all machine j
according to the job’s QOS demand, find the
adaptive machine j
if (the execute time of job i in machine j + the
CT; < makespan)
rescheduling the job i to machine j
update the CT; and CTpax
exit for
end if
next for
if the job i can be reschedule
find out the new machine with maximum CTpax
exit for
end if
next for
end do
} End_of _ MOR

Figure 5. The MOR Algorithm

4.2 Resource Optimization Rescheduling (ROR)

Following the assumptions described in MOR, the main
idea of the ROR scheme is to re-dispatch tasks from the
machine with minimum number of tasks to other
machines, expecting a decrease of resource need.
Consequently, if we can dispatch all tasks from machine
M, to other machines, the total amount of resource need
will be decreased.

Figure 6 gives another example of QoS scheduling,
where the QoS guided scheduling presents makespan = 13.
According to the clarification of ROR, machine ‘M1’ has
the fewest amount of tasks. We can dispatch the task
“T4’ to machine ‘M3’ with the following constraint

CTjj + CT; <= CTax 2
The above constraint means that the rescheduling can be
performed only if the movement of tasks does not
increase the overall makespan. In this example, CTy3= 2,
CTs=7 and CT=CT,=13. Because the makespan of
M3 (CTs) will be increased from 7 to 9, which is smaller
than the CT.., therefore, the task migration can be
performed. As the only task in M1 is moved to M3, the
amount of resource need is also decreased comparing
with the QoS guided scheduling.



To evaluate the performance of the proposed

- ZM AMZ ZM techniques, we have implemented the Min-Min

scheduling algorithm and the QoS guided Min-Min

el ¢ : scheme. The experiment model consists of heterogeneous

X 7 X machines and tasks. Both of the Machines and tasks are

T |4 6 2 classified into QoS type and non-QoS type. Table 1

™| 7 2 summarizes six parameters and two comparison metrics

e |x e x used in the experiments. The number of tasks is ranged

from 200 to 600. The number of machines is ranged from

Makespan Makespan 50 to 130. The percentage of QoS machines and tasks are

set between 15% and 75%. Heterogeneity of tasks are

13 = 3 13 = — defined as H; (for non-QoS task) and Hq (for QoS task),

which is used in generating random tasks. For example,

8 |- 8 |- the execution time of a non-QoS task is randomly

o s generated from the interval [10, Hx10?] and execution

‘r m ‘r time of a QoS task is randomly generated from the

. i . ], interval [10°, Hox10°] to reflect the real application world.
M1 *M2 M3 Machine ML *M2 Mg Machine

All of the parameters used in the experiments are
A. The QOS guided scheduling B The Resource Optimization Rescheduling generated randomly with a uniform distribution. The

(ROR) Algorithm
results demonstrated in this section are the average values
of running 100 random test samples.
Figure 6. Example of ROR Table 1: Parameters and Comparison Metrics
The ROR is an optimization scheme which aims to Task number (Nr) {200, 300, 400, 500, 600}
minimize resource cost. If there are m tasks to be Resource number (Ng) {50, 70, 90, 110, 130}
scheduled in n machines, the time complexity of ROR is Percentage of QOS resources (Qz %) | {15%, 30%, 45%, 60%, 75%}
also O(m”n).  Figure 7 depicts a high level description of Percentage of QOS tasks (Qr %) {15%, 30%, 45%, 60%, 75%}
the ROR optimization scheme. Heterogeneity of non-QOS tasks (Hy) | {1, 3,5,7,9}
Heterogeneity of QOS tasks (Hg) {3,5,7,9,11}
Algorithm_MOR() ¥ The completion time of a set of
akespan tasks
for m in all machines o . Number of machines used for
find out the machine m with minimum count of jobs Resource Used (Ry) executing a set of tasks

end for
do until no job can be rescheduled
for job i in the found machine with minimum count of jobs
for all machine j
according to the job’s QOS demand, find the 52 Experimental Results of MOR
adaptive machine j
if (the execute time of job i in machine j + the

CT; <= makespan CTyay) Table_ 2 compares the perfqrmance_ of the MOR, M_in-Min
rescheduling the job i to machine algorithm and the QoS guided Min-Min scheme in term
Upga:e ttT]e CT;  of obs i . d of makespan. There are six tests that are conducted with
e je gount ot Jobs in machine m an different parameters. In each test, the configurations are
exit for outlined beside the table caption from (a) to (f). Table (a)
end if changes the number of tasks to analyze the performance
next for results. Increasing the number of tasks, improvement of
next for L . .
end do MOR is limited. An average improvement ratio is from
} End_of MOR 6% to 14%. Table (b) changes the number of machines.

It is obvious that the MOR has significant improvement in
larger grid systems, i.e., large amount of machines. The
average improvement rate is 7% to 15%. Table (c)
discusses the influence of changing percentages of QoS
machines. Intuitionally, the MOR performs best with
45% QoS machines. However, this observation is not
always true. By analyzing the four best ones in (a) to (d),
we observe that the four tests (a) Nt=200 (Nz=50, Qz=30%,
Qr=20%) (b) Ng=130 (N;=500, Qr=30%, Q=20%) (c)

Figure 7. The ROR Algorithm

5. Performance Evaluation

5.1 Parameters and Metrics
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Qr=45% (N;=300, Ng=50, Q;=20%) and (d) Q=15%
(Ny=300, Ng=50, Qzr=40%) have best improvements. All of
the four configurations conform to the following relation,

0.4 x (Nrx Qr) = Nrx Qg @)
This observation indicates that the improvement of MOR
is significant when the number of QoS tasks is 2.5 times
to the number of QoS machines. Tables (e) and (f)
change heterogeneity of tasks. We observed that
heterogeneity of tasks is not critical to the improvement

rate of the MOR technique, which achieves 7%
improvements under different heterogeneity of tasks.
Table 2: Comparison of Makespan

(@) (Nr=50, Qr=30%, Qr=20%, H=1, Ho=1)

Task Number (N7) 200 300 400 500 600
Min-Min 9782 1299.7| 1631.8| 1954.6] 2287.8
QOS Guided Min-Min 6946 917.8| 1119.4[ 1359.9| 1560.1
MOR 507.3 8155 1017.7| 1254.8| 14583
Improved Ratio 14.01%| 11.15% 9.08% 7.73% 6.53%)
(b) (N7=500, Qr=30%, Qr=20%, H=1, Ho=1)

Resource Number (Ng)| 50 70 90 110 130
Min-Min 19315 | 1432.2 | 11021 | 9853 | 874.2
QOS Guided Min-Min | 13557 | 938.6 | 724.4 | 590.6 | 508.7
MOR 1252.6 840.8 633.7 506.2 429.4
Improved Ratio 7.60% | 10.42% | 12.52% | 14.30% | 15.58%

(c) (Ny=300, Ng=50, Qr=20%, H=1, Ho=1)

Qe% 15% | 30% 45% | 60% 75%
Min-Min 2470.8 1319.4 888.2 777.6 650.1
QOS Guided Min-Min | 18759 | 913.6 | 596.1 | 4638 | 376.4
MOR 1767.3 810.4 503.5 394.3 339.0
Improved Ratio 5.79% | 11.30% | 15.54% | 14.99% | 9.94%

(d) (Nt=300, Nr=50, Qr=40%, H=1, Hy=1)

Q% 15% 30% 45% 60% 75%
Min-Min 879.9 | 1380.2 | 1801.8 | 2217.0 | 2610.1
QOS Guided Min-Min 558.4 915.9 1245.2 1580.3 1900.6
MOR 474.2 817.1 1145.1 1478.5 1800.1
Improved Ratio 15.07% | 10.79% | 8.04% 6.44% 5.29%

(e) (N+=500, Ng=50, Qr=30%, Q:=20%, Ho=1)
Hr 1 3 5 7 9
Min-Min 1891.9 1945.1 1944.6 1926.1 1940.1
QOS Guided Min-Min 1356.0 1346.4 1346.4 1354.9 1357.3
MOR 1251.7 1241.4 1244.3 1252.0 1254.2
Improved Ratio 7.69% 7.80% 7.58% 7.59% 7.59%
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(f) (N1=500, Ng=50, Qz=30%, Q;=20%, H,=1)

Ho 3 5 7 9 1
Min-Min 1392.4)  1553.9 1724.9 1871.7 2037.8
QOS Guided Min-Min 867.5| 1007.8 1148.2 1273.2 1423.1
MOR 822.4 936.2, 1056.7 1174.3 1316.7
Improved Ratio 5.20% 7.11% 7.97% 7.77% 7.48%

5.3 Experimental Results of ROR

Table 3 analyzes the effectiveness of the ROR technique
under different circumstances.

Table 3: Comparison of Resource Used

(@) (Ng=100, Qz=30%, Q;=20%, H,=1, Ho=1)

Task Number (Nr) 200 300 400 500 600
QOS Guided Min-Min 100 100 100 100 100
ROR 39.81 44.18 46.97 49.59 51.17
Improved Ratio 60.19% | 55.82% | 53.03% | 50.41% | 48.83%
(b) (NTZSOO, QR:30%1 QTZZO%, HT:]., HQ:].)

Resource Number (Ng) 50 70 90 110 130
QOS Guided Min-Min 50 70 90 110 130
ROR 26.04 35.21 43.65 50.79 58.15
Improved Ratio 47.92% | 49.70% | 51.50% | 53.83% | 55.27%

(C) (NT:5001 NR:50, QTZZO%, HT:]., HQ:l)

Qr% 15% 30% 45% 60% 75%
QOS Guided Min-Min 50 50 50 50 50
ROR 14.61 25.94 35.12 40.18 46.5
Improved Ratio 70.78% | 48.12% | 29.76% | 19.64% | 7.00%

(d) (N;=500, Ng=100, Qx=40%, Hr=1, Ho=1)

Q1% 15% 30% 45% 60% 75%
QOS Guided Min-Min 100 100 100 100 100
ROR 57.74 52.9 48.54 44.71 41.49
Improved Ratio 42.26% | 47.10% | 51.46% | 55.29% | 58.51%

(6) (N+=500, Ng=100, Q¢=30%, Q;=20%, Hq=1)
Hr 1 3 5 7 9
QOS Guided Min-Min 100 100 100 100 100
ROR 47.86 47.51 47.62 47.61 47.28
Improved Ratio 52.14% | 52.49% | 52.38% | 52.39% | 52.72%
(f) (N7=500, Ng=100, Qu=30%, Qr=20%, H,=1)

Hq 3 5 7 9 11
QOS Guided Min-Min 100] 100 100] 100 100)
ROR 54.61] 52.01 50.64] 48.18 46.53]
Improved Ratio 45.39%| 47.99%| 49.36%| 51.82%| 53.47%)




Similar to those of Table 2, Table (a) changes the
number of tasks to verify the reduction of resource that
needs to be achieved by the ROR technique. We noticed
that the ROR has significant improvement in minimizing
grid resources.  Comparing with the QoS guided
Min-Min scheduling algorithm, the ROR achieves 50% ~
60% improvements without increasing overall makespan
of a chunk of grid tasks. Table (b) changes the number
of machines. The ROR retains 50% improvement ratio.
Table (c) adjusts percentages of QoS machine. Because
this test has 20% QoS tasks, the ROR performs best at
15% QoS machines. This observation implies that the
ROR has significant improvement when QoS tasks and
QoS machines are with the same percentage. Table (d)
sets 40% QoS machine and changes the percentages of
QoS tasks. Following the above analysis, the ROR
technique achieves more than 50% improvements when
QoS tasks are with 45%, 60% and 75%. Tables (e) and
(f) change the heterogeneity of tasks. Similar to the
results of section 5.2, the heterogeneity of tasks is not
critical to the improvement rate of the ROR technique.
Overall speaking, the ROR technique presents 50%
improvements in minimizing total resource need compare
with the QoS guided Min-Min scheduling algorithm.

6. Conclusions

In this paper we have presented two optimization
schemes aiming to reduce the overall completion time
(makespan) of a chunk of grid tasks and minimize the
total resource cost. The proposed techniques are based
on the QoS guided Min-Min scheduling algorithm. The
optimization achieved by this work is twofold; firstly,
without increasing resource costs, the overall task
execution time could be reduced by the MOR scheme
with 7%~15% improvements. Second, without increasing
task completion time, the overall resource cost could be
reduced by the ROR scheme with 50% reduction on
average, which is a significant improvement to the state of
the art scheduling technique. The proposed MOR and
ROR techniques have characteristics of low complexity,
high effectiveness in large-scale grid systems with QoS
Services.
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