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行政院國家科學委員會專題研究計畫結案報告 
 
 

異質性平行計算網路下支援 SPMD 程式之資源配置工作

管理與資料重組技術之研發 
 
 

中文摘要 

在平行計算系統中所發展出來的 SPMD 計算模式已在許多大量資料運算及高性能

科學應用中被廣泛的接受。隨著網路技術的進步與頻寬快速成長，加上經濟成本與效

益的考量，異質性網格計算已成為大量資料與科學計算在平行與分散式計算平台以外

的另一種選擇。因此，如何可以有效率的移植 SPMD 程式透通於異質性的計算平台上

以保有其程式演算的最佳效能成了最值得討論的問題。 

本報告是有關於在研發異質性平行計算網路下支援 SPMD 程式之資源配置工作管

理與資料重組技術之描述。在這一個計畫中，我們針對 SPMD 平行資料程式在異質性

多叢集系統提出有效率的資源配置、工作排程方法、以及通訊局部化技術。在資源配

置與工作管理方面，我們分別針對處理器計算能力的異質與網路頻寬的異質，提出

SCTF (Shortest Communication Time First)工作排程演算法，並且開發以網頁為基礎的管

理工具，在兩套 PC_Cluster 系統上實作出資源配置、監督與工作排程系統。在通訊局

部化技術方面，透過邏輯處理器與資料對應的技術，可以降低不同叢集系統之間處理

器的通訊成本。另外，針對異質性平行計算網路下的負載平衡問題，我們也提出了一

套以基因演算法為基礎的模糊理論，提升異質性分散式計算平台的排程效率。本計畫

的成果可以有助於增加異質性叢集系統的產能以及 SPMD 平行程式在該系統的執行效

率。對於工作排程、協調配置與資源管理的問題，我們測試了幾套國外著名的工作排

程系統，進行不同平台的測試，實驗結果顯示，SCTF提升了系統平均產能(throughput)、

縮短了工作執行的平均回覆時間(turnaround time)。 

 

關鍵詞：異質性計算、SPMD、分散式記算、平行演算法、資源配置、工作管理、資料

重組、網格計算。 



 II 

 

Design and Implementation of Resource Allocation and Job 
Scheduling for Supporting SPMD Programs on Heterogeneous 

Parallel Computing Networks 
 

Abstract 

The SPMD programming model evolved from parallel computing system has become a 

widely accepted paradigm for massive computing and high performance scientific 

applications.  With the progressing of network technology, the rapid growth of 

communication bandwidth and the consideration of cost-effective ratio, grid-computing 

environment has become the other choice for many scientific applications in parallel and 

distributed computation.  Thus, how to execute an SPMD program on heterogeneous 

computing platforms efficiently is a common challenge. 

This report presents the development and implementation of resource allocation and job 

scheduling for supporting SPMD programs on heterogeneous parallel computing networks.  

In this project, we have proposed an efficient communication technique for SPMD parallel 

programs in heterogeneous multi-cluster systems.  Utilizing the logical processor to data 

mapping technique, inter-cluster communications between physical processors can be 

reduced.  Besides, we have also proposed a genetic-fuzzy logic based approach for dynamic 

load balance on heterogeneous parallel computing systems.  The results of our work 

facilitate increasing the throughput of heterogeneous distributed memory environments and 

the performance of SPMD parallel programs executing on such systems.  For job scheduling, 

co-allocation and resource management, we have proposed an SCTF (Shortest 

Communication Time First) task scheduling algorithm.  We also developed a web-based 

resource monitoring tool upon two PC cluster systems.  We have tested some major tools 

that developed by other research teams on different platforms.  The experimental results 

show that SCTF outperforms Beaumont’s method in terms of lower average turnaround time, 

higher average throughput, less processor idle time and higher processors’ utilization.   

Keywords: Heterogeneous Computing, SPMD, Distributed Computing, Parallel Algorithm, 

Resource Allocation, Task Management, Data Reconfiguration, Grid Computing.
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一、緣由與目的 

隨著網路技術的進步與頻寬快速成長，加上經濟成本與效益的考量，將網路上的

計算資源結合成為一個具有工作協調能力的計算系統蘊育而生，網格計算(Grid 

Computing)也因此成為大量資料與科學計算在平行與分散式計算平台以外的另一種

選擇。從技術面來說，網格計算環境可以結合平行電腦、工作站叢集、以及網路上任

意可用的計算資源，進而加大其運算能力。有鑑於此，在異質性(Heterogeneous)的計

算環境上開發輔助運算的軟體工具也成為近幾年來廣為討論的課題。爲了結合既有的

平行程式技術與異質性的網格計算平台，在分散式網路計算環境上從事大量平行計算

所延伸的相關問題就成了相當值得研究的課題。由於 SPMD程式模式是在平行計算系

統中所發展出來的程式方法，如何可以有效率的移植 SPMD程式透通於異質性的計算

平台上以保有其程式演算的最佳效能自然成了最直接的挑戰。爲了結合既有的平行程

式技術與異質性的網格計算平台，在分散式網路計算環境上從事大量平行計算所延伸

的相關問題就成了相當值得研究的課題。由於 SPMD程式模式是在平行計算系統中所

發展出來的程式方法，如何可以有效率的移植 SPMD程式透通於異質性的計算平台上

以保有其程式演算的最佳效能自然成了最直接的挑戰。這些問題討論的重點可以從系

統與應用程式的管理以及計算平台的架構兩點來研究。 

在系統與應用程式的管理方面，工作分配的好壞直接影響了程式的完成時間與系

統資源的使用。工作負載平衡(workload balance)則可避免某一系統因工作負擔太重，

而拉長整個工作結束的時間，以達到高效能計算的目標。另一方面，在分散式記憶體

計算環境下，要有效率的執行一個平行資料的程式，適當的資料配置(Data Distribution)

是很重要的。由於資料的區域性(locality)可減少處理器間資料的傳輸，所以在支援

SPMD程式資料執行於網格計算系統方面，我們將研究在異質性的分散式記憶體群體

計算系統中，工作如何有效的分配計算工作至各處理器上，可使得各處理器的工作量

是均衡的；我們也將研究有效率的方法來處理的資料分配與資源重組的問題，進而提

高資料的區域性；在程式執行期間，減少處理器之間的資料交換，降低通訊成本。 

在這個計畫中，我們主要是要研發適應於異質性分散式網路計算環境之工作排程

與管理、資源分配以及動態資料重組技術的整合方法，用來提升 SPMD平行運算程式

的效能。主要的工作項目包括研究工作排程、工作負載平衡與工作重新配置對整體程

式執行的必要性及其在效能上影響；研究在不同網路領域或網路拓僕環境之間通訊對

SPMD程式執行動態資料交換所造成的影響及其最佳化；以及發展以網頁為基礎的異
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質性網路計算環境工作排程與監督系統。 

二、研究方法與成果 

對於異質性分散式網路計算環境下工作配置與資源管理的問題，我們首先針對軟

體的異質性(包括作業系統、訊息傳遞介面、區域排程策略)，解決系統之間身分確認

(authentication)與資源授權(authorization) 的問題。爲了在分散的異質性環境下執行相同

的工作，我們在不同的節點上同步配置需要的資源，並且建立一個虛擬的共同執行環

境 (MPI的實作上，也可以利用MPI_COMM_WORLD作為程式執行過程中的通訊領域)

達到工作協調配置(co-allocation)的目的。在開發工作協調配置的方法上，利用包裝在通

訊模組與工作配置模組的工具來達成此目標。主要的好處是可以降低開發資源管理模

組的複雜度。我們亦採用 GRAM (Globus Resource Allocation Management) 為工具，透

過單一的介面來管理區域資源(包括電腦與網路的服務)，解決資源管理的問題並提高未

來系統的擴充性。GRAM 除了可以提供上述安全認證的管理機制，另外還支援複雜的

資源協調配置(co-allocation)與錯誤偵測(failure detection)。 

由於在異質性的網格計算環境中，工作配置、排程以及計算過程中處理必要的資

源重新分配問題都屬於資源協調配置的問題，而這些動態管理的機制其目的在於維持

系統的可靠性以及提高程式執行的效能。我們將 SPMD 程式在異質性的計算環境上執

行平行計算結合通訊介面技術一併考慮。 

資料在不同計算系統平台之間的通訊，我們仍然採用以 MPI 為基礎的通訊介面標

準：MPICH-G 的實作(利用 MPI 的通訊介面，將有助於本項計劃所開發的程式，在不

同分散式記憶體平台之間的可攜性)，亦有助於我們在不同的分散式平台之間執行程

式。相較於其它類似網格計算環境所提供之工具，MPICH-G提供簡單的單一介面來起

始程式的執行。此外，不論在 SMP 或 MPP 之間配置工作的執行，它都使用相同的語

法。在不同的網路領域，我們也嘗試使用 Nexus 通訊函式庫所提供之多種不同的通訊

機制。針對如何有效的複製 SPMD程式在異質的分散式系統中選定的電腦，MPICH-G

的實作也克服了硬體與記憶體儲存的困難。我們利用 GASS(Global Access Secondary 

Storage) 工具，將所要執行的 SPMD 程式複製到每一個遠端的機器上。這裡值得注意

的一點是，所有 SPMD 程式必須先由程式人員編譯完成，才能將執行檔散佈到參與執

行的節點機器。另外，根據MPICH-G的實作，我們可以採用動態需求更新的線上配置

方法，送出需求、確認正確的起始時間，進而針對不同的程序提供函式建立虛擬的共

同執行環境 (利用MPI_COMM_WORLD作為程式執行過程中的通訊領域)。 
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在多個MPP系統上配置計算工作是比較複雜的環節。工作管理上面臨的問題，我

們考量的方法討論如下。首先將資源配置給予參與執行的電腦，接著將起始處理程序

的執行，最後將所有的處理程序連結為一個大型的計算。由於不同電腦的資源配置與

處理程序的建立策略有所差異，因此我們在每一個計算節點之間協調出一個合適的方

式。另外，要起始一個處理程序，可能會花上很大的時間和出現不可預期的錯誤。所

以我們引用 GRAM 的介面與其函式庫進行錯誤偵測(failure detection)的機制(可以利用

timeout 的方式來決定)，當完成處理程序的起始後隨即實施同步 (synchronizing)。用

GRAM 單一介面來執行區域的排程並且支援工作的協調配置(co-allocation)，可以有效

的收集各個系統資源的資訊。同時，我們也利用 LDAP (Lightweight Directory Access 

Protocol) 的方式，提供資源配置模組最新的系統資訊與狀態。 

在異質性平行計算網路下工作分享、負載平衡與重新配置的問題上，我們提出了

一套以基因演算法為基礎的模糊理論，提升異質性分散式計算平台的排程效率。另外，

在提升 SPMD程式執行於不同網路領域或網路拓僕環境的效能方面，我們也針對 SPMD

平行資料程式在異質性多叢集系統上提出有效率的通訊技術。透過邏輯處理器與資料

對應的技術，可以降低不同叢集系統之間處理器的通訊成本。在資源配置與工作管理

方面，我們分別針對處理器計算能力的異質與網路頻寬的異質，提出 SCTF (Shortest 

Communication Time First)工作排程演算法，並且開發以網頁為基礎的管理工具，在兩

套 PC_Cluster 系統上實作出資源配置、監督與工作排程系統。對於工作排程、協調配

置與資源管理的問題，我們測試了幾套國外著名的工作排程系統，進行不同平台的測

試，實驗結果顯示，SCTF提升了系統平均產能(throughput)、縮短了工作執行的平均回

覆時間(turnaround time)。本計畫的成果有助於增加異質性叢集系統的產能以及 SPMD

平行程式在該系統的執行效率。 

三、結果與討論 

下面我們歸納本計畫主要的成果: 

� 我們在現有的兩套 PC Cluster架構之下，建置一套異質性的分散式計算平台。根據

處理器計算能力與網路傳輸速度的不同(異質)，我們提出ㄧ套效能評估模組，用來

預測程式的執行效能。 

� 本計畫另一個成果是研究計算網格上平行程式通訊最佳化的資料分割技術。利用邏

輯處理器與資料對應的方法，可以有效的降低處理器之間資料通訊的時間。我們所

提出來的方法可以適應於同質、異質的計算系統。此ㄧ技術已於 2005 年歐洲網格
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會議中發表，在會場中引起多位學者的興趣與討論。 

� 此外，針對異質性網路計算環境下的工作負載平衡，我們提出一套以基因演算法為

基礎之模糊理論應用在異質性分散式系統。我們也針對工作排程、協調配置與資源

管理的問題，提出 SCTF (Shortest Communication Time First)工作排程演算法、此演

算法不論在處理器異質或網路異質的系統都可以很容易的實作出來，實驗的結果也

顯示 SCTF可以有比較好的系統產能與平均工作回覆時間。相關的研究工作亦包括

我們將資料重組的技術移植到 SPMD程式模式下的工作重新(配置)排程。 

� 執行本計畫所發表之相關論文列舉如下 

 

1. Ching-Hsien Hsu and Min-Hao Chen, “Communication Free Dynamic Data Redistribution of Symmetrical 

Matrices on Distributed Memory Machines,” Accepted, IEEE Transactions on Parallel and Distributed 

Systems (SCI, EI, NSC93-2213-E-216-028)  //對稱矩陣上動態資料重組技術 

2. Ching-Hsien Hsu, Shih-Chang Chen and Chao-Yang Lan, "Scheduling Contention-Free Irregular 

Redistribution in Parallelizing Compilers," Accepted, The Journal of Supercomputing, Kluwer Academic 

Publisher. (SCI, EI, NSC93-2213-E-216-028, NCHC-KING-010200)  // 異質性系統之通訊排程技術 

3. Ching-Hsien Hsu, Shih-Chang Chen and Tzu-Tai Lo, “Locality Preserving Data Partitioning for SPMD 

Programs on Computational Grid," Chung Hua Journal of Science and Engineering, Vol. 3, No. 1, pp. 

121-128, January 2005. (NSC92-2213-E-216-028) // SPMD程式資料區域化技術 

4. Ching-Hsien Hsu and Tai-Long Chen, “Grid Enabled Master Slave Task Scheduling for Heterogeneous 

Processor Paradigm,” Grid and Cooperative Computing - Lecture Notes in Computer Science, Vol. 3795, 

pp. 449-454, Springer-Verlag, Dec. 2005. (GCC’05) (SCI Expanded, NSC92-2213-E-216-028) //異質性

系統之工作排程技術 

5. Ching-Hsien Hsu, Shih-Chang Chen, Chao-Yang Lan, Chao-Tung Yang and Kuan-Ching Li, “Scheduling 

Convex Bipartite Communications Towards Efficient GEN_BLOCK Transformations,” Parallel and 

Distributed Processing and Applications - Lecture Notes in Computer Science, Vol. 3758, pp. 419-424, 

Springer-Verlag, Nov. 2005. (ISPA’05) (SCI Expanded, NSC92-2213-E-216-028)  // 異質性系統之通

訊排程技術 

6. Ching-Hsien Hsu, Guan-Hao Lin, Kuan-Ching Li and Chao-Tung Yang, “Localization Techniques for 

Cluster-Based Data Grid,” Algorithm and Architecture for Parallel Processing - Lecture Notes in Computer 

Science, Vol. 3719, pp. 83-92, Springer-Verlag, Oct. 2005. (ICA3PP’05) (SCI Expanded, NSC 

93-2213-E-216-028)  // 叢集式資料網格系統之資料局部化技術 

7. Kun-Ming Yu, Ching-Hsien Hsu and Chwani-Lii Sune, "A Genetic-Fuzzy Logic Based Load Balancing 

Algorithm in Heterogeneous Distributed Systems," Proceedings of the IASTED International Conference 
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四、計劃成果自評 

本計劃之研究成果，達到預期之目標，其中之成果一，以基因演算法為基礎之模糊

理論應用在異質性分散式系統工作負載平衡與排程已經發表於 2004 年 International 

Conference on Neural Network and Computational Intelligence會議。而另一個成果，平行資料

程式於多叢集式格網系統中通訊最佳化也在 2005 年歐洲網格會議中發表。最後，我們

也在不規則的通訊排程問題的技術上有所突破，日前已被 The Journal of Supercomputing

接受，預計在 2006-2007年發表。本計畫相關成果的整理與擴充將陸續投稿至國外的會
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同學的認真，本人亦表達肯定與感謝。 
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Abstract. The advent of widely interconnected computing resources introduces the technologies of grid 
computing.  A typical grid system, the cluster grid, consists of several clusters located in multiple campuses 
that distributed globally over the Internet.  Because of the Internet infrastructure of cluster grid, the 
communication overhead becomes as key factor to the performance of applications on cluster grid.  In this 
paper, we present a processor reordering technique for the communication optimizations of data parallel 
programs on cluster grid.  The alignment of data in parallel programs is considered as example to examine 
the proposed techniques.  Effectiveness of the processor reordering technique is to reduce the inter-cluster 
communication overheads and to speedup the execution of parallel applications in the underlying distributed 
clusters.  Our preliminary analysis and experimental results of the proposed method on mapping data to 
logical grid nodes show improvement of communication costs and conduce to better performance of parallel 
programs on different hierarchical grid of cluster systems. 

1. Introduction 
One of the virtues of high performance computing is to integrate massive computing resources for 
accomplishing large-scaled computation problems.  The common point of these problems has enormous data 
to be processed.  Due to cost-effective, clusters have been employed as a platform for high-performance and 
high-availability computing platform.  In recent years, as the growth of Internet technologies, the grid 
computing emerging as a widely accepted paradigm for next-generation applications, such as data parallel 
problems in supercomputing, web-serving, commercial applications and grand challenge problems. 

Differing from the traditional parallel computers, a grid system [7] integrates distributed computing 
resources to establish a virtual and high expandable parallel platform.  Figure 1 shows the typical architecture 
of cluster grid.  Each cluster is geographically located in different campuses and connected by software of 
computational grids through the Internet.  In cluster grid, communications occurred when grid nodes 
exchange data with others via network to run job completion.   These communications are usually classified 
into two types, local and remote.  If the two grid nodes belong to different clusters, the messaging should be 
accomplished through the Internet.  We refer this kind of data transmission as external communication.  If 
the two grid nodes in the same space domain, the communications take place within a cluster; we refer this 
kind of data transmission as interior communication.  Intuitionally, the external communication is usually 
with higher communication latency than that of the interior communication since the data should be routed 
through numbers of layer-3 routers or higher-level network devices over the Internet.  Therefore, to 
efficiently execute parallel applications on cluster grid, it is extremely critical to avoid large amount of 
external communications. 

PC Cluster A

PC Cluster D 

PC Cluster B 

PC Cluster C  

Cluster Grid

Internet

 
Figure 1: The paradigm of cluster grid. 

 
In this paper, we consider the issue of minimizing external communications of data parallel program on 

cluster grid.  We first employ the example of data alignments and realignments that provided in many data 
parallel-programming languages to examine the effective of the proposed data to logical processor mapping 
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scheme.  As researches discovered that many parallel applications require different access patterns to meet 
parallelism and data locality during program execution.  This will involve a series of data transfers such as 
array redistribution.  For example, a 2D-FFT pipeline involves communicating images with the same 
distribution repeatedly from one task to another.  Consequently, the computing nodes might decompose local 
data set into sub-blocks uniformly and remapped these data blocks to designate processor group.  From this 
phenomenon, we propose a processor-reordering scheme to reduce the volume of external communications of 
data parallel programs in cluster grid.  The key idea is that of distributing data to grid/cluster nodes 
according to a mapping function at data distribution phase initially instead of in numerical-ascending order.  
We also evaluate the impact of the proposed techniques.  The theoretical analysis and experimental results 
show improvement of volume of interior communications and conduce to better performance of data alignment 
in different hierarchical cluster grids. 

The rest of this paper is organized as follows.  Section 2 briefly surveys the related works.  In section 3, 
we formulate the communication model of parallel data partitioning and re-alignment on cluster grid.  Section 
4 describes the processor-reordering scheme for communication localization.  Section 5 reports the 
performance analysis and experimental results.  Finally, we conclude our paper in section 6. 

2. Related Work 
Clusters have been widely used for solving grand challenge applications due to their good price-performance 
nature.  With the growth of Internet technologies, the computational grids [4] become newly accepted 
paradigm for solving these applications.  As the number of clusters increases within an enterprise and 
globally, there is the need for a software architecture that can integrate these resources into larger grid of 
clusters.  Therefore, the goal of effectively utilizing the power of geographically distributed computing 
resources has been the subject of many research projects like Globus [6, 8] and Condor [9].  Frey et al. [9] 
also presented an agent-based resource management system that allowed users to control global resources.  
The system is combined with Condor and Globus, gave powerful job management capabilities is called 
Condor-G. 

Recent work on computational grid has been broadly discussed on different aspects, such as security, fault 
tolerance, resource management [9, 2], job scheduling [17, 18, 19], and communication optimizations [20, 5, 
16, 3].  For communication optimizations, Dawson et al. [5] and Zhu et al. [20] addressed the problems of 
optimizations of user-level communication patterns in local space domain for cluster-based parallel 
computing.  Plaat et al. analyzed the behavior of different applications on wide-area multi-clusters 
[16, 3].   Similar researches were studied in the past years over traditional supercomputing architectures 
[12, 13].  For example, Guo et al. [11] eliminated node contention in communication phases and reduced 
communication steps with schedule table.  Y. W. Lim et al. [15] presented an efficient algorithm for 
block-cyclic data realignments.  Kalns and Ni [14] proposed the processor mapping technique to minimize 
the volume of communication data for runtime data re-alignments.  Namely, the mapping technique 
minimizes the size of data that need to be transmitted between two algorithm phases.  Lee et al. [10] 
proposed similar algorithms, the processor reordering, to reduce data communication cost.  They also 
compared their effects upon various conditions of communication patterns. 

The above researches give significant improvement of parallel applications on distributed memory 
multi-computers.  However, most techniques only applicable for parallel programs running on local space 
domain, like single cluster or parallel machine.  For a global grid of clusters, these techniques become 
inapplicable due to various factors of Internet hierarchical and its communication latency.  In this paper, our 
emphasis is on dealing with the optimizations of communications for data parallel programs on cluster grid. 

3. Preliminaries 
3.1 Problem Formulation 

The data parallel programming model has become a widely accepted paradigm for parallel programming on 
distributed memory multi-computers.  To efficiently execute a parallel program, appropriate data distribution 
is critical for balancing the computational load.  A typical function to decompose the data equally can be 
accomplished via the BLOCK distribution directive. 

It has been shown that the data reference patterns of some parallel applications might be changed 
dynamically.  As they evolve, a good mapping of data to logical processors must change adaptively in order 
to ensure good data locality and reduce inter-processor communication.  For example, a global array could be 
equally allocated to a set of processors initially in BLOCK distribution manner.   As the algorithm goes into 
another phase that requires to access fine-grain data patterns, each processor might divide its local data into 
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sub-blocks locally and then distribute these sub-blocks to corresponding destination processors.  Figure 2 
shows an example of this scenario.  In the initial distribution, the global array is evenly decomposed into nine 
data sets and distributed over processors that are selected from three clusters.  In the target distribution, each 
node divides its local data into three sub-blocks evenly and distributes them to the same processor set in grid 
as in the initial distribution.  Since these data blocks might be needed and located in different processors, 
consequently, efficient inter-processor communications become major subject to the performance of these 
applications. 

 
I n i t i a l  D i s t r i b u t i o n  

C l u s t e r - 1  C l u s t e r - 2  C l u s t e r - 3  

P 0  P 1  P 2  P 3  P 4  P 5  P 6  P 7  P 8  

A  B  C  D  E  F  G  H  I  

T a r g e t  D i s t r i b u t i o n  

C l u s t e r 1  C l u s t e r 2  C l u s t e r 3  C l u s t e r 1  C l u s t e r 2  C l u s t e r 3  C l u s t e r 1  C l u s t e r 2  C l u s t e r 3  

P 0  P 1  P 2  P 3  P 4  P 5  P 6  P 7  P 8  P 0  P 1  P 2  P 3  P 4  P 5  P 6  P 7  P 8  P 0  P 1  P 2  P 3  P 4  P 5  P 6  P 7  P 8  

a 1  a 2  a 3  b 1  b 2  b 3  c 1  c 2  c 3  d 1  d 2  d 3  e 1  e 2  e 3  f 1  f 2  f 3  g 1  g 2  g 3  h 1  h 2  h 3  i 1  i 2  i 3  
  

Figure 2: Data distributions over cluster grid. 

To facilitate the presentation of the proposed approach, we assume that a global array is distributed over 
processors in BLOCK manner at the initiation.  Each node is requested to partition its local block into K 
equally sub-blocks and distribute them over processors in the same way.  The second assumption is that each 
cluster provides the same number of computers involved in the computation. 

Definition 1: The above term K is defined as partition factor. 

For instance, the partition factor of the example in Figure 2 is K=3. (Block A is divided into a1, a2, a3, B is 
divided into b1, b2, b3, etc.) 

Definition 2: Given a cluster grid, C denotes the number of clusters in the grid; ni is the number of 
processors selected from cluster i, where 1 ≤ i ≤ C; P is the total number of processors in the cluster grid. 

According to definition 2, we have P = ∑
=

C

i
in

1
.  Figure 2 has three clusters, thus C = 3, where {P0, P1, P2} 

∈ Cluster 1, {P3, P4, P5} ∈ Cluster 2 and {P6, P7, P8} ∈ Cluster 3, we also have n1 = n2 = n3 = 3 and P = 9. 

3.2 Communication Cost Model 

Because the interface of interconnect switching networks in each cluster system might be different; to obtain 
accurate evaluation, the interior communication costs in clusters should be identified individually.  We let 
Ti represents the time of two processors both reside in Cluster-i to transmit per unit data; mi is the sum of 
volume of all interior messages in Cluster-i; for an external communication between cluster i and cluster j, Tij 
is used to represent the time of processor p in cluster i and processor q in cluster j to transmit per unit data; 
similarly, mij is the sum of volume of all external messages between cluster i and cluster j.   According to 
these declarations, we can have the following cost function, 
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Due to various factors over Internet might cause communication delay; it is difficult to get accurate costs 
from the above function.  As the need of a criterion for performance modeling, integrating the interior and 
external communications among all clusters into points is an alternative mechanism to get legitimate 
evaluation.  Thus, we totted up the number of these two terms to represent the communication costs through 
the whole running phase for the following discussions.  The volume of interior communications, denoted as |I| 
and external communications, denoted as |E| are defined as follows, 
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Where Ii is the total number of interior communications within cluster i; Eij is the total number of external 
communications between cluster i and cluster j. 

4. Communication Localization 
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4.1 Motivating Example 

Let us consider the example in Figure 2.  In the target distribution, processor P0 divides data block A into a1, 
a2, and a3.  Then, it distributes these three sub-blocks to processors P0, P1 and P2, respectively.  Since 
processors P0, P1 and P2 belong to the same cluster with P0; therefore, these are three interior communications.  
Similar situation on processor P1 will generate three external communications; P1 divides its local data block 
B into b1, b2, and b3.  It distributes these three sub-blocks to P3, P4 and P5, respectively.  However, as 
processor P1 belongs to Cluster 1 while processors P3, P4 and P5, belong to Cluster 2.  Thus, this results 
three external communications.  Figure 3 summarizes all messaging patterns of the example into a 
communication table.  The messages {a1, a2, a3}, {e1, e2, e3} and {i1, i2, i3} are interior communications (the 
shadow blocks).  All the others are external communications.  Therefore, we have | I | = 9 and | E | = 18. 

 
 D P  
 

S P  
P 0  P 1  P 2  P 3  P 4  P 5  P 6  P 7  P 8  

P 0  a 1  a 2  a 3        
P 1     b 1  b 2  b 3     
P 2        c 1  c 2  c 3  
P 3  d 1  d 2  d 3        
P 4     e 1  e 2  e 3     
P 5        f 1  f 2  f 3  
P 6  g 1  g 2  g 3        
P 7     h 1  h 2  h 3     
P 8        i 1  i 2  i 3  
 C l u s t e r - 1  C l u s t e r - 2  C l u s t e r - 3  

  

Figure 3: Communication table of data distribution over cluster grid. 

Figure 4 illustrates a bipartite representation to show the communications that given in the above table.  
In this graph, the dashed arrows and solid arrows indicate interior and external communications, respectively.  
Each arrow contains three communication links.   

Source 
P 0    P 1    P 2    P 3   P 4  P 5   P 6   P 7   P 8 

 
P 0    P 1    P 2    P 3   P 4  P 5   P 6   P 7   P 8 

         Target 

 

In terior com m unication 

E xternal com m unication 

 
Figure 4: Interior and external communications using bipartite representation. 

4.2 Processor Reordering Data Partitioning 

The processor mapping techniques were used in several previous researches to minimize data transmission 
time of runtime array redistribution.  In a cluster grid system, the similar concept can be applied.  According 
to assumptions in section 3.1, we proposed the processor reordering technique and its mapping function that is 
applicable to data realignment on cluster grid.  In order to localize the communication, the mapping function 
produces a reordered sequence of processors for grouping communications into local cluster.  A reordering 
agent is used to accomplish this process.  Figure 5 shows the concept of processor reordering technique for 
parallel data to logical processor mapping.  The source data is partitioned and distributed to processors into 
initial distributions (ID(PX)) according to the processor sequence derived from reordering agent, where X is 
the processor id and 0 ≤ X ≤ P-1.  To accomplish the target distribution (TD(PX’)), the initial data is divided 
into K sub-blocks and realign with processors according to the new processors id X’ that is also derived from 
the reordering agent.  Given distribution factor K and processor grid (with variables C and ni), for the case of 
K=ni, the mapping function used in reordering agent is formulated as follows, 

F(X) = X’ = ⎣ ⎦CX / +(X mod C) * K                (4) 

We use the same example to demonstrate the above reordering scheme.  Figure 6 shows the 
communication table of messages using new logical processor sequence.  The initial distribution of source 
data is allocated by the sequence of processors’ id, <P0, P3, P6, P1, P4, P7, P2, P5, P8> which is derived from 
equation 4.  To accomplish the target distribution, P0 divides data block A into a1, a2, a3 and distributes them 
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to P0, P1 and P2, respectively.  These communications are interior.  For P3, the division of initial data also 
generates three interior communications; because P3 divides its local data B into b1, b2, b3 and distributes these 
three sub-blocks to P3, P4 and P5, respectively; which are in the same cluster with P3.  Similarly, P6 sends e1, 
e2 and e3 to processors P6, P7 and P8 and causes three interior communications.  Eventually, there is no 
external communication incurred in this example in Figure 6. 

 

 

Reordering Agent 

SCA(x) 

Generate 
new Pid 

Realignment 
ID(Px)  

DCA(x) 

Determine 
Target Cluster 

 

Designate 
Target Node 

SCA(x) 
SCA(x) 

ID(Px) 

Partitioning 
Data 

Master Node 

Alignment/
Dispatch 

DCA(x) 
DCA(x) 
TD(PX’) 

 

Source 
Data 

 
Figure 5: The flow of data to logical processor mapping. 
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P 0  a 1  a 2  a 3        
P 3     b 1  b 2  b 3     
P 6        c 1  c 2  c 3  
P 1  d 1  d 2  d 3        
P 4     e 1  e 2  e 3     
P 7        f 1  f 2  f 3  
P 2  g 1  g 2  g 3        
P 5     h 1  h 2  h 3     
P 8        i 1  i 2  i 3  
 C l u s t e r - 1  C l u s t e r - 2  C l u s t e r - 3  

  

Figure 6: Communication table with processor reordering. 

The bipartite representation of Figure 6’s communication table is shown in Figure 7.  All the 
communication arrows are in dashed lines.  We totted up the communications, then have | I | = 27 and | E | = 
0.  The external communications are mostly eliminated. 

5. Performance Analysis and Experimental Results 
5.1 Performance Analysis 
The effectiveness of processor reordering technique in different hierarchy of cluster grid can be evaluated in 
theoretical.  This section presents the improvements of volume of interior communications for different 
number of clusters (C) and partition factors (K). 

For the case consists of three clusters (C=3), Figure 8(a) shows that the processor reordering technique 
provides more interior communications than the method without processor reordering.  For the case consists 
of four clusters (C=4), the values of K vary from 4 to 10.  The processor reordering technique also provides 
more interior communications as shown in Figure 8(b).  Note that Figures 8 and 9 report the theoretical 
results which will not be affected by the Internet traffic.  In other words, Figure 8 is our theoretical 
predictions. 

Source 
P 0               P 3    P 6   P 1                   P 4    P 7       P 2    P 5         P 8 

 
P 0                       P 1    P 2     P 3    P 4         P 5      P 6     P 7    P 8 

Target   
Figure 7: Bipartite representation with processor reordering. 
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Figure 8: The number of interior communications (a) C=3 (b) C=4. 

5.2 Simulation settings and Experimental Results 

To evaluate the performance of the proposed technique, we have implemented the processor reordering 
method and tested on Taiwan UniGrid in which 8 campus clusters ware interconnected via Internet.  Each 
cluster owns different number of computing nodes.  The programs were written in the single program 
multiple data (SPMD) programming paradigm with C+MPI codes. 

Figure 9 shows the execution time of the methods with and without processor reordering to perform data 
realignment when C=3 and K=3.  Figure 9(a) gives the result of 1MB test data that without file system access 
(I/O).  The result for 10MB test data that accessed via file system (I/O) is given in Figure 9(b).  Different 
combinations of clusters denoted as NTI, NTC, NTD, etc. were tested.  The composition of these labels is 
summarized in Table 1. 

Table 1: Labels of different cluster grid 
 

Label Cluster-1 Cluster-2 Cluster-3 Label Cluster-1 Cluster-2 Cluster-3 

NTI NCHC NTHU IIS NCI NCHC CHU IIS 

NTC NCHC NTHU CHU NCD NCHC CHU NDHU 

NTH NCHC NTHU THU NHD NCHC THU NDHU 
  

In Figure 9(a), we observe that processor reordering technique outperforms the traditional method.  In 
this experiment, our attention is on the presented efficiency of the processor reordering technique instead of on 
the execution time in different clusters.  Compare to the results given in Figure 8, this experiment matches 
the theoretical predictions.  It also satisfying reflects the efficiency of the processor reordering technique.  
Figure 9(b) presents the results with larger test data (10 MB) under the same cluster grid.  Each node is 
requested to perform the data realignments through access file system (I/O).  The improvement rates are 
lower than that in Figure 9(a).  This is because both methods spend part of time to perform I/O; the ratio of 
communication cost becomes lower.  Nonetheless, the reordering technique still presents considerable 
improvement. 
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Figure 9: Execution time of data realignments on cluster grid when C = K = 3. 

6. Conclusions and Future Works 
In this paper, we have presented a processor reordering technique for localizing the communications of data 
parallel programs on cluster grid.  Our preliminary analysis and experimental results of re-mapping data to 
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logical grid nodes show improvement of volume of interior communications.  The proposed techniques 
conduce to better performance of data parallel programs on different hierarchical grid of clusters systems.  
There are numbers of research issues remained in this paper.  The current work of our study restricts 
conditions in solving the realignment problem.  In the future, we intend to devote generalized mapping 
mechanisms for parallel data partitioning.  We will also study realistic applications and analyze their 
performance on the UniGrid.  Besides, the issues of larger grid system and analysis of network 
communication latency are also interesting and will be investigated. 
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Abstract: Efficient task scheduling is an important issue on system performance of computational grid.  To 
investigate this problem, the master slave paradigm is a good vehicle for developing tasking technologies of 
centralized grid system.  In this paper, we present an efficient method for dispatching tasks to heterogeneous 
processors in master slave environment.  The main idea of the proposed technique is first to allocate tasks to 
processors that with lower communication overheads.  A significant improvement of this approach is that 
average turnaround time can be minimized.  The second advantage of the proposed approach is that system 
throughput can be increased by dispersing processor idle time.  Our proposed model can also be applied to map 
tasks to heterogeneous cluster systems in grid environments in which the communication costs are various from 
clusters.   To evaluate performance of the proposed techniques, we have implemented the proposed algorithms 
along with Beaumont’s method.  The experimental results show that our techniques outperform Beaumont’s 
method in terms of lower average turnaround time, higher average throughput, less processor idle time and higher 
processors’ utilization. 
 

Keywords: master-slave paradigm, heterogeneous processors, task scheduling, computational grid, Least Job First

 

1. Introduction 

One of the virtues of high performance computing 
is to integrate massive computing resources for 
accomplishing large computation problems.  Cluster 
computing is one of the well known high performance 
paradigms.  The use of master slave cluster of 
computers as a platform for high-performance and 
high-availability computing is mainly due to their 
cost-effective nature.  As the growth of Internet 
technologies, computational grids become widely 
accepted paradigm for solving numerous applications 
and grand challenge problems.  

Computing grid system integrates geographically 
distributed computing resources to establish a virtual and 
high expandable parallel machine.  In recent years, more 
and more research work done in scheduling problem in 
heterogeneous grid systems.  A centralized computational 
grid system can be viewed as the collection of one resource 
broker (the master processor) and several heterogeneous 
clusters (slave processors).  Therefore, to investigate task 
scheduling problem, the master slave paradigm is a good 
vehicle for developing tasking technologies of centralized 
grid system. 

The master slave tasking is a simple and widely used 
technique.  Figure 1 shows an example of the master slave 
paradigm.  One master node connects to n slave nodes.  
A pool of independent tasks are dispatched by master 
processor and be processed by the n slave processors. In a 
heterogeneous implementation, slave processors may have 

different computation speeds.  Each slave processor 
executes the tasks after it receives its own part.  
Communication between master and slave nodes is handled 
through a shared medium (e.g. bus) that can be accessed 
only in exclusive mode.  Namely, the communications 
between master and different slave processors can not be 
overlapped. 

In general, the optimization of master slave tasking 
problem is twofold.  One is to minimize total execution 
time for a given fix amount of tasks, namely minimize 
average turnaround time.  The other one is to maximize 
total amount of finished tasks in a given time period, 
namely maximize throughput. 

 
Figure 1: The Master-Slave paradigm. 
 

In this paper, an efficient method for scheduling 
homogeneous tasks to heterogeneous processors in master 
slave environment is presented.  The main idea of the 
proposed technique is first to allocate tasks to processors 
that with lower communication overheads.  A significant 
improvement of this approach is that average turnaround 
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time can be minimized.  The second advantage of the 
proposed approach is that system throughput can be 
increased by dispersing processor idle time.  Our 
proposed model can also be applied to map tasks to 
heterogeneous cluster systems in grid environments in 
which the communication costs are various from clusters.  
To evaluate performance of the proposed techniques, we 
have implemented the proposed algorithms along with 
Beaumont’s method [1, 2].  The experimental results show 
that our techniques outperform Beaumont’s method in 
terms of lower average turnaround time, higher average 
throughput, less processor idle time and higher processors’ 
utilization. 

The rest of this paper is organized as follows. Section 
2 briefly describes the related work.  Section 3 introduces 
the research architecture and defines notation used in this 
paper.  Section 4 presents characteristics of the 
master-slave model.  Section 5 assesses the new 
scheduling algorithm.  The performance comparisons and 
experimental results are discussed in section 6.  Finally, 
section 7 makes conclusions. 

2. Related Work 
The task scheduling research about heterogeneous 

processors can be classified into DAG’s model, 
master-slave paradigm and computational grids.  The 
purpose of task scheduling is to achieve high 
performance computing and high throughput computing.  
The former aims at increasing execution efficiency and 
minimizing the execution time of tasks, whereas the 
latter aims at decreasing processor idle time and 
scheduling a set of independent tasks to increase the 
processing capacity of the systems over a long period of 
time. 

Thanalapati et al. [5] bring up an idea about 
adaptive scheduling scheme based on homogeneous 
processor platform which used space-sharing and 
time-sharing to schedule tasks.  Han et al. [6] 
presented a scheduling algorithm that enabled software 
fault tolerant for real-time environment.  Recently, 
researches such as Topcuoglu et al. [7], Dogan et al. [8] 
and Hagras et al. [9] discussed the task scheduling for 
heterogeneous computing based on DAGs paradigm.  
In [7], a scheduling algorithm based on critical path 
mechanism to prioritize tasks is proposed.  Srinivasan 
et al. [15] addressed the scheduling problem with 
reliability optimization for general heterogeneous 
computer systems.  In [8], more investigations have 
been done based on incremental cost functions. 

With the emergence of Grid and ubiquitous 
computing, new algorithms are in demand for addressing 
new concerns arising in the grid environment, such as 

security, quality of service and high system throughput.    
Berman et al. [11] and Cooper et al. [10] addressed the 
problem of schedule incoming applications to available 
computation power.  Dynamically rescheduling 
mechanism was introduced for adaptive computing on 
the grid.  Schopf et al. [16] present a general 
architecture with three phases for scheduling on the grid.  
In [17], an integrated technique for task matching and 
scheduling onto distributed heterogeneous computing 
systems is proposed.  Based on Priority and Best Fit 
Mechanism, Min et al. [18] developed three novel 
scheduling Algorithms CO-RSPB, CO-RSBF and 
CO-RSBFP.  In [19, 20], some simple heuristics for 
dynamic matching and scheduling of a class of independent 
tasks onto a heterogeneous computing system have been 
presented.  Also an extended suffrage heuristic was 
presented in [21] for scheduling the parameter sweep 
applications which were implemented in AppLeS.  They 
also presented a method to predict the computation time for 
a task/host pair by using the previous host performance. 

Chronopoulos et al. [3], Charcranoon et al. [4] and 
Beaumont et al. [13.14] introduced the research of 
master-slave paradigm with heterogeneous processors 
background.  Based on this architecture, Olivier 
Beaumont et al. [1, 2] presented a method on 
master-slave paradigm to forecast the quantity of tasks 
each processor needs to receive in a period of time.  In 
their implementation, intuitionally, fast processor 
receives more tasks in the proportional distribution 
policy.  Tasks are also prior allocated to faster slave 
processors and expected higher system throughput could 
be obtained. 

3. Preliminaries 

In this section, we first introduce the basic concept 
and models of this paper.  Then, we define notations 
and terminologies that will be used in later sections. 

3.1 Research Architecture 

We revisit several characteristics that were 
introduced by Beaumont et al. [1, 2].  Based on the 
master slave paradigm demonstrated in figure 1, this 
paper conforms to the following assumptions.   

� Heterogeneous processors: all processors have 
different computation speed. 

� Identical tasks: all tasks are of equal size. 

� Non-preemption: tasks are considered to be 
atomic. 

� Exclusive communication: communications from 
master node to different slave processors can not 
be overlapped.  This assumption can be changed 
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if non-blocking message passing is applied in grid 
system. 

� Identical communication: all communications 
between master and slave processors are of same 
overheads.  This assumption can be removed / 
extended when investigating the scheduling 
techniques on cluster based computational grid 
system in which the communication costs between 
different clusters are various. 

To meet the above restrictions, communications 
between master and slave processors play an important 
factor to the overall system performance.  Therefore, a 
good permutation of tasking that can avoid link 
contention and minimize processor waiting time is 
critical.  We will present an efficient scheduling 
method that improved [1, 2] in the following sections.   

3.2 Definitions 

To simplify the presentation, we first define notations 
and terminologies used in this paper.   

Definition 1: In a master slave system, master processor 
is denoted by M  and the n slaves are represented by 

nPPP ,....,, 21 , where n is the number of slave processors.   

Definition 2: Upon the assumption of identical tasks and 
heterogeneous processors, the time for slave processors 
to compute one task are different.  We use Ti to 
represent the time of a slave processor Pi to complete 
one task.  In this paper, we assume the computation 
speed of the n processors is sorted and T1 ≤ T2 ≤ … ≤ Tn. 

Definition 3: Tcomm is the time of a slave processor to 
receive one task.   

Definition 4: A Basic Scheduling Cycle (BSC) is 
defined as BSC = )...,,,( 21 commncommcomm TTTTTTlcm +++ , is 

the total amount of tasks in a scheduling cycle, where n 
is the number of processor.   

Definition 5: The number of tasks a processor Pi must 
receive in a scheduling cycle is defined as  

commi
i TT

BSC
Ptask

+
=)( . 

Definition 6: The communication cost of processor Pi in 
BSC is defined as )()( icommi PtaskTPcomm ×=  

Definition 7: The computation time of processor Pi in BSC 
is defined as )()( iii PtaskTPcomp ×=  

 
Definition 8: The performance factor of processor Pi is 

defined as 
commi

comm

TT

T

+
.  The computation capacity of a 

master slave system is defined as δ = ∑ = +
n

i
commi

comm

TT

T
1

, 

where n is the number of slave processors. 

We use an example to clarify the above definitions.  
Figure 2 shows the tasking on four heterogeneous 
processors.  According to definition 2, the time for 
processors P1 to P4 to compute one task are T1=2, T2=3, 
T3=3 and T4=5.  Communication cost between slave and 
master node to receive/send one task is define as Tcomm = 1.  
According to definitions 4 and 5, BSC = )6,4,4,3(lcm  = 

12, task(P1) = 4, task(P2) = 3, task(P3) = 3 and task(P4) = 2.  
The communication cost and computation time of P1 in 
BCS are comm(P1) = 4 and comp(P1) = 8, respectively.  
For other processors, these two values can be determined in 
a similar way by using the equations illustrated in 
definitions 6 and 7.  Finally, according to definition 8, the 

performance factor of P1 to P4 are 
3

1 , 
4

1 , 
4

1 , and 
6

1 , 

respectively.  The computation capacity in this example is 
δ = 1.  In Figure 2, a Greedy allocation method that adapts 
round robin scheduling policy is illustrated.  Tasks are 
dispatched to faster and available processor first. As shown 
in Figure 2, the first 3 tasks are sent to P1, P2 and P3.   
The fourth task is allocated to P1 again because P1 is faster 
than P4.  The fifth task is sent to P4 which is the only one 
available processor.  In the greedy algorithm, we observe 
that processors’ idle time is scattered unevenly. 

 

 

Figure 2: Task scheduling on 4 processors using greedy 
algorithm. 

4. Master Slave Task Scheduling 

In this section, we discuss the problem of task 
scheduling on master slave system in two cases depending 
on the value of system computation capacity (δ). 

4.1 1≤δ  Scheduling Without Processor Idle 

Figure 2 is the case of master-slave system with 
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1≤δ .  We reuse this example to demonstrate the 
pre-scheduling algorithm proposed in [1, 2].  As 
mentioned in section 2, faster processor receives more 
tasks.  Tasks are also prior allocated to them (faster 
processors).  This is so called Most Jobs First (MJF).  
Figure 3 shows the pre-scheduling of tasks of the MJF 
algorithm.  As defined in section 3.2, the performance 

factor of P1 to P4 are 
3

1 , 
4

1
, 

4

1
, and 

6

1 , 

respectively.  Since BSC = 12, therefore, we can have 
task(P1)=4, task(P2)=3, task(P3)=3 and task(P4)=2 as 
shown in Figure 3.  Furthermore, we observe that the 
second BSC connects to the previous one without any 
processor idle fragmentation.  When the number of 
tasks is numerous, such scheduling achieves higher 
system utilization and less processor idle time than the 
greedy method.   

 

Figure 3: Most Jobs First (MJF) Tasking when 1≤δ . 

4.2 1>δ  Scheduling With Processor Idle 

Definition 9: Given a master slave system with n 
heterogeneous processors, Pmax is the processor Pk such 

that }1|max{
1

≤
+∑

=

k

i i TcommT

Tcomm
k , where 1≤ k ≤ n.  i.e. 

1
1

1

>
+∑

+

=

k

i i TcommT

Tcomm
.  We use Pmax+1 to represent 

processor Pk+1. 
 
Corollary 1: Given a master slave system with δ  > 1, 

in MJF scheduling, task(Pmax+1) = BSC − ∑
=

max

1

)(
i

iPtask .  

Corollary 2: Given a master slave system with δ  > 1, 

in MJF scheduling, MJF
idleT  is the idle time of Pmax+1 and 

MJF
idleT  = BSC − )()( 1max1max ++ − PcompPcomm . 

 
Figure 4 shows another example of master slave 

system with δ  > 1.  According to the pre-scheduling 
method described in section 4.1, we have task(P1)=20, 
task(P2)=15, task(P3)=15.  Since δ  > 1 in this 
example, task(Pmax+1=P4) = 10 as illustrated in 
Corollary 1.  From Figure 4, we can see that the first 
sixty tasks are dispatched to P1 to P4 during time period 
1 ~ 60 in the first BSC.  The dispatching is start at time 
unit 60 in the second BSC.  We note that P4 completes 
its tasks and becomes free at time 100.  However, the 
master processor is dispatching tasks to P3 during time 
100 ~ 110 and sends tasks to P4 start at time 110.  This 
results P4 stays idle during time period 100 ~ 110.  
This situation also happens at time 160~170, 220~230, 
and so on. 
 
Lemma 1: Given a MJF scheduling with δ  > 1, the 
completion time of the jth BSC can be calculated by the 
following equation. 

T(BSCj)= ∑
+

=

1max

1

)(
i

iPcomm +comp(Pmax+1)+  

))()(()1( 1max1max
MJF

idleTPcompPcommj ++×− ++  (1) 

Proof: Due to page limitation, we omit the proof in this 
version. 
 

 

Figure 4: Most Jobs First (MJF) Tasking when 1>δ . 

5. Shortest Communication Time First (SCTF) 
Scheduling 

The MJF scheduling algorithm distributes tasks to 
slave processor according to processors’ speed.  Faster 
processor receives tasks first.  This is obviously an 
efficient approach if the communication contention 
between master and slave processors is not considered.  
When communication contention is interacted, the MJF 
algorithm is not optimal in terms of system throughput and 
average turnaround time.  In this section, we present the 
Shortest Communication Time First (SCTF) algorithm.  
We also discuss the problem of task scheduling on master 
slave system in two cases depending on the value of system 
computation capacity (δ). 
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5.1 1≤δ  Scheduling Without Processor Idle 

We consider again the example in Figure 2 for 
examining master-slave scheduling with δ  ≤ 1.  
Parameters of this example are recalled, we then have 
BSC = 12, task(P1)=4, task(P2)=3, task(P3)=3 and 
task(P4)=2.  According to definition 6, the 
communication overheads within BSC of each slave 
processor are comm(P1)=4, comm(P2)=3, comm(P3)=3 
and comm(P4)=2.  In the SCTF implementation, tasks 
are prior allocated to slave processor that with shortest 
communication costs.  Therefore, P4 first receives 2 
tasks and then P3 receives 3 tasks, P2 receives 3 tasks; 
finally, P1 receives 4 tasks in the first BSC.  As shown 
in Figure 5, the second BSC has the same distribution 
patterns of tasks as that in the first BSC.  Compare to 
the example discussed in Figure 3, the completion time 
of the first BSC is accelerated from 22 to 20.  Similarly, 
the second BSC is from 34 to 32.  Consequently, the 
SCTF minimizes the average turnaround time. 

Lemma 2: Given a SCTF scheduling with δ  ≤ 1, the 
completion time of the jth BSC can be calculated by the 
following equation. 

T(BSCj)= BSC + comp(P1) + 
 ))()(()1( 11 PcompPcommj +×−  (2) 

Proof: Due to page limitation, we omit the proof in this 
version. 
 

 

Figure 5: Shortest Communication Time First (SCTF) 
Tasking when 1≤δ . 

5.2 1>δ  Scheduling With Processor Idle 

We use the same example to in section 4.2 to 
demonstrate the scheduling method with dispersive idle 
when δ  > 1.  According to definition 5, we have 
task(P1)=20, task(P2)=15, task(P3)=15.  Applying the 
SCTF concept illustrated in section 5.1, P4 first receives 
12 tasks and then P3 receives 15 tasks, P2 receives 15 
tasks; finally, P1 receives 20 tasks in the first BSC as 
shown in Figure 6.  Furthermore, we observe that P4 

completes its tasks at time 60.  It becomes available 
and can receive more tasks for computing.  However, 
the master processor is sending tasks to P1.  When 
t=62, master processor sends tasks to P4 again.  
Therefore, during t=60~62, P4 is idle.  The same 
situation happens on P3 at t=72~74, P2 is idle at 
t=87~89 and t=102~104 P1 remains idle.  Compare to 
the example in Figure 4, P4 stays 10 units of time idle in 
MJF algorithm while the idle time is reduced and 
dispersed in SCTF algorithm.  In SCTF, every 
processor has 2 units of time idle and totally 8 units of 
time idle.  Moreover, we observe that the MJF 
algorithm finishes 60 tasks in 100 units of time.  The 
throughput is 0.6.  While in SCTF, there are 62 tasks 
completed during 102 time units.  The throughput of 
SCTF is 62/102 (≈0.61) > 0.6.  Consequently, the 
SCTF algorithm delivers higher system throughput.  
On the other hand, the average turnaround time of the 
SCTF algorithm for the first two BSCs is 164/124 
(≈1.32) which is less than the MJF‘s average turnaround 
time 160/120 (≈1.33). 
 
Corollary 3: Given an SCTF scheduling with δ > 1, 

SCTF
idleT  is the idle time of each slave processor and 

MJF
idleT  = ∑

+

=

1max

1

)(
i

iPcomm −BSC. 

 
Lemma 3: Given a SCTF scheduling with δ  > 1, the 
completion time of the jth BSC can be calculated by the 
following equation. 

T(BSCj)= ∑
+

=

1max

1

)(
i

iPcomm +comp(P1)+  

))()(()1( 11
SCTF

idleTPcompPcommj ++×−  (3) 

Proof: Due to page limitation, we omit the proof in this 
version. 
 

  

Figure 6: Shortest Communication Time First (SCTF) 
Tasking when 1>δ . 
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5.3 Master with Computational Ability 

In most grid computing environment, the master 
processor is responsible to resource co-allocation and 
management.  An alternative approach for master-slave 
computing is to include the computation power of 
master processor into the computing.  If doing so, the 
throughput might be increased.  Since there is no 
communication delay for master processor itself, it will 
be better on enhancing system performance to select the 
fastest processor as master node.  

6. Performance Evaluation 

To evaluate the performance of the proposed 
method, we have implemented the SCTF and MJF 
algorithms.  We compare some criteria in two 
scenarios; section 6.1 studies the simulation results for 
slight heterogeneous processors.  The variation of 
processor speed is ±4; section 6.2 reports the simulation 
results for larger variation of processor speed ±10.  
Sections 6.3 and 6.4 present the performance of two 
algorithms upon different processor number and 
including or not the master processor for computation. 

6.1 The variation of processor speed is small  

In this experiment, the processor number is 5.  
The computation speed of slave processors are 1T =3, 

2T =3, 3T =4, 4T =5 and 5T =7 and 1≤δ .  We 

measured the average task turnaround time, BSC 
completion time and number of finished tasks in BSCs.  
Figure 7(a) shows the number of tasks processed in 
different number of BSCs.  Both algorithms have the 
same result on this criterion.  Figure 7(b) presents the 
completion time of each BSC in different algorithms.  
The SCTF method has lower completion time.  Figure 
7(c) gives average turnaround time during different 
number of BSC time period.  The SCTF algorithm 
performs better than the MJF method.  These 
phenomena also match the discussion in section 5.  

 
(a) 

 
(b)

 
(c) 

Figure 7: Simulation results for 5 processors with ±4 
speed variation when 1≤δ  (a) number of tasks 
completion (b) BSC completion time (c) Average task 
turnaround time. 

Figure 8 shows the simulation results for the 
following setting.  The computation speed of 
processors are 1T =2, 2T =3, 3T =3, 4T =4 and 5T =6.  

Since 1>δ , we add the comparison of processor idle 
time in this test.  Figure 8(a) shows the number of 
tasks processed in different number of BSCs.  We can 
see that the SCTF algorithm processes more tasks than 
the MJF method.    Figure 8(b) presents processor 
idle time in different algorithms.  The SCTF method 
has lower processor idle time.  Figure 8(c) reports 
system throughput.  As the example demonstrated, 
SCTF achieves higher system throughput.  Figure 8(d) 
gives average turnaround time during different number 
of BSC time period.  The SCTF algorithm performs 
better than the MJF method.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8: Simulation results for 5 processors with ±4 
speed variation when 1>δ  (a) number of tasks 
completion (b) processor idle time (c) system 
throughput (d) Average task turnaround time. 

6.2 The variation of processor speed is large  
In this subsection, we discussed the variation of 

processor speed is large than the example of section 
4.1.  Test in this subsection is based ±10 processor 
speed variation.  The computation speed of slave 
processors are 1T =3, 2T =3, 3T =5, 4T =7 and 5T =13.  
Figure 9 shows the simulation results for 5 processors 

with ±10 speed variation when 1≤δ .  We also 
measured the average task turnaround time, BSC 
completion time and number of finished tasks in BSCs.  
Figure 9(a) shows the number of tasks processed in 
different number of BSCs.  Both algorithms have the 
same result on this criterion.  Figure 9(b) presents the 
completion time of each BSC by both algorithms.  
The SCTF method has lower completion time.  Figure 
9(c) gives average turnaround time during different 
number of BSC time period.  The SCTF algorithm 
performs better than the MJF method.  These 
phenomena are similar to those obtained from Figure 7 
and also match the analysis in section 5.   

 

 
(a) 

 
(b) 

 
(c) 

Figure 9: Simulation results for 5 processors with ±10 
speed variation when 1≤δ  (a) number of tasks 
completion (b) BSC completion time (c) Average task 
turnaround time. 

Figure 10 shows the simulation results for 5 
processors with ±10 speed variation when 1>δ .  
The computation speed of processors are 1T =2, 2T =3, 

3T =4, 4T =4 and 5T =11.  We also calculate 

processor idle time in this test.  Figure 10(a) shows 
the number of tasks processed in different number of 
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BSCs.  We can see that the SCTF algorithm processes 
more tasks than the MJF method.  Figure 10(b) 
presents processor idle time by using the two 
algorithms.  Obviously, the SCTF method has lower 
processor idle time.  Figure 10(c) reports that the 

SCTF algorithm achieves higher system throughput 
than the MJF algorithm.  Figure 10(d) gives average 
turnaround time during different number of BSC time 
period.  The SCTF algorithm performs better than the 
MJF method.  

 

 
(a) 

 
(b) 

 
 

 
(c) 

 
(d) 

Figure 10: Simulation results for 5 processors with ±10 speed variation when 1>δ  (a) number of tasks completion (b) 
processor idle time (c) system throughput (d) Average task turnaround time. 

 
Another simulation for evaluating average 

turnaround time is made upon different number of 

processors and shown in Figure 11.  The computation 

speed of those slave processors is set as T1=3, T2=3, 

T3=5, T4=7, T5=11, T6=13, and T7=15.  For the cases 

when processor number is 1, 2,…, 6, we have 1≤δ .  

When processor number increases to 7, we obtain 1>δ .  

In either case, the SCTF algorithm conduces better 

average turnaround time.  From the above results, we 

conclude that the SCTF algorithm outperforms MJF for 

most test samples. 

 

Figure 11: Task average turnaround time on different 
number of processors 

6.3 Relationship of turn-around time and 
processor numbers when master with 
computational ability 

In this subsection, we tested the system performance 
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for including the computation power of master processor 

into the task processing.  Three levels of master node 

are tested.  In Figure 12, Comp(M)=1, Comp(M)=5 and 

Comp(M)=10 represent the master node processes one 

task by 1, 5 and 10 units of time, respectively.  

Obviously, Comp(M)=1 has the best performance than 

others.  Also, Comp(M)=1, Comp(M)=5 and 

Comp(M)=10 outperform the SCTF method.  This 

result reflects the argument in section 5.3.   
 

 

Figure 12: Performance comparison when master 
processor has different computation ability. 
 
7. Conclusion 

The master-slave task scheduling is a typical problem in 
computational grid system.  In this paper, we have 
presented an efficient algorithm, SCTF for heterogeneous 
processors tasking.  One significant improvement of the 
SCTF algorithm is that average turnaround time can be 
minimized.  The second advantage of the proposed 
approach is that system throughput can be increased by 
dispersing processor idle time.  Our preliminary analysis 
and simulation results indicate that the SCTF algorithm 
outperforms Beaumont’s method in terms of lower average 
turnaround time, higher average throughput, less processor 
idle time and higher processors’ utilization. 

There are numbers of research issues remained in this 
paper.  Our proposed model can also be applied to map 
tasks to heterogeneous cluster systems in grid environments 
in which the communication costs are various from clusters.  
In the future, we intend to devote generalized tasking 
mechanisms for computational grid.  We will also study 
realistic applications and analyze their performance on grid 
system.  Besides, the issues of heterogeneous 
communication overheads are also interesting and will be 
investigated. 
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Abstract  

 

Distributed processing is recognized as a practical way to achieve high performance in various computational 

applications. Many dynamic load-balancing algorithms have been proposed for parallel and discrete simulations. 

But the actual performances of these algorithms have been far from ideal, especially in the heterogeneous 

environment. In this paper, a hybrid approach using fuzzy supervised learning and generic algorithm is presented. 

The fuzzy membership function is dynamically adjusted by the genetic coding. Moreover, the proposed 

load-balancing algorithm has learning capability. The experimental results show that our proposed algorithm has 

better performance comparing with other classical load balancing algorithms. 

 

Load-balancing, genetic algorithm, fuzzy logic, heterogeneous environment 

 

1. Introduction 

 

Load balancing in a distributed system is a process of sharing computational resources by transparently 

distributing system workload. With the advent of high-speed communication links, it has become beneficial to 

connect stand-alone computers in distributed manner through a high-speed link. The primary advantages of these 

systems are high performance, availability, and extensibility at low cost. Therefore, distributed computing has 

gained increasing importance in the recent as a preferred mode of computing over centralized computing. Many 

researches have proposed different kinds of approaches for the load balancing problem [10, 11, 15, 16]. 

 

A load balancing system is composed of three design issues: the information gathering policy, the negotiation 

policy and the migration policy [1]. Traditional strategies of the load balancing systems usually take advantage of 

some fix values to distinguish workload (e.g. over-loaded or under-loaded). Many load-balancing approaches 

based on this conjecture have been introduced in the past [1, 10, 11, 12, 15, 16, 17]. In conventional load 

balancing systems, resource indexes are necessary to be the input training data, and the output (threshold of 

workload) can be decided impersonally. But the output values are fixed; it cannot indicate the degree of the 

workload. Moreover, there exists a sharp distinction between members and non-members; the tasks reallocation 

action will be made frequently around the threshold. This will result in an unstable system and cause unnecessary 

overhead. Moreover, the workload estimation of each host is very difficult and time-consuming. To solve this 

problem, [16] proposed a fuzzy logical theory to estimate the load status of each node and apply fuzzy 
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information rule to determine the number of tasks shall be migrated on a heavily load node.  

 

The fuzzy logic offers a framework for representing imprecise, uncertain knowledge. Similar to the way, in which 

human beings make their decisions, fuzzy systems use a mode of approximate reasoning, which allows it to deal 

with vague and incomplete information. However, fuzzy systems have the problem of determining its parameters. 

Ones of the most important parameters of fuzzy system are the Membership Functions (MF). The fuzzy inference 

engine in conjunction with the control rules to determine an appropriate output response then uses the value 

ranges. In most fuzzy systems, the shape of MF of the antecedent, the consequent and fuzzy rules were 

determined and tuned through trial and error by human operators. Therefore it takes much iteration to determine 

and tune them. There are simple methods to turn MF such as Neural Networks [2], genetic algorithms (GA) were 

used as in [14], and the GA has give faster learning response than the neural networks.  

 

Therefore, we purposed a genetic algorithm approach to construct a fuzzy logic control distributed system. This 

fuzzy logic artificial intelligence setting adjusts controller parameters or membership functions by genetic 

algorithm, it will not only have the power to improve the efficiency of multitask migration but also have fuzzy 

parameter learning capability. The fuzzy membership function can be adjustable according to the change of 

system environment immediately. 

 

The organization of this paper is as follows. Section 2 describes the related work including the load balancing 

approaches. We then discuss several famous load balancing algorithms and the fuzzy enhanced symmetric 

algorithm [17] in section 3. We then present the proposed scheme with genetic algorithm embedded fuzzy 

enhance symmetric algorithm in section 4. Section 5 states the implementation issue as well as the experimental 

results. The conclusion and future work are provided in the last section. 

 
2. Related Work 

 

Load balancing can be performed either statically or dynamically. Previous researches on static and dynamic load 

balancing can be found in [4, 7, 13], respectively. In static load balancing, the tasks are assigned to nodes by 

analyzing their past behaviors or only using some conventional rules, which are independent of the actual current 

system state. The principal advantage of static policies is their simplicity. There is no need to maintain and 

process the information about the system state. The results of the previous studies suggest that dynamic policies 

have greater potential for performance improvement than static policies. There was approach using fuzzy logic 

control to enhance the dynamic load-balancing algorithm had been published [17]. But the fuzzy membership 

function was defined by benchmark program offline. After the system running a long period of time, the system 

status may change a lot. Therefore, the fuzzy membership function of cannot reflect the real situation of the 

environment. 

 

The workload collection is one of the most important issues in dynamic load balancing approach. The 

information collection policy denotes not only the amount of workload about the systems but also the information 

gathering rules used in making the tasks reallocation decision. The goal of this policy is to obtain sufficient 
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information in order to make a decision weather the host’s load is heavy or not. We say that a good information 

gathering policy [6] should be able to predict the workload in the near future, relatively stable and have a simple 

(ideally linear) relationship with the resource indexes. But it is difficult in real world, especially in heterogeneous 

systems.  

 

Many traditional load-balancing schemes used a threshold value as the information policy after load indices 

generated. If the load index is above (under) the threshold, the host is said to be over-loaded (under-loaded), we 

can find out that the load status is classified into only two states, heavily or lightly. This binary-state makes the 

system load state fluctuate between heavily or lightly load wildly when the workload is near the threshold value. 

It will cause the task reallocation frequently because of little load change. Some researchers added a tolerance 

range around the threshold value [15, 16].  

 
3. The Dynamic Load Balancing System 
 
The distributed systems can be characterized by distribution of both physical and logical features. The 

architecture of a distributed system is usually modular and consists of a possibly varying number of processing 

elements. An arbitrary number of system and user processes may be executed in the system. A process can 

usually be executed on various machines. There are a number of factors to be considered when selecting a 

machine for process execution. These factors may include resource availability and utilization of various 

resources. A dynamic load balancing policy can employ either centralized or distributed control.  

 
3.1 Centralize Load Balancing Model 

 
In this model [3], a processor was appointed to be the centre controller, which collects and updates the 

information about the state of every other processor in the system. When a node decides that a task is eligible for 

load balancing, it sends a request to the specified processor to determine the suitable placement of the task. The 

advantage of this architecture was task reallocation action could be done accurately. But in this scheme has a 

potential risk, if the centre controller crashed, the system cannot work anymore, and in a large system this 

information traffic can’t ensure deliver the host processor when the network is busy. 

 
3.2 Distributed Load Balancing Model 
 

In distributed model, every host has a local monitor associated. Each monitor collects and updates the 

information about the state of the local host. The primary advantages of this model are high performance, 

availability, and extensibility at low cost. Conventional algorithms of this model include Random, 

Sender-Initiated [5], Receiver-Initiated [5] and Symmetric Algorithm [1,17]. 

 

3.2.1 Random Algorithm 

 

Among the algorithms, the Random Algorithm is the simplest one [1]. In this algorithm, each node checks the 

local workload during a fixed time period. When a node becomes over loaded after a time period, it sends the 
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newly arrived job to a node randomly no matter the load of target node is heavily or not. Only the local 

information is used to make the decision. The Random Algorithm has the lowest overhead because of its 

simplicity and without negotiation with other hosts. However, it can’t reallocate the system load balancing very 

well.  

 

3.2.2 Sender Algorithm 

 

The Sender algorithm is based on the Sender policy [5]. When a node becomes over-loaded after a period of time, 

it selects the target node randomly and looking for its load status which is under-loaded or not. If it is 

under-loaded, an ACCEPT message is feedback to original host, otherwise it replies a REJECT message. If the 

requesting node is still over-loaded when the ACCEPT reply arrives, the newly arrived task is transferred to the 

probed node; otherwise the task keeps executing locally. This mechanism seals to push a task from the requesting 

node to the probed node after a period of time checking. 

 

3.2.3 Receiver Algorithm 

 

The Receiver Algorithm is designed according to the Receiver policy [5]. Once if a host becomes under-loaded, 

the node will poll the information form any other node to check if it is over-loaded. When an overloaded nodes 

was found, an ACCEPT message is feedback, otherwise it replies a REJECT message. The migration of a task 

from the probed node is still under-loaded.  

 
3.2.4 Symmetric Algorithm 

 

In comparison with the Sender Algorithm and the Receiver Algorithm, the symmetric algorithm shows two-side 

effects: when a node becomes over-loaded, Sender algorithm enabled; when it is under-loaded, the Receiver 

algorithm is active. This algorithm is combination version of the Sender and Receiver algorithm [1]. In other 

words, this model is adjusted based on the current load-level of the node by allowing the algorithm to switch 

automatically between Sender and Receiver algorithm. When the load status is over-loaded, it plays the role of 

the Sender algorithm; in contrast, it plays the role of Receiver algorithm. 

 

3.2.5 Fuzzy Enhanced Symmetric Algorithm  

 

Most conventional information gathering policies use load indices with a threshold value to determine the load 

status of host. The major problem is how to define an appropriate threshold value. The fuzzy theory can improve 

the information policy would be more objective and flexibility [16] to be the migration policy has improved this 

shortcoming. Some researchers use fuzzy logic control to solve this problem [17]. In [17], the experimental 

results show that used the fuzzy inference rules to obtain the migrated task numbers. 

 

The typical architecture of a Fuzzy Logic Control (FLC) is composed of four principal components: a Fuzzifier, a 
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Fuzzy Rule Base, an Inference Engine, and a Defuzzier. The workload is determined by using FLC in [17]. 

According to the host’s status is over-loaded or under-loaded, negotiation policy would initiate to find the 

suitable host to make the task migration. If the target node was being found, the migration policy will take 

advantage of defuzzification to calculate to number of tasks to be migrated.  

 

But this method still not good enough to build a good dynamic load-balancing environment, because of the 

parameters of FLC be inaccurate and cannot make the best decision of the migrated number of tasks. In order to 

overcome this shortage, therefore, we proposed a new scheme that embedded online genetic algorithm to tune the 

fuzzy membership function dynamically. It can adjust the membership function in terms of the feedback values 

dynamically and react the overall systems status immediately. 

 
4. Genetic based fuzzy logic control system 
 

The genetic algorithm (GA) is an optimization search algorithm. GA is known to be particularly suitable for 

learning in complex domains and hence can be used for structure and parameter adaptation in fuzzy system, but it 

takes a considerably long time to converge to a suitable solutions. The basic concepts of GA were developed by 

Holland [8, 9], and have subsequently been extended in several research studies. Typically the GA starts with 

little or no knowledge of the correct solution and depends entirely on responses from an interacting environment 

and its evolution operators to arrive at good solutions.  

 

The GA processes imitate natural evolution, and hence include bio-mimetic operation such as reproduction, 

crossover, and mutation. A conventional GA has four features: population size, reproduction, crossover, and 

mutation. GA’s maintain a set of candidate solution called a population. Candidate solutions are usually 

represented as strings of fixed length, called chromosomes, coded with binary character set. The first step of GA 

is to generate an initial population by random in cycles called generations. The chromosome is represents by a 

binary string matrix depending upon the system condition. By applying the operators such as selection, crossover 

and mutation, the chromosome with the highest fitness is chosen to determine the population chromosome 

 
In the paper, the genetic algorithm was designed to adjust the value of membership function of Fuzzy System. An 

increase in the number of input variables causes an exponential growth in the number of rules generated. We 

devise an online genetic algorithm (OGA for short) adaptive mechanism for updating of the associated 

parameters of fuzzy membership function dynamically.  

 

4.1 Online Genetic Algorithm 

 
In OGA processes such as crossover, reproduction and mutation will proceed in the usual manner. The following 
genetic operation operations are applied to each string: 

(1) Coding: The coding of fuzzy membership functions in a chromosome is shown in Figure 1. A triangular 

membership function is used in the fuzzy set, a and b are representing the center and width of the membership 

function, respectively. The type of coding used in this research is the concatenated binary string by the position 
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of membership function center and width. 

ａ

ｂ

 

 

 

 

 

Figure 1: Coding of a fuzzy membership function 

 

(2) Population size: The choice of an appropriate population size is a fundamental decision to be taken in all GA 

implementations. If the population sizing is too small the GA will usually converge too quickly, and too large a 

population will take a very long time to evaluate. In the study, population sizes are set to 50 and each 

chromosome is 26 bits. 

 

(3) Reproduction: Reproduction is the process through selecting two parent genes from the current population. Selection is based 

probabilistically on a gene’s fitness value; the higher the fitness of a gene, the more likely it can reproduce.  

 

(4) Crossover: Crossover operates on two solution strings and results in another two strings. Typical crossover 

operator exchanges the segments of selected strings across a crossover point with probability. There are two steps 

produces two offspring by crossover operator. At first, two strings from the reproduced population are mated at 

random, and a crossover site is randomly selected. Then the strings are crossed and separated at the site. We used 

two point crossover-site for each parent strings with crossover probability Pc. 

 

1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1

0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 0

P a r e n ts

1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1

0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0

O f f s p r in g

 

 

Figure 2: Crossover operation 

 

(5) Mutation: The mutation operator prevents irreversible loss of certain patterns by introducing small random 

changes into chromosomes. Change each bit value with the probability Pm. 

1-7 bits 1-7 bits 1-6 bits 1-6 bits 

queue length (center) 
queue length (width) 

cpu utilization (center) 
cpu utilization (width) 
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1 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1

1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1

 

Figure 3: Mutation operation 

 

(6) Fitness Function: The genetic algorithm is able to optimize the characteristics explicit in the fitness function. 

Here the fitness function using following formula: 

2
12

1

TTRT
F

∗+∗
=

βα
 

where 0 <= α, β <= 1, 

RT : the response time, 

TT : the turnaround time. 

The process of Online Genetic Algorithm for fuzzy control is presented in figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Online Genetic algorithm for fuzzy control 
 

4.2 Structure of Genetic Based Fuzzy Logic Control Systems 

There are four components in our proposed genetic based fuzzy logic control load balancing system: information 

module, negotiation module, migration module, and online genetic algorithm module. The information module 

defines the workload status of every host. Then the negotiation module will probe the target host to request the 

task reallocation action. The migration module will make the decision of the migrated number of tasks and move 

Step 1：Establish a base population of 

Step 2：Create new chromosomes by 

Step 3：Evaluate the new chromosomes 

Step 4：Evaluate the fitness function value 

Continue until the 

The fitness function 
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the tasks to the target host. Finally, the online genetic algorithm will adjust the center value of fuzzy membership 

function, if the workload was still heavy (or light). Moreover, the online genetic algorithm will  evaluate the 

current fuzzy rules to meet the load index or not. The architecture of genetic based fuzzy logic control model is 

shown in figure 5. 

 

 

 

 

 

 

 

 

 

 

Figure 5: The architecture of our proposed load balancing algorithm 

 

5. Implementation and experimental results 

 
In order to verify the performance of our proposed scheme we implement our algorithm in a distributed 

environment, called Java Load Balancing System [18], which is implemented by using Java language. The 

system supports heterogeneous, static load balancing and dynamic load balancing. We also implemented three 

other algorithms (random, receiver initial, and symmetric) for comparsion. In order to verify that our proposed 

online genetic based fuzzy logic control load balancing algorithm will accomplish a high system performance. 

Six workstations running different operation systems. The operation systems including the Unix, Win NT and 

Win 98. 
 

5.1 Online Genetic Algorithm Parameter 

 

The genetic operation should be used in a way that achieves high-fitness individuals in the population rapidly 

without leading to a total convergence. In the paper, we used partial-random method to achieve high-fitness for a 

short-time interval. In our experiment, the size of population is set to 50, the total generations is 1000, the 

probability of crossover =0.8, the probability of mutation is 0.02. 

 

5.2 Experimental results 
 
In the experiment, the task number is adjustable parameters. In the static load balancing part, we used Random 

dispatch model. Four different algorithms were implemented, including random, receiver initial, symmetric, and 

our proposed algorithm. We have not implemented the sender-initial algorithm, since its performance usually 

worse than receiver-initial policy. In the experiment,we compare the performance of average response time, 

average turnaround time and overall throughput. 
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5.2.1  Response Time 

 
The response time denotes the time from the submission of a task until the first response is produced. In figure 6, 

we can see that our algorithm can cut down the average average response time at least 50% when the tasks 

number is 70. 
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Figure 6 : Response time 

 

5.2.2 Turnaround time 

 

The second index can estimate the efficient of overall system is the turnaround time. The turnaround time is the 

interval from the time of a task submission to the time of completion. Figure 7 is the average turnaround time of 

four algorithms. In the figure, we can find out our algorithm has the smallest turnaround time. 

 

5.2.3 Throughput 

 

The overall throughput under different load balancing schemes is also discussed in our experiment. The 

definition of throughput is the number of processes that are completed per time unit. In figure 8, we also can find 

that our proposed algorithm always keeps higher throughput when the tasks number is increased.  
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Figure 7: Turnaround time 
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Throughput
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Figure 8: Throughput 

 

6.Conclusion 
 
In this paper, we design and implement an intelligent dynamic load balancing algorithm based on online genetic 

based fuzzy logic control. In our research, the proposed algorithm can correctly evaluate the workload of each 

machine in the system and make a decision of the migrate task extactly. In the scheme, OGA can dynamically 

adjust the fuzzy membership function based on the feedback information.  

The experimental results show that our proposed load balancing can indeed significantly reduce the response 

time and turnaround time as well as increasing overall throughput.  
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