(1

NSC93-2213-E-216-037-
93 08 01 94 07 31

94 10 31

FRERTPELR G LT g,

L BT e e g (1)

S TUE EUEEE BN R
& %L 0 NSC 93—2213 —E —216—037

HNEHEF D 93£871p 29472 31 p

LA IR
il piElx
PE LB AR R ED B s F 2

(&
%é# @@JnxﬁP.
Di@ﬂm£*P? HARE -
¥ LAY Bt -
s 73R 4 ’?%7’*?%*1}\

X
Rz e TR 2R LR 3 -

+Pv i ERECORN [

mER R

IR N LARERF YR CRAAERINEAARTFELE
PR EE TR W2 o B B3
[z Eqlad e pEMAaE |- 2] #7 2F 433

R FT R & A Ege R v (1D

RIS S R
2 3 = >
‘«%‘@é“\ B34k

&

:Ebé‘» BrARamit GEE- BIERELO A RE 2Rt YRR AR O
AR AR A o A P R - BARE RPN o AR DA & P0G R
BB - B 2P g H Ao s i FRE S RenT 7 kA Rt E R
Feng - E¢ o AP REFE A LB R UFE F RS RR T T g
ZoER-BREAEPTHIRNAFNTEAL AR 2 REHREF N T2 ER
PR A AR FOH - EoAPRE L Pd T A R EORGE S T
HR R E D= A1 F ik £ (Compact Set)B i I+ HET (T i E 2 0 kA
BrERBRG EFCHER B > &2 o B2 242 (A Fast Technique for
Constructing Evolutionary Tree with the Application of Compact Sets) &+ PaCT 2005 & "2 #= 3
€ ¢ 4 > I PF gk Lecture Notes in Computer Science, Vol. 3606, pp. 346-354,
Springer-Verlag (SCI Expanded) ® -

Maks - it A 2R T BRI AT ”f‘/%‘:% & EET

’

Abstract:

Bioinformatics has becoming one of the major research topics in the 21st century. The
constitution of computer technology and molecular biology technology is evidently essentially in
the future. The problem of constructing evolutionary tree from distance matrix is an important
issue in Bioinformatics. In the first year of this project, we have proposed an effective parallel
algorithm for constructing an optimal ultrametric tree from a given distance matrix by using
Branch-and-Bound technique. In the second year of the project, we have proposed a heuristic
algorithm to shorten the revolutionary tree’s construction time. Also, we have developed an
efficient algorithm for near-optimal ultrametric tree’s construction by applying the compact set
technique.

Keyword : Evolutionary tree - Branch and Bound - Ultrametric Tree ~ Compact set ~ PC Cluster

=2
— AT

)

T % > DNA B ZInT R 814 5 4 3 8 gt feeiie s Tt 2 4 F AP A seai @ RS
B LG - HaRfE, - B o Ve B PR R o B R BRI
M %% - BEEgrserd (Distance Matrices) #1238 kiE = & if o (Optimal) & i £+
(Phylogenetic Trees) » {74t A e it Ap AR R 4ol > &2 3B 57 §- By £ 8 o
FAL I 1 A B 4 fE(objects) TR F ehd Bk 2 REE > A A FEP R
2 BRI > ME 2 B AP 2w VA B e ApBi R ¢ ([3][8] 0 [9] [10]) >

B A 2 R B RRRE AR ORFRIUELFERR S

i# * o Ultrametric Tree 7~ §_d JEIRAETL 92) ke v A - %5 194+ (Rooted Tree) »
#E (Leaf) % 7 % - B4 p 388 2 (Internal Node) % A H T 6 F ek P\—”ZEJL
(Ancestor) » & * X & B4 g it F4pE o 4opt 3t Ultrametric Tree i i K T
%éiﬂﬁﬁﬁﬁ pRREEE D Herfhan leaf JEAE L BEE o ki 0 - B AT R
et iE = g e Ultrametric Tree (Minimum Size Ultrametric Tree » MUT) © 4z p £ NP
efE JE[1] o Tt 0 3F S Ty K{ﬁ | * approximation algorithms # heuristic algorithms 2
aﬁwﬁ,aﬁNwT&n&{,—Q&i a[5]® & M- BIFEE kBRI A

AR P E R 1L B oA A[14]0 RIS ATE R 2 0 AR ERIN 0 11 E
%] > EBESAER A B ar R T s g B P12 3 20 BAAAE o

E ﬂ},m{’é * T % g2 % ; (Branch and Bound)
< pF o> H - &gz ® (7 Sequential Processing) & it f iF
SR AP PE - BB ER N RER
hE B o TR F lzﬁ?m;}i4+h‘m?;’i§$’é_ﬁ—
B SR B L F R - B B2 A AT Fehe[l41 00 - B A LR wFE i ket
ﬁMmWﬂ{ﬁ“ﬁﬁx”F{ﬁg CHBEE KA & @ﬂm%@m@l*ﬁﬁgﬁ
BT T U E g AP € ALK SAH KA A R R B o ¥ - et
FRE AP R PRSI F s kBl TUFE 2 AR PRI FL
B R ESFEEEY o A7 R S Bk PR P AR cnig i Ao 32 (branch) ends i
B ? B g R TG E AR & 2 (bound) HiE PRI 3R $ 0FE RS feends (T m ;!;‘ 3+
S P { 45 < upper bound EPFIY € Kt B BVELH B irg 3 E SR H vy 3t
?1—&«’1 3| #7en upper bound B i ¥ oo R Q}f,‘_(x,értﬁ.)i eniEiE R R AN B R T A

Fit hsenfal & ¢ 0 H - Rl Bk i’~?uﬁﬁﬁ%mz3 UE R N SRR
BT A Jf,’:ﬁ:r TR E B2 o g B (speedup) o - B3 T i ¢ iE T

Pﬁwﬁéﬁﬁ“ﬁ%@wﬁrﬁﬁ,
= 3%[14,15,16] > § T 0 AL

s
B3P ER s e f ALHFRE

g

)

~

5

Yo
f":’

E‘%’L‘”

super linear erig B o fpt T f—‘r Ly EiEe o A pE# * 7 global pool % local pool #a
- a5 ;k:L }rmvbﬁﬁ: EHEA 23 B E iR 4 o b AT ¢ AR master
/ slave % # k22 #l = fv ﬁx JEEEF ATk EE TR E AR FH RS master 3

e

T

wm

Flpt o AP ENFOE - £ 9L & P n E4H MUT T 71 i > 3 B
T {710 MUT 24 ainst 2 g 0 5 228 4o i B 2 a2 MUT chde 48 1 3%
Boo &P IRAT 0B ROV AR Y S o

e
S

A

14

pun
(5

17 3

g P h
A E LR SRR EL R - B oo T G R R od R iR 1 e
T s b EY o AP %%*W'ﬁﬁTﬁﬁuAiﬁﬁamlﬁﬂﬁﬁmi?
Hede 0 1 HfenT ai% B FR-BRELFFTRIPFL LB L ER
EH R F R DY R EF TR G ROFE 2 Y FRFE - R orF T 7
éﬁﬁ@l,ﬁ%’uﬁ%i%ﬁimﬁmﬁbﬁﬁ“ﬁﬁﬁﬁﬁ@?’&@%Wﬁwi
15k AEE Web 15 o RIRBEIF LB DL RF it o

=N S

[(17T] 23 %% - FhREFI %2 - > B[I7]A PR T Fb s LB R U Y F k&
Minimum Size Ultrametric Tree s/ & 2 » & iF 52 > ¢ AP & E 1% 3 3 H A7 2 i
R 3t E MR E L S B AR AR 2 LA R E 2 HARHE F A B leaf
s binary tree > Branch-and-Bound Tree) » £ #-fl4pcnfef&- - & > ¢ F > ¥ * UPGMM
in@MAﬁﬁﬁﬁan%ﬁﬁﬁ%?ﬁ%ﬁ@nﬁﬁﬁwﬁéim&wB(UMMBWM)
<3 UB (UpperBound) P& » &7 fém A4 it 25 1t UBRZ A 2 # &8 £)
Mo BV ERH R o PR B b B MUT -

4 T f;é@w & (TIE L AR o H RSk (Efficiency) shE & Rl R 7 L f i+ F = (Load
Balance e F ¢ B H HE A f 232 PIERFRIFF P EFTRNF R B Y A2 ¥ ~ o
@ F1 A,\A_g:aik {,ﬁﬁ/ztaf’rﬁ##—ﬁ?‘g\ﬁ']i%J >4 & (Branch) &2 % z_(Bound) 17 /%
R AT oM T TN Y > A E BB AR A4 S 8B 7 7§12 (Feasible solution)
ch3 B 3L (Subproblem) > @ A L - BABBT FIEA LI BTE AL E A o 7
P L chds (T R T TR AE e Tl > AP A g hig (s Y # % 7 global pool %
local pool i — 8§ 4 F firefs 4] » R ¥ BEBER TN HE oA APk aw,r:fi&c‘)
Fuip % ehE master / slave chEE 0 T E FORE AR FH RS master kdpikoo kg ks
FRE B oy o

IS L

A~

AR LA R RO RAESER P Z 4D MUT » 7 e i g i e 3 7 oe g 0 B z’a
tg 4% B ultrametric tree chd FEft B2 B %k che s A E R e A/ 73 R oEflx 2 %
CERGFYPSAPEPE T RS D ERTEFT A A EFE IS F P
217 hR%EFIH €%/ 2 (- A = SCI Extended ¥ — K % IEEE &3t ¢) -
B Bp pﬁg % % (NCS 2005) » & 2 7n ¢ #-9r (8 2 & % B I8 & 8 3] % < 35 50
(Title : Efficient Parallel Branch-and-Bound Algorithm for Constructing
Minimum Ultrametric Tress from Distance Matrices)4k #§ 2 |IEEE TPDS special issue
on High Performance Biology » ~ & B enzt Z H (7= S v R I Ap§ 4 -

54

[1] W.H.E Day, Computational complexity of inferring phylogenies from dissimilarity matrices,
Bulletin of Mathematical Biology,Vol.49, No.4, pp. 461-467, 1987.

[2] M. Farach, S. Kannan and T. Warnow, A Robust Model for Finding Optimal Evolutionary
Trees, Algorithmica, 13 (1995), pp. 155-179.

[3] J.S. Farris, Estimating phylogenetic trees from distance matrices, Am. Nat. ,106, pp.645-668

[4] J. Felsenstein, Evolutionary trees from DNA sequences: a maximum likelihood approach.
ournal of Molecular Evolution, 17:368-376, 1981.

[5] M.D. Hendy and D. Penny,Branch and bound algorithms to determine minimal evolutionary
trees, Mathematical Biosciences, 59:277-290, 1982

[6] Chia-Mao Huang and Chang-Biau Yang. Approximation Algorithms for Constructing
Evolutionary Trees. In Proc. of National Computer Symposium, Workshop on Algorithm and
Computation Theory, pages A099-A109, Taipei, Taiwan, Dec. 20-21, 2001.

[7] P. Kearney, R.B. Hayward, R. B. and H. Meijer, Inferring Evolutionary Trees from Ordinal
Data, Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA97), 1997, pp.
418-426.

[8] N. Saitou and M. Nei, The neighbor —joining method: A new method for reconstructing
phylogenetic trees, Molecular Biology and Evolution, 4 (1987), pp.406 — 425

[9] P.H.A. Sneath and R.R. Sokal, Numerical Taxonomy, (Freeman, San Francisco, CA), 1973, pp
230-234.

[10] R. Sokal and P. Sneath, Numerical Taxonomy, San Francisco: Freeman, 359.,1963

[11] M. Steel, The Complexity of Reconstructing Trees from Qualitative Characters and Subtrees,
Journal of Classification, 9 (1992), pp. 91-116.

[12] L. Wang and T. Jiang, On the Complexity of Multiple Sequence Alignment, Journal of
Computational Biology, 1 (1994), pp. 337-348.

[13] M. S. Waterman, T. F. Smith, M. Singh, and W. A. Beyer. “Additive evolutionary trees.”
Journal of Theoretical Biology, 64:199-213, 1977.

[14] Wu, B.Y., Chao, K.M., and Tang, C.Y. (1999), “Approximation and exact algorithms for
constructing minimum ultrametric trees from distance matrices”, Journal of Combinatorial
Optimization, vol. 3, pp. 199-211.

[15] B.Y. Wu, G. Lancia, V. Bafna, K.M. Chao, R. Ravi and C.Y. Tang, A polynomial time
approximation scheme for minimum routing cost spanning trees”, SIAM J. Computing, 29
(1999), pp. 761-778.

[16] B.Y. Wu and C.Y. Tang, An O(n) algorithm for finding an optimal position with relative
distances in an evolutionary tree, Information Processing Letters, 63 (1997), pp. 263-269.
[17] Jia-Yi Zhou, Kun-Ming Yu, Chun-Yuan Lin, and Chuan Yi Tang, “Efficient Parallel Algorithm for
Constructing Evolutionary Trees of Human Mitochondrial DNA from Distance Matrices,”
The 2004 International Conference of Bioinformatics (InCoB 2004), pp. 35 (Sep. 3-6, 2004,

Auckland, New Zealand). (NSC92-2213-E-216-011)

[18]Fi ¢ ~# P, “- BEFARFEEE L PTFRA2 30w E%8," 200
B 2 E e e R B3 ¢ (2004 Symposium on Digital Life and Internet
Technologies), pp. 5, 2004. (NSC92-2213-E-216-011)

i o EH

R

1. “A Fast Technique for Constructing Evolutionary Tree with the Application of Compact Sets,”
PaCT 2005- Lecture Notes in Computer Science, Vol. 3606, pp. 346-354, Springer-Verlag,
Sep. 2005. (PaCT'05), (SCI Expanded), (NSC-93-2213-E-216-037)

2. “Parallel Branch-and-Bound Algorithm for Constructing Evolutionary Trees from Distance
Matrix,” The 8th International Conference and Exhibition on High-Performance Computing
in Asia-Pacific Region (HPCAsia2005),Accepted, (NSC-93-2213-E-216-037).

3. Chun-1 Chen, Chang Wu Yu, Ching-Hsien Hsu, Kun-Ming Yu, and C.-K. Liang, “Irregular
Redistribution Scheduling by Partitioning Messages,” Computer Systems Architecture -
Lecture Notes in Computer Science, Vol. 3740, pp. 295-309, Springer-Verlag, Oct. 2005.
(ACSAC’05) (Oct. 24-26, 2005, Singapore). (SCI Expanded)

SIEEEE R

1. X P % Tg.—‘? N g{ﬁ W it SR R B %é;ay_ N ﬂ;’@;gf . % W R Rt -
% oci W AT FRERE” 4 e £ >R B8 ¢ 3k, NCS2005, Accepted,
(NSC-93-2213-E-216-037).

W L IR RE S R TR

A Fast Technique for Constructing Evolutionary Tree
with the Application of Compact Sets™

Kun-Ming Yul’**, Yu-Wei Changl, YaoHua Yangz, Jiayi Zhou', Chun-Yuan Lin”,
and Chuan Yi Tang’

! Department of Computer Science and Information Engineering, Chung Hua University
2 Department of Information Management, Chung Hua University
3 Institute of Molecular and Cellular Biology, National Tsing Hua University
4 Department of Computer Science, National Tsing Hua University
Hsinchu, Taiwan 300, R.O.C.
yu@chu.edu. tw

Abstract. Constructing an evolutionary tree has many techniques, and usually
biologists use distance matrix on this activity. The evolutionary tree can assist
in taxonomy for biologists to analyze the phylogeny. In this paper, we specifi-
cally employ the compact sets to convert the original matrix into several small
matrices for constructing evolutionary tree in parallel. By the properties of
compact sets, we do not spend much time and do keep the correct relations
among species. Besides, we adopt both Human Mitochondrial DNAs and ran-
domly generated matrix as input data in the experiments. In comparison with
conventional technique, the experimental results show that utilizing compact
sets can definitely construct the evolutionary tree in a reasonable time.
Keywords: computational biology, evolutionary tree, compact sets, branch-and-
bound.

1 Introduction’

An evolutionary tree is a model of evolutional histories for a set of species. It is an
important and fundamental model in bioinformatical field to observe livening species.
A meaning evolutionary tree enhances biologists to evaluate the relationship of a set
of species in taxonomy. Hence, many methods have been proposed to construct the
evolutionary tree.

The majority of these methods are all based on two models, i.e., the sequences and
a distance matrix. In the sequences model, they do multiple sequence alignment
(MSA) for a set of species with corresponding DNA sequence first. Then an evolu-
tionary tree is constructed according to the MSA result. However, the MSA problem
is NP-hard. In a distance matrix model, they determine the distance as the edit dis-
tance for any two of species first. Then these distances are formed as a distance ma-
trix. Finally, an evolutionary tree is constructed according to a distance matrix. Unfor-

This work was supported in part by the NSC of ROC, under grant NSC93-2213-E-216-037.
= Corresponding author.
1 Post doctor fellowship is supported by NSC under contract NSC92-3112-B-007-002 and
NSC93-3112-B-007-008.

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 346 —354, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Fast Technique for Constructing Evolutionary Tree 347

tunately, it is also an NP-hard problem to construct a minimum cost evolutionary tree
from a distance matrix.

A category of evolutionary tree called ultrametric tree (UT) assumes that the rate of
evolution is constant. An UT is a rooted and edge weighted binary tree in which every
internal node has the same path length to all the leaves in its sub tree. The minimum
UT for a distance matrix is an UT that the distance between any pair of leaves on the
tree is no less than the given distance and the total weight on the tree edges is mini-
mized.

In the distance matrix, shown in figure 1, each value represents the distance be-
tween two species. The distance matrix D is symmetric, i.e. for all 0 < i < n, D[i,i] =
0. Also, the matrix D follows the triangle inequality, i.e. for all 1< i, j, k < n, D[i,j]
+ D[j,k] 2 D[i.k].

Vi V2 V3 Va4 Vs Vs
Vi 3 1 12 6 13
V2 0o 7 9 5 16
V3 0 11 4 15
Vo4 0 14 2
Vs 0 8
V6 0

Fig. 1. An example of distance matrix

Some studies on constructing optimal evolutionary tree have been proven to be an
NP-hard problem [3, 4, 6, 8, 9, 15]. The scientists could use the branch-and-bound
technique to construct optimal evolutionary tree in a reasonable time [12] when the
number of species is small. Although the branch-and-bound algorithm would detect
an optimal solution, such capacities cannot effectively support the optimal evolution-
ary tree construction when the number of species exceeds 26.

In this paper, we specifically utilize the compact sets to convert the distance matrix
into several small matrices for constructing an UT in parallel. We can not only obtain
nearly optimal evolutionary tree but also keep the precise relations among species
through compact sets by the property - the least common ancestor [14]. Of such an
advantage, our work might contribute to the findings on the phylogeny.

The rest of the paper is organized as follows: section 2 proposes some preliminar-
ies. Section 3 describes the methods for constructing the ultrametric tree in detail. The
experimental results are presented in section 4. Finally, the conclusion is placed in
section 5.

2 Preliminaries

An ultrametric tree is a rooted, leaf labeled binary tree, and each edge associates with
a distance cost. The length from root to any leaf is equal. We can construct an UT
through a distance matrix D representing a complete, weighted and undirected graph
G. The graph G = (V, E) includes vertices V and edges E. We give some definitions
below:

348 K.-M. Yu et al.

Definition 1. Assume that P is a given topology and i, j€ L(P). LCA(i,j) represents
the lowest common ancestor of i and j. Assume a and b are two vertices in P, we de-
note a — b if and only if a is an ancestor of b.

Definition 2. Assume P is a tree topology. R(P) is a relation - {(i,j,k}la,b,c€ L(P),
LCA(i,k)=LCA(j,k) — LCA(i,))}.

The compact set has been extensively studied [5] but have not been applied to the
evolutionary tree construction problem. We will list some properties of compact sets
below:

Lemma 1: Assume compact sets ('exist in a tree T including elements i, j and k. The
compact sets must satisfy a relation — least common ancestor. If and only if the rela-
tions ((i, j), k) and LCA(i, j) < LCA(i, k) = LCA(j, k) exist, then there is an adjacency
relation in T like figure 2.

Lemma 2: Let C be a subset of vertices V. If C is compact, then the maximum edge
in C should be smaller than any edges between an element in C and that in V but not
in C.

Lemma 3: Let A and B be two different compact sets of V;. If A and B have intersec-
tion, then either A C B or BC A[5].

Lemma 4: If sub graph g is compact set, then the sub tree in g also belongs to the

TO B

Fig. 2. An example of least common ancestor

minimum spanning tree T .

3 Proposed Solutions

To construct nearly optimal UT for mass spices in reasonable time, we utilize the idea
of compact set in our work. Firstly, we will find the compact sets from distance ma-
trix D and explore them to create several small distance matrices D’. Then we input
the smaller distance matrices D’ to parallel branch-and-bound algorithm. Finally we
can obtain sub trees 7° and merge them into an ultrametric tree 7. We describe the de-
tails in the subsection.

3.1 Compact Sets

As above, we explore compact sets to separate the distance matrix D into several
small distance matrices D’. If the elements in a subset S of X are closer than those out-
side S but in X, then § is a compact set. Also we could continuously find compact sets
in S until exploring all sub sets. In this work we can find all the compact sets to clas-
sify the organisms by collecting the more relative species on the graph[17]. The found

A Fast Technique for Constructing Evolutionary Tree 349

found groups will keep the correct relations and could conduce to analyze the phylog-
eny. Thus we utilize compact sets to construct a more precise ultrametric tree.

Initially we must find the minimum cost spanning tree to converge the closest
groups and can probe the elements inside each group to discover all the compact sets.
Take the figure 3 for example; if using the Kruskal’s algorithm, we can locate a

minimum spanning tree T like figure 4, and the compact sets are
{(1,3),(4,6),(1,2,3,5)}. We will continue using the algorithm below to verify the sub-

setsin T to discover all the compact sets.

Fig. 3. The complete, weighted, undirected graph Fig. 4. The minimum spanning tree

Algorithm Compact Sets
Input: A graph G = (V, E) with the vertex set V ={V,,

V,, ., V} and edge set E. Each edge has a weight.
Output: All of the compact sets on the graph G.

Step 1. Find the minimum spanning tree T on the graph
G.) //here we use Kruskal’s algorithm.

Step 2. Sort the edges in T in ascending order, which is

marked as (e,, e,, .., e,,).
Step 3. P « {{V;}, {V,,...V }.
Step 4. for i := 1 to n-2
{
1. Let a and b to be the end vertices of edge
e, i.e., e, = (a, b).

2. Find A, B in P such that a belongs to A and b
belongs to B

3. A < merge A and B

4. Delete B from P

5. Find the maximum edge in A, denoted Max(A4).

6. Find the minimum edge between a vertex in A
and a vertex not in A, denoted Min(A, !A).

7. If Max(A) < Min(A, !A), then A is a compact

set.

}
According to the algorithm, the order of edges is (1, 3), (4, 6), (1, 2), (3, 5) and (5, 6)

after sorting by the weights. The population P includes all the vertices in 1", i.e. P =
{(1), (2), (3), (4), (5), (6)}. We will firstly merge (1) and (3) together while coming to
step 4. After the mergence, the P becomes {(1, 3), (2), (4), (5), (6)}. Continuously, we
will find compact sets, (1, 3) and (4, 6). Worthy to be noticed is when we merge (1, 2)
with (1, 3), we must examine if (1, 2, 3) satisfies the lemma 2. The maximum distance

350 K.-M. Yu et al.

in (1, 2, 3) is less than the minimum distance between vertices in (1, 2, 3) and (4, 5,
6). Thus, (1, 2, 3) is a compact set. In the end, all the compact sets are (1, 3), (4, 6),
(1,2,3)and (1, 2, 3, 5) like figure 5.

Fig. 5. Compact sets for the example

We then create several small distance matrices D’ of three types which differ in the
distance lengths stored in D’. These three matrices separately called maximum, mini-
mum, and average. In this paper, we only study the ultrametric tree constructed from
maximum matrix. The construction procedure is as follows. While creating the maxi-
mum matrix of C,;, we will examine the distances between elements in Cy, i.e. (C;, Cs,
5). When considering C; and (5), we must select the maximum distance, which is 6,
between (5) and any element in C3, i.e. (1), (3) or (2). The resulted maximum matrix
of C, shows in figure 7.

We shall discuss a situation that if there more than one T exists. In the previous
step when findingf , we need to examine and will obtain another T while replacing
the edge of T with that holding the same weight on the graph. Indeed the new
T should satisfy all conditions after the replacement. Figure 7(a) and (b) provides an

example that two T s coexist in a graph.

M axim um

Ci1 C2 5
C1 0 7 6
C 2 0 6
5 0
Fig. 6. Maximum matrix of C, Fig. 7. Two minimum spanning trees in a graph

We can keep the precise relations among species by discovering all the compact
sets on the graph. Thus we could ensure the relationship of every species in the ul-
trametric tree is precisely preserved by the characteristics of compact set. Then we
can use the parallel branch-and-bound technique to construct an ultrametric tree from
the small matrices D’. The following is an introduction to parallel branch-and-bound
technique.

3.2 Parallel Branch-and-Bound Algorithm

We input several small distance matrices D’ to the parallel branch-and-bound algo-
rithm to find sub trees 7°. Branch-and-bound algorithm is an efficient tree search

A Fast Technique for Constructing Evolutionary Tree 351

algorithm for NP-hard problems. Some results about ultrametric trees have been pro-
posed in [2]. In the previous researches, Wu et al., [19] had proposed a sequential
branch-and-bound algorithm to construct minimum ultrametric trees from distance
matrices.

For the parallel branch-and-bound algorithm, we utilize a heuristic algorithm
UPGMM (Unweighted Pair Group Method with Maximum), which is altered from al-
gorithm UPGMA [15], to find the cost values as bound values in our algorithm. If any
computing nodes are notified that the branching unable to create any better solution,
we then remove the branch. Compared with the single processor system, the solution
space in the multi-processor system will decrease greatly. Thus, the parallel branch-
and-bound algorithm could achieve super-leaner speedup.

The parallel branch-and-bound algorithm in the master and slave paradigm is listed
as follows.

Parallel Branch-and-Bound Algorithm

Input: An n * n distance matrix D.

Output: The minimum ultrametric tree for D.

Step 1: Master control node re-label the species such
that (1, 2, .., n) is a maxmin permutation.

Step 2: Master control node creates the root of the BBT
(branch-and-bound Tree).

Step 3: Master control node run UPGMM and using the
result as the initial UB (upper bound).

Step 4: Master control node branches the BBT until the
branched BBT reach 2 times of total nodes in
the computing environment.

Step 5: Master control node broadcasts the global UB
and send the sorted matrix the nodes cycli-

cally.

Step 6: while number of UTs in LP (Local Pools) > 0 or
number of UTs in GP (Global Pools) > 0 do

if number of UTs in LP = 0 then
if number of UTs in GP <> 0 then
receive UTs from GP
end if
end if
v = get the tree for branch using DFS
if LB(v) > UB then
continue
end if
insert next species to v and branch it
if v branched completed then
if LB (v) < UB then
update the GUB (Global Upper Bound) to
every nodes
add the v to results set
end if
end if
if number of UTs in GP = 0 then
send the last UT in sorted LP to GP
end if
end while
Step 7: Gather all solutions from each node and output.

352 K.-M. Yu et al.

When obtaining the sub tree 7 from the small matrix D’, each node will return it
to the master control node. Finally, the master control node will merge all the sub
trees 7~ into the ultrametric tree 7.

4 The Experimental Results

The experimental environment is built by a Linux-based cluster incorporating one
master control node and 16 computational nodes. Computational nodes have the same
hardware specification and connect with each other at 100Mbps and 1Gbs to server.
Human Mitochondrial DNAs and randomly generated species matrix are the data in-
stances stored in the distance matrix. The experiments will process in two conditions:
To construct ultrametric tree (1) with application of compact sets and (2) without
utilizing compact sets. We will compare the differences in computing time and total
tree cost. We can find compact sets on a graph and determine the maximum distances
of elements in each compact set as the total tree cost while considering the ultrametric
tree based on maximum matrix. The following experimental results of compact sets
are shown based on the data of maximum matrix.

(sec) Time (cost) Cost
10000 1500
000 | =5 gompatt < 1460 A &
100 {—= /. 1200 2o N A BT |
10 e 1100 - - _
/ 1000 - D 4{ = compact set
1 - . . 900 », & ‘ original
0.1 2(25 26 28 800
- 1 3 5 7 9 11 13 15 17 19 21
species distance matrix

Fig. 8. The computing time for random Fig. 9. The total tree cost for random data
data set set

As the experiments on the randomly generated sequences, the averages computing
time is shown in figure 8. Figure 8 illustrates the more species the more computing
time we spend. In comparison with the method without applying compact set, the
most time we save is about 99.7% and the least is 77.19% while using compact sets.
Also we present the differences in cost between condition 1 and 2 in figure 9 and the
results are based on randomly generated sequences. Figure 9 illustrates the total tree
costs under two conditions are almost equal and the difference is less than 5%.

As the experiments on Human Mitochondrial DNAs, we use 15 data set containing
26 species for each and the total tree cost is presented in figure 10. The results show
the maximum difference is 1.5%. In other words, the results demonstrate compact sets
have the same effect not only on generated sequences but also on Human Mitochon-
drial DNAs. Figure 11 shows the computing time. Using compact sets can definitely
save time but unexpectedly the experiments without compact sets also take little time
except the last data.

We also experiment with 30 DNAs and figure 12 represents the costs of 10 data set
each including 30 DNAs. As figure 12, using compact sets could keep the cost down
when we experiment on 30 DNAs as well as generated data or 26 DNAs. According

A Fast Technique for Constructing Evolutionary Tree 353

to figure 13, for computing time, the performances of the experiments on both 26 and
30 DNAs are alike.

(cost) COST of 26 DNA species‘ —@-— compact set (sec) TIME of 26 DNA species
800 80

original
[{ —@-— compact set
700 41— - / \ N 60 4 original
/\ / \’A\ 40
600 A Yot S S W ,/L

_/ s V 20
500 — L R
1 3 5 7 9 11 13 1 2 3 4 5 6
distance matrix distance matrix

Fig. 10. The total tree cost for 26 DNAs Fig. 11. The computing time for 26 DNAs

(cost) COST of 30 DNA species| —_g— compact set (sec) TIME of 30 DNA species
900 original 50
~ 40 —@-— compact set

800

30 ‘ original

o |
N No— /
700 = — — 20
600 10
6 7 8 9 10

500 0 O e e e D P |
1 2 3 4 s 1 2 3 4 5 6 7 8 [}
distance matrix distance matrix

Fig. 12. The total tree cost of 30 DNAs Fig. 13. The computing time of 30 DNAs

No matter how many species on which we experiment, the computing speed is still
extremely rapid without using compact sets. Although the experiments using compact
sets do not take much less time, we suppose the phenomenon is relevant to the popu-
lation of the data. The computing time resulted from the experiment with randomly
generated data can be a reference for any circumstance.

5 The Conclusions

In this paper, we employ the compact sets to convert the original matrix into several
small matrices for constructing ultrametric tree in parallel. Of the compact sets, the
precise phylogeny remains and facilitates biologists to analyze the species in taxon-
omy. Although we experiment with both Human Mitochondrial DNAs and randomly
generated sequences, the results from generated data can represent any real instance.
Therefore our technique could be applied in any condition.

References

1. H.J. Bandelt, “Recognition of tree metrics,” SIAM Journal on Discrete Mathematics, vol.
3, no. 1, pp.1-6, 1990.

2. E. Dahlhaus, “Fast parallel recognition of ultrametrics and tree metrics,” SIAM Journal on
Discrete Mathematics, vol. 6, no. 4, pp. 523-532, 1993.

3. W.H.E. Day, "Computationally difficult parsimony problems in phylogenetic systemat-
ics,” Journal of Theoretic Biology, vol. 103, pp. 429-438, 1983.

4. W.H.E. Day, “Computational complexity of inferring phylogenies from dissimilarity ma-
trices,” Bulletin of Mathematical Biology, vol. 49, no. 4, pp. 461-467, 1987.

354

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

K.-M. Yu et al.

. E. Dekel, J. Hu, and W. Ouyang. An optimal algorithm for finding compact sets. Informa-

tion Processing Letters, 44:285-289, 1992.

M. Farach, S. Kannan, and T. Warnow, “A robust model for finding optimal evolutionary
trees,” Algorithmica, vol. 13, pp. 155-179, 1995.

W.M. Fitch, “A non-sequential method for constructing trees and hierarchical classifica-
tions,” Journal of Molecular Evolution, vol. 18, pp. 30-37, 1981.

. L.R. Foulds, “Maximum savings in the Steiner problem in phylogency,” Journal of theo-

retic Biology, vol. 107, pp.471-474, 1984.

L.R. Foulds and R.L. Graham, “The Steiner problem in phylogeny is NP-complete,” Ad-
vances in Applied Mathematics, vol. 3, pp. 43-49, 1982.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman: San Fransisco, 1979.

D. Gusfield, “Algorithms on Strings, Trees, and Sequences, computer science and compu-
tational biology,” Cambridge University Press, 1997.

M.D. Henry and D. Penny, ”"Branch and bound algorithms to determine minimal evolu-
tionary trees,” Mathematical Biosciences, vol. 59, pp. 277-290, 1982.

R.M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer
Computations, R.E. Miller and J.W. Thatcher (Eds.), Plenum Press: New York, 1972, pp.
85-103.

SungKwon Kim, “A note on finding compact sets in graphs represented by an adjacency
list” Information Processing Letters, vol. 57, pp. 335-238, 1996.

M. Krivanek, “The complexity of ultrametric partitions on graphs,” Information Process-
ing Letter, vol. 27, no. 5, pp. 265-270, 1988.

W.H. Li and D.Graur, Fundamentals of Molecular Evolution, Sinauer Associates, 1991.
Chiou-Kuo Liang, "An O(n?) Algorithm for Finding the Compact Sets of a Graph," BIT,
vol. 33, pp 390-395, 1993.

N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing phy-
logenetic trees. Molecular Biology and Evolution, 4:406-425, 1987.

B.Y. Wu, K.M. Chao, C.Y. Tang, “Approximation and Exact Algorithms for Constructing
minimum Ultrametric Tree from Distance Matrices,” Journal of Combinatorial Optimiza-
tion, vol. 3, pp.199-211, 1999.

Parallel Branch-and-Bound Algorithm for Constructing Evolutionary Trees
from Distance Matrix

Kun-Ming Yu' ", Jiayi Zhou', Chun-Yuan Lin’*, and Chuan Yi Tang’

'Department of Computer Science and Information Engineering, Chung Hua University
?Institute of Molecular and Cellular Biology, National Tsing Hua University
Department of Computer Science, National Tsing Hua University
Hsinchu, Taiwan 300, ROC

! yu@chu.edu.tw, jyzhou@pdlab.csie.chu.edu.tw
2 cyulin@mx.nthu.edu.tw
3 cytang@cs.nthu.edu.tw

Abstract

An ultrametric tree is an evolutionary tree in which
the distances from the root to all leaves in the tree are
equal. The Minimum Ultrametric Tree construction
problem is the problem of constructing an ultrametric
tree from distance matrices with minimum cost. It is
shown that to construct a minimum cost ultrametric
tree is NP-hard. In this paper, we present an efficient
parallel branch and bound algorithm to construct a
minimum ultrametric tree with less cost. The
experimental results show that our proposed algorithm
can discover optimal solutions for 38 species within
reasonable time with 16 computing nodes.

Keyword: Parallel computing, branch-and-bound,
evolutionary tree, distance matrices, minimum
ultrametric trees.

1. Introduction

An evolutionary tree is a model of evolutional
histories for a set of species. It is a very important and
fundamental model in computational biology field to
observe livening species. A meaning evolutionary tree
is helpful for biologists to evaluate the relationship of a
set of species in taxonomy.

However, it is hard to know the constructed
evolutionary tree is meaning or not since the real
evolutionary process is unknown. Hence, many

methods have been proposed to construct the
evolutionary tree.

The majority of these methods are all based on two
models, the sequences and the distance matrix. In the
sequences model, researchers do multiple sequence
alignment (MSA) for a set of species with
corresponding DNA sequence first. Then an
evolutionary tree is constructed according to the MSA
result. However, the MSA problem is NP-hard. In the
distance matrix model, they calculate the distance as
the edit distance for any two of species first. Then
these distances are formed as a distance matrix. Finally,
an evolutionary tree is constructed according to a
distance matrix. Unfortunately, it is also a NP-hard
problem to construct a minimum cost evolutionary tree
from a distance matrix.

Some heuristic algorithms, such as Unweighted Pair
Group Method with Arithmetic Mean (UPGMA) and
Neighbor Joining Method, have been proposed and
popularly used by biologists. However, the constructed
evolutionary tree from them is not optimal. Moreover,
it is still worthy to construct an optimal evolutionary
tree for a set with small number of species.

There is a category of evolutionary tree called
ultrametric tree, in which we assume that the rate of
evolution is constant. An ultrametric tree is a rooted
and edge weighted binary tree in which every internal
node has the same path length to all the leaves in its
sub tree. However, the number of an ultrametric tree
A(n) grows very rapidly when the number of species

n increases. For example, A(20) > 1021, A25)>10%,

" This work was supported in part by the NSC of ROC, under grant NSC-93-2213-E-216-037

" Corresponding author

! Post doctor fellowship is supported by NSC under contract NSC92-3112-B-007-002 and NSC93-3112-B-007-008

A(30) >10°" . The problem of constructing a minimum

ultrametric tree has been shown to be NP-hard. The
branch-and-bound algorithms are very well-known
techniques to avoid exhaustive search. It is a partition
algorithm to decompose a problem into smaller
subproblems and then repeatedly decomposes them
until infeasibility is proved or a solution is found [17].
Theoretically, a branch-and-bound algorithm cannot
ensure polynomial time complexity in the worst case.
However, it has been used to solve some NP-hard
problems, such as Traveling Salesman, Knapsack,
Vertex Covering, Integer Programming, and so on [17].
In addition, a branch-and-bound algorithm can often
find the near optimal solutions as well as an optimal
one.

In our previous work, we have proposed a parallel
branch-and-bound technique to construct a metric
minimum ultrametric tree. Our technique can
drastically reduce the solution space. However, it is not
enough to construct a metric minimum ultrametric tree
with a numerous number of species. In this paper, we
utilize the concept of 3-3 relationship in our proposed
parallel branch-and-bound algorithm to reduce the
solution space and may reduce the execution time
significantly.

This paper is organized as follows. In Section 2, we
introduce the metric minimum ultrametric tree problem
and the 3-3 relationship. Section 3 describes the
proposed parallel branch-and-bound algorithm with the
3-3 relationship. The experimental results and the
conclusions will be given in Sections 4 and 5.

2. Related Work

Most of the optimization problems for evolutionary
tree construction are NP-hard [3, 7, 12, 15]. There are
many models of evolutionary tree and one of them is
called ultrametric tree (UT) which assumes the rate of
evolution is constant [310, 1]. A UT is a rooted, leaf
labeled, and edge weighted binary tree in which every
internal node has the same path length to all the leaves
in its sub-tree [15]. Distance matrix is most frequently
used to construct an evolutionary tree. For an n by n
distance matrix M, the minimum UT for M is an UT
that the distance between any pair of leaves on the tree
is no less than the given distance and the total weight
on the tree edges is minimized. There are some results
about UT which have been presented in [1, 4, 7, 15].

As it is an NP-hard problem to construct a
minimum ultrametric tree from distance matrix,
branch-and-bound technique is a good candidate to
reduce the solution space effectively. Wu et al., [15]
proposed a sequential branch-and-bound algorithm for

constructing minimum ultrametric trees from distance
matrices. We denote their algorithm as Algorithm
BBU for brevity. Initially, Algorithm BBU uses a
heuristic algorithm UPGMM (Unweighted Pair Group
Method with Maximum), which modifies from
algorithm UPGMA, to find a feasible solution. Then,
Algorithm BBU repeatedly searches the branch-and
bound tree (BBT) for better solutions until an optimal
solution is found. For any node, say v, in the BBT,
compute the value of LB(v), which is a lower bound
on the weight of any ultrametric tree. Below is a
formal description of Algorithm BBU.

Algorithm BBU

Input: An n x n distance matrix M.
Output: The minimum ultrametric tree for M.

Step 1: Relabel the species such that (1, 2, ..., n) is

maxmin permutation.

Step 2: Create the root v of the BBT such that v
represents the only topology with leaves 1 and
2.

Step 3: Run UPGMM to find a feasible solution and
store its weight in UB (the weight of current
best UT).

Step 4:

while there is a node in BBT do
if LB(v) >= UB or all the children of v have

been deleted then

delete all nodes v from BBT
end if
Select a node s in BBT, whose children has
not been generated.
Generate the children of s by using the
branching rule.
if find a better solution then
update UB
end if
end while.

The readers can refer to [15] for the correctness and
time complexity issues of algorithm BBU.

In this paper, G = (V, E) represents an unweighted
graph with vertex set V and edge set E and G = (V, E,
w) denotes an edge weighted graph. To simplify the
presentation, notations and terminologies used in this
paper are prior defined as follows.

Definition 1: A distance matrix of n species is a
symmetric nXn matrix M such that M[i,

j]1>0 for all 0<1, j <n, and M[i, i]=0 for
all0<i<n[15].

Definition 2: A M is a metric if the distances obey the
triangle inequality, i.e., M[i, j]+MIj,
k] =M[i, k] for all 1 <i, j,k<n[15].

Definition 3: A metric M is an ultrametric if and only
if M[i, j] <max{M[i, k], M[j, k]} for all
1<i,j,k<n[2].

Definition 4: Let T = (V, E, ®) be an edge weighted
tree and u, ve V. The path length from u
to v is denoted by dT (U,V) . The weight
of T is defined by
o(T)=2eck @(8)[15].

Definition 5: Let T be a rooted tree and r be any node
of T. We use Tr to denote the subtree

rooted at r, and L(T) to denote the leaf set
of T[15].

Definition 6: An ultrametric tree T of {1, ..., n} is a
rooted and edge-weighted binary tree
with L(T) = {1, ..., n} and root r such

that dT (u,r) = dT (V,r) for all u,
vEL(T)[15].

Definition 7: Let T = (V, E, o) be an UT. For any
r € V, the height of r, denoted by

height(r), is the distance from r to any
leaf in the subtree Tr, i.e., height(r)

=dy (r,V) for any ve L(Tr) [15].
Definition 8: For any M, MUT for M is T with
minimum o(T) such that L(T)={1, ..., n}
and d1 (I, J) >M[i, j] forall 1 <i,j<n.
The problem of finding MUT for M is
called MUT problem [7].
Definition 9: The metric minimum ultrametric tree

(A MUT) problem has the same
definition as MUT problem except that
the input is a metric [15].

Theorem 1: The AMUT problem is NP-hard [15].

Definition 10:Let P be a topology, and & be L(P).
LCA(a,b) denotes the lowest common

ancestor of a and b. If x and y are two
nodes of P, we write X = Y if and only

if x is an ancestor of y.

Definition 11:We denote the distance between distance
matrix and rooted topology of

evolutionary trees is consistent if
MIi, j1< min{M[i,k],M[],k]} if and
only if LCA(I, j) < LCA(i,k) = LCA(j,k)
for any 1<i,jk<n .
contradictory.

Otherwise 1is

Fan [5] proposed an idea to evaluate the
evolutionary trees by using distance relations between
distance matrix and evolutionary trees for any 3
species. The idea was as follows, choosing three
species 1, j, k arbitrary, if i, j relates closely in distance
matrix, then on evolutionary trees should also present
relation of i, j. Otherwise, it is contradiction, if the
number of contradictions is more, expresses the
method of evolutionary tree construction is
insufficiently good, and it cannot faithfully reflect the
relation of the original distance matrix.

For the purpose of reducing the solution space in
branch-and-bound strategy; we observe that the
characteristic of 3-3 relationship between distance
matrix and evolutionary tree can be utilized.

3. Main title

In this section, we will describe the system
framework we developed in detail, including parallel
algorithm, load balancing strategy, data structure, and
how to use 3-3 relationship to construct evolutionary
trees.

The same level of evolutionary tree can be divided
into independent parts, therefore parallel branch-and-
bound is a very suitable technique to solve
evolutionary tree problem without considering the
data-dependent problem between computing nodes.
Each computing node only needs to handle or solve a
sub-problem with sequential algorithm regardless of
data-dependent problem.

In our proposed parallel branch-and-bound
algorithm, every node in the same level of branch-and-
bound tree represents respective solution. Every
computing node branches one of the nodes in the same
time. When some computing nodes find the branching
solution satisfies the bounding rule then we don’t need
to branch any more. It will pass a message to notify
other computing nodes that the branching will not
produce a better solution and then we can delete the
branch. For this reason, the solution space in multi-
processor system will be less than the solution space in
the single processor system. Thus, our proposed
parallel branch-and-bound algorithm may achieve
super-linear speedup.

The load balancing strategy is important in our
proposed system. Because the solution space in each
computing node may differ a lot after bounding, this
may result in the situation that some computing nodes
idle. We apply the global pools design, which located
in the Master processor. When local pools of
computing nodes empty, it can request some branching
data from global pools if it is not empty. Even through
the global pools empty, it will poll branching data form
the heavily loaded computing nodes.

The data structure is also an important issue in the
parallel computing. An unsuitable data structure may
take unnecessary time during the exchange of
information between computing nodes so that we shall
consider whether the data structure performs well in
parallel computing. Therefore, we develop a data
structure, which is called UT node, including every
internal node’s left children, right children, parents,
leaves which were sorted by array and the UT node’s
low bound. All necessary information is stored in a
branch and bound tree (BBT) which combined with
UT.

In the proposed algorithm, the master processor
(MP) will create initial nodes and then dispatch most
of them to slave computing processors. The MP is also
used to do the same work in slave computing
processors and try to balance the nodes among MP and
slave computing processors.

In MP, in Step 1, it reorders the input metric
distance matrix M to form a max-min permutation and
then re-label the species as a leaf set {1, 2, ..., n}.
This work could be done in parallel. In Step 2, a root v
of BBT is created by MP which v represents the only
topology with leaves 1 and 2. In Step 3, MP will run
UPGMM to find a feasible solution and store its
weight in a global variable UB as an initial upper
bound. In the Step 4, MP applies the 3-3 relationship
constrain to insert the third species, which can reduce
the solution space significantly. In order to dispatch
nodes to slave computing processors, some nodes of
BBT should be generated. Therefore, in Step 5, MP
will do parts of Step 5 in BBU to generate some nodes
of BBT. Note that the value of LB(v) for each node v
generated by MP is lower than or equal to UB. Now,
the number of nodes is set to be double of the number
of processors p. Similarly, this step could be done in
parallel, but it is done by MP with the same reason.

Since each node v in each slave computing
processor may be bounded quickly or not, we try to
balance the work among processors before the
dispatching procedure. In Step 6, for each node v
generated by MP, a global UB is computed first, and
then broadcasts to slave computing processors.
According to the sorting results, each corresponding

node will be stored sequentially into the Global pool
(GP). Afterward, MP dispatches most of them to slave
computing processors by the cyclic partition method.
In the dispatching procedure, UB and M with a max-
min permutation are also sent to Slave computing
processors. Since MP is also used to do the same work
in Slave computing processors, it needs to preserve
some nodes in GP. Now, MP preserves 1/p nodes in
GP. By Step 7, a potential effect may be existed to
balance the work among MP and slave computing
processors. After dispatching most of nodes from MP
to Slave computing processors, parallel branch-and-
bound algorithm tries to find the optimal solution.

The parallel branch-and-bound algorithm in the
master-slave paradigm is presented as follows.

Table 1 Parallel Branch-and-Bound with 3-3
Relationship

Input: An n x n distance matrix M.
Output: The minimum ultrametric tree for M.

Step 1: Master processor re-label the species such that
(1,2, ..., n) is a maxmin permutation.

Step 2: Master processor creates the root of the BBT.
Step 3: Master processor run UPGMM and using the
result as the initial UB (upper bound).

Step 4: Under rooted base tree with 2 species.
Referring the original distance matrix to insert
the third species according to the 3-3
relationship constraint.

Step 5: Master processor branches the BBT until the
branched BBT reaches 2 times of total
nodes in the computing environment.

Step 6: Master processor broadcasts the global UB and
sends the sorted matrix the slave computing
processors cyclically.

Step 7:

while number of UTs in LP (Local Pools) > 0 or

number of UTs in GP (Global Pools) > 0 do
if number of UTs in LP = 0 then
if number of UTs in GP <> 0 then
receive UTs from GP
end if
end if
v = get the tree for branch using DFS
if LB(v) > UB then
continue
end if
Insert next species to v and branch it
if v branched completed then
if LB (v) < UB then
Update the GUB (Global
Upper Bound) to every node

Add the v to results set
end if
end if
if number of UTs in GP = 0 then
Send the last UT in sorted LP to GP
end if
end while
Step 8: Gather all solutions from each node and output
the optimal solution.

4. Experimental Results

The experimental environment is built by a Linux-
based cluster; it consisted of one Master processor and
16 slave computing processors. All slave computing
nodes have the same hardware specification and
connected with each other at 100Mbps and 1Gbs to
server. One computing node (single processor) is
designated as the sequential platform in contrast with
the parallel computation.

The data instances we used are the distance matrix
constructed from Human Mitochondrial DNA
(HMDNA), and each number of species we run 20
instances to reduce the factor influenced by distance
matrix.

The computing time for 16 slave computing nodes
and single node is shown in figure 1 and 2. From
figure 1 and 2, we can observe that our proposed
parallel algorithm is effective when the number of
species is getting large. Also, we can observe that the
computing time will be unendurable when the number
of species greater than 26 for single processor. On the
other hand, the parallel branch-and-bound algorithm
can find optimal ultrametric tree within reasonable
time for 38 species. The speedup ratio is shown in
Figure 3, and we can find our proposed parallel
branch-and-bound algorithm achieve super linear
speedup ratio. Figure 4 depicts that 3-3 relationship
can reduce computing time when number of species
grows. Also, in our experimental results, the result
trees with 3-3 relationship are a subset of result
without 3-3 relationship. It indicates that applying 3-3
relationship can not only reduce the solution space but
also have the same results.

16 processors (HMDNA)

0.35

—e— Median case
0.3 J

0.2.5 /
/

0.15 //
0.05

o
N

Time (sec.)

=}
-
I

0 T T T T T T T T
12 14 16 18 20 22 24 26 28
Species

Figure 1 The computing time for 16 processors,
HMDNA.

Single processor (HMDNA)

©
o

—e— Median case

~N ®
o o
™

> O o
S © o
P

Time (sec.)

w
o

/4

12 ‘ 14 ‘ 16 ‘ 18 20 22 24 26 ‘ 28
Species

Figure 2 The computing time for single processor,

HMDNA.

N
o

i
o
L

o

Speedup (Single processor vs. 16 processors, HMDNA)

300

—+— Median case
250 J | /

200

100 /

"

12 14 16 18 20 22 24 26 28
Species

Speedup
=
(o
o

Figure 3 Speedup (16 processors vs. single
processor, HMDNA).

Computing time for 16 processors (with 3-3 relationshiop
vs. without 3-3 relationship, HMDNA)

—e— Without 3-3 relationship
2.5 —=— With 3-3 relationship

2 4

Time (sec.)
P
[4
\

0.5 l/fﬁy//\-
0 T T T T T T T T T
12 14 16 18 20 22 24 26 28
Species

Figure 4 The computing time for 16 processors
(with 3-3 relationship vs. without 3-3 relationship,
HMDNA).

Figure 5, 6, 7 and 8 show the computing time as
well as speedup ratio for randomly generated data
sample set, the range of the data values is from 0 to
100. Also, our proposed algorithm has supreme
performance and can obtain optimal evolutionary tree
within reasonable time. Our proposed parallel branch-
and-bound algorithm can achieve super linear speedup
ratio.

16 processors (Random Datay)

/

12 14 16 18 20 22 24 2

Figure 5 The computing time for 16 processors,
Random Data.

Speedup (Single processor vs. 16 processors, Random

Data)
120
100 74 —e— Median case ‘ /'\
o 80
3
9 60 /
%
[AN \
20 / A4
[¢] T T T T

12 14 16 18 20 22 24 26
Species

Figure 6 Speedup (16 processor vs. single processor,
Random Data).

Single processor (Random Data)

5000 —e— Median case | /

Time (sec.)
w
o
o
o

2000 /
1000 //
T T T T T T T
12 14 16 18 20 22 24 26
Species

Figure 7 The computing time for single processor,
Random Data.

Computing time for 16 processors (with 3-3 relationshiop vs.
without 3-3 relationship, Random Data)

—e— Without 3-3 relationship /9
250 +—| —=— With 3-3 relationship |

/

12 14 16 18 20 22 24 26
Species

Time (sec.)
=
a
o

Figure 8 The computing time for 16 processors
(with 3-3 relationship vs. without 3-3 relationship,
Random Data).

5. Conclusions

In this paper, we have proposed a parallel branch-
and-bound algorithm that runs in a master/slave
paradigm to resolve the minimum ultrametric trees
construction problem, and we adopt the 3-3
relationship in our algorithm. Experimental results
show that the performance of our algorithm, running
on a personal computer cluster with 16 slave
computing processors, is extraordinary in comparison
with single processor. Moreover, our proposed parallel
algorithm can find an optimal solution for 38 species
within reasonable time. To the best of our knowledge,
there are no reported algorithms which can find the
optimal ultrametric tree with the number of species
exceeding 25.

From experimental results, we can see that the
performance of the sequential and parallel algorithms
will be influenced by the number of species, the
number of processors and the distance matrix. (Hint:
different distance matrices with the same number of
species lead to different performance). With 3-3
relationship, we found it can reduce the computing
time when number of species grows, but we only used

it in the initial step. In our future work, we can extend
this feature and speedup the process of constructing
evolutionary trees.

References

[1] H.J. Bandelt, “Recognition of tree metrics,” SIAM
Journal on Discrete Mathematics, vol. 3, no. 1,
pp-1-6, 1990.

[2] E. Dahlhaus, “Fast parallel recognition of
ultrametrics and tree metrics,” SIAM Journal on
Discrete Mathematics, vol. 6, no. 4, pp.523-532,
1993.

[3] W.H.E. Day, D.S. Johnson and D. Sankoff, “The
computational complexity of inferring rooted
phylogenies by parsimony,” Mathematical
Biosciences, vol. 81:33-42, 1986.

[4] W.H.E. Day, “Computation complexity of
inferring phylogenies from dissimilarity matrices,”
Bullotin of Mathematical Biology, vol. 49, no. 4,
pp. 461-467, 1987.

[5] Chen-Tai Fan, “The evolved tree appraises the
pattern the establishment and applies, “ Master
Thesis, National Tsing Hua University, 2000.

[6] L.R. Foulds and R.L. Graham, “The Steiner
problem in phylogeny is NP-complete,” Advances
in Applied Mathematics, vol. 3, pp. 43-49, 1982.

[7] M. Frach, S. Kannan, and T. Warnow, “A robust
model for finding optimal evolutionary trees,”
Algorithmica, vol. 13, pp.155-179, 1995.

[8] L.R. Foulds, “Maximum savings in the Steiner
problem in phylogeny,” Journal of theoretic
Biology, vol. 107, pp. 471-474, 1984.

[9] L.R. Foulds and R.L. Graham, “The Steiner

problem in phylogeny is NP-complete,” Advances
in Applied Mathematics, vol. 3, pp. 43-49, 1982.

[10]1D. Gusfield, “Algorithms on Strings, Trees, and
Sequences, computer science and computational
biology,” Cambridge University Press, 1997

[11]M.D. Hendy and D. Penny, ‘“Branch-and-bound
algorithms to determine minimal evolutionary
trees,” Mathematical Biosciences, vol. 59, pp.
277-290, 1982.

[12]M. Krivanek, “The complexity of ultrametric
partitions on graphs,” Information Processing
Letter, vol. 27, no. 5, pp. 265-270, 1988.

[13]W.H. Li and D. Graur, “Foundomentals of
Molecular Evolution,” Sinauer Associates, 1991.

[14]Yuji Shinano, Kenichi Harada and Ryuichi
Hirabayashi,” Control Schemes in a Generalized
Utility for Parallel Branch-and-Bound
Algorithms,”” Parallel Processing Symposium
Proceedings, pp. 621 —627, 1997.

[15]1B.Y. Wu, K.M. Chao, C.Y. Tang, “Approximation
and Exact Algorithms for Constructing Minimum
Ultrametric Tree from Distance Matrices,” Journal
of Combinatorial Optimization, vol 3, pp. 199-211,
1999.

[16]Albert Y. Zomaya, Senior Member, IEEE, and
Yee-Hwei Teh, “Observations on Using Genetic
Algorithms for Dynamic Load-Balancing,” IEEE
Transaction on Parallel and Distributed Systems,
vol. 12, no. 9, pp.899-911, 2001.

[17]1C.F. Yu and B.W. Wah, “Efficient Branch-and-
Bound Algorithms on a Two-Level Memory
System,” IEEE Trans. Parallel and Distributed
Systems, vol. 14, no.9, 1988, pp. 1342-1356.

Contention-Free Communication Scheduling
for Irregular Data Redistribution
in Parallelizing Compilers”

Kun-Ming Yu, Chi-Hsiu Chen, Ching-Hsien Hsu, Chang Wu Yu,
and Chiu Kuo Liang

Department of Computer Science and Information Engineering,
Chung Hua University, Hsinchu, Taiwan 300, ROC
Tel: 886-3-5186412, Fax: 886-3-5329701
yu@chu.edu. tw

Abstract. The data redistribution problems on multi-computers had been exten-
sively studied. Irregular data redistribution has been paid attention recently
since it can distribute different size of data segment of each processor to proces-
sors according to their own computation capability. High Performance Fortran
Version 2 (HPF-2) provides GEN_BLOCK data distribution method for generat-
ing irregular data distribution. In this paper, we develop an efficient scheduling
algorithm, Smallest Conflict Points Algorithm (SCPA), to schedule HPF2 ir-
regular array redistribution. SCPA is a near optimal scheduling algorithm,
which satisfies the minimal number of steps and minimal total messages size of
steps for irregular data redistribution.

Keywords: Irregular data redistribution, communication scheduling,
GEN_BLOCK, conflict points.

1 Introduction

More and more works had large data or complex computation on run-time in most
scientific and engineering application. Those kinds of tasks require parallel program-
ming on distributed system. Appropriate data distribution is critical for efficient exe-
cution of a data parallel program on a distributed computing environment. Therefore,
an efficient data redistribution communication algorithm is needed to relocate the data
among different processors. Data redistribution can be classified into two categories:
the regular data redistribution [2, 3, 6] and the irregular data redistribution [1, 4, 10,
11, 12]. The irregular distribution uses user-defined functions to specify unevenly
data distribution. High Performance Fortran version 2 (HPF2) provides
GEN_BLOCK data distribution instruction which facilitates generalized unequal-size
consecutive segments of array mapping onto consecutive processors. This makes it

* The work is partially supported by National Science Council of Taiwan, under grant number
NSC-93-2213-E-216-029.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 101-110, 2005.
© Springer-Verlag Berlin Heidelberg 2005

102 K.-M. Yu et al.

possible to let different processors dealing with appropriate data quantity according to
their computation capability. In this scenario, all processors must send and receive
message, even if send and receive on the same processor.

In the irregular array redistribution, Guo et al. [11] proposed a Divide-and-
Congquer algorithm, they utilize Divide and Conquer technique to obtain near optimal
scheduling while satisfied minimize the total communication messages size and
minimize the number of steps.

In this paper, we present a smallest-conflict-points algorithm (SCPA) to efficiently
perform GEN_BLOCK array redistribution. The main idea of the SCPA is to schedule
the conflict messages with maximum degree in the first step of data redistribution
process. SCPA can effectively reduce communication time in the process of data
redistribution. SCPA is not only an optimal algorithm in the term of minimal number
of steps, but also a near optimal algorithm satisfied the condition of minimal message
size of total steps.

The rest of this paper is organized as follows. In Section 2, a brief survey of related
work will be presented. In section 3, we will introduce communication model of ir-
regular data redistribution and give an example of GEN_BLOCK array redistribution
as preliminary. Section 4 presents smallest-conflict-points algorithm for irregular
redistribution problem. The performance analysis and simulation results will be pre-
sented in section 5. Finally, the conclusions will be given in section 6.

2 Related Work

Many data redistribution results have been proposed in the literature. These re-
searches are usually developed for regular or irregular problems [1] in multi-computer
compiler techniques or runtime support techniques.

Techniques for communication optimizations category provide different ap-
proaches to reduce the communication overheads [5, 7] in a redistribution operation.
The communication scheduling approaches [3, 12] avoid node contention and the
strip mining approach [9] overlaps communication and computational overheads.

In irregular array redistribution problem, some works have concentrated on the in-
dexing and message generation while some has addressed on the communication
efficiency. Guo et al. [10, 11] proposed a divide-and-conquer algorithm for perform-
ing irregular array redistribution. In this method, communication messages are first
divided into groups using Neighbor Message Set (NMS), messages have the same
sender or receiver; the communication steps will be scheduled after those NMSs are
merged according to the relationship of contention. Yook and Park [12] presented a
relocation algorithm, while their algorithm may lead to high scheduling overheads
and degrade the performance of a redistribution algorithm.

3 Preliminaries and Redistribution Communication Models

Data redistribution is a set of routines that transfer all the elements in a set of source
processor S to a set of destination processor T. The sizes of the messages are specified

Contention-Free Communication Scheduling for Irregular Data Redistribution 103

by values of user-defined random integer for array mapping from source processor to
destination processor. Since node contention considerably influences, a processor can
only send messages to other one processor in each communication step. Use the same
rule, a processor can only receive messages from other one processor.

To simplify the presentation, notations and terminologies used in this paper are
prior defined as follows.

Definition I : GEN_BLOCK redistribution on one dimension array A[1:N] over P
processors. The source processor is denoted as SP;, the destination processor is de-

noted as DP;, where 0 £ i, j £ P-1.

Definition 2 : The time of redistribution separator the time of startup is denoted as t;,
and the time of communication is denoted as t.mm.

Definition 3 © To satisfy the condition of the minimum steps and the processor
sends/receives one message at each steps, some messages can not be scheduled in the
same communication step are called conflict tuple [11].

Data redistribution implements have two methods: non-blocking scheduling algo-
rithm and blocking scheduling algorithm. The non-blocking scheduling algorithm is
faster than the blocking scheduling algorithm. But need more buffer and be better
control synchronization. In this paper, we discuss on blocking scheduling algorithm.

Irregular data redistribution is unlike regular has a cyclic message passing pattern.
Every message transmission link is not overlapping. Hence, the total number of mes-

sage links N is numprocs < N < 2Xnumprocs —1, where numprocs is the num-

ber of processors. Figure 1 shows an example of redistributing two GEN_BLOCK
distributions on an array A[1:101]. The communications between source and destina-
tion processor sets are depicted in Figure 2. There are totally fifteen communication
messages, mj, m,, m;..., mys among processors involved in the redistribution. In this
example, {m,, mz, my} is a conflict tuple since they have common source processor
SPy; {m;, mg, me} is also a conflict point because of the common destination proces-
sor DP,. The maximum degree in the example is equal to 3. Figure 3 shows a simple
schedule for this example

Source distribution

Source Processor

SP SP, SP, SP, | SP; SP, SPs SP; SP,

Size 12 20 15 14 11 9 9 11

Destination distribution

Destination Processor

DP DP, | DP, | DP, | DP; | DP, | DP; | DP, | DP,

Size 17 10 13 6 17 12 11 15

Fig. 1. An example of distributions

104 K.-M. Yu et al.

Sp, SP, SP, SP; SP, SPs SP¢ SP;

DP, DP, DP, DP; DP, DPs DP; DP,

Fig. 2. The communications between source and destination processor sets

Schedule Table
Step 1 m, Ms Mg My, My
Step 2 m; m3 mMe Mg My; Mys
Step 3 my my; My My3

Fig. 3. A simple schedule

3.1 Explicit Conflict Point and Implicit Conflict Point

The total communication time of a message passing operation using two parameters:
the startup time t; and the unit data transmission time t,,,. The startup time is once

for each communication event and is independent of the message size to be communi-
cated. The data transmission time is relationship of a message size, size(m). The
communication time of one communication step is the maximum of the message in
this step. The total communication time of all steps is summary of each the communi-
cation time of step. The length of these steps determines the data transmission over-
heads. The minimum step is equal to maximum degree k, when message can not put
into any step of minimum step it must relate to the processor has maximum degree
transmission links. Figure 4 shows the maximum degree of figure 1. SP;, SP, and DP,
had maximum degree (K = 3) from messages m,~mg. Because of each one processor
can only send/receive at most one message to/from other processor in each communi-
cation step. First, we concentrate all processors which have maximum degree trans-
mission links messages. For the sake of simplicity, such messages are referred to as
“Maximum Degree Message Set” (MDMY) in the paper, as shown in figure 4. If the
messages in MDMSs can put into k steps with no conflict occur, other messages of
the processors’ degree less than maximum degree will be easier to put into the rest of
step without increasing the number of steps.

We say a message to be an explicit conflict point if it belongs to two MDMSs.
There exists at most one explicit conflict point between two MDMSs. In figure 4, m;
is a explicit conflict point since it belongs to two MDMSs {ms, mg, m;} and {m;, ms,
mo}. On the other hand, if two MDMSs do not contain the same message, but the

Contention-Free Communication Scheduling for Irregular Data Redistribution 105

neighbor MDMSs each has a message been sent by the same processor, or been re-
ceived by the same processor. We call this kind of message as an implicit conflict
point. As shown by figure 5, my and ms are contained by the different MDMSs. DP,
only receives my and ms two messages, so it can not form an MDMS. But m, and ms
are also owned by different MDMSs. Therefore, my is an implicit conflict point. Al-
though, ms is also covered by two MDMSs, but it is restricted by m,. Hence ms will
not cause conflict. Figure 7 depicts all MDMSs for the example shown in Figure 1.

My M3 My M5 Me|1M7|1Ng INg

Fig. 4. Maximum Degree Messages Set

M5 Mg 7jmMg Mo

1 2 4 3 1

Fig. 5. Example of explicit conflict point

4 Scheduling Algorithm

The main goal of irregular array distribution is to minimize communication step as
well as the total message size of steps. We select the smallest conflict points which
will really cause conflict to loose the schedule constraint and to minimize the total
message size of schedule.

Smallest conflict points algorithm consists of four parts:

(1) Pick out MDMSs from given data redistributed problem.

(2) Find out explicit conflict point and implicit conflict point. And schedule all the
conflict point into the same schedule step.

(3) Select messages on MDMSs in non-increasing order of message size. Schedule
message into similar message size of that step and keep the relation of each processor
send/receive at most one message to/from the processor. Repeat above process until
no MDMSs’ messages left.

(4) Schedule messages do not belong to MDMSs by non-increasing order of mes-
sage size. Repeat above process until no messages left.

From Figure 1, we can pick out four MDMSs, MDMS, = {m,, m3, my}, MDMS, =
{my, ms}, MDMS; = {ms, m¢, m;} and MDMS, = {m;, mg, my}, shown in Figure 8.
We schedule my; and m; into the same step. Then schedule those messages on

106 K.-M. Yu et al.

My M3 |14 |[1M5 (Mg 17

12 4 3 1 2

Fig. 6. Example of implicit conflict point

mj mp mp Myl Mg Mg My Mg Mg My My M2 M3 Mi4

Fig. 7. All MDMSs for the example in Figure 1

2 1Mz My|iMs Mg M7{1Mg Mg

Sll mg mj3 Mms
SQZ Mg My Mo
S3: my my

Fig. 8. Results of MDMSs for Figure 1

Si: mg m3 msm; mjs myomi
S2: mg My Mg M3 My
S3: mgmymyy

Fig. 9. The schedule obtained form SCPA

MDMSs by non-increasing order of message size as follows: mg, m3, ms, mg, My, M.
After that, we can schedule the rest messages that are not belong to any MDMSs by
non-increasing order of message size as follows: mj, m;s, my, mp, M3, My My.
Figure 9 shows the final schedule obtained form smallest conflict points algorithm.

5 Performance Evaluation and Analysis

To evaluate the performance of the proposed methods, we have implemented the
SCPA along with the divide-and-conquer algorithm [11]. The performance simula

Contention-Free Communication Scheduling for Irregular Data Redistribution 107

tion is discussed in two classes, even GEN_BLOCK and uneven GEN_BLOCK dis-
tributions. In even GEN_BLOCK distribution, each processor owns similar size of
data. Contrast to even distribution, few processors might be allocated grand volume of
data in uneven distribution. Since array elements could be centralized to some specific
processors, it is also possible for those processors to have the maximum degree of
communications.

The simulation program generates a set of random integer number as the size of
message. To correctly evaluate the performance of these two algorithms, both pro-
grams were written in the single program multiple data (SPMD) programming para-
digm with MPI code and executed on an SMP/Linux cluster consisted of 24 SMP
nodes. In the figures, “SCPA Better” represents the percentage of the number of

Event percentage (%)
[]
[eNe]

8 12 16 20 24
The number of processors

\ O The Sare Results ® SCPA Better B DCA Better

(@
100
S 90
o 80
7|
§ 60
50
8 a0
= 30 [
B 20
@ 10
0
1000 2000 3000 4000 5000
Total messages size
\E' The Sare Results ® SCPA Better T DCA Better

(b)

Fig. 10. The events percentage of computing time is plotted (a) with different number of proc-
essors and (b) with different of total messages size in 8 processors, on uneven data set

108 K.-M. Yu et al.

events that the SCPA has lower total steps of messages size than the divide-and-
conquer algorithm (DCA), while “DCA Better” gives the reverse situation. In the
uneven distribution, the size of message’s up-bound is set to (totalsize/numprocs)*1.5
and low-bound is set to (totalsize/numprocs)*0.3, where totalsize is total size of mes-
sages and numprocs is the size of processor. In the even distribution, the size of mes-
sage’s up-bound is set to (totalsize/numprocs)*1.3 and low-bound is set to low-bound
is (totalsize/numprocs)*0.7. The total messages size is 1M.

Figure 10 shows the simulation results of both the SCPA and the DCA with differ-
ent number of processors and total message size. We can observe that SCPA has bet-
ter performance on uneven data redistribution compared with DCA.

Since the data is concentrated in the even case, from figure 11, we can observe that
SCPA have the better performance compared with uneven case. Figure 11 also

Event percentage (%)
SNWAOON ®O© O
[eNoNeoNoNoNeoNoloNoNoNo]

8 12 16 20 24
The number of pr r
O The Same Results ® SCPA Better B DCA Better

(a)

100

90
80
70
60
50
40
30
20
10

10000 20000 30000 40000 50000
Total message size

\ O The Sare Results ® SCPA Beter U DCA Better

(b)

Event percentage (%)

Fig. 11. The events percentage of computing time is plotted (a) with different number of proc-
essors and (b) with different of total messages size in 8 processors, on even data set

Contention-Free Communication Scheduling for Irregular Data Redistribution 109

illustrates that SCPA has at least 85% supreme than DCA in any size of total mes-
sages and any number of processors In both even and uneven case, SCPA performs
slightly better than DCA.

6 Conclusion

In this paper, we have presented an efficient scheduling algorithm, smallest conflict
points algorithm (SCPA), for irregular data distribution. The algorithm can effectively
reduce communication time in the process of data redistribution. Smallest-conflict-
points algorithm is not only an optimal algorithm in the term of minimal number of
steps, but also a near optimal algorithm satisfied the condition of minimal message
size of total steps. Effectiveness of the proposed methods not only avoids node con-
tention but also shortens the overall communication length.

For verifying the performance of our proposed algorithm, we have implemented
SCPA as well as the divide-and-conquer redistribution algorithm. The experimental
results show improvement of communication costs and high practicability on different
processor hierarchy. Also, the experimental results indicate that both of them have
good performance on GEN_BLOCK redistribution. But also both have advantages
and disadvantages. In many situations, SCPA has better than the divide-and-conquer
redistribution algorithm.

References

1. Minyi Guo, “Communication Generation for Irregular Codes,” The Journal of
Supercomputing, vol. 25, no. 3, pp. 199-214, 2003.

2. Minyi Guo, I. Nakata and Y. Yamashita, “Contention-Free Communication Scheduling for
Array Redistribution,” Parallel Computing, vol. 26, no.8, pp. 1325-1343, 2000.

3. Minyi Guo, I. Nakata and Y. Yamashita, “An Efficient Data Distribution Technique for
Distributed Memory Parallel Computers,” JSPP'97, pp.189-196, 1997.

4. Minyi Guo, Yi Pan and Zhen Liu, “Symbolic Communication Set Generation for Irregular
Parallel Applications,” The Journal of Supercomputing, vol. 25, pp. 199-214, 2003.

5. S. Lee, H. Yook, M. Koo and M. Park, “Processor reordering algorithms toward efficient
GEN_BLOCK redistribution,” Proceedings of the ACM symposium on Applied comput-
ing, pp. 539-543, 2001.

6. Ching-Hsien Hsu, Kun-Ming Yu, Chi-Hsiu Chen, Chang Wu Yu, and Chiu Kuo Liang,
"Optimal Processor Replacement for Efficient Communication of Runtime Data Redistri-
bution," Lecture Notes in Computer Science (ISPA’04), Vol. 3358, pp. 268-273, Dec.
2004.

7. C.-H Hsu, Dong-Lin Yang, Yeh-Ching Chung and Chyi-Ren Dow, “A Generalized Proc-
essor Mapping Technique for Array Redistribution,” IEEE Transactions on Parallel and
Distributed Systems, vol. 12, vol. 7, pp. 743-757, July 2001.

8. S. Ramaswamy, B. Simons, and P. Banerjee, “Optimization for Efficient Data redistribu-
tion on Distributed Memory Multicomputers,” Journal of Parallel and Distributed Comput-
ing, vol. 38, pp. 217-228, 1996.

110

10.

11.

12.

K.-M. Yu et al.

Akiyoshi Wakatani and Michael Wolfe, “Optimization of Data redistribution for Distrib-
uted Memory Multicomputers,” short communication, Parallel Computing, vol. 21, no. 9,
pp. 1485-1490, September 1995.

Hui Wang, Minyi Guo and Wenxi Chen, “An Efficient Algorithm for Irregular Redistribu-
tion in Parallelizing Compilers,” Proceedings of 2003 International Symposium on Parallel
and Distributed Processing with Applications, LNCS 2745, 2003.

Hui Wang, Minyi Guo and Daming Wei, "Divide-and-conquer Algorithm for Irregular
Redistributions in Parallelizing Compilers”, The Journal of Supercomputing, vol. 29, no.
2, pp. 157-170, 2004.

H.-G. Yook and Myung-Soon Park, “Scheduling GEN_BLOCK Array Redistribution,”
Proceedings of the IASTED International Conference Parallel and Distributed Computing
and Systems, November, 1999.

Sy 1 SN a a1 2 . 1 =4 1 1 n s 2 2 ¢
mEH P RES e, Mot v R RGNS, B

TaLEg K
F B me 4 f Ty AT
g

oo E k

! yu@chu.edu.tw, {b9102042, b9004060, b9102004}@cc.chu.edu.tw,

jyzhou@pdlab.csie.chu.edu.tw
2 cyulin@mx.nthu.edu.tw
3 cytang@cs.nthu.edu.tw

&

T T RIE S SRR R A AT E R LT
AFERDFTRE G F I ARG
#f#fi'“;f%% o™ o gt (Grid) &- faiE 2
BTERR E DGR R R T S E R R Pt’ﬁ.i#
RIS I TR BT um N Rk
ﬁgfﬁiﬁ'mgz&’liﬁiiﬁ fﬂé‘ﬁ‘k‘ﬁv*
o g mm%\ﬁ:}\ R (Cluster) FERBAE LN
ARl F IR R PR 0 Ty 43
Lo - ﬁ”erLmﬁPPhi Mzﬁ'lﬁp#ﬂl‘f'mfwi‘
Pl RS 2T E MR ERDF R
Boo B e TAPAE o R RREFE
AP R T T R AR TP A SRR
BRI ke rihe @ % T FFEFT LA
AR S bl B EAS s R R AR R R 2
W A Tt e £ B o

LIE E G

M4 TR G A, KRBT, RRE,
Globus Toolkit

1. @4
AFFRAFALARY PE RNV F R
iR & T ﬁi#ﬁéﬁ“mﬁiﬁﬁ M o iapggaEtd
v*fflg,ai ﬁfﬁ_i#ﬁ%fré\ 2304 - BELE

AL TV AL 53 R AL S AR
Ehd R R AL ALER 5

= oen
?'«/;°m"?

NP-hard -

" This word was supported in part by the NSC of
ROC, under grant NSC-93-2213-E-216-037 and
NSC-94-2213-E-216-028

2 57 eficAl Y 5 - B E & i)
i iffi»?;ﬁﬁ’ L mifia; & [5, 17] o fizfd®
BT R g - £ - B EE
77 1 #H(ultrametric tree) »

AemT @ - AR T T AR FUR
¥ ;2 (branch-and-bound) & * -] BE&LF * #F o iE
BT 7% 5 2 £ = & master-slave centralize ¢
HHL T2 der T fooninf T E SR E e
B e g o 0 R do | B B BEGE 1 TS D

RAL > @ IR AT R LR R o
VEE S ¥ S LT e K KRR AL

ARRAR S P B ARG E 4 2 -ﬂilz‘/$il—-r

b1z)il i N R SRR R AR F Rz s ol W - o
T - BEE m%} =X o ’457 A FT;L_ 1 f}l]L;*—’}f#‘
SURCEEY REE - STRLE el R A S e e

EAR R Y - AR A R MR A R R
PREEE G R E IR R E A

TP B, Fpt > B AL TAPEF PN FIER D
ORGP EF BAGLOT N AL T N B AE
Ay EToAPT R LB TR e RE DT
0 EPT Ry o

EETRT G AL RARE RS B
BEEE_ T ¥ P (scalability) R & H{ 4 ATen

AT ﬁuﬂ MEBEET n‘h’ﬁisé o ki
MTFEHEALAF AT PO R FEI RN
3#1‘%«{45?}@ PRRETSB AT FE RE B
T B {7 UG x| gk ik Bl ok
BB Fram Lo A é_]'é ®E RS G G g%
B R % [19] -
R B E NS ¢ A % ok E
S %zm‘L EFR AR A BT ET
ﬁ’a o I AR o Aefeni® t fr) Jﬁlﬁ. [kS

F:'F‘v%i{?};‘)ﬁ:&gaﬁvf&;@lf’r,ﬁ]‘gugw%ﬁﬂi&
EHRHBE S AT R EENTE [19] -
HY - BEBehe & % ,?»{@;q;?ﬁi o

FHnEE2 - o 2

il

e r R R P h

T FALLBEEE T R Lk
Feng d TR # % T 7 AST ARG 0 L E B

B A]gahg,v FoR pr TFiLHFE AR T
Five /g_‘g L U[Jvhr' MPI s 12 ‘-ﬂpéﬁi»\‘ f__\”.lg:
1 OIE A iF o

:1

Es R EROERE FHFIE
TR R e T
T i 2 E BT A naek
AR T AR ST BTN - R TS Y
ZREBRBE T IR AR HRESFYP VRN CH B
LT %—”3‘5;%%”@3‘ KOS R 8
ZFant o F il BRGNS TR B %

e B A Feho

.

gl

2. ¥ %
2.1 FEEFR A

pErmigt i Al Y - R E
BEGH (Y o 5 BEIH B S BK & M aw i -
3 [5, 13] > @ FEE I BHOEL L G K &
Bof b ES RS 2 pf LB B
TR B BN ST A R RREE TR
- BESE [4]-#3- B n*n dgpged M
i Rk b B RS 1Y By S A E gen
WHEE RS S o] dhe TG B EEF AT LR
Bl G A 7O R HE S B
[13] > #fre > S gEis - B2 4 & BT e

¥ enfial o

- o

] L

s S s 3 s e
- AN 7Y

BIL 2= 4 % % “Ud (BBT) [3]
4ol 1o A e de o B R AR A(N)
L£FDN mi‘aéﬂ g i Bl g 4 P miﬁéc ° F -
l_t:liﬂﬁ MEEF-HOET LW %D [6 7,
15] o d SN iEu BPAEAL A R % fEeh o IR T
%% pRAA T heuristic GF B E o BBl R o

UPGMA(Unweighted Pair Group Method with
Arithmetic mean) [17]# F- BRysgr k28

BEGH (* Beiig B 2 o

rie ¢ o A * Exact Algorithms for
Constructing Minimum branch-and-bound’s from
Distance Matrices [4]=% & /% 4 E&&’ Tz TS

ILO"_<+'5JZ'“’I§3*/’:\){ ,z-rrlﬁ\\l‘l‘t'p;ﬁ
 BEERIE Y e R o A -j\l | FEHL 1
Ko At 7 R S R

CEE R L TOPINE 315 3T ﬁAwﬁﬁﬁiﬁﬁ
Peehs Blde 0 AQ0) > 1021 5 A(25) > 1029 5 A(30)
> 1037 s E ap Y w1 AL R aR
EOREL R 2APOF o hAGmY Y R oK T
SSERUSERE R W12 AL RLY L
PR E - B R ST A %ﬁ
oo X At ¥4 ¢ 4 b 7 loading-balancing,
bounded = communication strategies % 41 > 1 3%
fe AR T o

22 R

7tk

B33 (cluster computing) &% % P % cf
BT RIE Rk FR G g2 A PT K
ApED BN PR E W R F AL
FRERAER A RS TS R0 T R KR
i s W G I mﬁ: deid Pl ks e Ao B
Fivr > MR ¥ 5 LD R T i eh
Be® A2 Eik a6 BT SR FRFGE B
TEE LSRG RERY R E a2 PR AL
MPI¢f§§;F"¥1 AT (7 A A KR

REE AT S LT S

&*#Bé ok EETRLAR

= 9 HedF T e v e A e

il ThEkE - @H'Jm% Moo e B F

F2degt > B4 @ REIFRI AR P E T

WQ%’%HéWéJ{%%mp@éﬂﬁ e
AR ang A

23 pfE

I

N

B3+ 5 (Grid Computing) ¥ 3R 4§73 & 3
< ﬁ,L‘ in’.,’%f,li L‘l—”}’"’le)‘}}]zl/w\—‘ [AR
ok LA gl B TRzt et
r’?g_@_f?;(}]\ TP —- BFRF TiFE
%@@m%ﬁWﬁ%ﬁc

ERIETUBAAR - BTN R R
/);‘Iiﬁ*/i‘“ I R iﬁ\‘ % - B FFB'&‘E%"Q

AL R ,;B»«iu.,\fm R L
o B 3 gy ¥+ & SETI (Search For
xtraterrestrial Intelligence)@home v &+ +
LR PFerEE Y 4 febit
Fopt b 2 a1 dp eh A E 3

303
s

“Jﬁﬂ**\

2

o5
E=1)

{

o der G
ol 2 den B

y
RSN
“M

el g
§
%

1=

~

el

e =3 [T = e
a

F}t

gk R S F LG B L MR
ﬂé—'};l«l'“;f"\;fmfﬁ’?gﬁ’_%%"‘% EAEEFNW’B?”#
I IEA RS BT AT o

4 Globus Toolkit

Globus [8, 14, 2031 4% 2 ~ FiR# = ~ 3
LIRTE B TR R e TR B A
/__pm’fr',‘,j:p‘n—xg‘.;—y}% AR T B T L A

5 46T 5 #4170 GlobusToolkit» * % 724 244

3 A e RBHORT T Lo BF L ARl
GRRE N :‘1’1}@?’ #2.3% o Globus Toolkit I P& 3% & 1
'!”/\'Bz%é e TRV KRR L»‘E*L;F‘T'/u "Z\% &
g,rp‘, 7 5% o g2 B K { 7 4 d Globus Toolkit

¢oardk PR IR I g,ss:ﬁ’*ﬁsr‘ £ F R 2 4 g
RT3 PR (T EE £ o blde GRAM #t i iR g 120
%~ MDS #& & 3 3R A3 <0t 2~ GridFTP 4% &
TEA RO E >l 2GR * GS
% }_1‘%* B g 4R [20] -

% 1. GlobusToolkit #73# & PR 53

Service Name ¥

Resource managrment GRAM FRAFELFEIE

Communication Nexus H- & £ Ry

Security GSlI IRFE LT h® >R

Information MDS P FEANER L IRl

Health and status HBM EORESLE R R

Remote data access GASS BAAFFFT RG] GF 2 T FogREE

Executable management GEM BB R ER TR

Information GRIS HHFEFTIRRG G A4 R

GridFTP GridFTP |[H 5 it ~ & 2 > ™2 i 2 R B {54
BERERY o2 TR A ZE - ¥

25 MPICH-G2 R s R R At
ABAEE o UniGrid #-F & i@ * B4 5

MPI & 3t & @ i 4 & (Message Passing ¥z Az B2 1232 Globuso ¥ 7 § # B4

Interface) * 1#"? B message-passing programs e
FOUR A T FER - fGA#H API e b
¥ 4238 1 message-passing i EEE U &
Lig mf% Z_TCP/IP sockets § & & 4 & > 3| i
ST m*%mltux‘rgt’ & doie i
Globus PEF%e A% %5 B = Grid-enable MPI
r2 MPICH library 3 £ # > Nexus & il 3 jL#F -
GRAM JRi% % F il A fiefe GSI % % > 3% -
MPICH-G2 &_Grid-enable ™ MPI v.1.1 3 &
H et b feo v i % 5 Globus Toolkik(g
T e s & 2) dPRE o MPICH-G2 /3% i
E2 BT L B A F MPI gf25¢ - MPICH-G2
¢ p R ITE BT & lﬁlkléfﬁmléﬁg,’fr
poeEdd TCP ki 5 £ e L 85

B b EZ GG MPIR BEaml S8 TN 4 Bo

-

2.6 UniGrid

PR B g KL<

g3 250
TR o UniGrid £ B RPN = 97+ § 2 B R

PR %fv,ﬂ;mcpu RAM kiR E 5 «

Globus[8]#% - 7 4@ & * thia % > ¥ 1R
6 g ERAR LA F -0 N B el I o

i -

@ EIJ»‘M F[fjﬂ‘ 7R

'

1. & % Globus RSL (¥YFi
i)

ey
Fov g
(proxy, host, domain,
user information)

2. ﬁl =3 ,‘%}ig?\l

rLaupey
AV
(proxy, host, domain,
user information)

Check Host Alive

Create RSL 7 Globusrun, mpirun

Bl 2. UniGrid * &z 3% i A%

User Applications * MPI Applications Can be exe

*rassage Passing Library
(MPICH-G2) * Provide message passing an

B 3.UniGrid % fﬁg][z]
Grid Middleware
3. 4 sbBjobus Toolkit) St 3: Run UPCMVEfofyOrt st sisbrmission, sche

store its weight ip E)B)
Step 4: rovide secure access to ren
HAp b ozl adl = N8 A4 A2 while there is a node in BBT do

TR T O] EWEE LA g;‘ - Delete all nodes v from BBT if LB(v) , UB or all
P ZfAENERERT (7 /@Uﬁk&ﬂ@ﬂ%& ')éSét the children of v have been deleted.
Bk chdr N B E s ARV Y 4 f@@ﬁdﬁf’)ﬁk Select a node s in BBT, whose children has not
A been generated. Proyjde rprioritg/-based job qu

= Generate the children of s by usirg the brariching
31 Hwe i rule.

. If a better solution is obtained, then update UB.

b oo PREFANG System endwhie
UPGMA iz— #engcs 24w & % - (ld M)z = 3 «
A E iEf2-[4] @ #& 27 1% branch-and-bound 3% 32 TiFivL R ;,*V‘l‘?,‘%%li G2 & Globus Compat
b i f#7% A o B2 % branch-and-bound %
ERE R SR R ESUREE g ok 3 Xty 822541 % branch-and-bound 35 = r2)%
BERAEY G R R E - . bound kL EE BTN AIEF L LEFSIR

PR Network Fabric B p L e o T B EED 4 Ak B, o

b [e kst e e TR TR AR (8 T8 1 dnd MPICK
UPGMM 8 |- & 4= 4% < upper bound (UB) » Al B U C i e e N B by i pa g
¥ B is = branch-and-bound tree (BBT) 4r% iz ¥ °
* ¥ lower bound (LB) =+ p % e UB pEsed ljwﬁ; R AT A E AR g b s S A
p gﬁg&,,gﬁw_ ,@,;_%_zlg_ﬁg—g:_ ,EL’:%_L;;,:E,J UB Jal .
e p e UB MpFRR AT B FIYT g&:ﬁﬁmgi;{ e
B Bfs o RES] T E AP T E Renfg o H MFAEHE A BP BRI EE LT E

3

i
B R AT L B R GEE B BRI T o AR B 0 G

L BT 7 RJLenTh it 0 & R B > B
Algorithm BBU £ T 7> F Jf 4 + 4o Global Pools ~ Local Pools ~
Input: An n £n distance matrix M. ERHREBESRT T EI RGP T
Output: The minimum ultrametric tree for M. fro TP APLTREMRISEIE S AL - B

R KRR h b PR g - Bl T MBS
Step 1: Relabel the species such that (1, 2.....n) isa ES L A S I S S R 3 X

maxmin permutation.
Step 2: Create the root v of the BBT such that v
represents the only topology with leaves 1 and 2.

R A EGY AR (A e R R B3 B R
¥ 90 F d i A e en A4 master kA fiee

g fi?}?ﬁjﬁ:eip - ALk EE UL L

%&ﬁﬁwﬂéﬁlmmﬂ %ﬁﬁﬁfJgdwﬂ{
BFALGA e R AR - B el A e @ AR
i\zﬁmﬁﬂf"‘*% I\:'JsPFIF’L’fJFl‘}—' ﬁ,;#p;}ﬁjﬁsﬁgé‘ ;u

f}”#p mkg Z Fn AE B ZE R ﬁ?:
Ao F g f T EE e 5 P 3t eh (centralized)
L ek (decentralized) [8]- & ¢ st enf o e
T - SHERA (FREH) Kups > 56
$%%d*?ﬁ%i§ﬂ$%éed%ﬂ$%i
AT FORLR dofe A feo AR $ A S5 4 2 gra] £
dOH BT AP R - kg
Fle— Ak B¢ ‘\m"z‘fﬁ-;bzar q 4Fenf ?l
7 'a? ? & gL 'jff'LE"'TP & Bherute By A F
- B s kAo BT 7GR ’%

‘\‘mﬁ i\"l f?ﬁ ¥] & 'E'I“’ Ql:—-&-mxi_vﬁ.—ﬁ 3Tae H

o

[

Input: An * n distance matrix M
Output: The minimum ultrametric trees

Step 1: Master computing node re-label the species
such that feasible maxmin permutation.

Step 2: Master computing node creates the root of the
BBT.

Step 3: Master computing node run UPGMA and
using the result as the initial UB (upper bound).

Step 4: Master computing node branches the BBT
until the branched BBT reach 2 times of total nodes
in the computing environment.

Step 5: Master computing node broadcasts the global
UB and send the sorted matrix the nodes cyclically.

Step 6:
while number of UTs in LP (Local Pools) > 0 or
number of UTs in GP (Global Pools) > 0 do
if number of UTs in LP =0 then
if number of UTs in GP <> 0 then
receive UTs from GP
end if
end if
v = get the tree for branch using DFS
if LowerBound(v) > UB then
continue
end if
insert next species to v and branch it
if v branched completed then
if Cost(v) < UB then
update the GUB (Global Upper
Bound) to every nodes
add the v to results set
end if
end if
if number of UTs in GP = 0 then
send the last UT in sorted LP to GP
end if
end while

Step 7: Gather all solutions from each node and
output it.

4, BB %
41 BHBEE LR

GF SRR > ARy H
BT s o M3 E BT Nk Sdrdk
2 ERFEHEZEB & * o UniGrid % 3t -

4+:a55;§,:;y§e y 2\ ’I’B#“ 4#;_}“;;;—]{,#,]&? 3
B e dy o iﬁ'lif?wfégcﬁ 12-14-16~18~20~22 -

3 ﬁéﬁﬁ:ﬁ 7 10 X /F’J\ué‘ﬁ F oo AP R
10 g A ulped i~ T~ bof R K
N3 i%“ﬁwuﬂw FE AR AT A L TP

-#HEFE

% 2. FHRER

H
Fed2 B P 1
%5 PEARTELR kT
A REE A AMD 2000+ + 2GB DDR RAM
eI B P 16
%5 PEAFTESNRTRE
A RYE AMD 2000+ ~ 1GB DDR RAM
R
S F P 12
%5 FppERyEF%T 5
AR % AMD 1.3G - 2GB DDR RAM
B 4
&5 Ra A FFranitE9k:
AMD MP 2000+ ‘2 ~ 512MB DDR
AR RAM’2

drd 3 2B 4 A B LEHEAERY mloni
S APT IR F P EED B E PR
SAREHH A D AR L TR A HEEET

FER S B A5 R KA R

£ 3. ¢ BRI R

page | E$ | EpTw | e
12 0.113313 0.146947 0.130881
14 2.936615 0.889956 1.180245
16 36.1053 29.2515 11.6873
18 1003.268 3245231 332.807
20 138.684 157.6269 99.2526
22 9873.82 5911.42 2625.637

Flid Ul ila i)
12000
10000
= 8000 [— — jiE /
= 6000 — AT
74000 _ /
2000 F [A/
0 —= " r T A L
12 14 16 18 2
prEgE
Bl 4 ¢ gcpF Rt RE
% 4 NZ @5 LT¥LEmER; A5 Uz
rﬁ;] 6 ,:nﬁ’»é_;‘l'FE;_Fﬂ l:‘)l[})fﬂkl'ﬁlvi\«]]’a—‘u ﬁ*‘

TP EER Y AR A EER TR T
W (AR EAR AL FORAR R A A g iE
BY PP EERRIAPAL
F]v‘ OV OUBRRD R F ik p S £

#E@ 23 migéc o

104, T yodcpE LR

LS S Ry

i

pidn | B | EpTw | wi
12 0.344878 | 0.166051 | 0.236581
14 4199103 | 7.537349 | 7.390265
16 390.8962 | 207.8525 | 58.34718
18 2598.467 | 983.583 | 1031.805
20 1114.028 | 4705.797 | 249.0695
22 9873.82 | 5911.42 | 2625637
12000 - TR
S 7
iy 8000 /
= 6000 [=%t
B o
o 2 L
2 14 16 18 20 2
P
Bl 5. T 35dpF I i p
105, B RREER O Rk
padn | E$ | EBRw | mR
12 0.785476 | 0.395494 | 0.927229
14 303.738 | 40.4603 | 35.1285
16 1387.6 | 911.781 | 203.611
18 9339.67 | 4327.96 | 4606.76
20 5009.17 | 250641 | 1028.86
22 9873.82 | 591142 | 5068.7

L

— A

30000

£ 20000 [s
e Eiil
& 10000 0
O 1 1 1

2 14 16 18 20 2
PrEgt
B 6. Bk pr]

42 3% %3t

AR PP e s T iad s RL
Rk e d BA P R NSEE S fEEP H 4
FEARR AR Eotii b E > BB G2
Peormivhed o 2 F T 0 R R AT
]&’]té,—&—;-,'}‘]?]éq**ﬂ/f_s‘i *ﬁ lgﬁxm%sﬁz”ﬁ
B Hatal BB R R E N e o (e g
RoRGFHLGET B LTI A% ATRY g
&?%a%ﬁ%ﬁ%@*ﬁ?%a%io

Bt BB EH A g 0w B2
*ﬁgﬂﬁ“ﬁ”&mw§%ﬁﬁ#%"“ﬁﬁ
Bk et F R ek 2
FrEBTG - LB TEmE S 16 AL E 0 7]
PoRFRB S R F AL RIEAS AR L
RH LE S am B ARy g0 {f sek ot Tk
IR B o

SEILA B e T F (aE 2 AR R
RS KR e A 10 B ke 20 G
HL D FHREFLEGCICR T FREEFR
ERAE A o ok AP DS BEECR 0 3 E Tt
M REETNE T - B LRk R 24
SR PPTIRATE SR T T 16 58k -

A o Sl 5 8
UnIGI‘Id,T*q\BS?L‘ Ep = hwﬂgui Wmiifbﬁé
R er - S gk S EE o
LTRSS LT gﬁfﬁﬁ;gggﬁq
P 6§ TIREY FHF BT HMa i
%«E@m;tfyué}ﬁom;z. lgaspm,ﬁﬁ’)bf#%‘
BEEWT O BHRRT L G F o

EAPTRTARE - FRAEKE AR
F A (B R BT mf@@z
EFRTNTRT Lo Aok B - BR X
R
£

"2

M

b
£ >
1

Fam*

v
! ¥

L E A hpER A i T
g s H 3 e R

\-\w#;m
3¢wﬁ

N
£
PR

26 FET B Ry 2 RSB R
FoBE T 16 | 16 o 2h| etk 24 ok
1 1629 1652.96 885.517
2 10273 10691.6 6838.49
3 750 764.104 750.752
4 561 566.25 458.426
5 249 258.197 256.616
6 199 199.96 148.454
7 54 57.693 83.55
8 126 128.596 110.922
12000
10000 /"\ T ——
g 8000 / \ -
= 6000 s
4000
2000 [
0 _
12 3 4 5 6 1 8
|
7. BB TR R 2 8B B
5 %%
R PR RATR Y DL E 1657 &
BH T o B B RREEET R

LB BHEAP R - T E TP B R R
PETHRATFIZEET NP IVETLE R AT
R SRR il o A kA PT Y B
2 ond g RS AP BT S tg B
ﬁ_ﬁ.miish °

A enp - R RN E LR gﬁwﬁ
m?ﬂs—’ﬂmm g e R Rk
Hi Pl ad Rt 2 07 % gk
il R

P E% e kiEE L ﬁﬁ#ﬁi“ﬁwﬁﬁﬁ%ﬁ*\

Fmﬁﬁﬁ!"/—#m; CF R KRB AEFE RS A
Jf)év__" B Ersg o e g Ak "*\"Feﬁz‘{ [
imlﬁ/ﬁ—;/f; ¥ APl P A éqr—»*,\;:
BRI ORI S SR 07
P %.L;? AP E faddy o T AR g
R QA R F Ak < TR gy R
Fenfkd o BB R BB S S a0 AR

EETT @SS

au@

/\-‘

$%¢%:

[1] 2 zk % ¥ (World Wide Grid) 3 & 4%
[2] Hewes BT S BRFOIH AR T ER

(3]
[4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

% %] @ 4 Introduction to Constructing
Introduction to Constructing Computational
Computational Grid Grid, % " %

Barry Wilkinson, Mlchael IIen, “Parallel
Programming”, P.H.
B.Y. Wu, KM. Chao, C.Y. Tang,

“Approximation and Exact Algorithms for
Constructing Minimum Ultrametric Tree from
Distance Matrices,” Journal of Combinatorial
Optimization 3, pp. 199-211

D. Gusfield, “Algorithms on Strings, Trees, and
Sequences, computer science and computational
biology,” Cambridge University Press, 1997

E. Dahlhaus, “Fast parallel recognition of
ultrametrics and tree metrics,” SIAM Journal on
Discrete Mathematics, 6(4):523-532, 1993

H.J. Bandelt, “Recognition of tree metrics,”
SiIAM Journal on Discrete Mathematics.,
3(1):1-6, 1990
The Globus Project: A Status Report. I. Foster,
C. Kesselman. Proc. IPPS/SPDP '98
Heterogeneous Computing Workshop, pp. 4-18,
1998.
The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. I. Foster, C. Kesselman, S.
Tuecke. International J. Supercomputer
Applications, 15(3), 2001.

The Nexus Approach to Integrating
Multithreading and Communication. I. Foster,
C. Kesselman, S. Tuecke, J. Journal of Parallel
and Distributed Computing, 37:70--82, 1996.

A Grid-Enabled MPI: Message Passing in
Heterogeneous Distributed Computing Systems.
I. Foster, N. Karonis. Proc. 1998 SC
Conference, November, 1998.
A Secure Communications Infrastructure for
High-Performance Distributed Computing. I.
Foster, N. Karonis, C. Kesselman, G. Koenig, S.
Tuecke. 6th IEEE Symp. on High-Performance
Distributed Computing, pp. 125-136, 1997.
M.D. Hendy and D. Penny,
“Branch-and-bound algorithms to determine
minimal evolutionary trees,” Mathematical
Biosciences, 59:277-290, 1982.
M. Frach, S. Kannan, and T. Warnow, “A
robust model for finding optimal evolutionary
trees,” Algorithmica, 13:155-179, 1995.
M. Krivanek, “The complexity of ultrametric
partitions on graphs,” Information Processing
Letter, 27(5):265-270, 1988.
Chuan Yi Tang, Solomon K.C. Wu, "Chee
Kane Chang, “A scalable Fully Distributed
Parallel Branch & Bound Algorithm on PVM
cluster”
W.H. Li and D. Graur,
Molecular Evolution,”
1991.
Yuji Shinano, “Kenichi Harada and Ryuichi
Hirabayashi,” Control Schemes in a
Generalized Utility for Parallel

“Foundomentals of
Sinauer Associates,

Branch-and-Bound Algorithms, Parallel
Processing Symposium, 1997. Proceedings.,
11th International , 1-5 Apr 1997, Page(s): 621
-627
[19] GridCafé (http://www2.twgrid.org/gridcafe)
[20] The Globus Project (http://www.globus.org/)

RS o R %‘f,{ﬁgpiwl I 4

St

a;:}:;' /'J\‘E{ ;,ta}f%’;r r]w},(!z:t A}g
Second International Symposium on Parallel and Distributed

Processing and Applications (ISPA'2004)

$ o OB T A KRR ot WA ¢ (ISPA 2004)>t & & 2004 & - - 7 L
Z PRt p AR iBE R ;ﬁvfi#i BREF AT EREEP106 T (74
TP L RE B2 oA L2 - BRI TG A B 5 7 Parallel Algorithms
and Systems I~11” ~” Data Mining and Management” -~ Distributed Algorithms and
Systems” ~ ” Fault Tolerant Protocols and Systems -~ ” Sensor Networks and
Protocols” ~ ”Cluster Systems and Applications” ~ 7 Grid Applications and
Systems” - “Peer-to-Peer and Ad-Hoc Networking” ~ ” Data Replication and
Caching ” ~ ” Software Engineering and Testing” ~ ” Grid Protocols” ~ ” Context-aware
and Mobile Computing” -~ Grid Scheduling and Algorithms I~ 11"~ Cluster Resource
Scheduling and Algorithms” ~ ” Distributed Routing and Switching Protocols | ~ 11" ~”
High Performance Processing and Applications” ~ * Security | ~ II” ~ Artificial
Intelligence Systems and Applications” ~ ” Networking and Protocols | ~ 1I” ~”
Hardware Architectures and Implementations” ~ ” High Performance Computing and
Architecture” 2z 2 ” Distributed Processing and Architecture ” -

T AR E e RS A RET A E AR08 S - B Rj4p3 %
A R R e T BER F Sk hE € 0 R 2 ﬁfﬁ'ﬁm Byfe % - &R
2003 & fp ~ € fv+ & (The University of Aizu)E 7 ; £ & & % = & » 2R
PEZ Eo R Bfre XL AT FREEY AR L R g Rom I EHT
#t LNCS y245% 7 (SCI Extend) » #fr2 ISPA © £.p # &L 7 EA$73- B4 5 48
ST ESREY SR E

o
A

o

\

4, ~
= 3}4\1 g Fi« T

GBI LAY L PRE 2 E KL R AR RS ETRR
AE ERA GBI X NE KRR AR = BHF2 T FEEATAER 2 B4
3¢ 2 (1). Present and Future Supercomputer Architectures”(2). "Challenges in P2P
Computing” (3). "Multihop Wireless Ad Hoc Networking: Current Challenges and
Future Opportunities” » 4 %] d Prof. Jack Dongarra -~ Prof. Lionel Ni 2 %2 Prof.
David B. Johnson &4 42 n& 4g4R 2 » T ;82 Hh2 2 4 W3 = X = BHFak
L 5217 0 A L 2%~ TOptimal Processor Mapping Scheme for Efficient
Communication of Data Realignment ;4% # % % - % &”Parallel Algorithms
and Systems I1”(Session 3A)2_ H=x 4 % » A A T ¥ EE P FFH 2 KRR o

PEEERG RAER R DEEF R P BA DT TP E ARG
O RPN AT A ;e»é‘f_-!zy\%c ‘X g RIFEEAKHY d gReEFERY T
NAPEE R PR Y BB G B AR 2 e B L 7

oxy

NIERZPFARS § 0 i ﬁUF’rsquq;gP;;;c’ F R e oo

1.~ ¢ &A%
2. Second International Symposium on Parallel and Distributed Processing and
Applications # 3¢ € # ~

