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Il ~ Abstract

Many real-world optimization problems involve multiple incommensurable and often
competent objectives; these problems are known as multi-objective optimization problems
(MOOPs). Many MOOPs cannot satisfactorily be characterized by a single performance measure.
Due to the nature of trade-offs involved, MOOPs seldom have a unique solution. Instead of
obtaining a single optimal solution, the ultimate goal of solving MOOPs is to find a complete set
of Pareto-optimal solutions. Recently, multi-objective evolutionary algorithms (MOEAS) have
been recognized to be well-suited for solving MOOPs because their abilities to exploit and
explore multiple solutions in parallel and to find a widespread set of non-dominated solutions in a
single run. Although MOEAs have been shown to be effective for solving many real-world
applications and exploring complex non-linear search spaces as efficient optimizers, but only a
few preliminary analysis based on selectorecombinative MOEAs and (1+1)MOEA have been
conducted in analyzing the population sizing and convergence time of MOEAs in solving
MOOPs.

The main topics of this project are to investigate the performances of MOEAS in solving
MOOPs with disequilibrium, and study the important factors that affect the convergence time and
population sizing of MOEAs. These models can provide practitioners guidance in choosing key
MOEAs parameters, and also assists MOEA practitioners to get maximum mileage on designing
their MOEASs. The results of this project have been published in several conference papers, and
their extended results have been submitted for the review of journals.

[11 ~ Background, Motivation, and Objectives

Multi-objective optimization problems (MOOPSs) are common in our real life. A MOOP has
a number of objective functions to be maximized or minimized. For example, consider the design
of a car. Generally, the cost of such systems is to be minimized, while maximum performance is



desired. Depending on conditions of the application, further objectives may be important such as
reliability and energy dissipation. Considering the design of a car, and assuming that the two
objectives cheapness (f1) and performance (f;) are to be maximized under speed constraints. Then,
an optimal design might be an architecture which achieves maximum performance at minimal
cost and does not violate the speed constraint. However, what makes MOOPs difficult is that a
solution may be optimal in an objective function, but bad in other objective functions. The
objectives are conflicting and cannot be optimized simultaneously. Instead, a satisfactory
trade-off has to be found. In the example of designing a car, cheapness (the inverse of cost) and
performance are generally competing. High-performance car architectures substantially increase
costs, while car architectures with cheap costs usually provide low performance. Depending on
the market requirements, an intermediate solution (medium performance, medium cost) may be
an appropriate trade-off for decision makers.

There are many industrial applications belong to MOOPs. Take a manufacturing factory for
another example, production planning have to consider routing optimization, equipment
optimization and machine optimization. Take an IC design application for an example, in the
layout processes of an IC, the floorplan process usually seeks to optimize two competing
objectives: area and routeability; and the result of the placement and routing depend on the result
of floorplanning.

Assume the multi-objective functions are to be minimized. Mathematically, MOOPs can be
represented as the following vector mathematical programming problems:

Minimize F(Y ) = {f,(Y ), f,(Y ), ..., f.(Y )}. (1)

where Y denotes a solution and fi(Y) is generally a nonlinear objective function. Pareto
dominance relationship and some related terminologies are introduced below. When the
following inequalities hold between two solutions Y; and Y», Y2 is a non-dominated solution and
is said to dominate Y1 (Y2 >Y3):

Vi fi(Y) > f(Y,) AF) () > f(Y,). ()

When the following inequality hold between two solutions Y; and Y,, Y, is said to weakly
dominate Y1 (Y2>Y1):

Vi () 2 f(Y,). 3)

A feasible solution Y * is said to be a Pareto-optimal solution if and only if there does not exist a
feasible solution Y where Y dominates Y *, and the corresponding vector of Pareto-optimal
solutions is called Pareto-optimal front.

The great success for evolutionary computation techniques, including evolutionary
programming (EP), evolutionary strategy (ES), genetic algorithm (GA), came in the 1980s when
extremely complex optimization problems from various disciplines were solved, thus facilitating
the undeniable breakthrough of evolutionary computation as a problem-solving methodology.
Inspired from the mechanisms of natural evolution, evolutionary algorithms (EAS) utilize a
collective learning process of a population of individuals. Descendants of individuals are
generated using randomized operations such as mutation and recombination. Mutation
corresponds to an erroneous self-replication of individuals, while recombination exchanges
information between two or more existing individuals. According to a fitness measure, the



selection process favors better individuals to reproduce more often than those that are relatively
worse. Specifically, GAs are used to illustrate the basic framework of EAs. GAs are stochastic,
population-based search and optimization algorithms loosely modeled after the paradigms of
evolution. GAs guide the search through the solution space by using natural selection and genetic
operators, such as crossover, mutation, and the like. EAs have been shown to be effective for
solving NP-hard problems and exploring complex non-linear search spaces as efficient optimizers.
The robust capability of EAs to find solutions to difficult problems has permitted them to become
a popular optimization and search technigue in many industries.

Recently, multi-objective evolutionary algorithms (MOEASs) have been recognized to be
well-suited for solving MOOPs because their abilities to exploit and explore multiple solutions in
parallel and to find a widespread set of non-dominated solutions in a single run. Several MOEAS
based on Pareto dominance relationship are proposed to solve MOOPs directly, and present more
promising results than single-objective optimization techniques theoretically and empirically. By
making use of Pareto dominance relationship, MOEAs are capable of performing fitness
assignment without using a weighted linear combination of all objectives.

The objectives of this project are to study the four important factors that affect the
performance of MOEAs and to discover the relationship of these factors with convergence time
and population sizing of MOEAs. By making uses of our results, we can further develop efficient
multi-objective evolutionary algorithms to solve real-world application more quickly and reliable.

IV ~ Results

The results of this project have been submitted for possible publication of a journal and
published in the following conference papers:

[1] J-H. Chen, Jian-Hung Chen, “Multi-objective Memetic Approach for Flexible Process
Sequencing Problems.” in Proceeding of 2008 ACM SIG-EVO Genetic and Evolutionary
Computation Conference (GECCO-2008), pp. 2123-2128. (El)

[2] Jian-Hung Chen, “Memetic Approach for Multi-objective Flexible Process Sequencing
Problems.” in Proceeding of 2008 WORLDCOMP Conference (WORLDCOMP-2008), pp.
248-254.

[3] C-W. Kang, Jian-Hung Chen, “Multi-objective Evolutionary Optimization of 3D
Differentiated Sensor Network Deployment.” in Proceeding of 2009 ACM SIG-EVO
Genetic and Evolutionary Computation Conference (GECCO-2009), pp. 2059-2064. (EI)

[4] C-W. Kang, Jian-Hung Chen, “An Evolutionary Approach of Multi-Objective 3D
Differentiated Sensor Network Deployment.” in Proceeding of 12th IEEE International
Conference on Computational Science and Engineering (CSE-09) ), pp. 187-193. (EI)

[5] C-H. Chen, Jian-Hung Chen, “A Multi-Objective Evolutionary Approach forCombined
Heat and Power Environmental/Economic Power Dispatch” in Proceeding of 2009
WORLDCOMP Conference (WORLDCOMP-2009).

[6] L.-C. Wei, C-W. Kang, Jian-Hung Chen, “A Force-Driven Evolutionary Approach
Optimization of 3D Differentiated Sensor Network Deployment.” in Proceeding of 2009
IEEE MASS Conference (MASS-2009) (El)
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ABSTRACT

This paper describes a multi-objective memetic approach for
solving multi-objective flexible process sequencing problems
in flexible manufacturing systems (FMSs). FMS can be de-
scribed as an integrated manufacturing system consisting of
machines, computers, robots, tools, and automated guided
vehicles (AGVs).FMSs usually pose complex problems on
process sequencing of operations among multiple parts. An
efficient multi-objective memetic algorithm with fitness in-
heritance mechanism is proposed to solve flexible process
problems (FPSs) with the consideration the machining time
of operations and machine workload load balancing. The
experimental results demonstrate that our approach can ef-
ficiently solve FPSs and fitness inheritance can speed up
the convergence speed of the proposed algorithm in solving
FPSs.

Categories and Subject Descriptors

J.6 [COMPUTER-AIDED ENGINEERING]: Computer-

aided manufacturing (CAM)

General Terms

Algorithms, Design, Performance

Keywords

process planning, flexible manufacturing systems, multi-objective

optimization, memetic algorithms, fitness inheritance

1. INTRODUCTION

Computer-aided process planning (CAPP) is an automated
system for preparation of a plan that specifies machines, ma-
chine conditions, operations, operation sequence, and tools
required to production these components. Traditionally, the
process sequencing has been solved by either the experience
of process planners or a fixed and static process plan con-
sisting of an ordered sequence of operations. However, the
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traditional mythologies are not suitable in real flexible en-
vironment, because the techniques have a few constraints in
order to cope with dynamic situations of the flexible environ-
ment [7]. Moreover, as the number of operations increase,
it poses more difficulties for decision makers to plan a cost-
effective process sequences for manufacturing.

In this paper, a memetic algorithm using fitness inher-
itance (MEFI) is proposed to solve multi-objective flexible
process sequencing problems (FPSs) having three objectives:
minimizing total machining time, maximum machine work-
load and machine workload unbalance. The proposed ap-
proach can obtain a set of non-dominated solutions for deci-
sion makers in a single run, without the necessary of problem
decomposition and relative preferences. Decision makers can
easily distinguish between the costs of different process se-
quences and choose more than one satisfactory process se-
quences at a time. Six benchmark problems with differ-
ent complexities are used to evaluate the performance of
the proposed approach. A multi-objective genetic algorithm
(MOGA) without local search and fitness inheritance is used
for performance comparisons. It is shown empirically that
MAFT outperforms MOGA in terms of the solution quality.

This paper is organized as follows: Section 2 presents the
background of process sequencing problems, multi-objective
evolutionary optimization. Section 3 introduces the setup
of flexible manufacturing system and the mathematical for-
mulation of FPSs. Section 4 presents the multi-objective
memetic algorithm for solving FPSs. Section 5 presents the
experimental analysis of the proposed algorithm, and Sec-
tion 6 summarizes our conclusions.

2. BACKGROUND

2.1 Process Sequencing Problems

Flexible process sequencing problems are well known among
the combinatorial optimization problems. Previous research
focused on two important key issues of process sequenc-
ing problems, described as follows. The first key issue is
the objective functions of process sequencing. Several ap-
proaches [4, 1] are proposed for process sequencing with
various objectives. Another key issue that arises recently
is the alternative process sequences. In the view of real time
scheduling, alternative process sequences provide additional
capability for the decision maker (DM) to cope with unpre-
dictable events such as machine failures or rush orders. From
the view of off-line scheduling, alternative process sequences
may be used to improve the schedule quality by reducing



the load on bottleneck machines [1]. It is essential but also
a challenge for DM to prepare a set of alternative process
sequences considering the trade-off between schedule qual-
ity and the costs of process sequences. However, traditional
techniques are not able to provide such flexibility for DM.

The above issues lead to flexible process sequencing prob-
lems (FPSs), which simultaneously considers alternative pro-
cess plans with multiple objectives and the flexibility of pro-
cess sequences. Over the past decade, a number of models
have been developed to solve the process sequencing prob-
lems, but only few models [1, 7] have been reported to design
the process sequencing problem considering the above issues.
To date, solving the problem of flexible process sequencing
with multiple objectives that are conflicting in nature is still
a hard task.

2.2 Multi-objective Evolutionary Optimization

Assume all the objective functions F), are to be mini-
mized. Mathematically, multi-objective optimization prob-
lems (MOOPs) can be represented as the following vector
mathematical programming problems:

F(X):{Fl(X)7F2(X)7'“7Fm(X)}7 (1)

where X denotes a solution and F, (X) is generally a nonlin-
ear objective function. When the following inequalities hold
between two solutions X; and Xo, X2 is a non-dominated
solution and is said to dominate X1(X2 = X1):

Minimize

VYm : Fm(X1) > Fm(X2) and 3n: F,(X1) > F.(X2). (2)

When the following inequality hold between two solutions
X1 and X», X» is said to weakly dominate X1 (X2 = X1):

®3)

A feasible solution X™ is said to be a Pareto-optimal solu-
tion if and only if there does not exist a feasible solution
X where X dominates X*. The corresponding vector of
Pareto-optimal solutions is called Pareto-optimal front.

By making use of Pareto dominance relationship, multi-
objective evolutionary algorithms (MOEAs) are capable of
performing the fitness assignment of multiple objectives with-
out using relative preferences of multiple objectives. Thus,
all the objective functions can be optimized simultaneously.
As a result, MOEA seems to be an alternative approach to
solving production planning and inspection planning prob-
lems on the assumption that no prior domain knowledge is
available.

3. PROBLEM STATEMENT
3.1 The FMS Environment

An FMS consists of a set of identical and/or complemen-
tary numerically controlled machines and tool systems. All
components are connected through an AGV system. Fig-
ure 1 shows the layout of a simple FMS with several ma-
chines, AGVs and a tool system.

In order to design the production planning of FMSs, the
environment within which the FMS under consideration op-
erates can be described below.

e The term machine is to describe a machine cell. A ma-
chine cell consists of several identical devices/machines.
The types and number of machines are known. There
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Figure 1: FMS with several machines, a coordinate
measuring machine (CMM), AGVs and a central
tool magazine.
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is a sufficient input/output buffer space at each ma-
chine.

A part type requires a number of operations. A number
of part types will be manufactured simultaneously in
batches. Parts can choose one or more machines at
each of their operation stages, and the transportation
of the parts within different machines is handled by an
AGYV system.

A machine can perform several types of operations,
and an operation can be performed on alternative ma-
chines.

A machine can only process an operation at one time.
Operations to be performed in the machine are non-
preemptive. Operation lot splitting is ignored in this
paper.

A process sequence is a series of machine indices cor-
responding to operations of all parts. Based on a pro-
cess sequence, each operation is operated on its corre-
sponding machine. An illustrative process sequence of
3 parts and 10 operations is presented in Figure 2, and
the operations are operated on 3 different machines.
An example of the series of machine indices to be op-
timized is Y=[1113122233].

Workload on each machine is contributed by those op-
erations assigned to a machine.

A load/unload (L/U) station serves as a distribution
center for parts not yet processed and as a collection
center for parts finished. All vehicles start from the
L/U station initially and return to there after accom-
plishing all their assignments. There are sufficient in-
put/output buffer spaces at the L/U station.

The number of AGVs is given and the transportation
time of AGVs are known. Some machines may not be
linked.

AGVs carry a limited number of products at a time.
They move along predetermined paths, with the as-
sumption of no delay because of congestion. Preemp-
tion of trips is not allowed.



e It is assumed that all the design, layout and set-up
issues within FMS have already been resolved.

Real-time issues, such as traffic control, congestion,
machine failure or downtime, scraps, rework, and ve-
hicle dispatches for battery changer are ignored here
and left as issues to be considered during real-time

control.

Part index 1 2 3
Operation index | 1234 (123|123
Process Sequence | 1113|122 (233
(Machine index)

Figure 2: A process sequence of 3 parts and 10 op-
erations, operated on 3 different machines. For ex-
ample, the operation 4 of the part 1 is assigned to
the machine 3.

3.2 Mathematical Formulation of FPSs
3.2.1 Notations

In order to formulate FPSs, the following notations are
introduced:

e i : part index, i =1,2,3,...,I.
e j : operation index for part i, j = 1,2,3, ..., J;.
k, l : machine index k,1 =1,2,3,..., K.

Y : process sequence.

pv; : production volume (unit) for part .

ptijk © processing time per unit to perform operation
j of part i using machine k.

)

e my : maximum workload of machine k.
e twy, : workload in machine k, twi = ptijr X pv;.
e rtwy : workload ratio in machine k, rtw; = i%]:
e cw : average workload of machines.
1, if part i is to transfer from machine k to I;
® Sipl:
Kl 0, otherwise.
1, if machine k is selected to perform
® Tijk : operation j of part i;
0, otherwise.
e abl : available capacity of AGV per trip, abl is set to

10 in this chapter.
N4k © the number of trips between machine k£ and [ for
part i,

pui
abl £

where the bracket represents a ceiling operation.

Nikl = Sikl X f
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e tmy; : transportation time from machine & to [. If ma-
chines k and [ are not linked, it is set to be a negative
value for constraint handling.

e t;;; : total transportation time between machines k
and [ for part i,

tikt = Mikr X tMmpg.

3.2.2  Objectives

There are three objectives to be optimized in flexible pro-
cess sequencing problems, described below.

1. Minimization of total flow time. This objective is to
minimize the processing time and transportation time
for producing the parts. The total machine processing
time (e1) is defined as Equation 4, the transportation
time (ez2) is defined as Equation 5, and the total flow
time (f1) is defined as Equation 6. Transportation
between unlinked machines are penalized in es.

I J K
=) PUi X Ptiji X Tijk, (4)
i=1 j=1 k=1
I Ji-1 K K
e2 = > Dtk X gk X Tigen,  (5)
i=1 j=1 k=1 i=1
fl = €1 —+ €2. (6)
2. Minimization of machine workload unbalance. Balanc-
ing the machine workload can avoid creating bottle-
neck machines. The objective function (f2) is defined
as Equation 7.
K
fo= Z(rtwk —ew)?. (7)
k=1
3. Minimization of greatest machine workload. Pursuing

this objective also implies attempting to minimize the
total flow time. The objective function (f3) is defined
as Equation 8.

(®)

f3 = maz{rtwy}.

3.2.3 Multi-objective Mathematical Model

The overall multi-objective mathematical model of FPSs
can be formulated as follows. Given the production vol-
ume pv;, the processing time pt;;x, the maximum workload
my, the available capacity of AGV per trip abl, the trans-
portation time ¢tmy; and the tool costs c;jx, find a series of
machine indices, Y, for operations of all parts such that

minimize fi1, fa, f3, 9)
subject to
K
k=1
tmkl 2 07 v(k7l)7 (11)
rtwg <1, Vi. (12)



The constraint, Equation 10, ensures that only one ma-
chine is selected for each operation of a part. Equation 11 en-
sures an AGV path exists between machines k and [. Equa-
tion 12 is to ensure the machine workload tw; is smaller or
equal to its maximum machine workload my.

If the total number of machines is z and the total number
of operations is y, then the complexity of the investigated
problem is O(zV).

4. MULTI-OBJECTIVE MEMETIC ALGO-
RITHM WITH FITNESS INHERITANCE
MEFI

4.1 Schemata-Guided Local Search Strategy

Based on schema theorem and the niche hypothesis [5],
a schemata-guided local search strategy is proposed to be
combined with MOGA for improving the convergence speed
to the Pareto-front. Extended from the niche hypothesis,
it is assumed that, given a MOOP with @ Pareto-optimal
solutions, ) Pareto-optimal solutions can be regarded as @
niches of the MOOP. In the worst case, to ensure MOEAs
is capable of searching @) Pareto-optimal solutions, it is as-
sumed that the population were divided into @ species (sub-
populations). Thus, each species is expect to optimize its
own niche (Pareto-optimal solution), as shown in Figure 3.
Therefore, the optimal schemata of a species is its Pareto-
optimal solution.

Let the schema of species be H, where the fixed positions
are the maximum common string of all individuals in its
species and the others are don’t care”(*). Since species are
in the same population, a schemata of a species may be
disrupted by schemata of the other species due to genetic
operators. The disruption between species can be further
classified into the following two types:

1. Species disrupt noise: The fixed schemata of Horigin
are altered to "don’t care” schemata by the correspond-
ing positions of the schemata Hoyiper. Thus, a species
requires more time for fixing it’s "don’t care” schemata.

2. Species hitchhiking noise: The "don’t care” schemata

of Hoyrigin are altered to fixed schema by the corre-
sponding positions of the schema Hother. If the altered
schemata are located in the similarity regions of their
optimal schemata, the change is good for the schemata
Horigin. On the contrary, the change is bad for the
schemata Horigin.

Based on the foregoing inference, it is desired that a species
should keep its good schemata (building blocks) while mak-
ing good efforts to alter its "don’t care” schemata to its
ideal optimal schemata. As results, a schemata-guided local
search strategy is proposed based on this guideline. Infor-
mation of fixed and ”don’t care” schemata in species are
utilized to guide local search. However, the key question of
this local search strategy is that how do we classify popula-
tion to different species when true Pareto-optimal solutions
of MOOPs are unknown. To deal with this question, it is as-
sumed that the best individuals in each objective functions
are the pioneers of each species. These pioneers will be used
to classify all individuals in population to different species.

Given a maximum local search times MazLS and a tem-
porary elite set E’, the procedure of the used schemata-
guided local search strategy is written as follows:

Figure 3: The population were divided into several
species, and each species optimizes its own niche
(Pareto-optimal solution).

Step 1: (Identification) Identify the best individuals By,q =

1,2,...,Q, in each objective from the current popula-
tion. For FPSs, Q=3.

Step 2: (Classification) Classify the current population into Q

species by the best solutions in each objective.

Step 3: (Schemata computation) For each species, compute its

schemata H,. Both fixed and "don’t care” schemata
are identified.

Step 4: (Parameter setting) Let ¢ = 1, counter = 0.

Step 5: (Perturbation) Perturb B, into a new solution By. Ac-

cording to Hy, apply the mutation operator only on
“don’t care” locations of B, with a mutation probabil-

Step 6: (Evaluation) Evaluate the objective functions of By.

Let counter = counter + 1.

Step 7: (Comparison) There is 3 cases in comparisons of By

and B;. Case 1: If By dominates By, and counter <
MazLS, go to Step 5. Case 2: If B, is dominated by
B/, replace B, by Bj. Case 3: If B; and B;, doesn’t
dominated each other. Stored Bj in a temporary elite

set F'.

Step 8: (Termination test) Let ¢ = g + 1 and counter=0, if

q>Q, stop the local search strategy. Otherwise, go to
Step 5.

4.2 Fitness Inheritance

An efficiency enhancement techniques called fitness inher-
itance [2] is used for speedup of MEFI. During the evolution
of EAs, the fitness of some proportion of individuals in the
subsequent population is inherited. This proportion is called
the inheritance proportion, p;.

Mathematically, for a multi-objective problem with z ob-
jective, the used fitness inheritance is defined as

wlfz,pl + w2fz,p2
w1 + w2

fz = (13)

where f, is the fitness value in objective z, wi, wa are the
weights for the two parents pi, p2, and fiz,p1), fiz,p2) is



the fitness values of p1,p2 in objective z, respectively. In
this paper, w1 and w2 are set to 1.

According the literature of fitness inheritance, the pop-
ulation size of FIEA should be bigger than the population
size used for MOGA, as shown in the following equation:

Npop,IWOGA
3
1—p;

4.3 MEFTI for solving FPSs

Npop,FIEA = (14)

4.3.1 Representation and Operators

A series of machine indices Y for operations of all parts
is directly encoded as a integer chromosome. The range of
each gene of Y is [1, K]. Each gene of Y stands for a machine
index.

The selection operator of MEFI uses a binary tourna-
ment selection which works as follows. Choose two indi-
viduals randomly from the population and copy the better
individual into the intermediate population. The one-point
crossover is used in MEFI. A simple mutation operator is
used to alter genes. For each gene, randomly generate a real
value from the range [0, 1] with the probability py,.

MEFT uses a generalized Pareto-based scale-independent
fitness function GPSIFF [6] by the following function:

F(X)

(15)

P—q+c

where p is the number of individuals which can be dominated
by the individual X, and ¢ is the number of individuals
which can dominate the individual X in the objective space.
¢ is the number of all participant individuals.

Based on the proposed chromosome representation, Equa-
tion 10 is always satisfied. If Equation 11 is violated, the
transportation time between machines k and [, tmg;, is set
to be a large value, 107, In this way, f» will be penalized.
For each machine k, if Equation 12 is not satisfied, one is
added to 7wk, as follows:

Ttwk = {

4.4 Procedure of MEFI

Since it has been recognized that the incorporation of
elitism may be useful in maintaining diversity and improv-
ing the performance of multi-objective EAs [3], MEFI se-
lects a number of elitists from an elite set E in the selection
step. The elite set E with capacity Fmqez maintains the best
non-dominated solutions generated so far. In addition, an
external set E with no capacity is used to store all the non-
dominated solutions ever generated so far. The procedure
of MEFT is written as follows:

twy
my, 7

t .
Yk 41, otherwise.
mi

if twg < my; (16)

Step 1: (Initialization) Randomly generate an initial popula-

tion of Npop individuals and create two empty elite
sets F, E and an empty temporary elite set E’.

Step 2: (Evaluation) For each individual Y in the population,

excluding the inherited individuals, compute the value
of objective functions f1(Y), f2(Y), and f3(Y).

Step 3: (Fitness assignment) Assign each individual a fitness

value by using GPSIFF.

Table 1: The parameter settings of MEFI and
MOGA.
Parameters MEFI MOGA
Npop 115 100
Enax 115 100
Ds 0.25 0.25
Di 0.5 N/A
De 0.6 0.6
DPm. 0.05 0.05
MazLS 3 N/A
Step 4: (Local search) Apply the proposed schemata-guided lo-

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:
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cal search strategy. Non-dominated solutions obtained
by the local search strategy will be stored in temporary
elite set F'.

(Update elite sets) Add the non-dominated individu-
als in both the population and E’ to E, and empty
E’. Considering all individuals in F, remove the dom-
inated ones in E. Add E to E, remove the dominated
ones in E. If the number of non-dominated individu-
als in E is larger than E,,., randomly discard excess
individuals.

(Selection) Select Npop — Nps individuals from the pop-
ulation using the binary tournament selection and ran-
domly select N, individuals from E to form a new
population, where Nps = Npop X ps and ps is a selec-
tion proportion. If N is greater than the number Ng
of individuals in E, let Nps = Ng.

(Recombination) Perform the one-point crossover op-
eration with a recombination probability p.

(Fitness inheritance) Perform fitness inheritance on
the selected Npop X pi individuals. The inherited ob-
jective values are calculated according to Equation 13.

(Mutation) Apply the mutation operator to each gene
in the individuals with a mutation probability p,,.

(Termination test) If a stopping condition is satisfied,
stop the algorithm and output FE. Otherwise, go to
Step 2.

5. RESULTS AND DISCUSSION

Six benchmark problems: m3010, m4020, m50100, m50200,
m100100 and m100200, where mzoy stands for the z ma-
chine and y operation problem. A MOGA, MEFI without
the local search strategy and fitness inheritance, is imple-
mented to solve FPSs as the baseline performance. The pa-
rameter settings of MEFI and MOGA are given in Table 1.
Thirty independent runs with the same number of function
evaluations 100xy were performed per test problems.

The coverage metric C'(A, B) of two solution sets A and
B [8] used to compare the performance of two corresponding
algorithms considering the six objectives:

_ H{a€Abe B,a > b}
1B ’
Fig. 4 depicts the coverage metrics of C(MEFI, MOGA)

and C(MOGA, MEFI) from 30 runs. In solving the small
problem m3010, Fig. 4 shows that the performance of MEFI

C(A, B) (17)
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Figure 4: Box plots based on the cover metric. (a)
C(MEFI, MOGA), (b) C(MOGA, MEFI).

and MOGA are almost the same. For another small prob-
lem m4020, the non-dominated solutions obtained by MEFI
dominates 80% of the solutions obtained by MOGA in aver-
age, while the non-dominated solutions obtained by MOGA
only dominates 60% of the non-dominated solutions obtained
by MEFTI in average. As the complexity of problems in-
creases, Fig. 4 shows that 80%-90% of the non-dominated
solutions obtained by MOGA are weakly dominated by the
non-dominated solutions obtained by MEFTI in solving the
problems m4020, m50100, m50200, m100100 and m100200.
On the contrast, the non-dominated solutions of MOGA
dominate nearly 3-10% of the non-dominated solutions ob-
tained by MEFI. Fig. 5 shows the non-dominated solutions
obtained by thirty runs of MEFI and MOGA in solving the
m100200 problem. The results indicate that MEFI can con-
verge to better solutions more quickly than MOGA. It re-
veals that the proposed schemata-guided local search strat-
egy and fitness inheritance plays an important role in obtain-
ing good solutions and accelerating the convergence speed.

6. CONCLUSION

In this paper, a novel approach to solve flexible process
sequencing problems using an multi-objective memetic al-
gorithm MEFT is proposed. A schemata-guided local search
strategy and fitness inheritance are integrated in the pro-
posed algorithm for enhancing the performance. Experimen-
tal results demonstrated that the quality of non-dominated
solutions obtained by MEFT is better than that of MOGA
in terms of convergence speed and accuracy using the same
number of function evaluations. While prior domain knowl-
edge for the decomposition of problems or relative prefer-
ences of multiple objectives are not available, the proposed
approach is an expedient method to solve flexible process
sequencing problems. Moreover, the proposed approach can
obtain a set of non-dominated solutions for decision mak-
ers in a single run. Decision makers can easily distinguish
between the costs of different process sequences and choose
more than one satisfactory process sequences at a time.
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Figure 5: The non-dominated solutions obtained by
MEFI and MOGA in solving the m100200 problem,
merged from 30 runs.
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Abstract—This paper describes a novel multi-objective
memetic algorithm for solving multi-objective flexible pro-
cess sequencing problems in flexible manufacturing systems
(FMSs). FMS can be described as an integrated manufacturing
system consisting of machines, computers, robots, tools, and
automated guided vehicles (AGVs). While FMSs give great
advantages through the flexibility, FMSs usually pose complex
problems on process sequencing of operations among multiple
parts. Considering the machining time of operations and
machine workload load balancing, the problem is formu-
lated as multi-objective flexible process sequencing problems
(FPSs). An efficient multi-objective memetic algorithm with
fitness inheritance mechanism is proposed to solve FPSs.
The experimental results demonstrate that our approach can
efficiently solve FPSs and fitness inheritance can speed up the
convergence speed of the proposed algorithm in solving FPSs.

Keywords—process planning, flexible manufacturing sys-
tems, multi-objective optimization, memetic algorithms, fitness
inheritance

1 Introduction

Computer-aided process planning (CAPP) is an automated
system for preparation of a plan that specifies machines,
machine conditions, operations, operation sequence, and tools
required to production these components [1]]. CAPP techniques
are being developed in an attempt to overcome some of
the problems occurring in manual process planning, such
as long turn around times, inconsistent routing or tooling,
non-uniqueness in cost and labor requirements and scarcity
of skilled process planners. During the past two decades,
a number of CAPP systems have been developed for the
automated planning and increased efficiency of process plan-
ning function. Traditionally, the process sequencing has been
solved by either the experience of process planners or a fixed
and static process plan consisting of an ordered sequence of
operations [2]. However, the traditional mythologies are not
suitable in real flexible environment, because the techniques
have a few constraints in order to cope with dynamic situations
of the flexible environment [3]]. Moreover, as the number of op-
erations increase, it poses more difficulties for decision makers
to plan a cost-effective process sequences for manufacturing.

In this paper, a memetic algorithm using fitness inheritance
(MAFI) is proposed to solve multi-objective flexible process

sequencing problems (FPSs) having three objectives: mini-
mizing total machining time, maximum machine workload
and machine workload unbalance. The fundamental difference
of the proposed approach from the traditional approaches is
that the problem decomposition and relative preferences are
not necessary. In addition, the proposed approach can obtain
a set of non-dominated solutions for decision makers in a
single run. Decision makers can easily distinguish between
the costs of different process sequences and choose more than
one satisfactory process sequences at a time. Six benchmark
problems with different complexities are used to evaluate
the performance of the proposed approach. A multi-objective
genetic algorithm (MOGA) without local search and fitness
inheritance is used for performance comparisons. It is shown
empirically that MAFI outperforms MOGA in terms of the
solution quality.

This paper is organized as follows: Section 2 presents the
background of process sequencing problems, multi-objective
optimization problems and evolutionary algorithms. Section
3 introduces the setup of flexible manufacturing system and
the mathematical formulation of FPSs. Section 4 presents the
multi-objective memetic algorithm for solving FPSs. Section 5
presents the experimental analysis of the proposed algorithm,
and Section 6 summarizes our conclusions.

2 Background

2.1 Process Sequencing Problems

Flexible process sequencing problems are well known
among the combinatorial optimization problems. Previous
research focused on two important key issues of process
sequencing problems, described as follows. The first key
issue is the objective functions of process sequencing. Sev-
eral approaches are proposed for process sequencing with
various objectives. For examples, Kusiak and Finke [2] have
developed a model for selecting a set of process plans with
the objective of minimizing the makespan. Bhaskaran [4]]
provided a model for minimizing the total machine time and
the total number of processing steps. Zhang and Huang [3]]
presented a fuzzy-based model for the selection of a set of
process plans considering the imprecise information of shop
floor. Furthermore, various heuristic approaches [6]] have been
proposed for minimizing the makespan.



Another key issue that arises recently is the alternative
process sequences. In the view of real time scheduling, al-
ternative process sequences provide additional capability for
the decision maker (DM) to cope with unpredictable events
such as machine failures or rush orders. From the view of off-
line scheduling, alternative process sequences may be used
to improve the schedule quality by reducing the load on
bottleneck machines [4]. Generally speaking, finding a set of
optimal alternative process sequences economically plays an
important role in solving the process sequencing problems.
However, it is easier to obtain the alternative process sequences
with single objective than that with multiple objectives. It
is because, simultaneous optimization of several incommen-
surable and conflicting objectives in nature is much more
complex and difficult. On the other hand, flexible process
sequencing with multiple objectives makes more practical
applications in the design phase of industrial manufacturing.
As a result, it is essential but also a challenge for DM to
prepare a set of alternative process sequences considering the
trade-off between schedule quality and the costs of process
sequences.

The above issues lead to flexible process sequencing prob-
lems (FPSs), which simultaneously considers alternative pro-
cess plans with multiple objectives and the flexibility of pro-
cess sequences. Over the past decade, a number of models have
been developed to solve the process sequencing problems, but
only few models [3l], [4] have been reported to design the
process sequencing problem considering the above issues. To
date, solving the problem of flexible process sequencing with
multiple objectives that are conflicting in nature is still a hard
task.

2.2 Multi-objective Evolutionary Optimization

Assume all the objective functions F,,, are to be mini-
mized. Mathematically, multi-objective optimization problems
(MOOPs) can be represented as the following vector mathe-
matical programming problems:

Minimize F(X)={F1(X),F(X),..,F.(X)}, (@)
where X denotes a solution and F,,,(X) is generally a nonlin-
ear objective function. When the following inequalities hold
between two solutions X; and Xs, X5 is a non-dominated
solution and is said to dominate X1(X5 = X1):

Ym : Fi(X1) > F(X2) and In: F,(X1) > F,(Xs).
2)
When the following inequality hold between two solutions X
and X5, X5 is said to weakly dominate X1(Xs = X1):

A feasible solution X* is said to be a Pareto-optimal solution
if and only if there does not exist a feasible solution X where
X dominates X *. The corresponding vector of Pareto-optimal
solutions is called Pareto-optimal front.

In the past few years, multi-objective evolutionary algo-
rithms (MOEAs) have been recognized to be well-suited for
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Fig. 1. FMS with several machines, a coordinate measuring
machine (CMM), AGVs and a central tool magazine.

solving MOOPs because their abilities to exploit and explore
multiple solutions in parallel and to find a widespread set
of non-dominated solutions in a single run [7]. By making
use of Pareto dominance relationship, MOEAs are capable of
performing the fitness assignment of multiple objectives with-
out using relative preferences of multiple objectives. Thus, all
the objective functions can be optimized simultaneously. One
of the recent growing areas in evolutionary algorithms (EAs)
research is memetic agorithms (MAs). MAs are population-
based meta-heuristic search methods inspired by Darwinian
principles of natural evolution and Dawkins notion of a meme
defined as a unit of cultural evolution that is capable of local
refinements [8]]. From an optimization point of view, MAs are
hybrid EAs that combine global and local search by using
an EA to perform exploration while the local search method
performs exploitation. Combining global and local search is
known as an efficient strategy in many successful optimization
approaches [9]], [10].

3 Problem Statement

The aim of flexible process sequencing is to develop a cost-
effective and operative process sequences for the assignments
of operation to machines over planning phases. With the
assignments of operations to machines, three optimization ob-
jectives: minimizing total machining time, machine workload
unbalance, and greatest machine workload are considered in
this paper.

3.1 The FMS Environment

An FMS consists of a set of identical and/or complementary
numerically controlled machines and tool systems. All compo-
nents are connected through an AGV system. Figure |1| shows
the layout of a simple FMS with several machines, AGVs and
a tool system.

In order to design the production planning of FMSs, the en-
vironment within which the FMS under consideration operates
can be described below.



Fig. 2.
operated on 3 different machines. For example, the operation
4 of the part 1 is assigned to the machine 3.

Part index 1 2 3
Operation index | 1234 (123|123
Process Sequence | 1113|122 (233
(Machine index)

A process sequence of 3 parts and 10 operations,

The term machine is to describe a machine cell. A ma-
chine cell consists of several identical devices/machines.
The types and number of machines are known. There is
a sufficient input/output buffer space at each machine.
A part type requires a number of operations. A number
of part types will be manufactured simultaneously in
batches. Parts can choose one or more machines at each
of their operation stages, and the transportation of the
parts within different machines is handled by an AGV
system.

A machine can perform several types of operations, and
an operation can be performed on alternative machines.
A machine can only process an operation at one time.
Operations to be performed in the machine are non-
preemptive. Operation lot splitting is ignored in this
paper.

A process sequence is a series of machine indices corre-
sponding to operations of all parts. Based on a process
sequence, each operation is operated on its corresponding
machine. An illustrative process sequence of 3 parts and
10 operations is presented in Figure 2, and the operations
are operated on 3 different machines. An example of the
series of machine indices to be optimized is Y=[ 1 1 1
31222331

Workload on each machine is contributed by those oper-
ations assigned to a machine.

A load/unload (L/U) station serves as a distribution
center for parts not yet processed and as a collection
center for parts finished. All vehicles start from the L/U
station initially and return to there after accomplishing all
their assignments. There are sufficient input/output buffer
spaces at the L/U station.

The number of AGVs is given and the transportation time
of AGVs are known. Some machines may not be linked.
AGVs carry a limited number of products at a time. They
move along predetermined paths, with the assumption of
no delay because of congestion. Preemption of trips is
not allowed.

It is assumed that all the design, layout and set-up issues
within FMS have already been resolved.

Real-time issues, such as traffic control, congestion, ma-
chine failure or downtime, scraps, rework, and vehicle
dispatches for battery changer are ignored here and left
as issues to be considered during real-time control.

3.2 Mathematical Formulation of FPSs

3.2.1 Notations: In order to formulate FPSs, the following

notations are introduced:

e ¢ :partindex,t=1,2,3,.. 1.
e j : operation index for part ¢, j = 1,2,3, ..., J;.
e k, [ : machine index k,l =1,2,3,..., K.
e Y : process sequence.
¢ pv; : production volume (unit) for part 7.
e ptiji © processing time per unit to perform operation j of
part ¢ using machine k.
e my : maximum workload of machine k.
e twy : workload in machine k, twy, = ptijz X pv;.
e rtwy : workload ratio in machine k, rtwy = t;l”—f
o ew : average workload of machines.
1, if part i is to transfer from machine k to /;

o Sikl - .
! 0, otherwise.
1, if machine k is selected to perform
o Tijk operation j of part i;

0, otherwise.
e abl : available capacity of AGV per trip, abl is set to 10
in this chapter.
e N, : the number of trips between machine k and [ for
part 1,

pv;
Nikl = Sikl X [aibﬂ’

where the bracket represents a ceiling operation.

e tmy; : transportation time from machine k£ to [. If
machines k£ and [ are not linked, it is set to be a negative
value for constraint handling.

o t;5; @ total transportation time between machines k and [
for part i,

tikt = Mikr X tMgy.

3.2.2 Objectives: There are three objectives to be optimized

in flexible process sequencing problems, described below.

1) Minimization of total flow time. This objective is to
minimize the processing time and transportation time for
producing the parts. The total machine processing time
(e1) is defined as Equation [4] the transportation time
(e2) is defined as Equation |5 and the total flow time
(f1) is defined as Equation @ Transportation between
unlinked machines are penalized in e,.

I J;

K
ey = ZZ ZP’Uz‘ X Pliji X Tijk, 4

i=1 j=1k=1

fi=e1 +eo. (6)

2) Minimization of machine workload unbalance. Balanc-
ing the machine workload can avoid creating bottleneck



machines. The objective function (f;) is defined as
Equation
K
fo= Z(rtwk — ew)?. (7)
k=1
3) Minimization of greatest machine workload. Pursuing
this objective also implies attempting to minimize the
total flow time. The objective function (f5) is defined
as Equation [§]

f3 = maz{rtwy}. (8)

3.2.3 Multi-objective Mathematical Model: The overall
multi-objective mathematical model of FPSs can be formulated
as follows. Given the production volume pv;, the processing
time pt;;1, the maximum workload my,, the available capacity
of AGV per trip abl, the transportation time tmy,; and the tool
costs ¢;;x, find a series of machine indices, Y, for operations
of all parts such that

minimize  fi, fa, fa, ©
subject to
K
k=1
tmy >0, V(k,1), (In
rtwg <1, Vi. (12)

The constraint, Equation [T0] ensures that only one machine
is selected for each operation of a part. Equation ensures
an AGV path exists between machines £ and /. Equation
is to ensure the machine workload twy, is smaller or equal to
its maximum machine workload my.

If the total number of machines is x and the total number
of operations is y, then the complexity of the investigated
problem is O(a¥).

4 Multi-objective Memetic Algorithm with Fit-
ness Inheritance MAFI

The proposed MAFI differs from MOGA in the local
search strategy and fitness inheritance. The used schemata-
guided local search strategy is presented in Section[d.1] Fitness
inheritance is summarized in Section 4.2] MAFI for solving
FPSs is presented in Section f.3] including the representation
of chromosomes, genetic operators, constraint handling, and
the procedure of MAFI.

4.1 Schemata-Guided Local Search Strategy

Based on schema theorem and the niche hypothesis [L1],
a schemata-guided local search strategy is proposed to be
combined with MOGA for improving the convergence speed
to the Pareto-front. Extended from the niche hypothesis, it is
assumed that, given a MOOP with () Pareto-optimal solutions,
@ Pareto-optimal solutions can be regarded as () niches of
the MOOP. In the worst case, to ensure MOEAs is capable

fl
Fig. 3. The population were divided into several species, and
each species optimizes its own niche (Pareto-optimal solution).

of searching () Pareto-optimal solutions, it is assumed that
the population were divided into () species (sub-populations).
Thus, each species is expect to optimize its own niche (Pareto-
optimal solution), as shown in Figure 3| Therefore, the optimal
schemata of a species is its Pareto-optimal solution.

Let the schema of species be H,, where the fixed positions
are the maximum common string of all individuals in its
species and the others are ’don’t care”(¥). Since species are in
the same population, a schemata of a species may be disrupted
by schemata of the other species due to genetic operators. The
disruption between species can be further classified into the
following two types:

1) Species disrupt noise: The fixed schemata of Hopigin
are altered to ”don’t care” schemata by the correspond-
ing positions of the schemata H,;... Thus, a species
requires more time for fixing it’s “don’t care” schemata.

2) Species hitchhiking noise: The ”don’t care” schemata
of Hypigin are altered to fixed schema by the corre-
sponding positions of the schema Hp.,. If the altered
schemata are located in the similarity regions of their
optimal schemata, the change is good for the schemata
Hrigin- On the contrary, the change is bad for the
schemata Hgip -

Based on the foregoing inference, it is desired that a species
should keep its good schemata (building blocks) while making
good efforts to alter its “don’t care” schemata to its ideal
optimal schemata. As results, a schemata-guided local search
strategy is proposed based on this guideline. Information of
fixed and ”don’t care” schemata in species are utilized to guide
local search. However, the key question of this local search
strategy is that how do we classify population to different
species when true Pareto-optimal solutions of MOOPs are
unknown. To deal with this question, it is assumed that the
best individuals in each objective functions are the pioneers
of each species. These pioneers will be used to classify all
individuals in population to different species.

Given a maximum local search times MaxLS and a tem-
porary elite set E’, the procedure of the used schemata-guided



local search strategy is written as follows:

Step 1 : (Identification) Identify the best individuals B, ¢ =
1,2,...,Q, in each objective from the current popu-
lation. For FPSs, ()=3.

Step 2 : (Classification) Classify the current population into
@ species by the best solutions in each objective.

Step 3 : (Schemata computation) For each species, com-
pute its schemata H,. Both fixed and “don’t care”
schemata are identified.

Step 4 : (Parameter setting) Let ¢ = 1, counter = 0.

Step 5 : (Perturbation) Perturb B, into a new solution B;.
According to H,, apply the mutation operator only
on “don’t care” locations of B, with a mutation
probability p,,.

Step 6 : (Evaluation) Evaluate the objective functions of B[].
Let counter = counter + 1.

Step 7 : (Comparison) There is 3 cases in comparisons
of B, and B;. Case 1: If B, dominates B, and
counter < MaxLS, go to Step 5. Case 2: If B, is
dominated by B, replace B, by Bj. Case 3: If B,
and By doesn’t dominated each other. Stored By, in
a temporary elite set E’.

Step 8 : (Termination test) Let ¢ = ¢ + 1 and counter=0, if
q¢Q, stop the local search strategy. Otherwise, go to
Step 5.

4.2 Fitness Inheritance

An efficiency enhancement techniques called fitness inheri-
tance [12] is used for speedup of MAFI. During the evolution
of EAs, the fitness of some proportion of individuals in the
subsequent population is inherited. This proportion is called
the inheritance proportion, p;.

Mathematically, for a multi-objective problem with z objec-
tive, the used fitness inheritance is defined as

wlfz,pl + w2fz,p2
w1 + Wwa

f= , (13)

where f, is the fitness value in objective z, wq, wy are the
weights for the two parents py, po, and f(z,p1), f(z,p2) is
the fitness values of p1, p2 in objective z, respectively. In this
paper, w; and ws are set to 1.

According the literature of fitness inheritance, the popula-
tion size of FIEA should be bigger than the population size
used for MOGA, as shown in the following equation:

Npop,moca

14
1—p} (1

Npop,FIEA =

4.3 MAFI for solving FPSs

A series of machine indices Y for operations of all parts is
directly encoded as a integer chromosome. The range of each
gene of Y is [1, K]. Each gene of Y stands for a machine
index.

The selection operator of MAFI uses a binary tournament
selection which works as follows. Choose two individuals
randomly from the population and copy the better individual

into the intermediate population. Crossover is a recombina-
tion process in which genes from two selected parents are
recombined to generate offspring chromosomes. The one-point
crossover is used in MAFI. A simple mutation operator is used
to alter genes. For each gene, randomly generate a real value
from the range [0, 1]. If the value is smaller than the mutation
probability p,,, replace its index with a randomly generated
integer among its possible values.

MAFI uses a generalized Pareto-based scale-independent
fitness function GPSIFF [13] by the following function:

where p is the number of individuals which can be dominated
by the individual X, and ¢ is the number of individuals which
can dominate the individual X in the objective space. c is the
number of all participant individuals.

Based on the proposed chromosome representation, Equa-
tion is always satisfied. If Equation is violated, the
transportation time between machines k and [, tmyg;, is set
to be a large value, 107. In this way, fo will be penalized. For
each machine k, if Equation is not satisfied, one is added
to rtwi, as follows:

el if twy < my;
Ttwk = twk .
=2k +1, otherwise.
.
4.4 Procedure of MAFI

Since it has been recognized that the incorporation of
elitism may be useful in maintaining diversity and improving
the performance of multi-objective EAs [[7], MAFI selects a
number of elitists from an elite set E in the selection step.
The elite set E' with capacity E,,,, maintains the best non-
dominated solutions generated so far. In addition, an external
set F with no capacity is used to store all the non-dominated
solutions ever generated so far. The procedure of MAFI is
written as follows:

(16)

Step 1 : (Initialization) Randomly generate an initial popu-
lation of N, individuals and create two empty elite
sets £/, E and an empty temporary elite set E'.

Step 2 : (Evaluation) For each individual Y in the popu-
lation, excluding the inherited individuals, compute
the value of objective functions f1(Y), f2(Y), and
fs(Y).

Step 3 : (Fitness assignment) Assign each individual a fit-
ness value by using GPSIFF.

Step 4 : (Local search) Apply the proposed schemata-
guided local search strategy. Non-dominated solu-
tions obtained by the local search strategy will be
stored in temporary elite set F’.

Step 5 : (Update elite sets) Add the non-dominated indi-
viduals in both the population and E’ to E, and
empty E’. Considering all individuals in F, remove

the dominated ones in E Add F to E, remove
the dominated ones in F. If the number of non-
dominated individuals in E' is larger than F,, 4,

randomly discard excess individuals.



Step 6 : (Selection) Select Ny, — N, individuals from the
population using the binary tournament selection and
randomly select V,,; individuals from E' to form a
new population, where N3 = Np,, X ps and p;
is a selection proportion. If IV, is greater than the
number N of individuals in F, let Nps = Ng.

Step 7 : (Recombination) Perform the one-point crossover
operation with a recombination probability p..

Step 8 : (Fitness inheritance) Perform fitness inheritance on
the selected N, X p; individuals. The inherited
objective values are calculated according to Equa-
tion

Step 9 : (Mutation) Apply the mutation operator to each
gene in the individuals with a mutation probability
Pm-

Step 10 :(Termination test) If a stopping condition is satis-
fied, stop the algorithm and output E. Otherwise, go
to Step 2.

5 Results and discussion

Considering the real manufacturing environment, we de-
rived the AGV transportation time matrix and six benchmark
problems: m3010, m4020, m50100, m50200, m100100 and
m100200, where mxoy stands for the x machine and y opera-
tion problem. In order to further investigate the performance
of MAFIL, a MOGA (MAFI without the local search strategy
and fitness inheritance) is also implemented to solve FPSs.
The solutions obtained by MOGA are used as the baseline
performance for comparisons. The parameter settings of MAFI
and MOGA are given in Table [l All the parameters of
MAFI and MOGA in each experiment are the same. Thirty
independent runs were performed per test problems, compared
with the same number of function evaluations 100xy.

The coverage metric C'(A, B) of two solution sets A and
B [14] used to compare the performance of two corresponding
algorithms considering the six objectives:

C(A, B) = {a € A,be B,a = b}\7

| Bl

where > stands for weakly dominate in Pareto dominance
relationship. The value C'(A,B) = 1 means that all indi-
viduals in B are weakly dominated by A. On the contrary,
C(A, B) = 0 denotes that none of individuals in B is weakly
dominated by A. Because the C' measure considers the weakly
dominance relationship between two sets A and B, C(A, B) is
not necessarily equal to 1 — C'(B, A). The comparison results
of two solution sets using the coverage metric are depicted
using box plots. A box plot provides an excellent visual result
of a distribution. The box stretches from the lower hinge
(defined as the 25th percentile) to the upper hinge (the 75th
percentile) and therefore contains the middle half of the scores
in the distribution. The median is shown as a line across the
box.

For each run, the solutions set of two algorithms are
compared using the coverage metric. Fig. 4] depicts the cover-
age metrics of C(MAFI, MOGA) and C(MOGA, MAFI)

a7

TABLE I
THE PARAMETER SETTINGS OF MAFI AND MOGA.

Parameters MAFI MOGA

Npop 115 100

Erax 115 100

Ds 0.25 0.25

i 0.5 N/A

Pe 0.6 0.6

Pm 0.05 0.05

MaxLS 3 N/A
1F 4
of S = =T (4]
0.6 —_ - T 1
04t 1 . .
0.2} ; _E_ 1
ok . .

m50100 m50200 m100100 m100200

(a) C(MAFI, MOGA)
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Fig. 4. Box plots based on the cover metric. (a) C(MAFI,
MOGA), (b) C(IMOGA, MAFI).

from 30 runs. In solving the small problem m3010, Fig. @
shows that the performance of MAFI and MOGA are al-
most the same. For another small problem m4020, the non-
dominated solutions obtained by MAFI dominates 80% of
the solutions obtained by MOGA in average, while the non-
dominated solutions obtained by MOGA only dominates 60%
of the non-dominated solutions obtained by MAFI in aver-
age. As the complexity of problems increases, Fig. ] shows
that 80%-90% of the non-dominated solutions obtained by
MOGA are weakly dominated by the non-dominated solutions
obtained by MAFI in solving the problems m4020, m50100,
m50200, m100100 and ml100200. On the contrast, the non-
dominated solutions of MOGA dominate nearly 3-10% of the
non-dominated solutions obtained by MAFI. Fig. [5] shows the
non-dominated solutions obtained by thirty runs of MAFI and
MOGA in solving the m100200 problem. The results indicate
that MAFI can converge to better solutions more quickly than
MOGA. It reveals that the proposed schemata-guided local
search strategy and fitness inheritance plays an important role
in obtaining good solutions and accelerating the convergence
speed.

6 Conclusion

In this paper, a novel approach to solve flexible process
sequencing problems using an multi-objective memetic al-
gorithm MAFI is proposed. A schemata-guided local search



* MOGA
O MAFI

Fig. 5. The non-dominated solutions obtained by MAFI and
MOGA in solving the ml100200 problem, merged from 30
runs.

strategy and fitness inheritance are integrated in the proposed
algorithm for enhancing the performance. Experimental results
demonstrated that the quality of non-dominated solutions
obtained by MAFI is better than that of MOGA in terms of
convergence speed and accuracy using the same number of
function evaluations. The results indicate that the proposed
approach is an efficient approach to solving FPSs.

In addition, the advantages of the proposed approach are that
MAFI can optimized multiple objectives without decomposing
problems into sub-problems or using relative preferences of
multiple objectives. While prior domain knowledge for the
decomposition of problems or relative preferences of mul-
tiple objectives are not available, the proposed approach is
an expedient method to solve flexible process sequencing
problems. Moreover, the proposed approach can obtain a set
of non-dominated solutions for decision makers in a single
run. Decision makers can easily distinguish between the costs
of different process sequences and choose more than one
satisfactory process sequences at a time.
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ABSTRACT

This paper describes a multi-objective evolutionary approach for
solving multi-objective 3D deployment problems in differentiated
wireless sensor networks (WSNs). WSN is a wireless network
consisting of spatially distributed autonomous sensors to monitor
physical or environmental conditions. Deciding the location of
sensor to be deployed on a terrain with the consideration different
criteria is an important issue for the design of wireless sensor
network. A multi-objective genetic algorithm is proposed to solve
3D differentiated WSN deployment problems with the objectives
of the coverage of sensors, satisfaction of detection thresholds,
and energy conservation. The preliminary experimental results
demonstrated that the proposed approach is suitable for solving
3D deployment problems of WSNs with different requirements.

Categories and Subject Descriptors
J.6 [COMPUTER-AIDED ENGINEERING]: Computer-aided
design (CAD)

General Terms
Algorithms, Design, Performance

Keywords
Wireless sensor network, multi-objective optimization, genetic
algorithms

1. INTRODUCTION

A wireless sensor network (WSN) is a wireless network
consisting of spatially distributed autonomous sensors to monitor
physical or environmental conditions. WSN constitute a large
number of applications related to national security, surveillance,
military, health care, and home automation. Sensor nodes of a
WSN are deployed over a region to sense events on geographical
areas and transmit collected data to a sink node for further
operations. Depending on the requirements, sensors could be
deployed in diverse scenarios [6,9]. Therefore, deciding the

location of sensor to be deployed on a terrain is an important issue.

Several different objectives should be considered and fulfilled in
the design phase of WSNs, such as the coverage and accuracy,
reaction time and survivability of the sensor network. However,
these objectives may be in conflict with one another and of
different importance to mission planners [8].

Coverage is one of the fundamental issue in the deployment of
WSNs. WSNs need to maintain sufficient coverage quality to
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capture the timely changing targets [10]. For enhanced coverage,
a large number of sensors are typically deployed in the sensor
field and, if the coverage areas of multiple sensors overlap, they
may all report a target in their respective zones [5].

Differentiated sensor network deployment, which considers the
satisfaction of detection levels in different geographical
characteristics, is also an important issue [7]. In many real-world
WSN  applications, the supervised area can request different
detection levels, depending on the event's location. Therefore, the
sensing requirements are not uniformly distributed within the area.
In other words, all the points of the area under monitoring are
considered with the different importance. As a result, the
deployment strategy of WSN should take into consideration the
geographical characteristics of the monitored events.

Energy conservation for the lifetime of sensors is another rising
issue [1]. Due to the limited energy resource in each sensor node,
we need to utilize the sensors in an efficient manner so as to
increase the lifetime of the network. There are two different
approaches to the problem of conserving energy in sensor
networks. The first approach is to plan a schedule of active
sensors that enables other sensors to go into a sleep mode. The
second approach is adjusting the sensing range of sensors for
energy conservation. In this paper, we focus on adjusting the
sensing range of each sensor in order to reduce the overlaps
among sensing ranges while keep the detection ability above a
predefined detection level.

In this paper, a 3D differentiated WSN deployment considering
coverage, satisfaction of detection levels, and energy conservation
is formulated into a multi-objective optimization problem. We
represent the sensor field as a three-dimensional grid of points.
Three objectives are to be optimized: maximizing coverage of
sensors, satisfying the required probability of detection threshold,
and minimizing the detection power by adjustable sensing range.
To solve the aforementioned multi-objective optimization
problem, we developed a multi-objective genetic algorithm
(MOGA) framework. The proposed approach can obtain a set of
non-dominated solutions. As a result, mission planner can deploy
sensor nodes considering different requirements of applications.

2. RELATED WORK
2.1 WSN Deployment Problem

Coverage issue is one of the most important tasks in WSN. The
ultimate goal is to have each location in the physical space of
interest within the sensing range of at least one sensor. However,
due to the number of sensors is limited, complete coverage cannot
be guaranteed. Therefore, many approaches are proposed to deal
with the 2D coverage problem. Oh et al. [8] proposed a genetic
algorithm for the optimal selection of the number and type of



sensors available from a suite of sensors. Dhawan et al. [3]
proposed a novel searching algorithm based on improved NSGA-
II to select an optimal cover set. It maintains the full coverage in
large sensor networks by a small number of sensor nodes. For a
practical approach, a probabilistic sensor detection model is
adopted in combination with the detection error range and
coverage threshold. Recently, Oktug et al. [9] proposed an
approach to solve coverage problem by simulating sensor
deployment strategies on a 3D terrain model and to find answers
to questions that how many sensors are needed to cover a
specified 3D terrain at a specified coverage percentage.

In recent years, how to efficiently utilize limited energy in a
wireless sensor network has become an important issue. In [2], the
problem is to prolong maximum network lifetime when all grid
points are covered and sensor energy resources are constrained. In
[6], the method used to extend the network lifetime is to divide
the sensors into a number of sets, such that only one set is
responsible for monitoring the targets, and all other sensors are in
sleep mode. In the sleep mode, it consumes the least energy. If all
the sensor nodes operate in the active mode simultaneously, an
excessive amount of energy will be wasted and the data collected
will be redundant. In [4], two new energy-efficient models of
different sensing ranges are proposed. They used scheduling
models with adjustable sensing ranges of each sensor in order to
reduce the overlaps among detection ranges.

Different applications require different degrees of sensing
coverage. While some applications may require a complete
coverage in a region, others may only need a high percentage of
coverage. Such WSN is called differentiated WSN [7]. In [11],
three density control protocols by considering the tradeoff
between energy usage and coverage was developed to select
sensors. Few studies have considered the case of geographical
irregularity of the sensed event. Aitsaadi et al. [7] presented a
required minimum probability detection threshold of each grid
point. They proposed a probabilistic event detection model and
use a Tabu Search method to solve the differentiated WSN
deployment problem.

2.2 Multi-objective Evolutionary
Optimization
Assume the multi-objective functions are to be minimized.

Mathematically, MOOPs can be represented as the following
vector mathematical programming problems:

Minimize  F(Y) = {R(V).FY). .. EX)}. (1)

where Y denotes a solution and F(Y) is generally a nonlinear
objective function. Pareto dominance relationship and some
related terminologies are introduced below. When the following
inequalities hold between two solutions Y; and Y5, Y, is a non-

dominated solution and is said to dominate Y; (Y, > Y;):
Vi () 2 F(L) AF : F(T) > F(L). @

When the following inequality hold between two solutions Y; and
Y,, Y, is said to weakly dominate Y; (Y, > Y):

Vi F(Y) 2 F(%). ©

A feasible solution Y * is said to be a Pareto-optimal solution if
and only if there does not exist a feasible solution Y where Y
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dominates Y *, and the corresponding vector of Pareto-optimal
solutions is called Pareto-optimal front.

By making use of Pareto dominance relationship, multi-
objective evolutionary algorithms (MOEAs) are capable of
performing the fitness assignment of multiple objectives without
using relative preferences of multiple objectives. Thus, all the
objective functions can be optimized simultaneously. As a result,
MOEA seems to be an alternative approach to solving production
planning and inspection planning problems on the assumption that
no prior domain knowledge is available.

3. PROBLEM STATEMENT
3.1 Notations

In order to formulate problems, the following notations are
introduced:

® i:sensorindex,i=1,2,3,...,.N.
L] j @ grid point index, j = 1,2,3,...,M.
] k : sensing range index, k = 1,2,3,...,.K.

3.2 Environment

We assume that N sensors s,,55, ..., sy are deployed to cover the
sensor field. Let the sensor field T consist of n,, n,, and n. grid
points p;,ps, ..., py in the x, y, and z dimensions, respectively [5].
Each sensor has an initial sensor energy E and has the capability
to adjust its sensor range. Sensing range options are r,rs, ..., I'g,
corresponding to energy consumptions of eje,.., ex and
detection error ranges f,/>, ..., fx (fi < ry) [6]. We assume that each
grid point p; in sensor field is associated a required minimum
probability detection threshold, denoted #(p)).

3.3 Mathematical Formation of 3D
Deployment Problem

3.3.1 Coverage

In many WSN applications, the main task is the surveillance of
certain geographical areas [9]. Target location can be simplified
considerably if the sensors are placed in such a way that every
grid point in the sensor field is covered by sensors. In this way,
the sensors reporting a target at time # uniquely identifies the grid
location for the target at time ¢. The trajectory of a moving target
can also be easily determined in this fashion from time series data
[5].

Assume that sensor s; is deployed at grid point. For any grid
point p;, the Euclidean distance between sensor s; and grid point p;
is denoted as

d(Si’ pj) = \/(xi _'xj)z +(yi _yj)z +(Zi _Zj)z

where x;, x;, y;, y;, z; and z; are coordinate location values. The way
to compute the sensor and target coverage relationship is to
consider that a sensor covers a target if the Euclidean distance
between the sensor and target is no greater than a predefined
sensing range. The following equation shows a binary detection
model expressing the coverage c(s;, p; of a grid point p; by
Sensor ;.

Cb(si’ j) = {

4)

L if dis,p,)<nf(s;)

0. 5)

otherwise



, where 7(s;) is the sensing range of the sensor s;. In this paper, we
use this binary detection model in coverage problem. Thus, the
coverage rate optimization problem F; can be defined by

zc/)@j)

J=1

M

Max. F = ©)

, where ¢;(p;) is the coverage of all sensors at grid point p; by the
Equation (5). This objective is to be maximized.

3.3.2 Detection Probability Thresholds

We suppose that the sensor field is characterized by the
geographical irregularity of the sensed events. This assumption is
justified by many realistic WSN applications case studies. To
efficiently monitor the area, and since we consider a probabilistic
detection model, we assume that, to each grid point p; in sensor
field is associated a required minimum probability detection
threshold, denoted #(p;). Some grid points p; in sensor field 7" will
have a low detection probability if they are covered only by one
sensor and far from other sensors. In this case, it is necessary to
make the detection area overlapped to compensate for the low
detection probability of the grid points that are far from any
sensor. Ideally, a good WSN deployment algorithm should lead to
obtain that each p; in T the measured detection probability of that
point is greater than ¢(p)) [7].

In reality, binary detection model has limitations due to the
imprecise detection probability, which plays a significant role in
sensor detection [3]. Hence, a detection error range is introduced
to measure the uncertainty of sensor detection [3]. More precisely,
we assume that event detection ability of a sensor diminishes as
its distance to the sensed point increases [7]. A probabilistic
detection model is expressed as

0. ifns)+ fils)<d(s.p,)
eys,p) =1, if ns,)= fils,)<dls,p, )< s+ fits) D
1, if r.(s.)- fi(s,)= dls,p,)

, Where a = d(s;, p) - (ri(s) - fi(s)), 2 and B are parameters that
measure the detection probabilities when an object is within a
certain distance from the sensor, and f(s;) is the error ranges of
the sensor s;. Each sensor s; has a detection probability c,(s; p;) at
grid point p;. A grid point p; might be covered by more than one
detection range of different sensors [2]. When a detection area is
overlapped by multiple sensors, the closer are the sensors to each
other, the higher is the detection probability of the grid points [3].
The conjunctive detection probability of all sensors at grid point
D is given by

cp(pj):l_]:[(l_cp(s[’p‘,‘))' (8)

The optimization of the satisfaction required probability of
detection threshold F) is expressed by:

M
2 DP(p,)
Max. F,=1"——

M

2.1p;)

Jj=1

©
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t(p/‘) ipr(pj.)—[(p/.)ZO

,where DP(p,.)=
(p‘,) {0 otherwise

This objective is to be maximized.

3.3.3 Energy Consumption

In terms of energy consumption, we only consider the energy
used in sensing, not including the power consumed by radio
communication and computation. The sensing ranges of a sensor
determine the energy consumed by the sensor [6]. We attempt to
make the detection regions of sensors not overlapped, thereby
minimizing the wasted overlap area and covering more grid points
with a small number of sensors. We apply a energy model in our
evaluation, in which the power consumption is proportional to the
square of the sensing range r; [11]. The energy consumption
model is expressed as follows:

e (s;) = pux rk(si)z

, where u is an energy consumption parameter. The optimization
of the detection power minimization with adjustable sensing range
F;can be formulated as

(10)

Z e.(s;)
Z emax (Sl )

, where e,,.,(s;) is the maximum detection range of each sensor.
This objective is to be minimized.

Min. F,

()

4. MULTI-OBJECTIVE GENETIC
ALGORITHM

4.1 Chromosome Representation

A chromosome has gene information for solving the problem in
MOGA. Each chromosome has fixed gene size, which is
determined by the number of sensors in the WSN. Each gene has
a x, y, and z coordinate location and a sensing range. The ranges
of each gene of coordinate location are [0, n,], [0, n,], and [0, n.]
in the x, y, and z dimensions. Hence these sensors will have
coordinate values to denote their location. Each gene of sensing
range is one of 7,7, ..., rg, which represent the detection ability of
the sensor.

4.2 Fitness Assignment

We use a generalized Pareto-based scale-independent fitness
function (GPSIFF) considering the quantitative fitness values in
Pareto space for both dominated and non-dominated individuals.
GPSIFF makes the best use of Pareto dominance relationship to
evaluate individuals using a single measure of performance. The
used GPSIFF is briefly described below. Let the fitness value of
an individual X be a tournament-like score obtained from all
participant individuals by the following function:

F(X)=p-q+c

, where p is the number of individuals which can be dominated by
the individual X, and ¢ is the number of individuals which can
dominate the individual X in the objective space. Generally, a
constant ¢ can be optionally added in the fitness function to make

(12)



fitness values positive. ¢ is usually set to the number of all
participant individuals.

4.3 Genetic Operators

The genetic operators used in the proposed approach are widely
used in literature. The selection operator uses a binary tournament
selection without replacement, which works as follows. Choose
two individuals randomly from the population and copy the better
individual into the intermediate population.

Crossover is a recombination process in which genes from two
selected parents are recombined to generate offspring
chromosomes. The uniform crossover is used in MOGA. In a
uniform crossover operation, first requires a randomly created
binary string, called crossover mask. The genes of offspring
chromosomes are swapped from the parents according to this
mask. If the crossover mask bit is 0, then the characters in the
corresponding string position are not swapped and if the crossover
mask bit is 1, than the mating string characters at that position are
swapped.

A simple mutation operator is used to alter genes. For each gene,
randomly generate a real value from the range [0, 1]. If the value
is smaller than the mutation probability p,,, replace its index with
a randomly generated integer among its possible values.

4.4 Procedure of MOGA
The procedure of MOGA is written as follows:

Input: population size N,,, recombination probability p,,
mutation probability p,,, the number of maximum generations

GVIIHX'
Output: The optimum solutions ever found in P.

Step 1: Initialization Randomly generate an initial population P
of N,,,,, individuals.

pop
Step 2: Evaluation For each individual in the population,
compute all objective function values F;, F,, and Fj.

Step 3: Fitness assignment Assign each individual a fitness
value by using GPSIFF.

Step 4: Selection Select N,,,, individuals from the population to
form a new population using the binary tournament selection.

Step 5: Recombination Perform the uniform crossover operation
with a recombination probability p..

Step 6: Mutation Apply the mutation operator to each gene in the
individuals with a mutation probability p,,.

Step 7: Termination test If a stopping condition is satisfied, stop
the algorithm. Otherwise, go to Step 2.

5. RESULT AND DISCUSSION

In this section, we present some results of simulation
experiments as the performance evaluation of our proposed
algorithm.

5.1 Simulation Environment and Parameters
A 3D WSN deployment benchmark generator for WSN

environment is designed to generate different scale of sensor

fields with different models of detection probability thresholds.

In this paper, a sensor field with 50x50%50 grid points is used.
The same terrain with four different required minimum detection
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probability thresholds are illustrated as four different benchmarks.
The detection probability thresholds considered in this paper are
decreasing linear, normal, Poisson, and exponential distributions,
respectively. Figure 1 illustrates a terrain with linear decreasing
thresholds. For the sensors of WSN, we assume each sensor has
five adjustable sensing ranges 6, 8, 10, 12, 14, and the detection
error ranges are half of the sensing range of each sensor. The
power consumption parameter u is 1. The probabilistic detection
model parameter f is 0.5 and the detection radio wave parameter 1
is 0.5.

The parameter settings of MOGA are listed as follows:
population size N,,,=200, recombination probability p.~0.9,
mutation probability p,=0.01, the number of maximum
generations G,,,=500. The number of sensor nodes to be
deployed is 20. Thirty independent runs are conducted.

Figure 2-3 depicts the box plots of obtained non-dominated
solutions and the maximum and minimum objective values
obtained in different objective functions. Figure 4-6 depicts the
convergence speed of a typical run in solving the 3D WSN
deployment problem with four different required minimum
detection probability thresholds. The results indicate that different
detection probability thresholds pose different difficulties for
MOGA. The problems with normal and Poisson distributions are
more difficult to find a good deployment plan than problems with
decreasing linear and exponential distributions.

N e

50

10 X

Figure 1. A terrain with decreasing linear detection
probability thresholds.
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Figure 2. Box plots of non-dominated solutions for
solving the 3D deployment problem with linear and
exponential distributions probability thresholds.



Normal Poisson
100 i i i 100 i i i
l l
80 - - A4 - -k --Hd -~
| !
—_ 1 —
e | o=
|7 7
[0} [0}
= =
c 400 -- ‘L 7] ©
> i >
P\ NS S
| | | |
| | | | | |
1 1 1 1 1 1
0 F2 F3 0 F2_ F3
Objectives Objectives

Figure 3. Box plots of non-dominated solutions for
solving the 3D deployment problem with normal and
Poisson distributions probability thresholds.
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Figure 4. The mean objective value F; of non-
dominated solutions in each generation, for four
problems with different required detection probability
thresholds.
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Figure 5. The mean objective value F, of non-
dominated solutions in each generation, for four
problems with different required detection probability
thresholds.
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Figure 6. The mean objective value F; of non-
dominated solutions in each generation, for four
problems with different required detection probability
thresholds.

6. CONCLUSION

In this paper, a multi-objective evolutionary approach is
proposed to solve 3D differentiated WSN deployment problems.
Experimental results demonstrated MOGA is capable of
optimizing coverage, satisfaction of detection levels, and energy
conservation and provide mission planers a set of non-dominated
solutions for deployment of sensor nodes. The results also
indicates that some problems with unusual detection probability
thresholds requirements may require more computation time or
different techniques for MOGA than those of problems with usual
detection probability thresholds requirements.
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Abstract—This paper describes a multi-objective evolutionary
approach for solving multi-objective 3D deployment problems in
differentiated wireless sensor networks (WSNs). WSN is a
wireless network consisting of spatially distributed autonomous
sensors to monitor physical or environmental -conditions.
Deciding the location of sensor to be deployed on a terrain with
the consideration of different criteria is an important issue for
the design of wireless sensor network. A multi-objective genetic
algorithm is proposed to solve 3D differentiated WSN
deployment problems with the objectives of the coverage of
sensors, satisfaction of detection levels, and energy conservation.
The preliminary experimental results demonstrated that the
proposed approach is suitable for solving 3D deployment
problems of WSNs with different requirements.

Keywords-  Wireless  sensor  network,  multi-objective
optimization, genetic algorithms
I INTRODUCTION

A wireless sensor network (WSN) is a wireless network
consisting of spatially distributed autonomous sensors to
monitor physical or environmental conditions. WSN constitute
a large number of applications related to national security,
surveillance, military, health care, and home automation.
Sensor nodes of a WSN are deployed over a region to sense
events on geographical areas and transmit collected data to a
sink node for further operations. Depending on the
requirements, sensors could be deployed in diverse scenarios
[4,9]. Therefore, deciding the location of sensor to be deployed
on a terrain is an important issue. Several different objectives
should be considered and fulfilled in the design phase of WSNss,
such as the coverage and accuracy, reaction time and
survivability of the sensor network. However, these objectives
may be in conflict with one another and of different importance
to mission planners [10].

Coverage is one of the fundamental issue in the deployment
of WSNs. WSNs need to maintain sufficient coverage quality
to capture the timely changing targets [13]. For enhanced
coverage, a large number of sensors are typically deployed in
the sensor field and, if the coverage areas of multiple sensors
overlap, they may all report a target in their respective zones

[3].

Differentiated sensor network deployment, which considers
the satisfaction of detection levels in different geographical
characteristics, is also an important issue [1]. In many real-
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world WSN applications, such as underwater sensor
deployment, the supervised area may require different
detection levels, depending on the event's location. Therefore,
the sensing requirements are not uniformly distributed within
the area. In other words, all the points of the area under
monitoring are considered with the different importance. As a
result, the deployment strategy of WSN should take into
consideration the geographical characteristics of the monitored
events.

Energy conservation for the lifetime of sensors is another
rising issue [5]. Due to the limited energy resource in each
sensor node, we need to utilize the sensors in an efficient
manner so as to increase the lifetime of the network. There are
two different approaches to the problem of conserving energy
in sensor networks. The first approach is to plan a schedule of
active sensors that enables other sensors to go into a sleep
mode. The second approach is adjusting the sensing range of
sensors for energy conservation. In this paper, we focus on
adjusting the sensing range of each sensor in order to reduce
the overlaps among sensing ranges while keep the detection
ability above a predefined detection level.

In this paper, a 3D differentiated WSN deployment
considering coverage, satisfaction of detection levels, and
energy conservation is formulated into a multi-objective
optimization problem. We represent the sensor field as a three-
dimensional grid of points. Three objectives are to be
optimized: maximizing coverage of sensors, satisfying the
required probability of detection level, and minimizing the
detection power by adjustable sensing range. To solve the
aforementioned multi-objective optimization problem, we
developed a multi-objective genetic algorithm (MOGA)
framework. The proposed approach can obtain a set of non-
dominated solutions for mission planner to deploy sensor nodes
considering different requirements of applications.

II.  RELATED WORK

A.  WSN Deployment Problem

Coverage issue is one of the most important tasks in WSN.
The ultimate goal is to have each location in the physical space
of interest within the sensing range of at least one sensor.
However, due to the number of sensors is limited, complete
coverage cannot be guaranteed. Therefore, many approaches
are proposed to deal with the 2D coverage problem. Oh et al.
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[10] proposed a genetic algorithm for the optimal selection of
the number and type of sensors available from a suite of
sensors. Dhawan et al. [7] proposed a novel searching
algorithm based on improved NSGA-II to select an optimal
cover set. It maintains the full coverage in large sensor
networks by a small number of sensor nodes. For a practical
approach, a probabilistic sensor detection model is adopted in
combination with the detection error range and coverage
threshold. Recently, Oktug et al. [9] proposed an approach to
solve coverage problem by simulating sensor deployment
strategies on a 3D terrain model and to find answers to
questions that how many sensors are needed to cover a
specified 3D terrain at a specified coverage percentage.

Different applications require different degrees of sensing
coverage. While some applications may require a complete
coverage in a region, others may only need a high percentage
of coverage. Such WSN is called differentiated WSN [1]. Take
underwater sensor deployment [2] as an example, sensor field
of underwater is characterized by the geographical irregularity
of the sensed events because some area may be inaccessible or
the event area may not be uniformly distributed. To efficiently
monitor such area with differentiated detection levels,
fulfillment of detection levels in different area is the major
concerns instead of maximizing the coverage of sensors. In
[11], three density control protocols by considering the tradeoff
between energy usage and coverage was developed to select
sensors. Few studies have considered the case of geographical
irregularity of the sensed event. Aitsaadi et al. [1] proposed a
probabilistic event detection model. In this model, each grid
point has a required minimum probability detection threshold.
A tabu Search method is proposed to solve this differentiated
WSN deployment problem.

In recent years, utilizing limited energy efficiently in a
wireless sensor network has become an important issue. In [8],
the problem is to prolong maximum network lifetime when all
grid points are covered and sensor energy resources are
constrained. In [4], they proposed a method to extend the
network lifetime is to divide the sensors into a number of sets,
such that only one set is responsible for monitoring the targets,
and all other sensors are in sleep mode. In the sleep mode, it
consumes the least energy. If all the sensor nodes operate in the
active mode simultaneously, an excessive amount of energy
will be wasted and the data collected will be redundant. In [12],
two new energy-efficient models of different sensing ranges
are proposed. They used scheduling models with adjustable
sensing ranges of each sensor in order to reduce the overlaps
among detection ranges.

B.  Multi-objective Evolutionary Optimization

Assume the multi-objective functions are to be minimized.
Mathematically, MOOPs can be represented as the following
vector mathematical programming problems

Minimize F(Y) = {F,(Y),F,(Y),...,F(Y)}. (1)
where Y denotes a solution and f(Y) is generally a nonlinear
objective function. Pareto dominance relationship and some
related terminologies are introduced below. When the

following inequalities hold between two solutions Y; and Y, Y,
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is a non-dominated solution and is said to dominate Y; (Y,
=7, ])Z

Vi E(X) > F(Y) AY (%) > F(¥). @

When the following inequality hold between two solutions Y;
and Y5, Y, is said to weakly dominate Y; (Y>> Y)):

Vi F(Y) > F(Y). G)

A feasible solution Y * is said to be a Pareto-optimal solution if
and only if there does not exist a feasible solution Y where Y
dominates Y *, and the corresponding vector of Pareto-optimal
solutions is called Pareto-optimal front.

By making use of Pareto dominance relationship, multi-
objective evolutionary algorithms (MOEAs) are capable of
performing the fitness assignment of multiple objectives
without using relative preferences of multiple objectives. Thus,
all the objective functions can be optimized simultaneously. As
a result, MOEA seems to be an alternative approach to solving
production planning and inspection planning problems on the
assumption that no prior domain knowledge is available [6].

III. PROBLEM STATEMENT

A. Notations

In order to formulate problems, the following notations are
introduced:

e j:sensorindex,i=123,... N

j : grid point index, j = 1,2,3,...,M.

k : sensing range index, k = 1,2,3,...,K.

B. Environment

We assume that N sensors 53,55, ..., sy are deployed to cover
the sensor field. Let the sensor field T consist of n,, n,, and n,
grid points p;p,..., py in the x, y, and z dimensions,
respectively [3]. Each sensor has an initial sensor energy E and
has the capability to adjust its sensor range. Sensing range
options are r,r,, ..., g, corresponding to energy consumptions
of e, e, ..., ex and detection error ranges f,/5, ..., fx (fi < 1) [4].
We assume that each grid point p; in sensor field is associated a
required minimum probability detection level, denoted #(p;).

C. Mathematical Formation of 3D Deployment Problem

1) Maximization of Coverage

In many WSN applications, the main task is the
surveillance of certain geographical areas [9]. Target location
can be simplified considerably if the sensors are placed in such
a way that every grid point in the sensor field is covered by
sensors. In this way, the sensors reporting a target at time ¢
uniquely identifies the grid location for the target at time ¢. The
trajectory of a moving target can also be easily determined in
this fashion from time series data [3].

Assume that sensor s, is deployed at grid point. For any grid
point p;, the Euclidean distance between sensor s; and grid
point p; is denoted as
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d(s[’pj):\/(xi_xj)2+(yi_yj)2+(Z[_Zj)2 (4)
where x; x;, ¥, ¥, z; and z; are coordinate location values. The
way to compute the sensor and target coverage relationship is
to consider that a sensor covers a target if the Euclidean
distance between the sensor and target is no greater than a
predefined sensing range. The following equation shows a
binary coverage model expressing the coverage c,(s; p;) of a
grid point p; by sensor s;.

1, if d(spp_,-)< 7(s;)

Cb(si’pj):{o’ (5)

otherwise

, Where ry(s;) is the sensing range of the sensor s;.
The coverage rate optimization problem F; can be defined

by

zcb(p/)

gz

M

Max. F = (6)
, Where c¢,(p;) is the coverage of all sensors at grid point p; by
the Equation (5). This objective is to be maximized.

2) Maximization of Differentiated Detection Levels

Considering differentiated detection levels, assumed that
each grid point p; in sensor field T is associated a required
minimum detection level, denoted #(p;). A terrain may have
different required detection levels, as illustrated in Figure 1.
Ideally, a good deployment for differentiated WSN should
satisfy the following condition: for each p; in 7, the measured
detection probability of p; should be greater than or equal to

Upy [1]-

Figure 1. Terrain with different required detection
levels: decreasing linear, normal, Poisson, and
exponential distributions.

In literature, a 0/1 binary detection model for grid points is
often used if a grid is covered by a sensor. However, in reality,
the detection of events may be influence by weather or
obstacles. In such cases, the 0/1 binary detection model has
limitations due to the imprecise detection probability, which
plays a significant role in sensor detection [7]. Hence, a
detection error range is introduced to measure the uncertainty
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of sensor detection [7]. Each grid point covered by sensors has
different detection probabilities according to their realistic
conditions, such as distance to sensors or weather conditions. If
a gird point in sensor field T is covered only by one sensor and
far from other sensors, it may have a low detection probability.
In this case, it is necessary to reallocate sensors, so that the
detection area of sensors can be overlapped to compensate for
the low detection probability of those grid points that are far
from any sensor.

In this paper, we adopted a probabilistic detection model
for sensor deployment [1]. Assume that event detection
probability of a sensor diminishes as its distance to the sensed
point increases. A probabilistic detection model of sensors is
expressed as

0, i i)+ fils)<d(s.p,)

if 1) fils,) <dls,p, )< nfs,) + £i5,)
i r(s.)-fifs)2ds.p,)

, where a = d(s; py) - (ri(s) - (), A and B are parameters that
measure the detection probabilities when an object is within a
certain distance from the sensor, and f(s;) is the error ranges of
the sensor s;. Each sensor s; has a detection probability c,(s; p;)
at grid point p;. A grid point p; might be covered by more than
one detection range of different sensors [8]. When a detection
area is overlapped by multiple sensors, the closer are the
sensors to each other, the higher is the detection probability of
the grid points [7]. The conjunctive detection probability of all
sensors at grid point p; is given by

Jal

(M

)50, = e
1,

)=1-(1=c,5.p, )
c,p;) 1;[( c,(5,p;) ®)

The optimization of the satisfaction required probability of
detection level F, is expressed by:

M
> DP(p,)
Max. F,=1r——

D tp,)

I=

ip,) if ¢,p,)=1(p; )20

0 otherwise

)

,where DP(p,) —{
This objective is to be maximized.

3) Minimization of Energy Consumption

In terms of energy consumption, we only consider the
energy used in sensing, but not including the power consumed
by radio communication and computation. The sensing ranges
of a sensor determine the energy consumed by the sensor [4].
We attempt to make the detection regions of sensors not
overlapped, thereby minimizing the wasted overlap area and
covering more grid points with a small number of sensors. We
apply an energy model in our evaluation, in which the power
consumption is proportional to the square of the sensing range
7¢[11]. The energy consumption model is expressed as follows:

ek(si):,uxrk(si)zﬂ (10)
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where u is an energy consumption parameter. The optimization
of the detection power minimization with adjustable sensing
range F; can be formulated as

Zek(si)

i=l
N

z emax (Si )
i=1

, where e,,,.(s;) is the maximum detection range of each sensor.
This objective is to be minimized.

Min. F,=

)

IV. MULTI-OBJECTIVE GENETIC ALGORITHM

A. Chromosome Representation

A chromosome has gene information for solving the
problem in MOGA. Each chromosome has fixed gene size,
which is determined by the number of sensors in the WSN.
Each gene has a x, y, and z coordinate location and a sensing
range. The ranges of each gene of coordinate location are [0,
n,, [0, n,], and [0, n.] in the x, y, and z dimensions. Hence
these sensors will have coordinate values to denote their
location. Each gene of sensing range is one of r,7,...,
which represent the detection ability of the sensor.

r'K,

B. Fitness Assignment

We use a generalized Pareto-based scale-independent
fitness function (GPSIFF) considering the quantitative fitness
values in Pareto space for both dominated and non-dominated
individuals. GPSIFF makes the best use of Pareto dominance
relationship to evaluate individuals using a single measure of
performance. The used GPSIFF is briefly described below. Let
the fitness value of an individual Y be a tournament-like score
obtained from all participant individuals by the following
function:

FY)=p-g+c (12)

, where p is the number of individuals which can be dominated
by the individual ¥, and g is the number of individuals which
can dominate the individual Y in the objective space. Generally,
a constant ¢ can be optionally added in the fitness function to
make fitness values positive. ¢ is usually set to the number of
all participant individuals.

C. Genetic Operators

The genetic operators used in the proposed approach are
widely used in literature. The selection operator uses a binary
tournament selection without replacement, which works as
follows. Choose two individuals randomly from the population
and copy the better individual into the intermediate population.

Crossover is a recombination process in which genes from
two selected parents are recombined to generate offspring
chromosomes. The uniform crossover is used in MOGA. In a
uniform crossover operation, first requires a randomly created
binary string, called crossover mask. The genes of offspring
chromosomes are swapped from the parents according to this
mask. If the crossover mask bit is 0, then the characters in the
corresponding string position are not swapped and if the
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crossover mask bit is 1, than the mating string characters at that
position are swapped.

A simple mutation operator is used to alter genes. For each
gene, randomly generate a real value from the range [0, 1]. If
the value is smaller than the mutation probability pm, replace
its index with a randomly generated integer among its possible
values.

D. Procedure of MOGA
The procedure of MOGA is written as follows:

Input: population size N,,, recombination probability p.,
mutation probability p,, the number of maximum generations
Gmax-

Output: The optimum solutions ever found in P.

Step 1: Initialization Randomly generate an initial population
P of N, individuals.

Step 2: Evaluation For each individual in the population,
compute all objective function values F;, F,, and Fj.

Step 3: Fitness assignment Assign each individual a fitness
value by using GPSIFF.

Step 4: Selection Select N, individuals from the population
to form a new population using the binary tournament selection.

Step 5: Recombination Perform the uniform crossover
operation with a recombination probability p..

Step 6: Mutation Apply the mutation operator to each gene in
the individuals with a mutation probability p,,.

Step 7: Termination test If a stopping condition is satisfied,
stop the algorithm. Otherwise, go to Step 2.

V. RESULT AND DISCUSSION

In this section, we present some results of simulation
experiments as the performance evaluation of our proposed
algorithm.

A.  Simulation Environment and Parameters

A 3D WSN deployment benchmark generator for WSN
environment is designed to generate different scale of sensor
fields with different models of detection probability levels.

In this paper, a sensor field with 50x50x50 grid points is
used. The same terrain with four different required minimum
detection probability levels are illustrated as four different
benchmarks. The detection probability levels considered in this
paper are decreasing linear, normal, Poisson, and exponential
distributions, respectively. Figure 2 illustrates a terrain with
linear decreasing levels. For the sensors of WSN, we assume
each sensor has five adjustable sensing ranges 6, 8, 10, 12, 14,
and the detection error ranges are half of the sensing range of
each sensor. The power consumption parameter u is 1. The
probabilistic detection model parameter £ is 0.5 and the
detection radio wave parameter 4 is 0.5.

The parameter settings of MOGA are listed as follows:
population size N,,,=200, recombination probability p.~0.9,
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mutation probability p,=0.01, the number of maximum
generations G,,,,=500 and 1000. Thirty independent runs are
conducted for each problem.

To identify the difficulties of problems and evaluate the
performance of our algorithm, the number of sensor nodes to
be deployed is limited to 20 and 50, respectively. Figures 3-7
show the results of deployment using 20 sensors. Figures 8-12
show the results of deployment using 50 sensors.

Figures 3,4,8,9 depict the box plots of obtained non-
dominated solutions and the maximum and minimum objective
values obtained in different objective functions, using 20 and
50 sensors. Figures 5-7 and 10-12 depict the convergence
speed of a typical run in solving the 3D WSN deployment
problem with four different required minimum detection
probability levels, using 20 and 50 sensor nodes. The results
indicate that different detection levels pose different difficulties
for MOGA. The problems with normal and Poisson detection
levels are more difficult to find a good deployment plan than
problems with decreasing linear and exponential detection
levels using the same number of sensors. The number of
sensors required for a terrain with normal and Poisson
detection levels should be bigger than the same terrain with
decreasing linear and exponential detection levels.

50

= 0 40
2 ;

. 20
Y 10 10 X

Figure 2. A terrain with decreasing linear detection

levels.
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Figure 3. Box plots of non-dominated solutions for
solving the 3D deployment problem with linear and
exponential detection levels, using 20 sensors.
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Figure 4. Box plots of non-dominated solutions for
solving the 3D deployment problem with normal and
Poisson detection levels, using 20 sensors.
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Figure 5. The mean objective value F; of non-
dominated solutions in each generation, for four
problems with different detection levels, using 20
sensors.
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dominated solutions in each generation, for four
problems with different detection levels, using 20
Sensors.

Authorized licensed use limited to: Chung Hwa University. Downloaded on November 3, 2009 at 08:10 from IEEE Xplore. Restrictions apply.



! ! “¢Linear

! - Exponential
Normal

3 Poisson

L L
150 200 250 300 350 400 450
Generation

Figure 7. The mean objective value F; of non-
dominated solutions in each generation, for four
problems with different required detection levels, using
20 sensors.
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Figure 9. Box plots of non-dominated solutions for
solving the 3D deployment problem with normal and
Poisson detection levels, using 50 sensors.
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Figure 10. The mean objective value F; of non-
dominated solutions in each generation, for four
problems with different detection levels, using 50
sensors.
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Figure 11. The mean objective value F, of non-
dominated solutions in each generation, for four
problems with different detection levels, using 50
sensors.
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Figure 12. The mean objective value F, of non-
dominated solutions in each generation, for four
problems with different detection levels, using 20
sensors.

VI. CONCLUSION

In this paper, a multi-objective evolutionary approach is
proposed to solve 3D differentiated WSN deployment
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problems. Experimental results demonstrated MOGA is
capable of optimizing coverage, satisfaction of detection levels,
and energy conservation. Moreover, MOGA can provide
mission planers a set of non-dominated solutions for
deployment of sensor nodes. The results also indicate that some
problems with unusual detection levels requirements may
require more sensor nodes for MOGA than those of problems
with usual detection levels requirements. Our future work will
develop specialized techniques for 3D WSN deployment
problems with unusual detection levels.
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Power Dispatch

Chien-Hung Chen and Jian-Hung Chen*
Department of Computer Science and Information Engineering
Chung-Hua University, Hsin-Chu 300, Taiwan
jh.chen@ieee.org*

Abstract— Economic dispatch is to determine an efficient, low-
cost and reliable operation of a power system by dispatching the
available electricity generation resources to supply the demands.
Traditionally, the primary objective of economic dispatch is to
minimize the total cost of generation while satisfying the
operational constraints of the available generation resources.
However, due to environmental awareness and environmental
policies, the design and operation of electric utilities are forced to
restructure their power system systems to account for their
emission impacts. In this paper, a combined heat and power
system is considered. A combined heat and power
environmental/economic  dispatch (CHPEED) problem is
formulated. Four objectives: fuel cost, emission, power overhead
and heat overhead are considered in CHPEED problems. A
multi-objective evolutionary approach is proposed to solve the
CHPEED problems.

Keywords-Cogeneration, Heat and  power  dispatch,
Economic/environmental dispatch, multi-objective optimization,
genetic algorithms

. INTRODUCTION

Economic dispatch (ED) is to determine an efficient, low-
cost and reliable operation of a power system by dispatching
the available electricity generation resources to supply the
demands in such a manner that the cost of operation is
minimized while all operational constraints are satisfied.
However, due to increasing concerns on environmental issues
and the implementation of the Clean Air Act Amendments,
environmental constraints have topped the list of utility
management concerns. This issue that has attracted much
attention is pollution minimization due to the pressing public
demand for clean air. Therefore, operating power systems at
absolute minimum fuel cost can no longer be the only criterion
for dispatching electric power nowadays [1].

In the past decades, increasing demand for power and heat
resulted in the existence of cogeneration units [2].
Cogeneration is also referred to as a combined heat and power
(CHP) system. It produces electricity and useful heat
simultaneously. Some industrial processes have large heat
requirements, either as process steam or piped hot fluid, as well
as large power demands [3]. Traditional, the primary objective
of combined heat and power economic dispatch (CHPED) is
similar to economic dispatch problems. The objective of

CHPED is to find the optimal point of power and heat
generation with minimum fuel cost such that both heat and
power demands are met while the combined heat and power
units are operated in a bounded heat versus power plane. The
mutual dependencies of heat and power generation introduce a
complication in the integration of cogeneration units into the
power system economic dispatch [2].

The generation of power and heat from fossil fuel releases
several contaminants, such as Sulfur Oxides, Nitrogen Oxides
and Carbon Dioxide, into the atmosphere [4]. However, the
increasing public awareness of the environmental protection
has forced the utilities to modify their design or operational
strategies to reduce pollution and environmental emissions of
the thermal power plants [5]. Therefore, it becomes very
complicated when dealing with increasingly complex dispatch
problems for conventional techniques.

As a result, economic/environmental dispatch is a multi-
objective problem with conflicting objectives because pollution
minimization is conflicting with minimum cost of generation
[1]. In this paper, a combined heat and power
environmental/economic  dispatch (CHPEED) problem,
considering the fuel cost, emission, power overhead and heat
overhead, is formulated. A multi-objective evolutionary
approach is proposed in this paper to optimize these four
objectives simultaneously.

Il. RELATED WORK

A.  Environmental/Economic Dispatch Problem

Environmental issue has become one of the most important
factors in environmental/economic dispatch (EED) problem.
Emissions are taken into consideration except fuel cost for it is
more and more important to save environment from the
pollutants caused by power plants. In [6], it treats the emission
as a constraint with a permissible limit. This formulation,
however, has a severe difficulty in getting the trade-off
relations between cost and emission [5]. In [7-10], the emission
is treated as another objective in addition to usual cost
objective. However, the EED problem was converted to a
single objective problem either by linear combination of both
objectives or by considering one objective at a time for
optimization. Unfortunately, this approach requires multiple



runs as many times as the number of desired Pareto-optimal

solutions and tends to find weakly non-dominated solutions [5].

In [11-13], both fuel cost and emission are taken into
consideration simultaneously. The approach proposed in [11-
13] handles both fuel cost and emission simultaneously as
competing objectives. Stochastic search and fuzzy-based multi-
objective optimization techniques have been proposed for the
EED problem. However, the algorithms do not provide a
systematic framework for directing the search towards Pareto-
optimal front and the extension of these techniques to include
more objectives is a very involved question. In addition, these
techniques are computationally involved and time-consuming
[5]. Genetic algorithm based multi-objective optimization
techniques have been adopted in [14, 15] where a set of good
non-dominated solutions can be obtained from each evolution
generation. However, GA-based techniques suffer from
premature convergence and the technique presented in [14] is
computationally involved due to ranking process during the
fitness assignment procedure. In [5], a new multi-objective
particle swarm optimization (MOPSQ) technique for
environmental/economic dispatch (EED) problem is proposed.
The proposed MOPSO technique evolves a multi-objective
version of PSO by proposing redefinition of global best and
local best individuals in multi-objective optimization domain.

When some industrial processes have large heat
requirements, the heat load becomes as important as power
load. As a result, the combined heat and power economic
dispatch (CHPED) problem of a system has been raised to
determine the unit heat and power production, so that the
system production cost is minimized while the heat and power
demands and other constraints are met. In [2], a self adaptive
real-coded genetic algorithm (SARGA) is implemented to
solve the problem. However, environmental emission is not
considered in this paper.

Nevertheless, these EED and CHPED problems only
considered a fixed number of power/cogeneration units or heat-
alone units while optimizing fuel costs and emissions. None of
them consider environmental/economic dispatch with a
variable number of units.

B.  Multi-objective Evolutionary Optimization

Assume the multi-objective functions are to be minimized.
Mathematically, MOOPs can be represented as the following
vector mathematical programming problems

FY) = {R) 5(Y), ... £} )

where Y denotes a solution and f;(Y) is generally a nonlinear
objective function. Pareto dominance relationship and some
related terminologies are introduced below. When the
following inequalities hold between two solutions ¥; and Y5, Y
is a non-dominated solution and is said to dominate Y; (Y,
>=7Y)):

Vi F(L) > F(5) AF : F(%) > F(1,). @

When the following inequality hold between two solutions Y;
and Y5, Y is said to weakly dominate Y; (Y, > Y;):

Minimize

Vi E(%) 2 F(Y,). @

A feasible solution Y * is said to be a Pareto-optimal solution if
and only if there does not exist a feasible solution Y where Y
dominates Y *, and the corresponding vector of Pareto-optimal
solutions is called Pareto-optimal front.

By making use of Pareto dominance relationship, multi-
objective evolutionary algorithms (MOEAs) are capable of
performing the fitness assignment of multiple objectives
without using relative preferences of multiple objectives. Thus,
all the objective functions can be optimized simultaneously. As
a result, MOEA seems to be an alternative approach to solving
production planning and inspection planning problems on the
assumption that no prior domain knowledge is available [13].

I1l.  PROBLEM STATEMENT

The CHPEED problem is to minimize four competing
objective functions, fuel cost, emission, power overhead and
heat overhead, while satisfying several equality and inequality
constraints. The CHPEED problem is formulated as follows.

A. Problem objectives

1) Minimization of fuel cost
The total US$/h fuel cost F,,, can be expressed as

Ny N, Ny,
Fr=>.C(P)+>.C(0,,H)+>.C(T,) ®
i=1 j=1 k=1

, where C;, C; and C, are the unit production costs of the
conventional power, cogeneration and heat-alone units,
respectively; P; and O; are power generations of conventional
power and cogeneration units; H; and 7} are heat generation of
cogeneration and heat-alone units.

2) Minimization of emission
Nh

NI’ N,
E= ZEi(B) + ZEj(Oj,Hj) + ZE,{(T,{) )
i=1 j=1 k=1

, Where E;, E; and E; are the emission (kg/h) caused by the

conventional power, cogeneration and heat-alone units,
respectively.

E(P)=a+fR+ 1’ (©)

Ej (Oj) = /UOJ' (N

E () =T, (1o, + o, + Hco) (8)

, Where a, B and vy represent to the emission function
coefficients of the conventional power unit.

3) Minimization of power overhead and heat overhead



N[’ Nr
0,=3B+Y.0,-F, ®
i=1 =
N, N,
0,=>H,+>T,-H, (10)
= k=1

, Where H, and P, are heat and power demands; N,, N. and N,
denote the number of conventional power, cogeneration and
heat-alone units, respectively.

B. Problem constraints

N, N,
YP+>0,>P, (11)
i=1 j=1
NC N/r
YH,+>YT,>H, (12)
j=1 k=1
lem S PI S Bmm1 1 :1’ "Np (13)

O™(H,)<0,<O™(H,), j=L..,N, @4

HI™(0)<H,<HP(0), j=l...N. (9
TkminSTk S]7kmaxl kzl”"’Nh (16)

with
Ci (Pz) =a,+ pr + cppiz (17

2 2
C;(0,,H,))=a,+b.0,+c.0;+d.H,+eH;+ fO0.H, (18)

C.(T,)=a,+bT, + CthZ (19)

, where P and P/ are the minimum and maximum power
generation limits of the conventional units; O;"" and O,"" are
the minimum and maximum power generation limits of the
cogeneration units; H™" and H"* are the minimum and
maximum heat generation limits of the cogeneration units; 7,
and 7, are the minimum and maximum heat generation
limits of the heat-alone units; a,, b, and ¢, are fuel cost
coefficients of the conventional power unit ; a., b, c., d, , e.
and f; are fuel cost coefficients of the cogeneration unit; a,, b,
and ¢, are fuel cost coefficients of the heat-alone unit. The
value of fuel cost coefficients are given in Table I.

TABLE I. GENERATOR FUEL COST COEFFICIENTS.

coefficients - unit -
Conventional power Cogeneration Heat-alone

a 451.32513 2650 0
b 46.15916 145 23.4T,;
c 0.10587 0.0345 0
d 42
e 0.03
f 0.031

IV. MULTI-OBJECTIVE GENETIC ALGORITHM

A. Chromosome Representation

A chromosome has gene information for solving the
problem in MOGA. Each chromosome has dynamic gene size,
which is determined by the max number of all units in
combined heat and power (CHP) systems. The first gene is
numbers of conventional power unit and the second one stands
for numbers of cogeneration, and the third one represents
numbers of heat-alone unit. The remains of the genes are the
dispatch value of all units.

B. Fitness Assignment

We use a generalized Pareto-based scale-independent
fitness function (GPSIFF) considering the quantitative fitness
values in Pareto space for both dominated and non-dominated
individuals. GPSIFF makes the best use of Pareto dominance
relationship to evaluate individuals using a single measure of
performance. The used GPSIFF is briefly described below. Let
the fitness value of an individual Y be a tournament-like score
obtained from all participant individuals by the following
function:

FY)=p—-qg+c (20)

, where p is the number of individuals which can be dominated
by the individual Y, and ¢ is the number of individuals which
can dominate the individual Y in the objective space. Generally,
a constant ¢ can be optionally added in the fitness function to
make fitness values positive. ¢ is usually set to the number of
all participant individuals.

C. Genetic Operators

The genetic operators used in the proposed approach are
widely used in literature. The selection operator uses a binary
tournament selection without replacement, which works as
follows. Choose two individuals randomly from the population
and copy the better individual into the intermediate population.

Crossover is a recombination process in which genes from
two selected parents are recombined to generate offspring



chromosomes. The order crossover (OX) in GA literature is
used in our approach.

A simple mutation operator is used to alter genes. For each
gene, randomly generate a real value from their given range. If
the value is smaller than the mutation probability p,, replace its
index with a randomly generated integer among its possible
values.

D. Procedure of MOGA
The procedure of MOGA is written as follows:
Input: population size N,,, recombination probability p.,

mutation probability p,, the number of maximum generations
Gmax-

Output: The optimum solutions ever found in P.

Step 1: Initialization Randomly generate an initial population
P of N, individuals.

pop
Step 2: Evaluation For each individual in the population,
compute all objective function values F;, F», and F.

Step 3: Fitness assignment Assign each individual a fitness
value by using GPSIFF.

Step 4: Selection Select N, individuals from the population

to form a new population using the binary tournament selection.

Step 5: Recombination Perform the order crossover operation
with a recombination probability p..

Step 6: Mutation Apply the mutation operator to each gene in
the individuals with a mutation probability p,,..

Step 7: Termination test If a stopping condition is satisfied,
stop the algorithm. Otherwise, go to Step 2.

V. RESULTS AND DISCUSSIONS

A.  Simulation Environment and Parameter Settings

This power system considers a type of conventional power
unit, cogeneration unit and heat-alone unit, respectively. The
power generation limits of the conventional power unit are 0
and 150 MW and heat generation limits of heat-alone units are
0 and 2695.2 MWy, The feasible operating regions of the
cogeneration unit are given in figure 1. The value of emission
coefficients a, f and y are given as 13.85932, 0.32767 and
0.00419, respectively. The emission factors of heat-alone units
are obtained from the average heat generation from residential

boilers in urban areas, with an equivalent fuel mix as input [16].

The emission factors uwo. pco» and pco are given as 0.2
kg/MW, 0.27 kg/MW and 0.04 kg/MW, respectively.

The feasible operating regions of the cogeneration unit
from Figure 1 can be expressed as inequality constraints as
follows:

1.781914894H - O -105.74468090 < 0 (21)

0.177777778H+ O -247.0<0 (22)

-0.169847328H-0+98.8<0 (23)

u——
215 —

Power(MW)

81— — ‘

104.8 180
Heat(MWth)

Figure 1. Feasible operating regions of cogeneration unit.

Based on the given environment and constraints, three
benchmark problems “demand (200, 115)”, “demand (700,
615)” and “demand (2000, 1115)” are designed to validate our
approach. The notation “demand (P, H)” represents that the
power demand is P and the heat demand is H.

The parameter settings of MOGA are listed as follows:
population size N,,,=50, recombination probability p.=0.9,
mutation probability p,=0.01, the number of maximum
generations G,,,,=100. Thirty independent runs are conducted
for each problem.

Figures 2-4 shows the distributions of non-dominated
solutions in four objectives by means of boxplot. The results
indicate that the proposed approach is capable of obtaining a
set of wide-spread and non-dominated solutions.

Figures 5-8 depict a typical run of MOGA in solving
“demand (2000, 1115)”. The maximum, mean and minimum
objective values of individuals during a typical run are shown
in the figures. The results indicate that the proposed approach
converge steadily and rapidly.
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Figure 2. Boxplot of non-dominated solutions in solving “demand
(200,115)” problem.
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VI. CONCLUSION

In this paper, a multi-objective evolutionary approach is
proposed to solve the combined heat and power
environmental/economic dispatch problem. The problem is
formulated as multi-objective optimization problem with
competing economic and environmental  objectives.
Experimental results demonstrated the proposed method is
capable of optimizing fuel cost, emission, power overhead and
heat overhead simultaneously. Moreover, the proposed
approach can provide decision makers a set of non-dominated
solutions to choose a suitable dispatch plan.
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ABSTRACT

This  paper describes a novel force-driven
evolutionary approach for solving multi-objective 3D
deployment problems in differentiated wireless sensor
networks (WSNs). WSN is a wireless network
consisting of spatially distributed autonomous sensors
to monitor physical or environmental conditions.
Deciding the location of sensor to be deployed on a
terrain with the consideration of different criteria is an
important issue for the design of wireless sensor
network. A multi-objective genetic algorithm with a
force-driven method is proposed to solve 3D
differentiated WSN deployment problems with the
objectives of the coverage of sensors, satisfaction of
detection levels, and energy conservation. The
preliminary experimental results demonstrated that the
proposed approach is capable of obtaining a set of
non-dominated  solutions for multi-objective 3D
differentiated WSN deployment problems.

1. INTRODUCTION

A wireless sensor network (WSN) is a wireless
network consisting of spatially distributed autonomous
sensors to monitor physical or environmental
conditions. Sensor nodes of a WSN are deployed over
a region to sense events on geographical areas and
transmit collected data to a sink node for further
operations. Depending on the requirements, sensors
could be deployed in diverse scenarios [4,9]. Therefore,
deciding the location of sensor to be deployed on a
terrain is an important issue. Several different
objectives should be considered and fulfilled in the
design phase of WSNs, such as the coverage and
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accuracy, reaction time and survivability of the sensor
network. However, these objectives may be in conflict
with one another and of different importance to
mission planners [10].

Coverage is one of the fundamental issue in the
deployment of WSNs. WSNs have to maintain
sufficient coverage quality in order to capture the
timely changing targets [13]. For enhanced coverage, a
large number of sensors are typically deployed in the
sensor field and, if the coverage areas of multiple
sensors overlap, they may all report a target in their
respective zones [3].

Differentiated sensor network deployment, which
considers the satisfaction of detection levels in
different geographical characteristics, is also an
important issue [1]. In some specially designated WSN
applications, such as underwater sensor deployment,
mudflows and landslide monitoring, depending on the
event's location, the supervised area may require
different detection levels. Therefore, the sensing
requirements of these applications are not uniformly
distributed within the area. As a result, the deployment
strategy of WSN should take into consideration the
geographical characteristics of the monitored events.

Energy conservation for the lifetime of sensors is
another rising issue [5]. Due to the limited energy
resource in each sensor node, utilizing sensors in an
efficient manner so as to increase the lifetime of the
network is an important task in the design phase of
WSNs. There are two different approaches: scheduling
and adjusting methods, to the problem of conserving
energy in sensor networks. We focus on adjusting the
sensing range of each sensor in order to reduce the
overlaps among sensing ranges while keep the
detection ability above a predefined detection level.

In this paper, a 3D differentiated WSN deployment
problem is formulated into a multi-objective
optimization problem. Three objectives are to be
optimized: maximizing coverage of sensors, satisfying



the required probability of detection level, and
minimizing the detection power by adjustable sensing
range. A multi-objective genetic algorithm (MOGA)
framework with a novel force-driven method is
proposed to solve these problems.

2. RELATED WORK

2.1. WSN Deployment Problem

Coverage issue is one of the most important tasks in
WSN. The ultimate goal is to have each location in the
physical space of interest within the sensing range of at
least one sensor. However, due to the number of
sensors is limited, complete coverage cannot be
guaranteed. Therefore, many approaches are proposed
to deal with the 2D coverage problem [7, 10]. Recently,
Oktug et al. [9] proposed an approach to solve
coverage problem by simulating sensor deployment
strategies on a 3D terrain model and to find answers to
questions that how many sensors are needed to cover a
specified 3D terrain at a specified coverage percentage.

Different applications require different degrees of
sensing coverage. While some applications may
require a complete coverage in a region, others may
only need a high percentage of coverage. Such WSN is
called differentiated WSN [1]. Take underwater sensor
deployment [2] as an example, sensor field of
underwater is characterized by the geographical
irregularity of the sensed events because some area
may be inaccessible or the event area may not be
uniformly distributed. To efficiently monitor such area
with differentiated detection levels, fulfillment of
detection levels in different area is the major concerns
instead of maximizing the coverage of sensors [11].
Aitsaadi et al. [1] proposed a probabilistic event
detection model. In this model, each grid point has a
required minimum probability detection threshold. A
tabu search method is proposed to solve this
differentiated WSN deployment problem.

In recent years, utilizing limited energy efficiently
in a wireless sensor network has become an important
issue. Several techniques, such as scheduling models
and sleep models [4, 8, 12], have been proposed to
extend the lifetime of WSNE.

2.2. Multi-objective Evolutionary Optimization

Assume the multi-objective functions are to be
minimized. Mathematically, multi-objective
optimization problems (MOOPs) can be represented as
the following vector mathematical programming
problems

Minimize F(Y) = {E,(Y), F,(Y), ..., E,(Y)} (&N
where Y denotes a solution and F;(Y) is generally a
nonlinear objective function. Pareto dominance
relationship and some related terminologies are
introduced below. When the following inequalities
hold between two solutions Y; and Y, Y, is a non-
dominated solution and is said to dominate Y, (Y,
>=7Y)):

Vi FE(Y) 2 F(Y,) A3 F(%) > Fi(,). @)
When the following inequality hold between two
solutions Y; and Y,, Y, is said to weakly dominate Y,
(Y>> 1))

Vit F(Y) 2 F(Y,). ®)
A feasible solution Y* is said to be a Pareto-optimal
solution if and only if there does not exist a feasible
solution Y where Y dominates Y*.

By making use of Pareto dominance relationship,
multi-objective evolutionary algorithms (MOEAS) [6]
are capable of performing the fitness assignment of
multiple objectives without using relative preferences
of multiple objectives.

N A

N

Figure 1. Terrain with different required
detection levels: decreasing linear, normal,
Poisson, and exponential distributions.

3. PROBLEM STATEMENT
3.1. Notations

In order to formulate problems, the following
notations are introduced:
e j:sensorindex,i=123,....N.

e j:gridpointindex,;j=1,23,...M.

e k:sensing range index, k= 1,2,3,....K.

3.2. Environment

We assume that N sensors s;,s,,..., sy are deployed
to cover the sensor field. Let the sensor field 7' consist



of n,, n,, and n, grid points p,,p,,..., py in the x, y, and
z dimensions, respectively [3]. Each sensor has an
initial sensor energy E and has the capability to adjust
its sensor range. Sensing range options are r;,7;, ..., 7k,
corresponding to energy consumptions of e,e,, ..., ex
and detection error ranges f,,/>, ..., fx (fi < ri) [4]. We
assume that each grid point p; in sensor field is
associated a required minimum probability detection
level, denoted #(p)).

3.3. Mathematical Formation of 3D
Deployment Problem

3.3.1. Maximization of Coverage.

In many WSN applications, the main task is the
surveillance of certain geographical areas [9]. Target
location can be simplified considerably if the sensors
are placed in such a way that every grid point in the
sensor field is covered by sensors [3]. Assume that
sensor s; is deployed at grid point. For any grid point p;,
the Euclidean distance between sensor s; and grid point
p; is denoted as

d(s, p,) =0, ~x, P+, ~,f +,~2, ) “)

, where x; x;, y;, ¥, z and z; are coordinate location
values. The following equation shows a binary
coverage model expressing the coverage c,(s; p;) of a
grid point p; by sensor s;.

c(s.p,) = {1’ if dfs,p,) <1(s)

0, otherwise ()

, Where r(s;) is the sensing range of the sensor s;.
The coverage rate optimization problem F; can be
defined by

i%(ﬁ;)
Max. F= 2 (6)
M

, where c,(p;) is the coverage of all sensors at grid
point p; by the Equation (5). This objective is to be
maximized.

3.3.2. Maximization of Differentiated Detection
Levels.

Considering differentiated detection levels, assumed
that each grid point p; in sensor field 7 is associated a
required minimum detection level #(p,). A terrain may
have different required detection levels, as illustrated
in Figure 1. A good deployment for differentiated
WSN should satisfy the following condition: for each
p; in T, the measured detection probability of p; should
be greater than or equal to #(p;) [1].

A probabilistic detection model for sensor
deployment [1] is adopted into our model. Assume that

event detection probability of a sensor diminishes as its
distance to the sensed point increases. A probabilistic
detection model of sensors is expressed as
0, if (s, )+ fuls,)<d (s, p,)
e if r(s; )= fi(s;) < d(s‘,pj)< (7
(5 )+ fi(si)
1 if r.(s,)= fi(s,)2d(s,.p,)
, where a = d(s;, p) - (r(s) - fils)), 4 and p are
parameters that measure the detection probabilities
when an object is within a certain distance from the
sensor, and fi(s;) is the error ranges of the sensor s;.
Each sensor s; has a detection probability c,(s; p; at
grid point p;. A grid point p; might be covered by more
than one detection range of different sensors [8]. When
a detection area is overlapped by multiple sensors, the
closer are the sensors to each other, the higher is the
detection probability of the grid points [7]. The
conjunctive detection probability of all sensors at grid
point p; is given by

C,,O?/)=1—H(1—Cp(5,-yp,-))-

c,(s.p;)=

8)
The optimization of the satisfaction required
probability of detection level F, is expressed by:
M
DP@p,)
Max. F, :7”; : ©)
: 2 M

2.1,

J=1

t(p/‘) lf C,,(P,-)—I(Pj)zo

Where DPp.)=
(P,) {O otherwise

This objective is to be maximized.

3.3.3. Minimization of Energy Consumption

In terms of energy consumption, we only consider
the energy used in sensing, but not including the power
consumed by radio communication and computation.
The sensing ranges of a sensor determine the energy
consumed by the sensor [4]. We adopted an energy
model in our evaluation. The power consumption is
proportional to the square of the sensing range r;[11].
The energy consumption model is expressed as follows:

e, (s,)=uxr(s,)’, (10)

where u is an energy consumption parameter. The
optimization of the detection power minimization with
adjustable sensing range F’; can be formulated as

N
Zek(s,.)
Min. F,=—2— (11)
Cmax (5;)
i=1



, Where e,,..(s;) is the maximum detection range of each
sensor. This objective is to be minimized.

4. FORCE-DRIVEN MULTI-OBJECTIVE
GENETIC ALGORITHM (FD-MOGA)

4.1. Chromosome Representation

A chromosome has gene information for solving the
problem in FD-MOGA. Each chromosome has fixed
gene size, which is determined by the number of
sensors in the WSN. Each gene has a x, y, and z
coordinate location and a sensing range. The ranges of
each gene of coordinate location are [0, »,], [0, »,], and
[0, n] in the x, y, and z dimensions. Hence these
sensors will have coordinate values to denote their
location. Each gene of sensing range is one of r,,r,, ...,
rx, Which represent the detection ability of the sensor.

4.2. Fitness Assignment

We use a generalized Pareto-based scale-
independent fitness function (GPSIFF) considering the
quantitative fitness values in Pareto space for both
dominated and non-dominated individuals. Let the
fitness value of an individual Y be a tournament-like
score obtained from all participant individuals by the
following function:

FY)=p—qg+c (12)

, Where p is the number of individuals which can be
dominated by the individual Y, and ¢ is the number of
individuals which can dominate the individual Y in the
objective space. c is set to the number of all participant
individuals.

4.3. Genetic Operators

The genetic operators used in the proposed
approach are widely used in literature. The selection
operator uses a binary tournament selection without
replacement. The uniform crossover is used in FD-
MOGA. A simple mutation operator is used to alter
genes. For each gene, randomly generate a real value
from the range [0, 1]. If the value is smaller than the
mutation probability p,, replace its index with a
randomly generated integer among its possible values.

4.4, Repulsion and Attraction Force Mutation
To prevent sensors from overly centering in some

positions in individuals, a force-driven method is
introduced. The proposed force-driven method consists

of two forces: repulsion force and attraction force.
While the density of sensors within a certain space is
high, a repulsion force mutation is to increase the
degree of spread between sensors. On the contrary,
while the density of sensors is low, an attraction force
mutation is used to centralize sensors within a certain
space. The procedure of repulsion and attraction force
mutation is written as follows:

Step 1: Space Division Divide the sensor field 7" into
bn,, bn, and bn. large grid space bp;,bp,,..., bpy,
where n,> bn,, n,> bn,, and n.> bn..

Step 2: Position Compute the position of sensors
within each large grid space bp,, [ = 1,2,..., L. Partition
the sensors within the large grid space bp;, into a set S;.
Step 3: Statistics Calculate the number of sensors, b,
in each set S, .

Step 4: Repulsion Mutation If the number b; of
sensors in a large grid space bp; is bigger than one,
repulse the positions of sensors in S; from their
centroid with one grid point in every dimension, and
increase one level of sensing range in these sensor.
Step 5: Attraction Mutation If the number b, of
sensors in large grid space bp, is equal to one, let the
sensors adjacent to the large grid space bp; be attracted
and move to the position of the sensor in S; with one
grid point for every dimension, and decrease one level
of sensing range in these sensors.

4.5. Procedure of FD-MOGA

An elitism strategy is adopted. An elite set £ with
capacity E,... will maintain all the best non-dominated
solutions generated so far. The procedure of FD-
MOGA is written as follows:

Input: population size N,,, recombination probability
P, mutation probability p,,, the number of maximum
generations G-

Output: The optimum solutions ever found in P.

Step 1: Initialization Randomly generate an initial
population P of N, individuals, and create an empty
elite sets E.

Step 2: Evaluation For each individual in the
population, compute all objective function values F;,
F, and F;.

Step 3: Fitness assignment Assign each individual a
fitness value by using GPSIFF.

Step 4: Update elitist Add the non-dominated
individuals in E. Considering all individuals in E,
remove the dominated ones in E. If the number of non-
dominated individuals in E is larger than E,,
randomly discard excess individuals.

Step 5: Selection Select N,,, - N,,, individuals from the
population to form a new population using the binary



tournament selection and random select N, individuals
from E to form a new population, where N,,; = N,,,Xp;
and p, is a selection proportion. If N, is greater than
the number Ny of individuals in E, let N, = Ng..

Step 6: Recombination Perform the uniform
crossover operation with a recombination probability
Pe-

Step 7: Mutation Apply the simply mutation operator
to each gene in the individuals with a mutation
probability p,,.

Step 8: Repulsion and Attraction Mutation Execute
the repulsion and attraction mutation to each individual
with two probabilities p, and p,.

Step 9: Termination test If a stopping condition is
satisfied, stop the algorithm. Otherwise, go to Step 2.

40 50
30 40
20 30

. 20
Y 10 10 X

Figure 2. A terrain with decreasing linear detection
levels.

5. RESULT AND DISCUSSION

5.1. Simulation Environment and Parameters

A 3D WSN deployment benchmark generator for
WSN environment is designed to generate different
scale of sensor fields with different models of
detection probability levels. A sensor field with
50x50%50 grid points is generated. The same terrain
with four different required minimum detection
probability levels: decreasing linear, normal, Poisson,
and exponential distributions, are illustrated as four
different benchmarks. Figure 2 illustrates a terrain with
linear decreasing levels. For the sensors of WSN, we
assume each sensor has five adjustable sensing ranges
6, 8, 10, 12, 14, and the detection error ranges are half
of the sensing range of each sensor. The power
consumption parameter x is 1. The probabilistic
detection model parameter g is 0.5 and the detection
radio wave parameter 4 is 0.5.

The parameter settings of the proposed algorithm
are listed as follows: population size N,,,=200,

maximum number elite set of individuals E,,,,=10000,
selection elite set proportion p,=0.2, division of large
grid space 5x5x5, recombination probability p.=0.9,
mutation probability p,=0.01, repulsion probability
p,~=0.1, attraction probability p,=0.1, the number of
maximum generations G,,,,=500 and 1000. Thirty
independent runs are conducted for each problem. The
number of sensor nodes to be deployed is limited to 20.
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Figure 3. Box plots of non-dominated solutions for
solving the 3D deployment problem with linear and

exponential detection levels, using 20 sensors.
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Figure 4. Box plots of non-dominated solutions for
solving the 3D deployment problem with normal and
Poisson detection levels, using 20 sensors.

Figures 3-4 depict the box plots of obtained non-
dominated solutions. The results indicate that different
detection levels pose different difficulties for FD-
MOGA. The problems with normal and Poisson
detection levels are more difficult to find a good
deployment plan than problems with decreasing linear
and exponential detection levels using the same
number of sensors. The number of sensors required for
a terrain with normal and Poisson detection levels
should be bigger than the same terrain with decreasing
linear and exponential detection levels.

A naive MOGA without elitism and repulsion and
attraction mutation is also implemented. The coverage
metric C(4,B) of two solution sets A and B [6] used to
compare the performance of two corresponding



algorithms, FD-MOGA and MOGA, considering all
the objectives.

{a e A,be B,atb}

C(4,B)= 5

(13)

The value C(4, B)=1 means that all individuals in B
are weakly dominated by 4. Figure 5 depict box plots
of coverage metric of FD-MOGA and MOGA in
solving the 3D deployment problems with four
detection levels, using 20 sensors. The result
demonstrates the effectiveness of the elitism and force-
driven mutation used in FD-MOGA.
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Figure 5. Box plots of coverage metric of FD-MOGA
and MOGA for solving the 3D deployment problems
with four detection levels, using 20 sensors.

6. CONCLUSION

In this paper, a force-driven multi-objective
evolutionary approach is proposed to solve 3D
differentiated WSN deployment problems.
Experimental results demonstrated FD-MOGA s
capable of optimizing coverage, satisfaction of
detection levels, and energy conservation. Moreover,
FD-MOGA can provide mission planers a set of non-
dominated solutions for deployment of sensor nodes.
The results also indicate that some problems with
unusual detection levels requirements may require
more sensor nodes for FD-MOGA than those of
problems with usual detection levels requirements. Our
future work will develop specialized techniques for 3D
WSN deployment problems with unusual detection
levels.
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