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Design and Implementation of Resour ce Allocation and Job
Scheduling for Supporting SPM D Programs on Heter ogeneous
Parallel Computing Networks

Abstract

The SPMD programming model evolved from paralel computing system has become a
widely accepted paradigm for massive computing and high performance scientific
applications.  With the progressing of network technology, the rapid growth of
communication bandwidth and the consideration of cost-effective ratio, grid-computing
environment has become the other choice for many scientific applications in parallel and
distributed computation. Thus, how to execute an SPMD program on heterogeneous

computing platforms efficiently is a common challenge.

This report presents the devel opment and implementation of resource alocation and job
scheduling for supporting SPMD programs on heterogeneous parallel computing networks.
In this project, we have proposed an efficient communication technique for SPMD parallel
programs in heterogeneous multi-cluster systems. Utilizing the logical processor to data
mapping technique, inter-cluster communications between physical processors can be
reduced. Besides, we have also proposed a genetic-fuzzy logic based approach for dynamic
load balance on heterogeneous paralel computing systems. The results of our work
facilitate increasing the throughput of heterogeneous distributed memory environments and
the performance of SPMD parallel programs executing on such systems.  For job scheduling,
co-alocation and resource management, we have proposed an SCTF (Shortest
Communication Time First) task scheduling algorithm. We also developed a web-based
resource monitoring tool upon two PC cluster systems. We have tested some mgjor tools
that developed by other research teams on different platforms. The experimental results
show that SCTF outperforms Beaumont’s method in terms of lower average turnaround time,

higher average throughput, less processor idle time and higher processors' utilization.

Keywords: Heterogeneous Computing, SPMD, Distributed Computing, Paralel Algorithm,
Resource Allocation, Task Management, Data Reconfiguration, Grid Computing.
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L ocalized Communications of Data Parallel Programson Multi-Cluster Grid
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Abstract. The advent of widely interconnected computing resources introduces the technologies of grid
computing. A typical grid system, the cluster grid, consists of several clusters located in multiple campuses
that distributed globally over the Internet. Because of the Internet infrastructure of cluster grid, the
communication overhead becomes as key factor to the performance of applications on cluster grid. In this
paper, we present a processor reordering technique for the communication optimizations of data parallel
programs on cluster grid. The alignment of data in parallel programs is considered as example to examine
the proposed techniques. Effectiveness of the processor reordering technique is to reduce the inter-cluster
communication overheads and to speedup the execution of parallel applications in the underlying distributed
clusters. Our preliminary analysis and experimental results of the proposed method on mapping data to
logical grid nodes show improvement of communication costs and conduce to better performance of parallel
programs on different hierarchical grid of cluster systems.

1. Introduction

One of the virtues of high performance computing is to integrate massive computing resources for
accomplishing large-scaled computation problems. The common point of these problems has enormous data
to be processed. Due to cost-effective, clusters have been employed as a platform for high-performance and
high-availability computing platform. In recent years, as the growth of Internet technologies, the grid
computing emerging as a widely accepted paradigm for next-generation applications, such as data parallel
problems in supercomputing, web-serving, commercial applications and grand challenge problems.

Differing from the traditional parallel computers, a grid system [7] integrates distributed computing
resources to establish avirtual and high expandable parallel platform. Figure 1 shows the typical architecture
of cluster grid. Each cluster is geographically located in different campuses and connected by software of
computational grids through the Internet. In cluster grid, communications occurred when grid nodes
exchange data with others via network to run job completion.  These communications are usually classified
into two types, local and remote. I the two grid nodes belong to different clusters, the messaging should be
accomplished through the Internet. We refer this kind of data transmission as external communication. If
the two grid nodes in the same space domain, the communications take place within a cluster; we refer this
kind of data transmission as interior communication. Intuitionally, the external communication is usually
with higher communication latency than that of the interior communication since the data should be routed
through numbers of layer-3 routers or higher-level network devices over the Internet. Therefore, to
efficiently execute parallel applications on cluster grid, it is extremely critical to avoid large amount of
external communications.

Cluster Grid

Figure 1: The paradigm of cluster grid.

In this paper, we consider the issue of minimizing external communications of data parallel program on
cluster grid. We first employ the example of data alignments and realignments that provided in many data
parallel-programming languages to examine the effective of the proposed data to logical processor mapping

The work of this paper was supported NSC, National Science Council of Taiwan, under grant number NSC-93-2213-E-216-028.



scheme. As researches discovered that many parallel applications require different access patterns to meet
parallelism and data locality during program execution. This will involve a series of data transfers such as
array redistribution. For example, a 2D-FFT pipeline involves communicating images with the same
distribution repeatedly from one task to another. Consequently, the computing nodes might decompose local
data set into sub-blocks uniformly and remapped these data blocks to designate processor group. From this
phenomenon, we propose a processor-reordering scheme to reduce the volume of external communications of
data parallel programs in cluster grid. The key idea is that of distributing data to grid/cluster nodes
according to a mapping function at data distribution phase initially instead of in numerical-ascending order.
We also evaluate the impact of the proposed techniques. The theoretical analysis and experimental results
show improvement of volume of interior communications and conduce to better performance of data alignment
in different hierarchical cluster grids.

The rest of this paper is organized as follows.  Section 2 briefly surveys the related works. In section 3,
we formulate the communication model of parallel data partitioning and re-alignment on cluster grid.  Section
4 describes the processor-reordering scheme for communication localization.  Section 5 reports the
performance analysis and experimental results. Finally, we conclude our paper in section 6.

2. Related Work

Clusters have been widely used for solving grand challenge applications due to their good price-performance
nature. With the growth of Internet technologies, the computational grids [4] become newly accepted
paradigm for solving these applications. As the number of clusters increases within an enterprise and
globally, there is the need for a software architecture that can integrate these resources into larger grid of
clusters. Therefore, the goal of effectively utilizing the power of geographically distributed computing
resources has been the subject of many research projects like Globus [6, 8] and Condor [9]. Frey et al. [9]
also presented an agent-based resource management system that allowed users to control global resources.
The system is combined with Condor and Globus, gave powerful job management capabilities is called
Condor-G.

Recent work on computational grid has been broadly discussed on different aspects, such as security, fault
tolerance, resource management [9, 2], job scheduling [17, 18, 19], and communication optimizations [20, 5,
16, 3]. For communication optimizations, Dawson et al. [5] and Zhu et al. [20] addressed the problems of
optimizations of user-level communication patterns in local space domain for cluster-based parallel
computing. Plaat et al. analyzed the behavior of different applications on wide-area multi-clusters
[16, 3]. Similar researches were studied in the past years over traditional supercomputing architectures
[12, 13]. For example, Guo et al. [11] eliminated node contention in communication phases and reduced
communication steps with schedule table. Y. W. Lim et al. [15] presented an efficient algorithm for
block-cyclic data realignments. Kalns and Ni [14] proposed the processor mapping technique to minimize
the volume of communication data for runtime data re-alignments. Namely, the mapping technique
minimizes the size of data that need to be transmitted between two agorithm phases. Lee et al. [10]
proposed similar algorithms, the processor reordering, to reduce data communication cost. They also
compared their effects upon various conditions of communication patterns.

The above researches give significant improvement of parallel applications on distributed memory
multi-computers. However, most techniques only applicable for parallel programs running on local space
domain, like single cluster or parallel machine. For a global grid of clusters, these techniques become
inapplicable due to various factors of Internet hierarchical and its communication latency. In this paper, our
emphasis is on dealing with the optimizations of communications for data parallel programs on cluster grid.

3. Preliminaries
3.1 Problem Formulation

The data parallel programming model has become a widely accepted paradigm for parallel programming on
distributed memory multi-computers. To efficiently execute a parallel program, appropriate data distribution
is critical for balancing the computational load. A typical function to decompose the data equally can be
accomplished via the BLOCK distribution directive.

It has been shown that the data reference patterns of some parallel applications might be changed
dynamically. As they evolve, a good mapping of data to logical processors must change adaptively in order
to ensure good data locality and reduce inter-processor communication. For example, a global array could be
equally allocated to a set of processors initially in BLOCK distribution manner.  As the algorithm goes into
another phase that requires to access fine-grain data patterns, each processor might divide its local data into
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sub-blocks locally and then distribute these sub-blocks to corresponding destination processors. Figure 2
shows an example of this scenario. Intheinitial distribution, the global array is evenly decomposed into nine
data sets and distributed over processors that are selected from three clusters. In the target distribution, each
node divides its local data into three sub-blocks evenly and distributes them to the same processor set in grid
as in the initial distribution. Since these data blocks might be needed and located in different processors,
consequently, efficient inter-processor communications become major subject to the performance of these
applications.

Initial Distribution

Cluster-1 Cluster-2 Cluster-3
Po | P | P Pa | P | Ps Pe | P | Pa
A | B | c D | E | F G | H | 1
Target Distribution

Clusterl Cluster2 Cluster3 Clusterl Cluster2 Cluster3 Clusterl Cluster2 Cluster3

Po|P1|P2|Ps|Pa|Ps|Ps|P7|Pgs[Po|Py|P2|Ps|Ps|Ps|Pg|P7|Ps|Po|Py[P2fPs|Ps|Ps|Ps|P7|Pg

ajfa,|as|bs|by|bs|ci|co|cs|di|d,|ds|es|es|es|fi|f]|fs|ga|g2]|gs|hy|ho|hs|is|iz]is

Figure 2: Data distributions over cluster grid.

To facilitate the presentation of the proposed approach, we assume that a global array is distributed over
processors in BLOCK manner at the initiation. Each node is requested to partition its local block into K
equally sub-blocks and distribute them over processors in the same way. The second assumption is that each
cluster provides the same number of computers involved in the computation.

Definition 1: The above term K is defined as partition factor.

For instance, the partition factor of the example in Figure 2 is K=3. (Block A isdivided into a;, a, as, B is
divided into by, by, b, etC)

Definition 2: Given a cluster grid, C denotes the number of clusters in the grid; n; is the number of
processors selected from cluster i, where 1 <i < C; P is the total number of processors in the cluster grid.

C
According to definition 2, we have P = > n; . Figure 2 has three clusters, thus C = 3, where { Py, Py, P}
i=1

€ Cluster 1, {P3, P4, Ps} € Cluster 2 and {Pg, P7, Pg} € Cluster 3, we also haven;=n,=n;=3and P =9.

3.2 Communication Cost M odel

Because the interface of interconnect switching networks in each cluster system might be different; to obtain
accurate evaluation, the interior communication costs in clusters should be identified individually. We let
T, represents the time of two processors both reside in Cluster-i to transmit per unit data; m; is the sum of
volume of all interior messages in Cluster-i; for an external communication between cluster i and cluster j, T;
is used to represent the time of processor p in cluster i and processor q in cluster j to transmit per unit data;
similarly, mj; is the sum of volume of all external messages between cluster i and cluster j.  According to
these declarations, we can have the following cost function,

C C
T = 2, T XM+ > (M xT,) (1)
i=1 ij=Li#j

Due to various factors over Internet might cause communication delay; it is difficult to get accurate costs
from the above function. As the need of a criterion for performance modeling, integrating the interior and
external communications among all clusters into points is an alternative mechanism to get legitimate
evaluation. Thus, we totted up the number of these two terms to represent the communication costs through
the whole running phase for the following discussions. The volume of interior communications, denoted as |l |
and external communications, denoted as |E| are defined as follows,

C
= >0 (2)
i=1

C
l[El= X E 3
i,j=Li#]
Where | is the total number of interior communications within cluster i; E; is the total number of external
communications between cluster i and cluster j.

4. Communication Localization
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4.1 M otivating Example

Let us consider the example in Figure 2. In the target distribution, processor P, divides data block A into ay,
a, and as. Then, it distributes these three sub-blocks to processors Py, P; and P,, respectively. Since
processors Py, P; and P, belong to the same cluster with Pg; therefore, these are three interior communications.
Similar situation on processor P; will generate three external communications; P; divides its local data block
B into by, by, and bs. It distributes these three sub-blocks to Ps, P, and Ps, respectively. However, as
processor P; belongs to Cluster 1 while processors Ps;, P4 and Ps, belong to Cluster 2. Thus, this results
three external communications. Figure 3 summarizes all messaging patterns of the example into a
communication table. The messages {aj, a,, as}, {€1, &, €3} and {iy, i», iz} areinterior communications (the
shadow blocks). All the others are external communications. Therefore, wehave |l |=9and | E | = 18.

P, P, P, Ps P, Ps Pg P; P

Po a; [az |as

Py b, |b, [bs

P2 Ci1 [Cp |C3
Py |dy [dy |ds

Pa e e, es

Ps fi | fo | fs
Ps 191 |02 |Qs
P hy [hs |hs
Ps i i iz
Cluster-1 Cluster-2 Cluster-3

Figure 3: Communication table of data distribution over cluster grid.

Figure 4 illustrates a bipartite representation to show the communications that given in the above table.
In this graph, the dashed arrows and solid arrows indicate interior and external communications, respectively.
Each arrow contains three communication links.
Source
Po Py P, P3 Py Ps Ps P; Py

Q e oo o oo o d

A L\ AL

(O ©O OJO O oOJo o Qg

Po P. P, Py P; Ps Ps P; P

Target . N
——————— + Interior communication

———— External communication

Figure 4: Interior and external communications using bipartite representation.
4.2 Processor Reordering Data Partitioning

The processor mapping techniques were used in several previous researches to minimize data transmission
time of runtime array redistribution. In a cluster grid system, the similar concept can be applied. According
to assumptions in section 3.1, we proposed the processor reordering technique and its mapping function that is
applicable to data realignment on cluster grid. In order to localize the communication, the mapping function
produces a reordered sequence of processors for grouping communications into local cluster. A reordering
agent is used to accomplish this process. Figure 5 shows the concept of processor reordering technique for
parallel data to logical processor mapping. The source data is partitioned and distributed to processors into
initial distributions (ID(Px)) according to the processor sequence derived from reordering agent, where X is
the processor id and 0 < X < P-1. To accomplish the target distribution (TD(Pyx)), the initial data is divided
into K sub-blocks and realign with processors according to the new processorsid X' that is also derived from
the reordering agent.  Given distribution factor K and processor grid (with variables C and n;), for the case of
K=n;, the mapping function used in reordering agent is formulated as follows,

F(X) =X’ = LX/CJ+(Xm0dC)*K 4

We use the same example to demonstrate the above reordering scheme. Figure 6 shows the
communication table of messages using new logical processor sequence. The initial distribution of source
data is allocated by the sequence of processors’ id, <Pg, Ps, Pg, P1, P4, P7, P2, Ps, Pg> which is derived from
equation 4. To accomplish the target distribution, P, divides data block A into a;, a,, az and distributes them
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to Py, P; and P,, respectively. These communications are interior. For P, the division of initial data also
generates three interior communications; because P; dividesits local data B into by, b,, bs and distributes these
three sub-blocks to Ps, P, and Ps, respectively; which are in the same cluster with P;.  Similarly, Pg sends ey,
e and e; to processors Pg, P; and Pg and causes three interior communications. Eventually, there is no
external communication incurred in this example in Figure 6.

Partitioning
Data

Alignment/
Dispatch

Determine
| Target Cluster |
'

N st
..... }. [P
e Tmm e N
H Designate vt
Target Node

Realignment

ID(Px)

Reordering Agent

Figure 5: The flow of datato logical processor mapping.
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P> 91 |92 |93
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Cluster-1 Cluster-2 Cluster-3

Figure 6: Communication table with processor reordering.

The bipartite representation of Figure 6's communication table is shown in Figure 7. All the
communication arrows are in dashed lines. We totted up the communications, then have |1 | =27 and | E | =
0. The external communications are mostly eliminated.

5. Performance Analysis and Experimental Results

5.1 Performance Analysis

The effectiveness of processor reordering technique in different hierarchy of cluster grid can be evaluated in
theoretical. This section presents the improvements of volume of interior communications for different
number of clusters (C) and partition factors (K).

For the case consists of three clusters (C=3), Figure 8(a) shows that the processor reordering technique
provides more interior communications than the method without processor reordering. For the case consists
of four clusters (C=4), the values of K vary from 4 to 10. The processor reordering technique also provides
more interior communications as shown in Figure 8(b). Note that Figures 8 and 9 report the theoretical
results which will not be affected by the Internet traffic. In other words, Figure 8 is our theoretical
predictions.

Source
Po Ps Pg P, Py P p Ps p

(e ¢ oo ¢ o]g o o]
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\ / \ / N
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Figure 7: Bipartite representation with processor reordering.
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= Number of interior communication, C =3

Figure 8: The number of interior communications (a) C=3 (b) C=4.

5.2 Simulation settings and Experimental Results

To evaluate the performance of the proposed technique, we have implemented the processor reordering
method and tested on Taiwan UniGrid in which 8 campus clusters ware interconnected via Internet. Each
cluster owns different number of computing nodes. The programs were written in the single program
multiple data (SPMD) programming paradigm with C+MPI codes.

Figure 9 shows the execution time of the methods with and without processor reordering to perform data
realignment when C=3 and K=3. Figure 9(a) gives the result of 1MB test data that without file system access
(1/10). The result for 10MB test data that accessed via file system (1/O) is given in Figure 9(b). Different
combinations of clusters denoted as NTI, NTC, NTD, etc. were tested. The composition of these labels is
summarized in Table 1.

Table 1: Labels of different cluster grid

Label | Cluster-1| Cluster-2 | Cluster-3| Label | Cluster-1 | Cluster-2 | Cluster-3
NTI NCHC NTHU 1S NCI NCHC CHU 1S
NTC NCHC NTHU CHU NCD NCHC CHU NDHU
NTH NCHC NTHU THU NHD NCHC THU NDHU

In Figure 9(a), we observe that processor reordering technique outperforms the traditional method. In
this experiment, our attention is on the presented efficiency of the processor reordering technique instead of on
the execution time in different clusters. Compare to the results given in Figure 8, this experiment matches
the theoretical predictions. It also satisfying reflects the efficiency of the processor reordering technique.
Figure 9(b) presents the results with larger test data (10 MB) under the same cluster grid. Each node is
requested to perform the data realignments through access file system (1/0). The improvement rates are
lower than that in Figure 9(a). This is because both methods spend part of time to perform 1/O; the ratio of
communication cost becomes lower. Nonetheless, the reordering technique still presents considerable
improvement.

18 g 50 2
g = C=3, K=3, without /O 45 - =3, K=3, with 1/0 (10 MB)

40
35 1
30
25

NI  NIC NIH NCI NCD NHD NTI  NTC NTH NCI NCD NHD

(@ (b)

Figure 9: Execution time of data realignments on cluster grid when C = K = 3.

6. Conclusionsand Future Works

In this paper, we have presented a processor reordering technique for localizing the communications of data
parallel programs on cluster grid. Our preliminary analysis and experimental results of re-mapping data to
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logical grid nodes show improvement of volume of interior communications. The proposed techniques
conduce to better performance of data parallel programs on different hierarchical grid of clusters systems.
There are numbers of research issues remained in this paper. The current work of our study restricts
conditions in solving the realignment problem. In the future, we intend to devote generalized mapping
mechanisms for parallel data partitioning. We will also study realistic applications and analyze their
performance on the UniGrid. Besides, the issues of larger grid system and analysis of network
communication latency are also interesting and will be investigated.
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Abstract: Efficient task scheduling is an important issue on system performance of computational grid. To
investigate this problem, the master slave paradigm is a good vehicle for developing tasking technologies of
centralized grid system. In this paper, we present an efficient method for dispatching tasks to heterogeneous
processors in master slave environment. The main idea of the proposed technique is first to allocate tasks to
processors that with lower communication overheads. A significant improvement of this approach is that
average turnaround time can be minimized. The second advantage of the proposed approach is that system
throughput can be increased by dispersing processor idle time. Our proposed model can also be applied to map
tasks to heterogeneous cluster systems in grid environments in which the communication costs are various from
clusters.  To evaluate performance of the proposed techniques, we have implemented the proposed algorithms
along with Beaumont’s method. The experimental results show that our techniques outperform Beaumont’'s
method in terms of lower average turnaround time, higher average throughput, less processor idle time and higher
processors' utilization.

Keywords: master-slave paradigm, heterogeneous processors, task scheduling, computational grid, Least Job First

different computation speeds.
executes the tasks after it

1. Introduction

Each dave processor
receives its own part.

One of the virtues of high performance computing
is to integrate massive computing resources for
accomplishing large computation problems. Cluster
computing is one of the well known high performance
paradigms. The use of master slave cluster of
computers as a platform for high-performance and
high-availability computing is mainly due to their
cost-effective nature.  As the growth of Internet
technologies, computational grids become widely
accepted paradigm for solving numerous applications
and grand challenge problems.

Computing grid system integrates geographically
distributed computing resources to establish a virtual and
high expandable parallel machine. In recent years, more
and more research work done in scheduling problem in
heterogeneous grid systems. A centralized computational
grid system can be viewed as the collection of one resource
broker (the master processor) and severa heterogeneous
clusters (dave processors). Therefore, to investigate task
scheduling problem, the master slave paradigm is a good
vehicle for developing tasking technologies of centralized
grid system.

The master slave tasking is a simple and widely used
technique. Figure 1 shows an example of the master dave
paradigm. One master node connects to n slave nodes.
A pool of independent tasks are dispatched by master
processor and be processed by the n slave processors. In a
heterogeneous implementation, slave processors may have
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Communication between master and slave nodes is handled
through a shared medium (e.g. bus) that can be accessed
only in exclusve mode. Namely, the communications
between master and different slave processors can not be
overlapped.

In general, the optimization of master slave tasking
problem is twofold. One is to minimize total execution
time for a given fix amount of tasks, namely minimize
average turnaround time. The other one is to maximize
total amount of finished tasks in a given time period,
namely maximizethroughput

[ Communication |

coe 363

Figure 1: The Master-Slave paradigm.

In this paper, an efficient method for scheduling
homogeneous tasks to heterogeneous processors in master
dave environment is presented. The main idea of the
proposed technique is first to alocate tasks to processors
that with lower communication overheads. A significant
improvement of this approach is that average turnaround



time can be minimized. The second advantage of the
proposed approach is that system throughput can be
increased by dispersing processor idle time.  Our
proposed model can aso be applied to map tasks to
heterogeneous cluster systems in grid environments in
which the communication costs are various from clusters.
To evaluate performance of the proposed techniques, we
have implemented the proposed algorithms along with
Beaumont’smethod [1, 2]. The experimental results show
that our techniques outperform Beaumont’s method in
terms of lower average turnaround time, higher average
throughput, less processor idle time and higher processors
utilization.

The rest of this paper is organized as follows. Section
2 briefly describes the related work.  Section 3 introduces
the research architecture and defines notation used in this
paper. Section 4 presents characteristics of the
master-slave  model. Section 5 assesses the new
scheduling algorithm. The performance comparisons and
experimental results are discussed in section 6. Finally,
section 7 makes conclusions.

2. Related Work

The task scheduling research about heterogeneous
processors can be classified into DAG's model,
master-slave paradigm and computational grids. The
purpose of task scheduling is to achieve high
performance computing and high throughput computing.
The former aims at increasing execution efficiency and
minimizing the execution time of tasks, whereas the
latter aims at decreasing processor idle time and
scheduling a set of independent tasks to increase the
processing capacity of the systems over a long period of
time.

Thanalapati et al. [5] bring up an idea about
adaptive scheduling scheme based on homogeneous
processor platform which used space-sharing and
time-sharing to schedule tasks. Han et al. [6]
presented a scheduling algorithm that enabled software
fault tolerant for real-time environment. Recently,
researches such as Topcuoglu et al. [7], Dogan et al. [8]
and Hagras et al. [9] discussed the task scheduling for
heterogeneous computing based on DAGs paradigm.
In [7], a scheduling algorithm based on critical path
mechanism to prioritize tasks is proposed. Srinivasan
et al. [15] addressed the scheduling problem with
reliability optimization for general heterogeneous
computer systems. In [8], more investigations have
been done based on incremental cost functions.

With the emergence of Grid and ubiquitous
computing, new algorithms are in demand for addressing
new concerns arising in the grid environment, such as

security, quality of service and high system throughput.
Berman et al. [11] and Cooper et al. [10] addressed the
problem of schedule incoming applications to available
computation  power. Dynamically  rescheduling
mechanism was introduced for adaptive computing on
the grid. Schopf et al. [16] present a general
architecture with three phases for scheduling on the grid.
In [17], an integrated technique for task matching and
scheduling onto distributed heterogeneous computing
systems is proposed. Based on Priority and Best Fit
Mechanism, Min et al. [18] developed three novel
scheduling  Algorithms CO-RSPB, CO-RSBF and
CO-RSBFP. In [19, 20], some simple heuristics for
dynamic matching and scheduling of a class of independent
tasks onto a heterogeneous computing system have been
presented. Also an extended suffrage heuristic was
presented in [21] for scheduling the parameter sweep
applications which were implemented in AppLeS. They
also presented a method to predict the computation time for
atask/host pair by using the previous host performance.

Chronopoulos et al. [3], Charcranoon et al. [4] and
Beaumont et al. [13.14] introduced the research of
master-slave paradigm with heterogeneous processors
background. Based on this architecture, Olivier
Beaumont et al. [1, 2] presented a method on
master-slave paradigm to forecast the quantity of tasks
each processor needs to receive in a period of time. In
their implementation, intuitionally, fast processor
receives more tasks in the proportional distribution
policy. Tasks are also prior allocated to faster slave
processors and expected higher system throughput could
be obtained.

3. Preliminaries

In this section, we first introduce the basic concept
and models of this paper. Then, we define notations
and terminologies that will be used in later sections.

3.1 Research Architecture

We revisit several characteristics that were
introduced by Beaumont et al. [1, 2]. Based on the
master slave paradigm demonstrated in figure 1, this
paper conforms to the following assumptions.

® Heterogeneous processors. al processors have
different computation speed.

® Identical tasks: all tasks are of equal size.

® Non-preemption: tasks are considered to be
atomic.

® Exclusive communication: communications from

master node to different slave processors can not
be overlapped. This assumption can be changed



if non-blocking message passing is applied in grid
system.

® Identical communication: al communications
between master and slave processors are of same
overheads. This assumption can be removed /
extended when investigating the scheduling
techniques on cluster based computational grid
system in which the communication costs between
different clusters are various.

To meet the above restrictions, communications
between master and slave processors play an important
factor to the overall system performance. Therefore, a
good permutation of tasking that can avoid link
contention and minimize processor waiting time is
critical. We will present an efficient scheduling
method that improved [1, 2] in the following sections.

3.2 Definitions

To simplify the presentation, we first define notations
and terminologies used in this paper.
Definition 1: In a master slave system, master processor
is denoted by M and the n slaves are represented by
R, Ps.,.....R,, where n is the number of slave processors.

Definition 2: Upon the assumption of identical tasks and
heterogeneous processors, the time for slave processors
to compute one task are different. We use T; to
represent the time of a slave processor P; to complete
one task. In this paper, we assume the computation
speed of the n processorsissorted and T;< To< ... < T,.
Definition 3: Teomm iS the time of a slave processor to
receive one task.

Definition 4: A Basic Scheduling Cycle (BSC) is
defined as BSC = 1em(T, + Ty To + Toomms =0 To + Teomm) + 1S
the total amount of tasks in a scheduling cycle, where n
is the number of processor.

Definition 5: The number of tasks a processor P; must
receive in a scheduling cycle is defined as

BSC

tak(PR)=——.
) Ti + Teomm

Definition 6: The communication cost of processor P; in
BSC isdefined as comm(P,) = T X task(R)

Definition 7: The computation time of processor P; in BSC
isdefined as comp(R) =T, xtask(P)

Definition 8: The performance factor of processor P, is

defined as —Teom . The computation capacity of a

Ti + Tcomm

n TCOI’TI’T]

master slave system is defined as & = Z T
= i T 1comm

where n isthe number of slave processors.

We use an example to clarify the above definitions.
Figure 2 shows the tasking on four heterogeneous
processors.  According to definition 2, the time for
processors P; to P4 to compute one task are T;=2, T,=3,
T5=3 and T,=5. Communication cost between dave and
master node to receive/send one task is define as Teomm = 1.
According to definitions 4 and 5, BSC = 1cm(3,4,4,6) =
12, task(Py) = 4, task(P,) = 3, task(P3) = 3 and task(P,) = 2.
The communication cost and computation time of Py in
BCS are comm(P;) = 4 and comp(P;) = 8, respectively.
For other processors, these two values can be determined in
a similar way by using the equations illustrated in
definitions 6 and 7. Finally, according to definition 8, the

performance factor of P, to P, are % , 1 , 1 , and 1 ,

4 4 6
respectively. The computation capacity in this example is
0=1. InFigure?2, aGreedy alocation method that adapts
round robin scheduling policy is illustrated. Tasks are
dispatched to faster and available processor first. As shown
in Figure 2, the first 3 tasks are sent to P;, P, and Ps.
The fourth task is allocated to P, again because P; is faster
than P,. Thefifth task is sent to P4 which is the only one
available processor. In the greedy algorithm, we observe
that processors’ idle time is scattered unevenly.
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Figure 2: Task scheduling on 4 processors using greedy
agorithm.

4. Master Slave Task Scheduling

In this section, we discuss the problem of task
scheduling on master slave system in two cases depending
on the value of system computation capacity ().

4.1 6<1 Scheduling Without Processor Idle

Figure 2 is the case of master-slave system with



0<1. We reuse this example to demonstrate the
pre-scheduling algorithm proposed in [1, 2]. As
mentioned in section 2, faster processor receives more
tasks. Tasks are also prior allocated to them (faster
processors). Thisis so called Most Jobs First (MJF).
Figure 3 shows the pre-scheduling of tasks of the MJF
algorithm.  As defined in section 3.2, the performance
factor of P; to P, are l, i, l, and l,
3 4 4 6
respectively. Since BSC = 12, therefore, we can have
task(P;)=4, task(P,)=3, task(Ps;)=3 and task(P,)=2 as
shown in Figure 3. Furthermore, we observe that the
second BSC connects to the previous one without any
processor idle fragmentation. When the number of
tasks is numerous, such scheduling achieves higher
system utilization and less processor idle time than the
greedy method.
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Figure 3: Most Jobs First (MJF) Tasking when 5<1.

4.2 6>1 Scheduling With Processor Idle

Definition 9: Given a master slave system with n
heterogeneous processors, P iS the processor Py such

k
that max{k| Teomm
i=1

———— <1, wherel< k<n e
— T, + Tcomm

k+1

Tcomm
y_lem .,
—'T, +Tcomm

processor Py.;.

We use Pnas1 to represent

Corollary 1: Given a master slave system with 6 > 1,

max
in MJF scheduling, task(Prac1) = BSC— ) task(R) .
i=1
Corollary 2: Given a master slave system with 5 > 1,
in MJF scheduling, T.MF istheidle time of Py and
Tiz\illlé]': =BSC - Comm( Pmax+1) _comp(Pmax+l) .

Figure 4 shows another example of master slave

system with 6 > 1. According to the pre-scheduling
method described in section 4.1, we have task(P;)=20,
task(P,)=15, task(P3)=15. Since § > 1 in this
example, task(Pmax+1=Ps) = 10 as illustrated in
Corollary 1. From Figure 4, we can see that the first
sixty tasks are dispatched to P, to P, during time period
1~60inthefirst BSC. The dispatching is start at time
unit 60 in the second BSC. We note that P4 completes
its tasks and becomes free at time 100. However, the
master processor is dispatching tasks to P; during time
100 ~ 110 and sends tasks to P, start at time 110. This
results P, stays idle during time period 100 ~ 110.
This situation also happens at time 160~170, 220~230,
and so on.

Lemma 1: Given aMJF scheduling with 6 > 1, the
completion time of the j™ BSC can be calculated by the

following equation.
max+1

T(BSC))= Z comm(R) +comp(Prmax+1)+
i=1

(1 =% (COMM(Prrgy2) + COMP(Prsa) + Ttz ) (1)
Proof: Due to page limitation, we omit the proof in this
version.
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Figure 4: Most Jobs First (MJF) Tasking when ¢ >1.

5. Shortest Communication Time First (SCTF)
Scheduling

The MJF scheduling algorithm distributes tasks to
dave processor according to processors speed. Faster
processor receives tasks first. This is obvioudy an
efficient approach if the communication contention
between master and slave processors is not considered.
When communication contention is interacted, the MJF
algorithm is not optimal in terms of system throughput and
average turnaround time. In this section, we present the
Shortest Communication Time First (SCTF) algorithm.
We aso discuss the problem of task scheduling on master
dave system in two cases depending on the value of system
computation capacity (9).



5.1 §<1 Scheduling Without Processor |dle

We consider again the example in Figure 2 for
examining master-slave scheduling with ¢ < 1.
Parameters of this example are recalled, we then have
BSC = 12, task(P,)=4, task(P,)=3, task(P3)=3 and
task(P,4)=2. According to definition 6, the
communication overheads within BSC of each slave
processor are comm(P;)=4, comm(P,)=3, comm(P3)=3
and comm(P4)=2. In the SCTF implementation, tasks
are prior alocated to slave processor that with shortest
communication costs. Therefore, P, first receives 2
tasks and then P; receives 3 tasks, P, receives 3 tasks;
finally, P, receives 4 tasks in the first BSC. As shown
in Figure 5, the second BSC has the same distribution
patterns of tasks as that in the first BSC. Compare to
the example discussed in Figure 3, the completion time
of the first BSC is accelerated from 22 to 20. Similarly,
the second BSC is from 34 to 32. Consequently, the
SCTF minimizes the average turnaround time.

Lemma 2: Given a SCTF schedulingwith s <1, the
completion time of the j™ BSC can be calculated by the
following equation.
T(BSCj)= BSC + comp(P,) +
(j =1)x(comm(R,)+comp(P,) (2)
Proof: Due to page limitation, we omit the proof in this
version.
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Figure 5: Shortest Communication Time First (SCTF)
Tasking when &<1.

5.2 §>1 Scheduling With Processor Idle

We use the same example to in section 4.2 to
demonstrate the scheduling method with dispersive idle
when 6 > 1. According to definition 5, we have
task(P1)=20, task(P,)=15, task(Ps)=15. Applying the
SCTF concept illustrated in section 5.1, P4 first receives
12 tasks and then P3 receives 15 tasks, P, receives 15
tasks; finally, P, receives 20 tasks in the first BSC as
shown in Figure 6. Furthermore, we observe that P,

completes its tasks at time 60. It becomes available
and can receive more tasks for computing. However,
the master processor is sending tasks to P;. When
t=62, master processor sends tasks to P, again.
Therefore, during t=60~62, P, is idle. The same
situation happens on P; at t=72~74, P, is idle at
t=87~89 and t=102~104 P; remains idle. Compare to
the example in Figure 4, P, stays 10 units of time idlein
MJF algorithm while the idle time is reduced and
dispersed in SCTF algorithm. In SCTF, every
processor has 2 units of time idle and totally 8 units of
time idle.  Moreover, we observe that the MJF
algorithm finishes 60 tasks in 100 units of time. The
throughput is 0.6. While in SCTF, there are 62 tasks
completed during 102 time units. The throughput of
SCTF is 62/102 (=0.61) > 0.6. Consequently, the
SCTF algorithm delivers higher system throughput.
On the other hand, the average turnaround time of the
SCTF algorithm for the first two BSCs is 164/124
(=1.32) which is less than the MJF's average turnaround
time 160/120 (=1.33).

Corollary 3: Given an SCTF scheduling with 6> 1,
T.X™ is the idle time of each slave processor and

max+1
Z comm(R) —BSC.
i=1

MJF  _
Tidle -

Lemma 3: Given a SCTF schedulingwith ¢ > 1, the
completion time of the j™ BSC can be calculated by the

following equation.
max+1

T(BSC)= > comm(R) +comp(Py)+
i=1
(i =1 (comm(R,) +comp(P) +Tige" ) (3)
Proof: Due to page limitation, we omit the proof in this
version.

12 48 12 48 ]

15 45 [15 45 I

15 5 [[157 45 ]
20 | 40 [ 20 ] 40

v
62 102 164
[ Temn =0 comp.T,=AT,T,= 3] T,= Idle time = \

Figure 6: Shortest Communication Time First (SCTF)
Tasking when §>1.



5.3 Master with Computational Ability

In most grid computing environment, the master
processor is responsible to resource co-allocation and
management. An alternative approach for master-slave
computing is to include the computation power of
master processor into the computing. If doing so, the
throughput might be increased. Since there is no
communication delay for master processor itself, it will
be better on enhancing system performance to select the
fastest processor as master node.

6. Perfor mance Evaluation

To evauate the performance of the proposed
method, we have implemented the SCTF and MJF
algorithms. We compare some criteria in two
scenarios; section 6.1 studies the simulation results for
slight heterogeneous processors. The variation of
processor speed is +4; section 6.2 reports the simulation
results for larger variation of processor speed +10.
Sections 6.3 and 6.4 present the performance of two
algorithms upon different processor number and
including or not the master processor for computation.

6.1 Thevariation of processor speed is small

In this experiment, the processor number is 5.
The computation speed of slave processors are T,;=3,
T,=3, T3=4, T,=5 and T;=7 and 6<1. We
measured the average task turnaround time, BSC
completion time and number of finished tasks in BSCs.
Figure 7(a) shows the number of tasks processed in
different number of BSCs. Both algorithms have the
same result on this criterion.  Figure 7(b) presents the
completion time of each BSC in different algorithms.
The SCTF method has lower completion time. Figure
7(c) gives average turnaround time during different
number of BSC time period. The SCTF algorithm
performs better than the MJF method. These
phenomena also match the discussion in section 5.
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Figure 7: Simulation results for 5 processors with +4
speed variation when o6<1 (a) number of tasks
completion (b) BSC completion time (c) Average task
turnaround time.

Figure 8 shows the simulation results for the
following setting. The computation speed of
processors are T,=2, T,=3, T3=3, T,=4 and T;=6.
Since ¢ >1, we add the comparison of processor idle
time in this test. Figure 8(a) shows the number of
tasks processed in different number of BSCs. We can
see that the SCTF algorithm processes more tasks than
the MJF method. Figure 8(b) presents processor
idle time in different algorithms. The SCTF method
has lower processor idle time. Figure 8(c) reports
system throughput. As the example demonstrated,
SCTF achieves higher system throughput. Figure 8(d)
gives average turnaround time during different number
of BSC time period. The SCTF algorithm performs
better than the MJF method.
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Figure 8: Simulation results for 5 processors with +4
speed variation when J6>1 (a) number of tasks
completion (b) processor idle time (c) system
throughput (d) Average task turnaround time.

6.2 Thevariation of processor speed is large

In this subsection, we discussed the variation of
processor speed is large than the example of section
4.1. Test in this subsection is based £10 processor
speed variation. The computation speed of slave

processorsare T,;=3, T,=3, T,=5, T,=7and T;=13.

Figure 9 shows the simulation results for 5 processors

with 10 speed variation when 6<1. We aso
measured the average task turnaround time, BSC
completion time and number of finished tasks in BSCs.
Figure 9(a) shows the number of tasks processed in
different number of BSCs. Both algorithms have the
same result on this criterion.  Figure 9(b) presents the
completion time of each BSC by both algorithms.
The SCTF method has lower completion time. Figure
9(c) gives average turnaround time during different
number of BSC time period. The SCTF algorithm
performs better than the MJF method.  These
phenomena are similar to those obtained from Figure 7
and also match the analysis in section 5.
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Figure 9: Simulation results for 5 processors with £10
speed variation when J<1 (@ number of tasks
completion (b) BSC completion time (c) Average task
turnaround time.

Figure 10 shows the simulation results for 5
processors with +10 speed variation when 6>1.
The computation speed of processors are T,=2, T,=3,
T, =4, T, =4 and T; =11. We also calculate

processor idle time in this test. Figure 10(a) shows
the number of tasks processed in different number of



BSCs. We can see that the SCTF algorithm processes
more tasks than the MJF method. Figure 10(b)
presents processor idle time by using the two
algorithms.  Obviously, the SCTF method has |ower
processor idle time. Figure 10(c) reports that the
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SCTF algorithm achieves higher system throughput
than the MJF algorithm. Figure 10(d) gives average
turnaround time during different number of BSC time
period. The SCTF algorithm performs better than the
MJF method.
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Figure 10: Simulation results for 5 processors with £10 speed variation when ¢ >1 (a) number of tasks completion (b)
processor idle time (c) system throughput (d) Average task turnaround time.

Another simulation for evaluating average
turnaround time is made upon different number of
processors and shown in Figure 11. The computation
speed of those slave processors is set as T,=3, T,=3,
T3=5, T,=7, Ts=11, Te=13, and T,=15. For the cases
when processor number is 1, 2,..., 6, we have §<1.
When processor number increases to 7, we obtain §>1.
In either case, the SCTF algorithm conduces better
average turnaround time. From the above results, we
conclude that the SCTF algorithm outperforms MJF for
most test samples.
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number of processors
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6.3 Relationship of turn-around
processor numbers when
computational ability

In this subsection, we tested the system performance



for including the computation power of master processor
into the task processing. Three levels of master node
aretested. In Figure 12, Comp(M)=1, Comp(M)=5 and
Comp(M)=10 represent the master node processes one
task by 1, 5 and 10 units of time, respectively.
Obviously, Comp(M)=1 has the best performance than

others. Also, Comp(M)=1, Comp(M)=5 and
Comp(M)=10 outperform the SCTF method. This
result reflects the argument in section 5.3.
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Figure 12: Performance comparison when master
processor has different computation ability.

7. Conclusion

The master-slave task scheduling is atypical problemin
computational grid system. In this paper, we have
presented an efficient algorithm, SCTF for heterogeneous
processors tasking. One significant improvement of the
SCTF agorithm is that average turnaround time can be
minimized.  The second advantage of the proposed
approach is that system throughput can be increased by
dispersing processor idle time. Our preliminary anaysis
and simulation results indicate that the SCTF algorithm
outperforms Beaumont’s method in terms of lower average
turnaround time, higher average throughput, less processor
idle time and higher processors' utilization.

There are numbers of research issues remained in this
paper. Our proposed model can aso be applied to map
tasks to heterogeneous cluster systems in grid environments
in which the communication costs are various from clusters.
In the future, we intend to devote generalized tasking
mechanisms for computational grid. We will aso study
realistic applications and analyze their performance on grid
system. Besides, the issues of heterogeneous
communication overheads are aso interesting and will be
investigated.
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Abstract

Distributed processing is recognized as a practical way to achieve high performance in various computational
applications. Many dynamic load-balancing a gorithms have been proposed for parallel and discrete simulations.
But the actual performances of these algorithms have been far from ideal, especially in the heterogeneous
environment. In this paper, a hybrid approach using fuzzy supervised learning and generic algorithm is presented.
The fuzzy membership function is dynamically adjusted by the genetic coding. Moreover, the proposed
load-balancing algorithm has learning capability. The experimental results show that our proposed algorithm has

better performance comparing with other classical load balancing algorithms.
L oad-balancing, genetic algorithm, fuzzy logic, heterogeneous environment
1. Introduction

Load balancing in a distributed system is a process of sharing computational resources by transparently
distributing system workload. With the advent of high-speed communication links, it has become beneficia to
connect stand-alone computers in distributed manner through a high-speed link. The primary advantages of these
systems are high performance, availability, and extensibility at low cost. Therefore, distributed computing has
gained increasing importance in the recent as a preferred mode of computing over centralized computing. Many

researches have proposed different kinds of approaches for the load balancing problem [10, 11, 15, 16].

A load balancing system is composed of three design issues: the information gathering policy, the negotiation
policy and the migration policy [1]. Traditional strategies of the load balancing systems usually take advantage of
some fix values to distinguish workload (e.g. over-loaded or under-loaded). Many load-balancing approaches
based on this conjecture have been introduced in the past [1, 10, 11, 12, 15, 16, 17]. In conventiona load
balancing systems, resource indexes are necessary to be the input training data, and the output (threshold of
workload) can be decided impersonally. But the output values are fixed; it cannot indicate the degree of the
workload. Moreover, there exists a sharp distinction between members and non-members; the tasks reallocation
action will be made frequently around the threshold. This will result in an unstable system and cause unnecessary
overhead. Moreover, the workload estimation of each host is very difficult and time-consuming. To solve this

problem, [16] proposed a fuzzy logical theory to estimate the load status of each node and apply fuzzy

1



information rule to determine the number of tasks shall be migrated on a heavily load node.

The fuzzy logic offers a framework for representing imprecise, uncertain knowledge. Similar to the way, in which
human beings make their decisions, fuzzy systems use a mode of approximate reasoning, which allows it to deal
with vague and incomplete information. However, fuzzy systems have the problem of determining its parameters.
Ones of the most important parameters of fuzzy system are the Membership Functions (MF). The fuzzy inference
engine in conjunction with the control rules to determine an appropriate output response then uses the value
ranges. In most fuzzy systems, the shape of MF of the antecedent, the consequent and fuzzy rules were
determined and tuned through trial and error by human operators. Therefore it takes much iteration to determine
and tune them. There are simple methods to turn MF such as Neural Networks [2], genetic algorithms (GA) were

used asin[14], and the GA has give faster learning response than the neural networks.

Therefore, we purposed a genetic algorithm approach to construct a fuzzy logic control distributed system. This
fuzzy logic artificial intelligence setting adjusts controller parameters or membership functions by genetic
agorithm, it will not only have the power to improve the efficiency of multitask migration but also have fuzzy
parameter learning capability. The fuzzy membership function can be adjustable according to the change of

system environment immediately.

The organization of this paper is as follows. Section 2 describes the related work including the load balancing
approaches. We then discuss several famous load balancing algorithms and the fuzzy enhanced symmetric
algorithm [17] in section 3. We then present the proposed scheme with genetic algorithm embedded fuzzy
enhance symmetric algorithm in section 4. Section 5 states the implementation issue as well as the experimental

results. The conclusion and future work are provided in the last section.

2. Related Work

Load balancing can be performed either statically or dynamically. Previous researches on static and dynamic load
balancing can be found in [4, 7, 13], respectively. In static load balancing, the tasks are assigned to nodes by
analyzing their past behaviors or only using some conventional rules, which are independent of the actual current
system state. The principal advantage of static policies is their simplicity. There is no need to maintain and
process the information about the system state. The results of the previous studies suggest that dynamic policies
have greater potential for performance improvement than static policies. There was approach using fuzzy logic
control to enhance the dynamic load-balancing algorithm had been published [17]. But the fuzzy membership
function was defined by benchmark program offline. After the system running a long period of time, the system
status may change a lot. Therefore, the fuzzy membership function of cannot reflect the real situation of the

environment.

The workload collection is one of the most important issues in dynamic load balancing approach. The

information collection policy denotes not only the amount of workload about the systems but also the information

gathering rules used in making the tasks reallocation decision. The goal of this policy is to obtain sufficient
2



information in order to make a decision weather the host’s load is heavy or not. We say that a good information
gathering policy [6] should be able to predict the workload in the near future, relatively stable and have a simple
(ideally linear) relationship with the resource indexes. But it is difficult in real world, especialy in heterogeneous

systems.

Many traditional load-balancing schemes used a threshold value as the information policy after load indices
generated. If the load index is above (under) the threshold, the host is said to be over-loaded (under-loaded), we
can find out that the load status is classified into only two states, heavily or lightly. This binary-state makes the
system load state fluctuate between heavily or lightly load wildly when the workload is near the threshold value.
It will cause the task realocation frequently because of little load change. Some researchers added a tolerance
range around the threshold value [15, 16].

3. The Dynamic L oad Balancing System

The distributed systems can be characterized by distribution of both physical and logical features. The
architecture of a distributed system is usually modular and consists of a possibly varying number of processing
elements. An arbitrary number of system and user processes may be executed in the system. A process can
usually be executed on various machines. There are a number of factors to be considered when selecting a
machine for process execution. These factors may include resource availability and utilization of various

resources. A dynamic load balancing policy can employ either centralized or distributed control.

3.1 Centralize Load Balancing M odel

In thismodel [3], a processor was appointed to be the centre controller, which collects and updates the
information about the state of every other processor in the system. When a node decides that atask is eligible for
load balancing, it sends a request to the specified processor to determine the suitable placement of the task. The
advantage of this architecture was task reallocation action could be done accurately. But in this scheme has a
potential risk, if the centre controller crashed, the system cannot work anymore, and in alarge system this

information traffic can’t ensure deliver the host processor when the network is busy.

3.2 Distributed L oad Balancing M odel

In distributed model, every host has a local monitor associated. Each monitor collects and updates the
information about the state of the local host. The primary advantages of this model are high performance,
availability, and extensibility at low cost. Conventional agorithms of this model include Random,
Sender-Initiated [5], Receiver-Initiated [5] and Symmetric Algorithm [1,17].

3.2.1 Random Algorithm

Among the agorithms, the Random Algorithm is the simplest one [1]. In this algorithm, each node checks the

local workload during a fixed time period. When a node becomes over loaded after a time period, it sends the
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newly arrived job to a node randomly no matter the load of target node is heavily or not. Only the local
information is used to make the decision. The Random Algorithm has the lowest overhead because of its
simplicity and without negotiation with other hosts. However, it can’t reallocate the system load balancing very
well.

3.2.2 Sender Algorithm

The Sender algorithm is based on the Sender policy [5]. When a node becomes over-loaded after a period of time,
it selects the target node randomly and looking for its load status which is under-loaded or not. If it is
under-loaded, an ACCEPT message is feedback to original host, otherwise it replies a REJECT message. If the
reguesting node is still over-loaded when the ACCEPT reply arrives, the newly arrived task is transferred to the
probed node; otherwise the task keeps executing locally. This mechanism seals to push a task from the requesting

node to the probed node after a period of time checking.

3.2.3 Receiver Algorithm

The Receiver Algorithm is designed according to the Receiver policy [5]. Once if a host becomes under-loaded,
the node will poll the information form any other node to check if it is over-loaded. When an overloaded nodes
was found, an ACCEPT message is feedback, otherwise it replies a REJECT message. The migration of a task
from the probed node is still under-loaded.

3.2.4 Symmetric Algorithm

In comparison with the Sender Algorithm and the Receiver Algorithm, the symmetric algorithm shows two-side
effects: when a node becomes over-loaded, Sender agorithm enabled; when it is under-loaded, the Receiver
algorithm is active. This agorithm is combination version of the Sender and Receiver agorithm [1]. In other
words, this model is adjusted based on the current load-level of the node by alowing the algorithm to switch
automatically between Sender and Receiver algorithm. When the load status is over-loaded, it plays the role of
the Sender algorithm; in contrast, it plays the role of Receiver algorithm.

3.2.5 Fuzzy Enhanced Symmetric Algorithm

Most conventional information gathering policies use load indices with a threshold value to determine the load
status of host. The major problem is how to define an appropriate threshold value. The fuzzy theory can improve
the information policy would be more objective and flexibility [16] to be the migration policy has improved this
shortcoming. Some researchers use fuzzy logic control to solve this problem [17]. In [17], the experimental

results show that used the fuzzy inference rules to obtain the migrated task numbers.

Thetypical architecture of a Fuzzy Logic Control (FLC) is composed of four principal components. a Fuzzfier, a
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Fuzzy Rule Base, an Inference Engine, and a Defuzzier. The workload is determined by using FLC in [17].
According to the host’s status is over-loaded or under-loaded, negotiation policy would initiate to find the
suitable host to make the task migration. If the target node was being found, the migration policy will take
advantage of defuzzification to calculate to number of tasks to be migrated.

But this method still not good enough to build a good dynamic load-balancing environment, because of the
parameters of FLC be inaccurate and cannot make the best decision of the migrated number of tasks. In order to
overcome this shortage, therefore, we proposed a new scheme that embedded online genetic algorithm to tune the
fuzzy membership function dynamically. It can adjust the membership function in terms of the feedback values

dynamically and react the overall systems status immediately.

4. Genetic based fuzzy logic control system

The genetic agorithm (GA) is an optimization search algorithm. GA is known to be particularly suitable for
learning in complex domains and hence can be used for structure and parameter adaptation in fuzzy system, but it
takes a considerably long time to converge to a suitable solutions. The basic concepts of GA were developed by
Holland [8, 9], and have subsequently been extended in several research studies. Typically the GA starts with
little or no knowledge of the correct solution and depends entirely on responses from an interacting environment

and its evolution operatorsto arrive at good solutions.

The GA processes imitate natural evolution, and hence include bio-mimetic operation such as reproduction,
crossover, and mutation. A conventional GA has four features. population size, reproduction, crossover, and
mutation. GA’s maintain a set of candidate solution called a population. Candidate solutions are usually
represented as strings of fixed length, called chromosomes, coded with binary character set. The first step of GA
is to generate an initial population by random in cycles called generations. The chromosome is represents by a
binary string matrix depending upon the system condition. By applying the operators such as selection, crossover

and mutation, the chromosome with the highest fitness is chosen to determine the population chromosome

In the paper, the genetic algorithm was designed to adjust the value of membership function of Fuzzy System. An
increase in the number of input variables causes an exponential growth in the number of rules generated. We
devise an online genetic agorithm (OGA for short) adaptive mechanism for updating of the associated

parameters of fuzzy membership function dynamically.

4.1 Online Genetic Algorithm

In OGA processes such as crossover, reproduction and mutation will proceed in the usual manner. The following
genetic operation operations are applied to each string:

(1) Coding: The coding of fuzzy membership functions in a chromosome is shown in Figure 1. A triangular
membership function is used in the fuzzy set, a and b are representing the center and width of the membership

function, respectively. The type of coding used in this research is the concatenated binary string by the position
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of membership function center and width.

1-7 bits 1-6 bits 1-7 bits 1-6 bits

Figure 1: Coding of afuzzy membership function

(2) Population size: The choice of an appropriate population size is a fundamenta decision to be taken in all GA
implementations. If the population sizing is too small the GA will usually converge too quickly, and too large a
population will take a very long time to evaluate. In the study, population sizes are set to 50 and each

chromosome is 26 hits.

(3) Reproduction: Reproduction is the process through selecting two parent genes from the current population. Selection is based

probabilistically on a gene' s fitness value; the higher the fitness of a gene, the more likely it can reproduce.

(4) Crossover: Crossover operates on two solution strings and results in another two strings. Typical crossover
operator exchanges the segments of selected strings across a crossover point with probability. There are two steps
produces two offspring by crossover operator. At first, two strings from the reproduced population are mated at
random, and a crossover siteisrandomly selected. Then the strings are crossed and separated at the site. We used

two point crossover-site for each parent strings with crossover probability Pc.

11010011110000:010111010101
01100000111100:10116G1011110

I

11100011110000101101010101

Qffspring

01010000111100010111011110

Parents

Figure 2: Crossover operation

(5) Mutation: The mutation operator prevents irreversible loss of certain patterns by introducing small random

changes into chromosomes. Change each bit value with the probability Pm.



11010011110000010111010101

11010001110005010111010101

Figure 3: Mutation operation

(6) Fitness Function: The genetic algorithm is able to optimize the characteristics explicit in the fitness function.

Here the fitness function using following formula:

F= 1

oxRT 2+ f+TT /2

where0<=q, <=1,
RT : the response time,
TT : the turnaround time.

The process of Online Genetic Algorithm for fuzzy control is presented in figure 4.

Step 1 : Establish a base population of

Iy

Step 2 : Create new chromosomes by

The fitnessfunction
Continue yntil the

Step 3 : Evaluate the new chromosomes

Iy

Step 4 : Evaluate the fitness function value

L

Figure 4: Online Genetic agorithm for fuzzy control

4.2 Structure of Genetic Based Fuzzy L ogic Control Systems

There are four components in our proposed genetic based fuzzy logic control load balancing system: information

module, negotiation module, migration module, and online genetic algorithm module. The information module

defines the workload status of every host. Then the negotiation module will probe the target host to request the

task reallocation action. The migration module will make the decision of the migrated number of tasks and move
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the tasks to the target host. Finally, the online genetic algorithm will adjust the center value of fuzzy membership
function, if the workload was still heavy (or light). Moreover, the online genetic algorithm will evaluate the
current fuzzy rules to meet the load index or not. The architecture of genetic based fuzzy logic control model is

shown in figure 5.

———| Local load index

Aamiiant i If Inad i< dtill haavas then 1iea

Figure 5: The architecture of our proposed load balancing algorithm

5. Implementation and experimental results

In order to verify the performance of our proposed scheme we implement our algorithm in a distributed
environment, called Java Load Balancing System [18], which isimplemented by using Java language. The
system supports heterogeneous, static |oad balancing and dynamic load balancing. We aso implemented three
other algorithms (random, receiver initial, and symmetric) for comparsion. In order to verify that our proposed
online genetic based fuzzy logic control load balancing algorithm will accomplish a high system performance.
Six workstations running different operation systems. The operation systems including the Unix, Win NT and
Win 98.

5.1 Online Genetic Algorithm Parameter

The genetic operation should be used in a way that achieves high-fitness individuals in the population rapidly
without leading to atotal convergence. In the paper, we used partial-random method to achieve high-fitness for a
short-time interval. In our experiment, the size of population is set to 50, the total generations is 1000, the

probability of crossover =0.8, the probability of mutation is 0.02.

5.2 Experimental results

In the experiment, the task number is adjustable parameters. In the static load balancing part, we used Random
dispatch model. Four different algorithms were implemented, including random, receiver initial, symmetric, and
our proposed algorithm. We have not implemented the sender-initial algorithm, since its performance usually
worse than receiver-initial policy. In the experiment,we compare the performance of average response time,

average turnaround time and overall throughput.



521 Response Time

The response time denotes the time from the submission of atask until the first response is produced. In figure 6,
we can see that our algorithm can cut down the average average response time at least 50% when the tasks

number is 70.

Average Response Time

100 b———— 1 ——Random
——Recelver

Symmetic
= GA-Fuzzy

Response Time
o
(=)

L1000 030 0 s & T
Tas€ numbers ’

Figure 6 : Response time

5.2.2 Turnaround time

The second index can estimate the efficient of overall system is the turnaround time. The turnaround time is the
interval from the time of atask submission to the time of completion. Figure 7 is the average turnaround time of

four algorithms. In the figure, we can find out our algorithm has the smallest turnaround time.

5.2.3 Throughput

The overal throughput under different load balancing schemes is also discussed in our experiment. The
definition of throughput is the number of processes that are completed per time unit. In figure 8, we also can find

that our proposed algorithm always keeps higher throughput when the tasks number isincreased.

Average Turnaround Time
300

250

——&— Random
~—— Receiver ||

symmetic |4
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Nurnber Tasks

Figure 7: Turnaround time



Throughput
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Figure 8: Throughput

6.Conclusion

In this paper, we design and implement an intelligent dynamic load balancing algorithm based on online genetic
based fuzzy logic control. In our research, the proposed algorithm can correctly evaluate the workload of each
machine in the system and make a decision of the migrate task extactly. In the scheme, OGA can dynamically

adjust the fuzzy membership function based on the feedback information.

The experimental results show that our proposed load balancing can indeed significantly reduce the response

time and turnaround time as well asincreasing overall throughput.
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