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摘要 

隨機幾何圖上有一個基本和重要的研究問題是：分析隨機幾何圖上子圖出現的次數。例

如，無線電網路 IEEE 802.11 CSMA/CA 通訊協定有兩個有名的問題： 隱藏節點問題和暴

露節點問題。這兩種問題都和精確估算隨機幾何圖上子圖出現的次數有關。本計劃首次有

系統地討論如何估算隨機幾何圖上某一特殊子圖出現次數的方法。首次嘗試精

確地估算隨機幾何圖上子圖出現的次數。將估算隨機幾何圖上子圖出現次數的

成果，運用於無線網路的分散式圖論演算法的設計上。同時討論邊界效應問題。 

Abstract 

This project undergoes quantitative analyses on fundamental properties of ad hoc networks 
including estimating the number of hidden-terminal pairs, the number of exposed-terminal sets, 
the number of neighboring nodes supporting triangle routes, and the extents of coverage and 
connectivity. To obtain these results, we propose a paradigm to systematically derive exact 
formulas for a great deal of subgraph probabilities of random geometric graphs. In contrast to 
previous work, which established asymptotic bounds or approximation, we obtain closed-form 
formulas that are fairly accurate and of practical value. 

Keywords: Ad hoc networks, sensor networks, analytical method, random geometric graphs, 
connectivity, coverage, performance evaluation, hidden terminal, exposed terminal, quantitative 
analysis 

1. Introduction 

A geometric graph G=(V, r) consists of nodes placed in 2-dimension space R2 and edge set 
E={(i, j)⏐d(i, j)≤r, where i, j∈V and d(i, j) denotes the Euclidian distance between node i and 
node j}. Let Χn={x1, x2, …, xn} be a set of independently and uniformly distributed random 
points. We use Ψ(Χn, r, A) to denote the random geometric graph (RGG) [29] of n nodes on Χn 
with radius r and placed in an area A. RGGs consider geometric graphs on random point 
configurations. Applications of RGGs include communications networks, classification, spatial 
statistics, epidemiology, astrophysics, and neural networks [29]. 

A RGG Ψ(Χn, r, A) is suitable to model an ad hoc network N=(n, r, A) consisting of n 
mobile devices with transmission radius r unit length that are independently and uniformly 
distributed at random in an area A. When each vertex in Ψ(Χn, r, A) represents a mobile device, 
each edge connecting two vertices represents a possible communication link as they are within 
the transmission range of each other. A random geometric graph and its representing network 
are shown in Figure 1. In the example, area A is a rectangle that is used to model the deployed 
area such as a meeting room. Area A, however, can be a circle, or any other shape, and even 
infinite space. 



 

Figure 1. (a) An ad hoc network N=(6, r, A), where A is a rectangle. (b) Its associated 
random geometric graph Ψ(Χ6, r, A). 

Many fundamental properties of ad hoc networks are related to subgraphs in RGGs. For 
example, the IEEE 802.11 CSMA/CA protocol suffers from the hidden and the exposed 
terminal problem [41, 45]. The hidden terminal problem is caused by concurrent transmissions 
of two nodes that cannot sense each other but transmit to the same destination. We call such two 
terminals a hidden-terminal pair. The existence of hidden-terminal pairs in an environment 
seriously results in garbled messages and increases communication delay, thus degrading 
system performance [24, 25, 45]. 

Quantitative analyses on specific subgraphs of a given RGG are of importance for 
understanding and evaluating the fundamental properties of MANETs. There is extensive 
literature on the subgraph probability of RGGs [29]. Penrose had shown that, for arbitrary 
feasible connected Γ with k vertices, the number of induced subgraphs isomorphic to Γ satisfies 
a Poisson limit theorem and a normal limit theorem [29]. To the best of our knowledge, 
previous related results are all asymptotic or approximate. 

In the project, we make the first attempt to propose a paradigm to systematically derive the 
exact formulas for a great deal of subgraph probabilities in RGGs. In contrast to previous 
asymptotic bounds or approximation, the closed-form formulas we derived are fairly accurate 
and of practical value. With the paradigm, we undergoes quantitative analyses on fundamental 
properties of ad hoc networks including the number of hidden-terminal pairs, the number of 
exposed-terminal sets, the number of neighboring nodes supporting triangle routes, and the 
extents of coverage and connectivity. 

Computing the probability of occurrence of RGG subgraphs is complicated by the 
assumption of finite plane. For example, one device in Figure 1 is deployed nearby the 
boundary of rectangle A so that its radio communication range (often modeled by a circle) is 
not properly contained in A. This is due to border effects, which complicate the derivation of 
closed formulas; therefore, previous discussions usually circumvent the border effects by using 
torus convection [1, 20]. Torus convention models the network topology in a way that nodes 
nearby the border are considered as being close to nodes at the opposite border and they are 
allowed to establish links. Most of the time, we adopt torus convention to deal with border 
effects in the report. However, we also obtain an exact formula for the single edge probability 
of RGGs when confronting the border effects. 

(a) (b)



The rest of this report is organized as follows. In Section 2, some definitions and notations 
are introduced. In Section 3, we briefly survey related results on RGGs. A method for 
computing the subgraph probability of RGGs with torus convention is presented in Section 4. 
Section 5 presents those derivations when confronting border effects. Finally, Section 6 
concludes the report. 

2. Definitions and notations 

A graph G=(V, E) consists of a finite nonempty vertex set V and edge set E of unordered 
pairs of distinct vertices of V. A graph G=(V, E) is labeled when the |V| vertices are 
distinguished from one another by names such as v1, v2, …, v|V|. Two labeled graphs G=(VG, EG) 
and H=(VH, EH) are identical, denoted by G=H if VG= VH and EG=EH. A graph H=(VH, EH) is a 
subgraph of G=(VG, EG) if VH⊆VG and EH⊆EG. Suppose that V′ is a nonempty subset of V. The 
subgraph of G=(V, E) whose vertex set is V′ and whose edge set is the set of those edges of G 
that have both ends in V′ is called the subgraph of G induced by V′, denoted by GV′. The size of 
any set S is denoted by |S|. The degree of a vertex v in graph G is the number of edge incident 

with v. The notation denotes the number of ways to select m from n distinct objects. ⎟⎟
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The subgraph probability of RGGs is defined as follows. Let Ω={G1, G2, …, Gk} represent 

every possible labeled graphs of Ψ(Χn, r, A), where k=2 . When Gx is a labeled subgraph in Ω, 

we use Pr(Gx) to denote the probability of the occurrence of Gx. Suppose S⊆V and T⊆V, we 

define Pr(Gs)= , when 1≤w≤k. 
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3. Related work in RGG 

To the best of our knowledge, previous results on RGGs are all asymptotic and approximate 
except [49, 50]. We summary related results as follows. 

A book written by Penrose [29] provides and explains the theory of random geometric graphs. 
Graph problems considered in the book include subgraph and component counts, vertex degrees, 
cliques and colorings, minimum degree, the largest component, partitioning problems, and 
connectivity and the number of components. 

For n points uniformly randomly distributed on a unit cube in d≥2 dimensions, Penrose [32] 
showed that the resulting geometric random graph G is k-connected and G has minimum degree 
k at the same time when n→∞. In [9, 10], Díaz et al. discussed many layout problems including 
minimum linear arrangement, cutwidth, sum cut, vertex separation, edge bisection, and vertex 
bisection in random geometric graphs. In [11], Díaz et al. considered the clique or chromatic 
number of random geometric graphs and their connectivity. 

Some results of RGGs can be applied to the connectivity problem of ad hoc networks. In 
[39], Santi and Blough discussed the connectivity problem of random geometric graphs Ψ(Χn, r, 
A), where A is a d-dimensional region with the same length size. In [1], Bettstetter investigated 
two fundamental characteristics of wireless networks: its minimum node degree and its 
k-connectivity. In [12], Dousse et al. obtained analytical expressions of the probability of 



connectivity in the one dimension case. In [18], Gupta and Kumar have shown that if 

r=
n

ncn
π

)(log + , then the resulting network is connected with high probability if and only if 

c(n)→∞. In [47], Xue and Kumar have shown that each node should be connected to Θ(log n) 
nearest neighbors in order that the overall network is connected.  

Recently, Yen and Yu have analyzed link probability, expected node degree, and expected 
coverage of MANETs [49]. In [48], Yang has obtained the limits of the number of subgraphs of 
a specified type which appear in a random graph. 

4. Computing subgraph probability 

In the section, we develop a paradigm for computing subgraph probability of RGGS. First of 
all, we are to prove that the occurrences of arbitrary two distinct edges in RGGs are 
independent in the next subsection. The property of edge independence greatly simplifies our 
further calculations. For simplicity, we always assume that A is sufficiently large to properly 
contain a circle with radius r in a Ψ(Χn, r, A) throughout the report; that implies πr2≤|A|. In the 
report, notation Ei (Ei′) denotes the event of the occurrence (absence) of edge ei. 

Since we adopt torus convention to avoid border effects in the section, single-edge 
probability in RGG is obtained trivially and listed below. 
Theorem 1: We have Pr(Ej)=πr2/|A|, for an arbitrary edge ej=(u, v) and u≠v, in a Ψ(Χn, r, A). 

4.1 Edge independence in RGGs 

The following theorem shows that the occurrences of arbitrary two distinct edges in RGGs 
are independent even if they share one end vertex. 
Theorem 2: For arbitrary two distinct edges ei=(u, v) and ej=(w, x) in a Ψ(Χn, r, A), we have 
Pr(EiEj)=Pr(Ei)Pr(Ej). 

Theorem 2 indicates that the occurrences of arbitrary two distinct edges in RGGs are 
independent. The result is somewhat difficult to be accepted as facts at first glance for some 
scholars. For example, Santi and Blough [39] claimed that the occurrences of two distinct edges 
e1=(u, v) and e2=(u, w) are correlated by observing that 

if  
S1: (d(u, v)<d(u, w)) 
then  
S2: (the existence of e2 (E2) implies the existence of e1 (E1)). 
In logical terms, the statement (if S1 then S2) is true under all its interpretations (that is, the 

statement is a tautology) [6]; however, that does not necessarily imply the truth of S2 and the 
conclusion that any two distinct edges are dependent. 

The falsity of their deduction can be proved by contradiction. Given four distinct nodes u, v, 
w, and x, the statement 

“If  
S3: (d(u, v)<d(w, x)) then  
S4: (the existence of e1=(w, x) implies the existence of e2= (u, v)).” 

is a tautology. Provided that Santi and Blough’s deduction is correct, we conclude that S4 is true. 



Consequently, the false statement “two independent edges (i.e. (w, x) and (u, v)) are dependent” 
were true. A contradiction occurs. 

Note that Theorem 2 does not imply that the occurrences of more than two edges in RGGs 
are also independent. In fact, we will show their dependence later. 

By Theorem 1 and 2, we obtain the probability of two-edge subgraphs immediately. 
Corollary 3: For arbitrary two distinct edges ei=(u, v) and ej=(w, x) in a Ψ(Χn, r, A), we have 

Pr(EiEj)= (πr2/|A|)2. 

4.2 Base subgraphs 

In this subsection, we consider eight labeled subgraphs with three vertices as base 
subgraphs, the probabilities of which will be used to compute the probability of larger 
subgraphs later. Based on the number of edges included, subgraphs of three vertices can be 
classified into four groups: a triangle (c3), an induced path of length two (p2), an edge with an 
isolated vertex (p1+I1), and three isolated vertices (I3) (See Figure 2). 

p2 p2 p2 c3 

p1+I1 I3 p1+I1 p1+I1  

Figure 2. Eight base subgraphs. 

To compute the probability of c3, we need the following lemma. If one of two equal-sized 
circles in the place contains the center of the other, we call them two properly intersecting 
circles. 
Lemma 4 [50]: The expected overlapped area of two properly intersecting circles with the same 

radius r is 2
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The following conditional probability is a consequence of Lemma 4. 
Lemma 5: For three distinct edges ei=(u, v), ej=(u, w), and ek=(v, w) in a Ψ(Χn, r, A), we have 

Pr(EiEj⎪Ek)= 2

4
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The probability of the first base subgraph c3 (triangle) can then be obtained. 
Theorem 6: For three distinct edges ei=(u, v), ej=(u, w), and ek=(v, w) in a Ψ(Χn, r, A), we have 

Pr(EiEjEk)= 4

4
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Next, we consider the subgraph of an edge with an isolated vertex (p1+I1). 
Theorem 7: For three distinct edges ei=(u, v), ej=(u, w), and ek=(v, w) in a Ψ(Χn, r, A), we have 

P(EiEj′Ek′)=
A
r 2π (1-

A
r 2π -

A4
33 r2), where u≠v≠w. 

 We have shown that the occurrences of two distinct edges in a Ψ(Χn, r, A) are independent 
(Theorem 2). The next theorem, however, shows that edge independence does not exist for 
subgraphs with three or more edges. 
Theorem 8: The occurrences of arbitrary three distinct edges in a Ψ(Χn, r, A) are dependent. 

The next base subgraph we considered is an induced path p2, which will be used to model 
a hidden-terminal pair. 
Theorem 9: For arbitrary three distinct edges ei=(u, v), ej=(u, w), and ek=(v, w) in a Ψ(Χn, r, A), 

we have Pr(EiEjEk′)= 4

4
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The last base subgraph we considered is I3. 
Theorem 10: For arbitrary three distinct edges ei=(u, v), ej=(u, w), and ek=(v, w) in a Ψ(Χn, r, A), 

we have Pr(Ei′Ej′Ek′)= 4
2

4
4
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−− , where u≠v≠w. 

5. Computing subgraph probability in the face of border effects 

In the section, we restrict the deployed area A to an l×m rectangle. We make an attempt to 
face border effects and obtain a closed-form formula of computing the single edge probability 
of RGGs. The results derived in the section will be used to measure the extent of coverage and 
connectivity of ad hoc networks later. 

For clarity, the main result and its corollaries are listed before their proofs. 
Theorem 11: Given a Ψ(Χn, r, A) and an l×m rectangle A, the single edge probability 

considering border effects is 22
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Corollary 12: The average (expected) degree of a vertex in a Ψ(Χn, r, A) considering border 

effects is (n-1)×( 22
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), where A is an l×m rectangle. 

Corollary 13: The expected edge number of a Ψ(Χn, r, A) considering border effects is 

(
2

)1( −nn )×( 22
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), where A is an l×m rectangle. 

 To obtain these results, we first derive some necessary lemmas. Let Χn={x1, x2, …, xn} be a 
set of independently and uniformly distributed random points in a given Ψ(Χn, r, A), where 
xi=(Xi, Yi) and 0≤Xi≤l and 0≤Yi≤m, for 1≤i≤n. Clearly, Xi’s (and Yi’s) are independent, 
identically distributed random variables with probability density function (p.d.f.) f(x)=1/l 
(g(y)=1/m) over the range [0, l] ([0, m]). 
Lemma 14: Given a Ψ(Χn, r, A) and any two distinct nodes xi=(Xi, Yi) and xj=(Xj, Yj), we have 



Pr[⎪Xi-Xj⎪≤z]= 2

2 2
l

lzz +−  and Pr[⎪Yi-Yj⎪≤w]= 2

2 2
m

mww +− where 0≤z≤l and 0≤w≤m. 

Lemma 16: Given a Ψ(Χn, r, A) and any two distinct nodes xi=(Xi, Yi) and xj=(Xj, Yj), we have 

that: (1) the p.d.f. of (Xi-Xj)2 is f(u)= 2

2
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−

 where 0≤u≤l2, and (2) the p.d.f. of (Yi-Yj)2 is 

g(v)= 2
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Lemma 15 [43]: ∫ −
−
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1

sin −+− +c, where c is a constant. 

Finally, we prove the main theorem of the section as follows. 
Theorem 12: Given a Ψ(Χn, r, A) and an l×m rectangle A, the single edge probability 

is 22

23
3
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, when border effects are considered. 

We conclude that border effect does affect the value of the single edge probability of Ψ(Χn, 
r, A). If A is an l×m rectangle, the difference between the single edge probabilities with and 

without avoiding border effects (by adopting torus convention) is 22

4
2
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6. Conclusions 

We have proposed a paradigm for computing the subgraph probabilities of RGGs, and have 
shown its applications in finding fundamental properties of wireless networks. We are surprised 
at finding some interesting properties: 

1. The occurrences of two distinct edges in RGG are independent. 
2. The occurrences of three or more distinct edges in RGG are dependent. 
3. Probabilities of some specific subgraphs in RGG can be estimated accurately. 

Many interesting subgraph probabilities and their applications in MANETs are still 
uncovered. For example, we are now interested in accurately estimating the diameter of RGGs. 
We also believe that the techniques developed in the report can be exploited to conduct 
quantitative analysis on other fundamental properties of wireless ad hoc networks. 
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