PRl 7y E LR ¢ & 82F

ek SEE L

3R BRSO R e

¥ (11)
PR REHELGEER)

L

!} Ke

+p Ab

4L

S
HEYRF
H o7 HE =

DA IIE Y A -f e

DO s A

: NSC 96-2221-E-216-006—
296 # 082 01 px97TEO07 2 31p
PP EAFETaL RS

DORAR

LR
LriEmy 4 -flizes@ s g o g’;%
Arsipmy 4 -JiEpm s § o

PooE R F/ 97TE 107 31 p



Summary

This report describes the results achieved in the second year of three-year research proposal. As mentioned in the
proposal, an important issue in the design of high reliable system-on-chip (SoC) is how to verify the robustness of the
system, the safety-critical components and the feasibility of the fault-robust design as early in the development phase to
reduce the re-design cost. Therefore, a system-level fault-tolerant verification platform is required to assist the designers
in assessing the dependability of a system with an efficient manner. The study is to propose a system-level fault
injection framework in SystemC design platform to assist the dependability assessment. The proposed fault injection
framework consists of two kinds of fault injection techniques: simulation-based and software-implemented fault
injection schemes. In this year, we first enhance the simulation-based fault injection platform by devising a system bus
fault injection methodology. As we know, the system bus, such as AMBA AHB, provides an integrated platform for
IP-based SoC. Apparently, the robustness of system bus plays an important role in the SoC reliability. So, performing
the system bus failure mode and effects analysis (FMEA) is imperative to validate the reliability of SoC. Secondly, we
construct a fault injection tool under the environment of CoWare Platform Architect. The tool deals with fault injection
at different modeling levels of abstraction and the fault trigger can be time-driven or event-driven approaches. The
proposed fault injection tool can significantly reduce the effort and time for performing the fault injection campaigns. In
addition to that, the tool dramatically increases the efficiency of carrying out the FMEA and system robustness
validation. We demonstrate the feasibility of the proposed fault injection framework with an experimental ARM-based
system that is modeled at different levels of abstraction. The details of this part can be found in the “SoC-Level Fault
Injection Methodology and Tool Development in SystemC Design Platform” (page 1).

Simulation-based fault injection in IP-based SoC design platform has a difficulty in injecting the faults into the
inside of IP components, especially for processors and memory modules. Such a limitation confines the injection
capability for IP-based SoC. To cope with this problem, we also develop a software-implemented fault injection (SWIFI)
mechanism under UNIX or Linux operating systems, which allows us to inject the faults into the processor registers and
the memory. At current stage, we implemented the proposed SWIFI technique in the ARM926EJ-S development board
embedded with Open Linux 2.6.19 to validate its feasibility. The experiments of FMEA were conducted to analyze the
system behavior and the failure sensitivity for the errors occurring in the ARM processor registers. Since CoWare
Platform Architect currently does not provide the UNIX or Linux operating systems in the design environment, we
cannot port the proposed SWIFI scheme to the SystemC design platform. To solve it, we now cooperate with Chip
Implementation Center (CIC) to try to port the Linux operating system to the CoWare Platform Architect. When this is
done, we will integrate the presented SWIFI technique into our fault injection tool to expand its injection ability and
diversity. The details of this part can be found in the appendix (page 12).

The other important issue is how to locate the safety-critical components in the system. For the complicated
embedded systems or IP-based SoC, it is unpractical and not cost-effective to protect the entire system or SoC.
Analyzing the vulnerability of a system can help designers not only to invest limited resources on the most crucial
region but also to understand the gain derived from the investment. In this part of study, we propose a model to fast
estimate the microprocessor’s vulnerability with only slight simulation effort. From the assessment results, the rank of
component vulnerability related to the probability of causing the microprocessor failure can be acquired. The ranking
results can be used to achieve an effective fault-tolerant design. By choosing one of the mainstream microprocessors —
VLIW (Very Long Instruction Word) processor — as an example, the practical usefulness of our estimation model is
demonstrated. The details of this part can be found in the “An Estimation Model of Vulnerability for Embedded

Microprocessors” (page 9).
Keywords: FMEA, fault-tolerant design, high-level abstraction modeling, high-level rapid verification, SystemC,
system-level fault injection, system-on-chip (SoC), transient fault (soft error or SEU).

SoC-Level Fault Injection Methodology and Tool Development in SystemC Design Platform

Abstract — Intelligent systems, such as intelligent
car driving system or intelligent robot, require a
stringent reliability while the systems are in operation.
As system-on-chip (SoC) becomes prevalent in the
intelligent system applications, the reliability issue of
SoC is getting more attention in the design industry
while the SoC fabrication enters the very deep
submicron technology. In this study, we present a new
approach of system bus fault injection in SystemC

design platform, which can be used to assist us in
performing the failure mode and effects analysis
(FMEA) procedure during the SoC design phase. We
demonstrate the feasibility of the proposed fault

injection  mechanism with an  experimental
ARM-based system.
Index Terms: FMEA, reliability, system-on-chip,

SystemC, system bus fault injection.



I. INTRODUCTION

As SoC becomes more and more complicated, the SoC
could encounter the reliability problem due to the
increased likelihood of faults or radiation-induced soft
errors especially when the chip fabrication enters the very
deep submicron technology [1]-[3]. Thus, it is essential to
perform the FMEA procedure to locate the weaknesses of
the system and provide the practical fault-tolerant
strategies to improve the reliability [4]. However, due to
the high complexity of the SoC, the incorporation of the
FMEA procedure and fault-tolerant demand into the SoC
will further raise the design complexity. Therefore, we
need to adopt the behavioral level or higher level of
abstraction to describe/model the SoC, such as using
SystemC, to tackle the complexity of the SoC design and
verification. An important issue in the design of SoC is
how to validate the system reliability as early in the
development phase to reduce the re-design cost. As a
result, a system-level dependability verification platform
is required to facilitate the designers in assessing the
dependability of a system with an efficient manner.
Normally, the fault injection approach is employed to
verify the robustness of the systems.

Most of the previous fault injection studies focus on
the VHDL design platform, whereas only a few works
[5]-[9] address the fault injection issue in SystemC design
platform. In our previous paper [7], we proposed a fault
injection methodology for cycle-accurate register-transfer
level (RTL) and compared the results of injection
campaigns with the outcomes derived from the VHDL
RTL. In [5], [6], the authors proposed a fault injection
framework that is applicable to functional level and
transaction layer 1 in SystemC. The paper [9]
characterized the susceptibility of AMBA bus on errors in
various signals over different transactions in SystemC
cycle-accurate level.

As we know, the system bus, such as AMBA AHB,
provides an integrated platform for IP-based SoC.
Apparently, the robustness of system bus plays an
important role in the SoC reliability. So, performing the
system bus FMEA is imperative to validate the reliability
of SoC. In previous related work, the issue of system bus
fault injection in SystemC design platform is rarely
addressed except the work proposed in paper [9].
However, the approach presented in [9] is dedicated to
cycle-accurate level, which may still be time-consuming
in fault injection and simulation runs. In addition, the
previous fault injection methodologies are all based on
time-driven approach to decide when to inject a fault.
While the modeling levels of systems come to the
untimed functional transaction-level modeling (TLM) and
timed functional TLM, the time-driven fault injection
approach is no longer applicable to these levels or
becomes improper. Instead, the event-driven fault
injection approach is effective in keeping the fault
injection easier and efficient at untimed/timed functional

TLM, especially in the performing of system bus FMEA.

The types of transaction in the bus normally consist of
the single-read, single-write, burst-read and burst-write
operations. Each type of bus transaction can represent a
possible failure mode of the system bus. If we want to
analyze the effect of a specific system bus failure mode,
like burst-read failure, on the system behavior, the event
of fault triggers in this case can be set as burst-read
operation of bus transactions. In other words, the time
instant of fault injection is related to the occurrence of the
burst-read event in the bus transactions. It is clear that
using the event-driven fault injection can easily produce
the desired failure mode and effectively characterize its
effect on the system functionality. Compared to
event-driven fault trigger, the time-driven approach
suffers from the poor injection effectiveness for a specific
failure mode and its effect analysis, because the
time-driven fault trigger cannot guarantee the injected
faults that will cause the desired failure mode, such as
burst-read failures.

The principal goal of this work is to propose an
effective system bus event-driven fault injection
framework in SystemC design platform at the abstraction
levels of untimed/timed functional TLM to assist the
reliability assessment. The advantages of our fault
injection approach are two folds: one for simulation speed
and the other for injection effectiveness. The remaining
report is organized as follows. In Section Il, the SystemC
untimed/timed functional TLM and the concept of
Transactor are presented. We propose a system bus fault
injection methodology in Section I11. A fault injection tool
is demonstrated in the following section. We show some
experimental results in Section V. The conclusions and
future work appear in Section VI.

Il. SYSTEMC UNTIMED/TIMED FUNCTIONAL TLM

SystemC, a system-level modeling language, provides
a wide variety of modeling levels of abstraction and
allows us to model a system utilizing one or a mixture of
various abstraction levels. It is quite common that the
modules within a SoC are modeled at different levels of
abstraction using SystemC design language. The primary
goal of TLM is to reduce the modeling complexity and
increase the simulation speeds, while offering enough
accuracy for the design task. The Open SystemC
Initiative (OSCI) categorizes the TLM in SystemC into
the following levels: Programmers View (PV),
Programmers View with Timing (PV+T) and Cycle
Callable (CC), where the modeling level of abstraction
and simulation speed is from high to low among these
three levels. The PV level is equivalent to untimed
functional TLM and PV+T level is the level of timed
functional TLM.

We adopt the CoWare Platform Architect [10] and
AMBA bus [11] to demonstrate our system bus fault
injection approach and its applications. The Platform



Architect provides the modeling levels of PV and PV+T
and allows the mixture of these two levels in the IP-based
SoC design. In the following, we address the issue of
system bus fault injection in PV and PV+T levels, which
can be used to assist us in performing the FMEA
procedure during the SoC design phase. Fig. 1 shows the
ARM-based systems modeled with the mixed abstraction
levels of PV and PV+T, where the ‘Transactor’ likes
bridge to connect the PV and PV+T levels and its
function is to convert the bus protocols between PV and
PV+T levels. In Fig. 1, the AHB and APB components
are modeled at PV+T abstraction level with AMBA
protocol; whereas the “IP” slave modules are modeled at
PV level with PV protocol. The PV bus can be utilized to
connect the slave modules as shown in Fig. 1(a) and (c).
Then, the ‘Transactor’ behaves like bridge between PV
bus and AHB or APB. Fig. 1(b) and (d) do not use the PV
bus for slave modules. Instead, each slave module
connects to the AHB or APB through the ‘Transactor’.
The reason of employing the PV modeling level is to
speed up both the modeling process itself as well as the
simulation of the resulting specification.

The AMBA library of Platform Architect provides
three kinds of ‘Transactor’ module, which are named as
AHBL.iteTarget PV, APBTarget PV and
ScmlPost_ AHBInitiator. The former two types of
‘Transactor’ offer the bridge between slave modules
modeled at PV level and AHB/APB modeled at PV+T
level; ScmlPost_AHBInitiator connects the master
modules modeled at PV level to AHB modeled at PV+T
level. In general, an AMBA-based SoC contains multiple
masters and slaves. So, without loss of generality, we
exploit the system platform as illustrated in Fig. 2, which
combines the Fig. 1(a) and (c) to demonstrate our system
bus fault injection methodology. The injection mechanism
for systems as shown in Fig. 1(b) and (d) is similar to the
one applicable to Fig. 2 system. Therefore, we omit its
details.

AHB PV AHB

(a) )

AHB AHB

PV

© @

Fig. 1. ARM-based system modeled with mixed levels of PV and PV+T,
where IP represents the slave module.

AHB PV

Transactor

ARM
CPU

Fig. 2. An AMBA-based system modeled at PV and PV+T levels.

I1l. SYSTEM BUS FAULT INJECTION SCHEME

An AMBA-based system as illustrated in Fig. 2 is
exploited to demonstrate our system bus fault injection
methodology. The event-driven fault trigger is utilized to
inject the faults into the system bus during the data
transactions. An event is used to represent a particular
condition that decides the time of fault occurrence. The
principal idea of our approach is based on the insertion of
a fault injection module (FIM) into the bus
interconnection, where the FIM is to control the fault
injection activity. The function of FIM is first to monitor
the bus and collect the bus transaction information
including address, data and control signals; then, check
whether the declared event occurs; if yes, the fault is
injected into the bus.

A. FIM generation flow

The flow of FIM generation consists of two phases and
is described as follows:

Phase 1: Since FIM employs the event-driven fault trigger
approach, we need to collect the bus transaction
information including address, data and control signals
into the operational profiles during the program execution.
The operational profiles are used as a reference for
generation of FIM events that will be the conditions of
fault trigger. The function of ‘Transactor’ as shown in Fig.
2 and 3(a) can be enhanced by adding the ability of bus
transaction information collection to ‘Transactor’. This
modified version of ‘Transactor’ is called operational
profile module (OPM) as displayed in Fig. 3(b). We
utilize the AMBA bus API [12] furnished by CoWare
Platform Architect to implement the function of
operational profile generation. What kinds of bus
transaction information should be collected all depends
on the designer need. The following pseudo code is used
to exhibit the address information collection for bus-read
transaction. We note that AHB bus allows multiple
masters, and therefore we offer the OPM to have the
capability to collect the bus transaction information for
each master. The other classes of bus transaction



information, such as data and protocol signals, can be
achieved in the similar way. The information for each
class of bus transaction is gathered to a profile for each
master during the fault-free simulation campaign.

While (1) {
int Master_ID; /Imultiple masters, each given an
unique number;
fstream profile_master_1(“Datal.txt”,ios::app);
/lgathering address information of master 1 to a
profile;
fstream profile_master_2(“Data2.txt”,ios::app);
/I gathering address information of master 2 to a
profile;
port.getReadDataTrf() //check whether the bus is
performing read transaction or
not
Master 1D =port.getMasterld() /lwhich master is
using bus;
If (Master_ID == 1){
profile_master_1<< port.getAddress()<<endl;
/lacquire the address and write it to the operational
profile of master 1 ;}
If (Master_ID == 2){
profile_master_2<< port.getAddress()<<endl;
/lacquire the address and write it to the operational
profile of master 2 ;}
Protocol transformation; /loriginal function of
Transactor
send Transfer();  //call function of set/get read
data;
profile_master_1.close();

profile_master_2.close();
wait();

}

Next, we discuss the relationship between event and
operational profile. As mentioned before, the operational
profiles are utilized to help us creating the desired events
that decide the time instant of fault injection. Fig. 4
exhibits the event tree and its possible combinations.
Basically, the types of transaction in the bus are ‘read’
and ‘write’ that are the first level of events as shown in
Fig. 4. The second level of events includes ‘burst’ and
‘single’ data transactions. The third level of events
consists of ‘data’, ‘address’ and ‘burst length’ etc. Our
event-driven fault trigger methodology provides diverse
sorts of events. The types of event can be a single event
or the combination of events as illustrated in Fig. 4. We
use Fig. 4 to explain the event concept. For bus
transaction, single event could be either ‘read’ bus
transaction or ‘write’ bus transaction, which pertain to the
first level of events. The event combinations can be
formed either from first-level events with second-level
events or from first, second then third-level events in
sequence. To support the event-driven fault trigger, the
function of OPM needs to create the desired operational

profiles, which furnish the information for event
formation.
Transactor OPM FIM
Event_check
Operational_profile Fault_injection
Protocol Protocol Protocol
transformation transformation transformation
(@) (b) (©

Fig. 3. “Transactor’, OPM and FIM functions.
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Fig. 4. Event tree and combinations.

We give an example of event combination and its
application below:

Example 1: From Fig. 4, we can construct an event
combination using first-level events coupled with
second-level events, like ‘read” associated with ‘burst’ to
compose a hew sort of event, termed as burst-read event.
If we treat the bus as a component, the failure mode of the
bus could be ‘single-read’, ‘single-write’, ‘burst-read’ and
‘burst-write” failures. The burst-read failure means that
the bus failure occurs during the burst-read transactions.



Therefore, if we want to perform the effect analysis of
burst-read failure mode on the system behavior, the
burst-read event can be utilized to guide the fault
injection to guarantee the faults injected, which always
lead to the burst-read failures. We note that the
event-driven fault trigger approach offers a highly
effective injection operation, which is very suitable for
the FMEA needs. Assume that there are ten thousand
times of burst-read transactions occurring in the bus of an
experimental SoC platform. To obtain the effect analysis
of burst-read failures on system operation, we need to
conduct a huge amount of fault injection campaigns,
saying five hundred campaigns. Each campaign injects a
fault that is triggered when the number of burst-read
transactions appearing in the bus is equal to x, where X is
from 1 to 10000. The number of x for each injection
campaign is decided by randomly choosing a number
between 1 and 10000. For instance, the number of x for
an injection campaign is 100. In this case, the fault is
triggered while the number of burst-read transactions
appearing in the bus is equal to 100. The OPM in this
case needs to produce an operational profile that collects
the information of burst-read bus transactions including
the total number of burst-read transactions and the details
of each burst read transaction, such as the length of burst
read. 0

We should point out that the OPM is developed to
gather the bus transaction information for a particular
event. So, we need to decide the adopted event for fault
triggering condition, and develop the corresponding OPM
for operational profile production of the adopted event.
As discussed before, the event formation can be either a
single event or event combination. The more number of
events are combined, the more control of fault trigger will
be.

Phase 2: Based on the operational profiles produced in
Phase 1, the FIM as illustrated in Fig. 3(c) is generated
for each injection campaign. A FIM can be constructed
from the “Transactor’ and its function contains four parts:
bus monitoring, event check, fault injection and protocol
transformation. The FIM replaces the ‘Transactor’ as
shown in Fig. 2, and is responsible for event check to
determine when the fault should be injected. If the event
check finds the particular event happens, the fault is
injected. The following pseudo code is employed to
demonstrate how to implement the event check and fault
injection operations in the FIM. The function of FIM in
this demonstration is to inject a fault when the bus is in
read transaction and a specific address occurs. Again, we

utilize the AMBA bus API [11] furnished by CoWare
Platform Architect to implement the function of FIM.

While (1) {

int Master_ID;

port.getReadDataTrf(); // check whether the bus is

performing read transaction
or not;

Master_ID =port.getMasterld(); // which master is
using bus
If (Master_ID == 1){

If (port.getAddress()==0x40000000)

{Fault_injection}}

/Imaster 1 is the bus owner and address is 0x40000000.
If (Master_ID == 2){

If (port.getAddress()==0x80000000)

{Fault_injection}}
/Imaster 2 is the bus owner and address is 0x80000000
Protocol transformation;
send Transfer();
wait();
}
IV. FAULT INJECTION TOOL

In this section, we present a fault injection tool based
on the system bus fault injection methodology described
in last section and the fault injection scheme for
communication channels at the following abstraction
levels: sc_signal at bus-cycle-accurate (BCA) level and
the primitive channel sc_fifo at untimed functional TLM
[8]. Fig. 5 exhibits the operational flow of fault injection
tool. We construct this tool under the environment of
CoWare Platform Architect. The tool deals with fault
injection at different modeling levels of abstraction and
the fault trigger can be time-driven or event-driven
approaches. The proposed fault injection tool can
significantly reduce the effort and time for performing the
fault injection campaigns. In addition to that, the tool
dramatically increases the efficiency of carrying out the
FMEA and system robustness validation. In the following,
we briefly depict the tool main functions:

® Automatically generate the OPM that replaces the
“Transactor’ as shown in Fig. 2 to establish the SoC
platform, which is used to produce the desired
operational profiles for each master.

® According to the operational profiles, choose the
event for fault triggering condition; automatically
generate the FIMs that replace the ‘Transactors’ to
establish the targeted SoC platform for fault injection
campaign usage.
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V. EXPERIMENTAL RESULTS

The following experimental studies were performed
to validate the feasibility of our fault injection
framework and tool proposed in Sections 3 and 4. Fig.
6 shows an ARM-based system used in fault injection
experiments. We use the AMBA bus library [11]
provided by CoWare Platform Architect to implement
the system as illustrated in Fig. 6. The hexadecimal
numbers followed the IP modules are memory mapping
addresses, which could be the targets of fault injection.
The purposes of peripherals: disp_1, disp_2 and disp_3
are for displaying the final results to easily verify our
experimental results.

AHB PV

VAN

ROM 0x0

RAM 0x40000000

Transactor

ARM926 >

disp_1 0x80000000

disp_3 0x70000000

T

APB 13%

Transactor

0xC0000000

N4

Fig. 6. A system platform for experimental demonstration.
A. Tool Validation Experiment

The goal of this experiment is to verify the functional
correctness of the operational flow of fault injection
tool. We conducted two event-driven injection
campaigns: one for single-event-driven fault trigger and
the other for combined-event-driven fault trigger.

Single-event-driven fault trigger: In this experiment,
we choose ‘bus address’ as the fault-triggering event. In
other words, the event check is to examine whether the
address for the current bus transaction reaches a
particular address that is set as the fault-triggering
condition or not. We first employ the fault injection tool
to generate the OPM and perform the simulation to
obtain the desired operational profile, which collects
the bus address information. According to operational
profile derived from the fault-free simulation, we
choose a specific address ‘0x80000000° to be the
fault-triggering condition. It means that when the
address ‘0x80000000” happens, the event check of FIM
is positive and a wrong address ‘0x70000000° is
injected into the address bus. Fig. 7 illustrates the
experimental results, where the left and right parts
show correct and wrong results, respectively. The
results indicate that originally the ARM CPU writes a
data to disp_1 (address: 0x80000000) to display. Due to
fault interference, the data is written to the wrong
address ‘0x70000000’ (disp_3).

Combined-event-driven fault trigger: The event
formation comprises the events of ‘write’, ‘burst’,
‘burst length’ and “group’ of bus transaction. The burst
length represents the number of data transfer for each

burst transaction and group means the type of data
transfer. The fault-triggering condition is set as ‘burst
write, burst length = 8 and group = 1. The FIM checks
the combined event during the bus transactions to
decide when to inject a fault. Fig. 8 shows the
experimental results, where a fault is injected into the
data bus while the particular event occurs.

Without fault injection
[ disp 1= 080000000 |

With fault injection
[ disp 3 = 0x70000000 |

Console
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Fig. 7. Single-event-driven fault injection.
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Fig. 8. Combined-event-driven fault injection.

B. Time-Driven and Event-Driven Injection Experiment

In this experiment, the effectiveness of the
event-driven fault injection methodology is compared
with time-driven one. The mission of this experiment is
to analyze the effect of system bus failure mode, such
as ‘burst-read’ failures, on the system behavior. To meet
the mission requirement, we need to conduct a huge
number of fault injection campaigns to guarantee the
validity of the FMEA results. We note that the
time-driven fault injection is inefficient for this kind of
mission because the time instants of injected faults
derived from the time-driven approach are often not the
time of the bus performing the burst-read transactions.
Therefore, we will waste enormous time and effort if
the time-driven method is adopted. In contrast to
time-driven method, the event-driven approach can
accomplish the mission discussed very effectively
because the event check in FIM is ‘burst-read’ event,
and therefore the faults injected always guarantee to
cause the ‘burst-read’ failures. Two benchmark
programs 50x50 matrix multiplication and quicksort
(sorting 99 elements) were developed and used in the
fault injection campaigns. Table | gives the comparison
results for the time-driven and event-driven fault
injection campaigns. The term of ‘Burst-Read Count’ in



Table | means the total number of ‘burst-read’ bus
transactions occurs during the benchmark execution.
The ‘hitting rate of fault injection’ represents the
probability of faults injected that cause the ‘burst-read’
failures. The results are derived from two thousand
times of fault injections. It is evident that the hitting
rate of fault injection for event-driven method is 100%,
whereas time-driven method only has 5.25% and 6.75%
for matrix multiplication and quicksort, respectively.
The experimental results indicate that the event-driven
fault injection approach is very suitable for the FMEA
applications.

TABLE |
THE COMPARISON RESULTS FOR TIME-DRIVEN AND
EVENT-DRIVEN FAULT INJECTION APPROACHES

Benchmark Matrix Quicksort
Clock cycle 4370925 42703
Burst-Read Count 421990 5443
Hitting ra'te of fault injection 100% 100%
(Event-driven)

H|_tt|ng ra_lte of fault injection 5 9506 6.75%
(Time-driven)

C. FMEA Experiment

This experiment is a demonstration of employing the
developed tool to perform the AMBA bus FMEA. The
goal of this demonstration is to show the capability of
the proposed fault injection methodology and tool. We
use ‘50 x50 matrix multiplication’ and ‘quicksort’ as
our benchmark programs and choose ‘burst-read’ as the
targeted failure mode. Therefore, the fault-triggering
event is set as ‘burst-read’ bus transaction. The fault

targets include ‘address’, ‘data’ and ‘access size’ signals.

For each injection campaign, a single-bit-flip fault was
injected into the fault targets of AMBA bus on the
happening of a specific burst-read transaction. The fault
duration sustains the length of one bus transaction. This
experiment is to investigate the effect of ‘burst-read’
failure mode of AMBA bus on the system behaviors.
There are five classes of system outcomes [9]: fatal
error (FE), silent data corruption (SDC), correct
data/incorrect time (CD/IT), deadlock (DL) and no
effect (NE) appeared in the injection campaigns. The
system crash or process hang are classified into fatal
error; silent data corruption is caused by the errors that
remain unnoticed until the end of the simulation but
provide incorrect results; one kind of errors which
won’t affect the correctness of final results but changes
the program execution time is classified into correct
data/incorrect time; deadlock is the errors that lead the
system to get into no progress states; no effect is the
errors which have no impact on the system operation at
all.

The results of each row listed in Table Il were
derived from one hundred injection campaigns
respectively. From the results of Table Il, we can see
that for example an AHB address fault occurring during
‘burst-read’ bus transaction results in 21% FE, 44%
SDC, 6% CD/IT, 1% DL and 28% NE for matrix

multiplication benchmark. The meaning of data for
other rows in Table Il is similar to the row of HADDR
fault. Table Il generated from the data of Table II
illustrates the effect of ‘burst-read’ failures on the
system operation, i.e. the occurring probability of FE,
SDC, CD/IT, DL and no effect when the system
encounters the ‘burst-read’ failures. We note that the
FMEA results are program-variant as evidenced in
Table I11. 1t is clear that the system is more sensitive to
errors while system executes the matrix multiplication
program. The preliminary results obtained indicate that
the attributes of benchmarks have a significant impact
on the FMEA results.

From the demonstration of this experiment, our
proposed fault injection methodology and tool for
assisting the performing of FMEA can be validated. In
the near future, we will further provide more complete
FMEA results with more benchmarks and more
fault-targeted signals in AMBA bus. The effect of
attributes of benchmarks on FMEA results will be
discussed in depth. We will also investigate how to
enhance the efficiency of performing FMEA procedure
by conducting the fault injection (component’s failure
mode production) with different combination of events.

TABLE II
FMEA DATA FOR ‘BURST-READ’ FAILURE MODE. (a)
MATRIX MULTIPLICATION (b) QUICKSORT

System failure FE SDC CD/IT DL NE

HADDR fault 21% 44% 6% 1% 28%

HRDATA fault 3% 45% 0% 1% 51%

HSIZE fault 3% 43% 28% 1% 25%
()

System failure FE SDC CD/NIT DL NE

HADDR fault 19% 12% 12% 1% 56%

HRDATA fault 7% 17% 13% 2% 61%

HSIZE fault 7% 21% 69% 0% 3%

(b)

TABLE Il
THE PROBABILITY OF FE, SDC, CD/IT, DL AND NE FOR
VARIOUS BENCHMARKS

FE SDC CD/IT DL NE

Matrix 9% 44% 11.3% 1% 34.7%

Quicksort 11% 16.7% 31.3% 1% 40%

Matrix + 10% 30.4% 21.3% 1% 37.3%
Quicksort

VI. CONCLUSIONS AND FUTURE WORKS

In this work, a system-bus fault injection
methodology in SystemC design platform is presented,
and a fault injection tool is developed for performing
the FMEA of SoC platform. The main contributions of
this study are to raise the level of fault injection to the
untimed/timed functional TLM and devise an effective



event-driven fault-triggering method. The proposed
event-driven method offers diverse event formation and
efficient injection capability for FMEA applications.
Our fault injection tool can dramatically increase the
efficiency of carrying out the FMEA and system
robustness validation. Several experiments based on
CoWare Architect Platform were conducted to validate
the feasibility of our fault injection approach and tool
ability. We will conduct more fault injection campaigns
for FMEA experiments with more benchmarks and
carry out a thorough analysis of the effect of various
failure modes, like ‘burst-write’ failure, on the system
behavior.
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An Estimation Model of Vulnerability for Embedded Microprocessors

Abstract — Embedded systems, and also the embedded
microprocessors, have encountered the reliability
challenge because the occurring probability of soft
errors has a rising trend. When they are applied to
safety-critical applications, designs with the fault
tolerant consideration are required. For the
complicated embedded systems or IP-based
system-on-chip (SoC), it is unpractical and not
cost-effective to protect the entire system or SoC.
Analyzing the vulnerability of systems can help
designers not only invest limited resource on the most
crucial region but also understand the gain derived
from the investment. In this study we propose a model to
fast estimate the microprocessor’s vulnerability with
only slight simulation effort. From our assessment
results, the rank of component vulnerability related to
the probability of causing the microprocessor failure
can be acquired. By choosing one of the mainstream
microprocessors — VLIW (Very Long Instruction Word)
processor — as an example, the practical usefulness of
our estimation model is demonstrated.

1. Introduction

Soft errors caused by SEU (Single Event Upset) have
more and more apparent influence upon electronic
products including the microprocessors [1]. Some
techniques, like the structural duplication or ECC (Error
Correcting Code), can be utilized to improve the
microprocessor’s vulnerability to soft errors. These
techniques are effective but also cost-consumed.
Performing the FMEA procedure is imperative to
validate the reliability of systems and to acquire the
vulnerability of the systems. Based on the results of
FMEA, we can achieve a more effective investment of
the precious resources to the system to enhance the
reliability in an efficient manner. Therefore, the effect
of soft errors on the system behaviors/failures needs to
be analyzed and modeled.

Many literatures such as [2-4] have proposed their
own estimating methodologies to derive the
microprocessor’s  vulnerability.  However, these
modeling procedures are complicated and maybe
difficult to be adopted by designers. In this work, we
want to propose a simple and effective model which can
provide designers knowledge about: (i) how vulnerable



a microprocessor is and (ii) rank of components by their
contribution to the microprocessor’s vulnerability. Thus
this model must be able to sincerely reflect the
influence of each component’s malfunction to whole
microprocessor. In the following section, this model is
proposed, and then in Section 3 some experimental
results for a VLIW processor are provided and
discussed.

2. Estimation Model for Microprocessor’s
Vulnerability

For simplifying the estimation model, two hypotheses
are given below:

(a). The circumstances of unexpected transmissions
are regarded as equivalent to components’
malfunction and therefore our estimation model
only takes the components into account. Thus
components which are assumed to be critical must
be collected into a set called component set {C;,
C,, ..., C.}; other non-critical components are
viewed as error-free. If designers do better at this
step, then our model have more precise results.

(b). The single-fault assumption is adopted.

In this work, the vulnerability of a microprocessor,
Vwp, is defined as the probability that an inner error
ultimately results in a failure of this microprocessor. We
can use Vyp to model the entire process from a
component’s error to whole microprocessor’s failure. (A
similar estimation model can be found in [6] but it is for
the AMBA architecture.) For this end, we defined three
parameters: ARc;, Uci and SES¢; for each component C;
in component set — where i is from 1 to n. ARg; is the
area ratio of C;, Ug; is the frequency of activating C;,
also named C;’s utilization ratio and SESc; — termed
C;’s soft error sensitivity — defined as the probability of
system failure caused by an error emerged form C; and
the error has effectively propagated to the system. Their
values can be derived by equations (1) ~ (3):

ARG — narea of component Ci )
Zarea of component Ci
i=1
U. - execution cycles using component Ci @)
% execution cycles of benchmark programs

errors cause the microprocessor failed
SES. = 3)
' errors emerged from component Ci
and effectively propagated

Firstly, the area of a component will dominate the
probability that particles strike it, so AR¢; can be used to
represent the error rate of C;. Then, assumed the striking
triggers an error emerged on C;, this error will still be
ineffective if C; is not used presently, thus Ug; is
required to model the probability of error propagation.
Moreover, even an error has been propagated, it may
not cause the microprocessor failed. For example, an
error which propagates to the branch predicting unit

won’t have influence on consequences of benchmark
programs. Therefore how this error propagates is the
last factor which needs to be considered and modeled
by SESc;. Both of Uc; and SESc; are very relevant to the
characteristic of benchmark programs as observed from
Table 1. To identify the component which is most
vulnerable, we define another parameter V¢; which is
the product of three factors above. Finally, we can
compute the microprocessor’s vulnerability by the
summation of V¢; as shown in the equation (4):

Vi = OV, WhereV, = AR, xU, xSES; (4)
i=1

3. Experimental Results

To derive SES¢;, we have conducted a set of error
injection simulations on the RTL model of the VLIW
processor proposed in [5] (but without involving the
fault tolerant components in the execution stage). For
each component in the component set — assigned as
{ALU_A, ALU_B, ALU_C, control unit, forwarding
unit, branch unit, instruction dispatch unit} — 2000
simulations are performed and the processor is
monitored to gather the statistic data. Besides, an extra
simulation without error injection is performed to
derive the Ug;. It is worthy to note that the storages such
as the instruction cache and data cache are not put into
this set. The reason is that their vulnerability has been
finely investigated in many literatures (e.g. [2-4]), so
we place our interests on the other components.
However, our estimation model is still applicable to
storage components. Experimental results shown in
Table 1 are preliminary with two benchmark
programs — matrix multiplication and IDCT.

According to Table 1, the Vyp of VLIW is 0.4658.
From Table 1, not only the most vulnerable component
can be identified by the rank, but also the effect of the
three factors on the vulnerability can be analyzed. It is
very interesting that ALU_B, ALU_C and branch unit
are first three components with highest soft error
sensitivity but their rank of V; is totally inversed. On
the contrary, the forwarding unit has smallest SES¢; but
largest V¢;. This dramatic reverse proves that none of
AR¢i, Uci and SESc; can be neglected. This is a first
confirmation of our estimation model for helping us
precisely identify the vulnerable components.
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parameter

Component ARci Ugi SESg; Vi Rank by Vei
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Alu_B 0.092 | 0.271 | 0.861 | 0.0217 5
Alu C 0.092 | 0.178 | 0.881 | 0.0146 6
Control unit 0.149 | 0.895 | 0.579 | 0.0772 3
Forwarding unit 0.368 | 0.876 | 0.483 | 0.1557 1
Branch unit 0.017 | 0.019 | 0.952 | 0.0003 7
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Self-Evaluation of Research Results:

® The above report summarizes the second-year results accomplished from this three-year research

project. The extended versions of the results will be submitted to be considered for journal publication.
In the first-year report, we stated: “We are going to develop a system-level fault-injection tool, which
exploits the simulation-based fault injection scheme proposed in this research and can be installed in
the CoWare Architect Platform. The tool takes the fault scenario description from the user and then
automatically generates the system platform supplemented with the fault injection capability. This
kind of fault injection tool can not only facilitate the failure mode and effects analysis (FMEA) and
the fault-tolerant validation process, but raise the validation efficiency. The embedded fault-tolerant
systems have found fertile ground in intelligent system applications, such as intelligent driver
assistance system or intelligent robot system, which require a stringent dependability while the
systems are in operation. Since more works depend on the intelligent machines, the reliability issue
becomes more important than ever. The fault-tolerant verification platform developed from this
research can be applied to the design and analysis of the fault-tolerant systems modeled at high level
of abstraction to enhance the overall system dependability. The previous study for the fault injection
approach mainly focuses on the VHDL modeling level and rarely discusses the fault injection in
SystemC system-level design. We want to fulfill this lack.” The above statements describe the main
research goal of this three-year project. From this report, it is evident that we definitely achieve the
second-year goal with one extra supplement, i.e. software-implemented fault injection (SWIFI)
technique. The SWIFI approach can enhance the injection capability and diversity for dependable
IP-based SoC design platform.

However, the subjects expressed in our proposal are big and deserve to be further explored. The
ongoing works are depicted as follows: First, we will port the Linux O.S. to CoWare Architect
Platform and then the SWIFI technique will be added to the fault injection tool as well. As a result, our
fault injection tool will provide more comprehensive injection functions. Second, we are going to
develop a useful analysis tool with some analysis functions for validation of system robustness and
dependability. Thirdly, we are building a more complex system using CoWare Architect Platform to
completely study the effects of faults on system behaviors, and to detect the weaknesses in the
reliability of the system. Finally, a fault-robust IP approach will be proposed to improve the system
dependability by using the results of FMEA and safety-critical component’s analysis. The contribution
of this research is to construct a complete and comprehensive dependability validation framework that
consists of the system-level fault injection to study the system’s failure behavior, and to perform the
FMEA procedure to locate the weaknesses in the reliability of the system, and to exploit the
fault-tolerant design to effectively enhance the system dependability.

Publications associated with the second-year research:

Kun-Chun Chang, Yi-Chinag Wang, Chung-Hsien Hsu, Kuen-Long Leu and Yung-Yuan Chen, “System-Bus
Fault Injection in SystemC Design Platform,” 2" IEEE International Conference on Secure System Integration
and Reliability Improvement, pp. 211-212, July 2008. (EI)

Yung-Yuan Chen, Shu-Hao Hsu, and Kuen-Long Leu, “An Estimation Model of Vulnerability for Embedded
Microprocessors,” 2" IEEE International Conference on Secure System Integration and Reliability Improvement,
pp. 224-225, July 2008. (El)

Yung-Yuan Chen, Yi-Chiang Wang, and Jian-Min Peng, “SoC-Level Fault Injection Methodology in
SystemC Design Platform,” Asia Simulation Conference 2008/ the 7" International Conference on System
Simulation and Scientific Computing, pp. 1787-1794, October 2008. (EI)
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Bl 2. System Failure Mode
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Failure Mode distribution for all registers

72.86
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SC PH 1L EDM CICD CTIb  ITID  ITCD

B 3. Failure Mode Distribution for all Registers

Failure Mode distribution for Matrix
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B 4. Failure Mode distribution for Matrix



Failure Mode distribution for Q-sort
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®] 5. Failure Mode distribution for Q-sort
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# 1. Register Failure Rate in Matrix

Reg. failure rate Reg. failure rate Reg. failure rate

RO 18.60% R6 41.60% R12 10.80%

R1 11.80% R7 10% SP 63.40%

R2 20.80% R8 1.20% LR 8.40%

R3 23% R9 7.20% PC 80%

R4 10% R10 25.20% CPSR 3%

RS 14.80% R11 95.40%

% 2. Register Failure Rate in Q-sort

Reg. |failurerate| Reg. [failurerate| Reg. |[failure rate

RO 19.8% R6 55.2% R12 1.8%

R1 9.8% R7 12% SP 70.2%

R2 13% R8 2.4% LR 12.4%

R3 15.2% R9 6.8% pPC 84.2%

R4 36.4% R10 19.2% CPSR 5.4%

R5 18% R11 95.6%

-EJSL%\ 3 AP —g 1 R11~SP~PC &= #g 4%

#E o BT e RIGEARS T & RTenf R & N R ALY
B PH ant GliRF o 3x RAF§ 22 s B4
PR ARt g R AR EERE R F
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Reg. &failure
rate SC | PH | IL | EDM |CTCD |CTID|ITID |[ITCD
= R11 | 0.2% | 86% | 0% | 1.4% | 4.6% |7.8% | 0% | 0%
QO
;'. SP | 2% | 61% |0% | 0% |36.6% |0.4% | 0% | 0%
PC | 0.2% |72.8%|0% | 0.2% | 20% |4.8% | 0% | 2%
o R11 | 0.2% |93.4%| 0% | 0.4% | 4.4% |1.6%| 0% | 0%
‘é SP | 0% [69.2%|0% | 0% |[29.8% | 1% | 0% | 0%
PC | 0% |79.8%|0% | 0% |15.8% |3.2%|0.2% | 1%

% 3. Failure Mode Distribution of R11,SP,PC
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% 4. Failure Mode Distribution of Special Purpose

Registers
PC | SC| PH |EDM| IL |CTCD| CTID | ITID | ITCD
Code | 0% |54.38%1.25%| 0% |16.46%|11.46%|6.04%|10.42%
Data | 0% | 100% | 0% | 0% | 0% | 0% | 0% | 0%
/O | 0% | 100% | 0% |0% | 0% | 0% | 0% | 0%
Kernel | 0% | 100% | 0% | 0% | 0% | 0% | 0% | 0%
LR |SC| PH |EDM| IL |CTCD|CTID | ITID | ITCD
Code | 0% | 7.5% | 0% | 0% |905% | 1% | 0% | 1%
Data | 0% | 12% | 0% | 0% | 88% | 0% | 0% | 0%
VO | 0% | 9% | 0% |0% | 91% | 0% | 0% | 0%
Kernel | 0% | 9.5% | 0% | 0% [90.5% | 0% | 0% | 0%
SP_|SC| PH |EDM| IL |CTCD| CTID | ITID | ITCD
Code | 0% | 98.5% | 0% | 0% | 1.5% | 0% | 0% | 0%
Data | 0% | 77% | 0% | 5% | 18% | 0% | 0% | 0%
/O | 0% | 97% | 0% | 0% | 3% | 0% | 0% | 0%
Kernel | 0% | 100% | 0% | 0% | 0% | 0% | 0% | 0%
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BB 6. Register Failure Mode Distribution of SC
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B8] 7. Register Failure Mode Distribution of PH
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B 9.Register Failure Mode Distribution of EDM
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