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Summary 
This report describes the results achieved in the second year of three-year research proposal. As mentioned in the 

proposal, an important issue in the design of high reliable system-on-chip (SoC) is how to verify the robustness of the 
system, the safety-critical components and the feasibility of the fault-robust design as early in the development phase to 
reduce the re-design cost. Therefore, a system-level fault-tolerant verification platform is required to assist the designers 
in assessing the dependability of a system with an efficient manner. The study is to propose a system-level fault 
injection framework in SystemC design platform to assist the dependability assessment. The proposed fault injection 
framework consists of two kinds of fault injection techniques: simulation-based and software-implemented fault 
injection schemes. In this year, we first enhance the simulation-based fault injection platform by devising a system bus 
fault injection methodology. As we know, the system bus, such as AMBA AHB, provides an integrated platform for 
IP-based SoC. Apparently, the robustness of system bus plays an important role in the SoC reliability. So, performing 
the system bus failure mode and effects analysis (FMEA) is imperative to validate the reliability of SoC. Secondly, we 
construct a fault injection tool under the environment of CoWare Platform Architect. The tool deals with fault injection 
at different modeling levels of abstraction and the fault trigger can be time-driven or event-driven approaches. The 
proposed fault injection tool can significantly reduce the effort and time for performing the fault injection campaigns. In 
addition to that, the tool dramatically increases the efficiency of carrying out the FMEA and system robustness 
validation. We demonstrate the feasibility of the proposed fault injection framework with an experimental ARM-based 
system that is modeled at different levels of abstraction. The details of this part can be found in the “SoC-Level Fault 
Injection Methodology and Tool Development in SystemC Design Platform” (page 1). 

Simulation-based fault injection in IP-based SoC design platform has a difficulty in injecting the faults into the 
inside of IP components, especially for processors and memory modules. Such a limitation confines the injection 
capability for IP-based SoC. To cope with this problem, we also develop a software-implemented fault injection (SWIFI) 
mechanism under UNIX or Linux operating systems, which allows us to inject the faults into the processor registers and 
the memory. At current stage, we implemented the proposed SWIFI technique in the ARM926EJ-S development board 
embedded with Open Linux 2.6.19 to validate its feasibility. The experiments of FMEA were conducted to analyze the 
system behavior and the failure sensitivity for the errors occurring in the ARM processor registers. Since CoWare 
Platform Architect currently does not provide the UNIX or Linux operating systems in the design environment, we 
cannot port the proposed SWIFI scheme to the SystemC design platform. To solve it, we now cooperate with Chip 
Implementation Center (CIC) to try to port the Linux operating system to the CoWare Platform Architect. When this is 
done, we will integrate the presented SWIFI technique into our fault injection tool to expand its injection ability and 
diversity. The details of this part can be found in the appendix (page 12). 

The other important issue is how to locate the safety-critical components in the system. For the complicated 
embedded systems or IP-based SoC, it is unpractical and not cost-effective to protect the entire system or SoC. 
Analyzing the vulnerability of a system can help designers not only to invest limited resources on the most crucial 
region but also to understand the gain derived from the investment. In this part of study, we propose a model to fast 
estimate the microprocessor’s vulnerability with only slight simulation effort. From the assessment results, the rank of 
component vulnerability related to the probability of causing the microprocessor failure can be acquired. The ranking 
results can be used to achieve an effective fault-tolerant design. By choosing one of the mainstream microprocessors — 
VLIW (Very Long Instruction Word) processor — as an example, the practical usefulness of our estimation model is 
demonstrated. The details of this part can be found in the “An Estimation Model of Vulnerability for Embedded 
Microprocessors” (page 9). 
Keywords: FMEA, fault-tolerant design, high-level abstraction modeling, high-level rapid verification, SystemC, 
system-level fault injection, system-on-chip (SoC), transient fault (soft error or SEU). 

SoC-Level Fault Injection Methodology and Tool Development in SystemC Design Platform

Abstract — Intelligent systems, such as intelligent 
car driving system or intelligent robot, require a 
stringent reliability while the systems are in operation. 
As system-on-chip (SoC) becomes prevalent in the 
intelligent system applications, the reliability issue of 
SoC is getting more attention in the design industry 
while the SoC fabrication enters the very deep 
submicron technology. In this study, we present a new 
approach of system bus fault injection in SystemC 

design platform, which can be used to assist us in 
performing the failure mode and effects analysis 
(FMEA) procedure during the SoC design phase. We 
demonstrate the feasibility of the proposed fault 
injection mechanism with an experimental 
ARM-based system. 
Index Terms: FMEA, reliability, system-on-chip, 
SystemC, system bus fault injection. 
 



I. INTRODUCTION 
As SoC becomes more and more complicated, the SoC 
could encounter the reliability problem due to the 
increased likelihood of faults or radiation-induced soft 
errors especially when the chip fabrication enters the very 
deep submicron technology [1]-[3]. Thus, it is essential to 
perform the FMEA procedure to locate the weaknesses of 
the system and provide the practical fault-tolerant 
strategies to improve the reliability [4]. However, due to 
the high complexity of the SoC, the incorporation of the 
FMEA procedure and fault-tolerant demand into the SoC 
will further raise the design complexity. Therefore, we 
need to adopt the behavioral level or higher level of 
abstraction to describe/model the SoC, such as using 
SystemC, to tackle the complexity of the SoC design and 
verification. An important issue in the design of SoC is 
how to validate the system reliability as early in the 
development phase to reduce the re-design cost. As a 
result, a system-level dependability verification platform 
is required to facilitate the designers in assessing the 
dependability of a system with an efficient manner. 
Normally, the fault injection approach is employed to 
verify the robustness of the systems.  

Most of the previous fault injection studies focus on 
the VHDL design platform, whereas only a few works 
[5]-[9] address the fault injection issue in SystemC design 
platform. In our previous paper [7], we proposed a fault 
injection methodology for cycle-accurate register-transfer 
level (RTL) and compared the results of injection 
campaigns with the outcomes derived from the VHDL 
RTL. In [5], [6], the authors proposed a fault injection 
framework that is applicable to functional level and 
transaction layer 1 in SystemC. The paper [9] 
characterized the susceptibility of AMBA bus on errors in 
various signals over different transactions in SystemC 
cycle-accurate level.  

As we know, the system bus, such as AMBA AHB, 
provides an integrated platform for IP-based SoC. 
Apparently, the robustness of system bus plays an 
important role in the SoC reliability. So, performing the 
system bus FMEA is imperative to validate the reliability 
of SoC. In previous related work, the issue of system bus 
fault injection in SystemC design platform is rarely 
addressed except the work proposed in paper [9]. 
However, the approach presented in [9] is dedicated to 
cycle-accurate level, which may still be time-consuming 
in fault injection and simulation runs. In addition, the 
previous fault injection methodologies are all based on 
time-driven approach to decide when to inject a fault. 
While the modeling levels of systems come to the 
untimed functional transaction-level modeling (TLM) and 
timed functional TLM, the time-driven fault injection 
approach is no longer applicable to these levels or 
becomes improper. Instead, the event-driven fault 
injection approach is effective in keeping the fault 
injection easier and efficient at untimed/timed functional 

TLM, especially in the performing of system bus FMEA.  
The types of transaction in the bus normally consist of 

the single-read, single-write, burst-read and burst-write 
operations. Each type of bus transaction can represent a 
possible failure mode of the system bus. If we want to 
analyze the effect of a specific system bus failure mode, 
like burst-read failure, on the system behavior, the event 
of fault triggers in this case can be set as burst-read 
operation of bus transactions. In other words, the time 
instant of fault injection is related to the occurrence of the 
burst-read event in the bus transactions. It is clear that 
using the event-driven fault injection can easily produce 
the desired failure mode and effectively characterize its 
effect on the system functionality. Compared to 
event-driven fault trigger, the time-driven approach 
suffers from the poor injection effectiveness for a specific 
failure mode and its effect analysis, because the 
time-driven fault trigger cannot guarantee the injected 
faults that will cause the desired failure mode, such as 
burst-read failures.  

The principal goal of this work is to propose an 
effective system bus event-driven fault injection 
framework in SystemC design platform at the abstraction 
levels of untimed/timed functional TLM to assist the 
reliability assessment. The advantages of our fault 
injection approach are two folds: one for simulation speed 
and the other for injection effectiveness. The remaining 
report is organized as follows. In Section II, the SystemC 
untimed/timed functional TLM and the concept of 
Transactor are presented. We propose a system bus fault 
injection methodology in Section III. A fault injection tool 
is demonstrated in the following section. We show some 
experimental results in Section V. The conclusions and 
future work appear in Section VI. 

II. SYSTEMC UNTIMED/TIMED FUNCTIONAL TLM 

SystemC, a system-level modeling language, provides 
a wide variety of modeling levels of abstraction and 
allows us to model a system utilizing one or a mixture of 
various abstraction levels. It is quite common that the 
modules within a SoC are modeled at different levels of 
abstraction using SystemC design language. The primary 
goal of TLM is to reduce the modeling complexity and 
increase the simulation speeds, while offering enough 
accuracy for the design task. The Open SystemC 
Initiative (OSCI) categorizes the TLM in SystemC into 
the following levels: Programmers View (PV), 
Programmers View with Timing (PV+T) and Cycle 
Callable (CC), where the modeling level of abstraction 
and simulation speed is from high to low among these 
three levels. The PV level is equivalent to untimed 
functional TLM and PV+T level is the level of timed 
functional TLM. 

We adopt the CoWare Platform Architect [10] and 
AMBA bus [11] to demonstrate our system bus fault 
injection approach and its applications. The Platform 



Architect provides the modeling levels of PV and PV+T 
and allows the mixture of these two levels in the IP-based 
SoC design. In the following, we address the issue of 
system bus fault injection in PV and PV+T levels, which 
can be used to assist us in performing the FMEA 
procedure during the SoC design phase. Fig. 1 shows the 
ARM-based systems modeled with the mixed abstraction 
levels of PV and PV+T, where the ‘Transactor’ likes 
bridge to connect the PV and PV+T levels and its 
function is to convert the bus protocols between PV and 
PV+T levels. In Fig. 1, the AHB and APB components 
are modeled at PV+T abstraction level with AMBA 
protocol; whereas the ‘IP’ slave modules are modeled at 
PV level with PV protocol. The PV bus can be utilized to 
connect the slave modules as shown in Fig. 1(a) and (c). 
Then, the ‘Transactor’ behaves like bridge between PV 
bus and AHB or APB. Fig. 1(b) and (d) do not use the PV 
bus for slave modules. Instead, each slave module 
connects to the AHB or APB through the ‘Transactor’. 
The reason of employing the PV modeling level is to 
speed up both the modeling process itself as well as the 
simulation of the resulting specification.  

The AMBA library of Platform Architect provides 
three kinds of ‘Transactor’ module, which are named as 
AHBLiteTarget_PV, APBTarget_PV and 
ScmlPost_AHBInitiator. The former two types of 
‘Transactor’ offer the bridge between slave modules 
modeled at PV level and AHB/APB modeled at PV+T 
level; ScmlPost_AHBInitiator connects the master 
modules modeled at PV level to AHB modeled at PV+T 
level. In general, an AMBA-based SoC contains multiple 
masters and slaves. So, without loss of generality, we 
exploit the system platform as illustrated in Fig. 2, which 
combines the Fig. 1(a) and (c) to demonstrate our system 
bus fault injection methodology. The injection mechanism 
for systems as shown in Fig. 1(b) and (d) is similar to the 
one applicable to Fig. 2 system. Therefore, we omit its 
details. 

 
Fig. 1. ARM-based system modeled with mixed levels of PV and PV+T, 
where IP represents the slave module.  

 
Fig. 2. An AMBA-based system modeled at PV and PV+T levels. 

III.  SYSTEM BUS FAULT INJECTION SCHEME 

An AMBA-based system as illustrated in Fig. 2 is 
exploited to demonstrate our system bus fault injection 
methodology. The event-driven fault trigger is utilized to 
inject the faults into the system bus during the data 
transactions. An event is used to represent a particular 
condition that decides the time of fault occurrence. The 
principal idea of our approach is based on the insertion of 
a fault injection module (FIM) into the bus 
interconnection, where the FIM is to control the fault 
injection activity. The function of FIM is first to monitor 
the bus and collect the bus transaction information 
including address, data and control signals; then, check 
whether the declared event occurs; if yes, the fault is 
injected into the bus.  

A.  FIM generation flow 

The flow of FIM generation consists of two phases and 
is described as follows: 
Phase 1: Since FIM employs the event-driven fault trigger 
approach, we need to collect the bus transaction 
information including address, data and control signals 
into the operational profiles during the program execution. 
The operational profiles are used as a reference for 
generation of FIM events that will be the conditions of 
fault trigger. The function of ‘Transactor’ as shown in Fig. 
2 and 3(a) can be enhanced by adding the ability of bus 
transaction information collection to ‘Transactor’. This 
modified version of ‘Transactor’ is called operational 
profile module (OPM) as displayed in Fig. 3(b). We 
utilize the AMBA bus API [12] furnished by CoWare 
Platform Architect to implement the function of 
operational profile generation. What kinds of bus 
transaction information should be collected all depends 
on the designer need. The following pseudo code is used 
to exhibit the address information collection for bus-read 
transaction. We note that AHB bus allows multiple 
masters, and therefore we offer the OPM to have the 
capability to collect the bus transaction information for 
each master. The other classes of bus transaction 



information, such as data and protocol signals, can be 
achieved in the similar way. The information for each 
class of bus transaction is gathered to a profile for each 
master during the fault-free simulation campaign.  
While (1) { 

int Master_ID;  //multiple masters, each given an 
unique number; 

fstream profile_master_1(“Data1.txt”,ios::app);  
//gathering address information of master 1 to a 

profile; 
fstream profile_master_2(“Data2.txt”,ios::app);   
// gathering address information of master 2 to a 
profile; 

port.getReadDataTrf()  //check whether the bus is 
performing read transaction or 
not  

Master_ID =port.getMasterId() //which master is 
using bus; 

If (Master_ID == 1){ 
profile_master_1<< port.getAddress()<<endl;  
//acquire the address and write it to the operational 
profile of master 1 ;}                    

If (Master_ID == 2){ 
profile_master_2<< port.getAddress()<<endl; 
//acquire the address and write it to the operational 
profile of master 2 ;}  

    Protocol transformation;  //original function of 
Transactor 

    send Transfer(); //call function of set/get read 
data; 
    profile_master_1.close(); 
    profile_master_2.close(); 
   wait();  
} 

Next, we discuss the relationship between event and 
operational profile. As mentioned before, the operational 
profiles are utilized to help us creating the desired events 
that decide the time instant of fault injection. Fig. 4 
exhibits the event tree and its possible combinations. 
Basically, the types of transaction in the bus are ‘read’ 
and ‘write’ that are the first level of events as shown in 
Fig. 4. The second level of events includes ‘burst’ and 
‘single’ data transactions. The third level of events 
consists of ‘data’, ‘address’ and ‘burst length’ etc. Our 
event-driven fault trigger methodology provides diverse 
sorts of events. The types of event can be a single event 
or the combination of events as illustrated in Fig. 4. We 
use Fig. 4 to explain the event concept. For bus 
transaction, single event could be either ‘read’ bus 
transaction or ‘write’ bus transaction, which pertain to the 
first level of events. The event combinations can be 
formed either from first-level events with second-level 
events or from first, second then third-level events in 
sequence. To support the event-driven fault trigger, the 
function of OPM needs to create the desired operational 

profiles, which furnish the information for event 
formation.  

 
  (a)      (b)         (c) 

Fig. 3. ‘Transactor’, OPM and FIM functions. 

 
Fig. 4. Event tree and combinations. 

We give an example of event combination and its 
application below: 
Example 1: From Fig. 4, we can construct an event 
combination using first-level events coupled with 
second-level events, like ‘read’ associated with ‘burst’ to 
compose a new sort of event, termed as burst-read event. 
If we treat the bus as a component, the failure mode of the 
bus could be ‘single-read’, ‘single-write’, ‘burst-read’ and 
‘burst-write’ failures. The burst-read failure means that 
the bus failure occurs during the burst-read transactions. 



Therefore, if we want to perform the effect analysis of 
burst-read failure mode on the system behavior, the 
burst-read event can be utilized to guide the fault 
injection to guarantee the faults injected, which always 
lead to the burst-read failures. We note that the 
event-driven fault trigger approach offers a highly 
effective injection operation, which is very suitable for 
the FMEA needs. Assume that there are ten thousand 
times of burst-read transactions occurring in the bus of an 
experimental SoC platform. To obtain the effect analysis 
of burst-read failures on system operation, we need to 
conduct a huge amount of fault injection campaigns, 
saying five hundred campaigns. Each campaign injects a 
fault that is triggered when the number of burst-read 
transactions appearing in the bus is equal to x, where x is 
from 1 to 10000. The number of x for each injection 
campaign is decided by randomly choosing a number 
between 1 and 10000. For instance, the number of x for 
an injection campaign is 100. In this case, the fault is 
triggered while the number of burst-read transactions 
appearing in the bus is equal to 100. The OPM in this 
case needs to produce an operational profile that collects 
the information of burst-read bus transactions including 
the total number of burst-read transactions and the details 
of each burst read transaction, such as the length of burst 
read.      � 

We should point out that the OPM is developed to 
gather the bus transaction information for a particular 
event. So, we need to decide the adopted event for fault 
triggering condition, and develop the corresponding OPM 
for operational profile production of the adopted event. 
As discussed before, the event formation can be either a 
single event or event combination. The more number of 
events are combined, the more control of fault trigger will 
be. 
Phase 2: Based on the operational profiles produced in 
Phase 1, the FIM as illustrated in Fig. 3(c) is generated 
for each injection campaign. A FIM can be constructed 
from the ‘Transactor’ and its function contains four parts: 
bus monitoring, event check, fault injection and protocol 
transformation. The FIM replaces the ‘Transactor’ as 
shown in Fig. 2, and is responsible for event check to 
determine when the fault should be injected. If the event 
check finds the particular event happens, the fault is 
injected. The following pseudo code is employed to 
demonstrate how to implement the event check and fault 
injection operations in the FIM. The function of FIM in 
this demonstration is to inject a fault when the bus is in 
read transaction and a specific address occurs. Again, we 

utilize the AMBA bus API [11] furnished by CoWare 
Platform Architect to implement the function of FIM.  
While (1) { 

int Master_ID;     
port.getReadDataTrf();  // check whether the bus is 

performing read transaction 
or not; 

Master_ID =port.getMasterId();  // which master is 
using bus 

If (Master_ID == 1){    
If (port.getAddress()==0x40000000)  

{Fault_injection}}      
//master 1 is the bus owner and address is 0x40000000. 
If (Master_ID == 2){     

If (port.getAddress()==0x80000000)  
{Fault_injection}}      

//master 2 is the bus owner and address is 0x80000000 
Protocol transformation;    

  send Transfer();      
wait();  
} 

IV.  FAULT INJECTION TOOL 

In this section, we present a fault injection tool based 
on the system bus fault injection methodology described 
in last section and the fault injection scheme for 
communication channels at the following abstraction 
levels: sc_signal at bus-cycle-accurate (BCA) level and 
the primitive channel sc_fifo at untimed functional TLM 
[8]. Fig. 5 exhibits the operational flow of fault injection 
tool. We construct this tool under the environment of 
CoWare Platform Architect. The tool deals with fault 
injection at different modeling levels of abstraction and 
the fault trigger can be time-driven or event-driven 
approaches. The proposed fault injection tool can 
significantly reduce the effort and time for performing the 
fault injection campaigns. In addition to that, the tool 
dramatically increases the efficiency of carrying out the 
FMEA and system robustness validation. In the following, 
we briefly depict the tool main functions: 

 Automatically generate the OPM that replaces the 
‘Transactor’ as shown in Fig. 2 to establish the SoC 
platform, which is used to produce the desired 
operational profiles for each master.  

 According to the operational profiles, choose the 
event for fault triggering condition; automatically 
generate the FIMs that replace the ‘Transactors’ to 
establish the targeted SoC platform for fault injection 
campaign usage.  



 
Fig. 5. The operational flow of fault injection tool. 



V. EXPERIMENTAL RESULTS 

The following experimental studies were performed 
to validate the feasibility of our fault injection 
framework and tool proposed in Sections 3 and 4. Fig. 
6 shows an ARM-based system used in fault injection 
experiments. We use the AMBA bus library [11] 
provided by CoWare Platform Architect to implement 
the system as illustrated in Fig. 6. The hexadecimal 
numbers followed the IP modules are memory mapping 
addresses, which could be the targets of fault injection. 
The purposes of peripherals: disp_1, disp_2 and disp_3 
are for displaying the final results to easily verify our 
experimental results. 

 
Fig. 6. A system platform for experimental demonstration.  

A. Tool Validation Experiment 

The goal of this experiment is to verify the functional 
correctness of the operational flow of fault injection 
tool. We conducted two event-driven injection 
campaigns: one for single-event-driven fault trigger and 
the other for combined-event-driven fault trigger.  

Single-event-driven fault trigger: In this experiment, 
we choose ‘bus address’ as the fault-triggering event. In 
other words, the event check is to examine whether the 
address for the current bus transaction reaches a 
particular address that is set as the fault-triggering 
condition or not. We first employ the fault injection tool 
to generate the OPM and perform the simulation to 
obtain the desired operational profile, which collects 
the bus address information. According to operational 
profile derived from the fault-free simulation, we 
choose a specific address ‘0x80000000’ to be the 
fault-triggering condition. It means that when the 
address ‘0x80000000’ happens, the event check of FIM 
is positive and a wrong address ‘0x70000000’ is 
injected into the address bus. Fig. 7 illustrates the 
experimental results, where the left and right parts 
show correct and wrong results, respectively. The 
results indicate that originally the ARM CPU writes a 
data to disp_1 (address: 0x80000000) to display. Due to 
fault interference, the data is written to the wrong 
address ‘0x70000000’ (disp_3).  

Combined-event-driven fault trigger: The event 
formation comprises the events of ‘write’, ‘burst’, 
‘burst length’ and ‘group’ of bus transaction. The burst 
length represents the number of data transfer for each 

burst transaction and group means the type of data 
transfer. The fault-triggering condition is set as ‘burst 
write, burst length = 8 and group = 1’. The FIM checks 
the combined event during the bus transactions to 
decide when to inject a fault. Fig. 8 shows the 
experimental results, where a fault is injected into the 
data bus while the particular event occurs.  

 
Fig. 7. Single-event-driven fault injection. 

 
Fig. 8. Combined-event-driven fault injection. 

B. Time-Driven and Event-Driven Injection Experiment  

In this experiment, the effectiveness of the 
event-driven fault injection methodology is compared 
with time-driven one. The mission of this experiment is 
to analyze the effect of system bus failure mode, such 
as ‘burst-read’ failures, on the system behavior. To meet 
the mission requirement, we need to conduct a huge 
number of fault injection campaigns to guarantee the 
validity of the FMEA results. We note that the 
time-driven fault injection is inefficient for this kind of 
mission because the time instants of injected faults 
derived from the time-driven approach are often not the 
time of the bus performing the burst-read transactions. 
Therefore, we will waste enormous time and effort if 
the time-driven method is adopted. In contrast to 
time-driven method, the event-driven approach can 
accomplish the mission discussed very effectively 
because the event check in FIM is ‘burst-read’ event, 
and therefore the faults injected always guarantee to 
cause the ‘burst-read’ failures. Two benchmark 
programs 50×50 matrix multiplication and quicksort 
(sorting 99 elements) were developed and used in the 
fault injection campaigns. Table I gives the comparison 
results for the time-driven and event-driven fault 
injection campaigns. The term of ‘Burst-Read Count’ in 



Table I means the total number of ‘burst-read’ bus 
transactions occurs during the benchmark execution. 
The ‘hitting rate of fault injection’ represents the 
probability of faults injected that cause the ‘burst-read’ 
failures. The results are derived from two thousand 
times of fault injections. It is evident that the hitting 
rate of fault injection for event-driven method is 100%, 
whereas time-driven method only has 5.25% and 6.75% 
for matrix multiplication and quicksort, respectively. 
The experimental results indicate that the event-driven 
fault injection approach is very suitable for the FMEA 
applications. 

TABLE I 
 THE COMPARISON RESULTS FOR TIME-DRIVEN AND 

EVENT-DRIVEN FAULT INJECTION APPROACHES 
Benchmark Matrix Quicksort 

Clock cycle 4370925 42703 

Burst-Read Count 421990 5443 

Hitting rate of fault injection 
(Event-driven) 100% 100% 

Hitting rate of fault injection 
(Time-driven) 5.25% 6.75% 

C. FMEA Experiment  

This experiment is a demonstration of employing the 
developed tool to perform the AMBA bus FMEA. The 
goal of this demonstration is to show the capability of 
the proposed fault injection methodology and tool. We 
use ‘50 ×50 matrix multiplication’ and ‘quicksort’ as 
our benchmark programs and choose ‘burst-read’ as the 
targeted failure mode. Therefore, the fault-triggering 
event is set as ‘burst-read’ bus transaction. The fault 
targets include ‘address’, ‘data’ and ‘access size’ signals. 
For each injection campaign, a single-bit-flip fault was 
injected into the fault targets of AMBA bus on the 
happening of a specific burst-read transaction. The fault 
duration sustains the length of one bus transaction. This 
experiment is to investigate the effect of ‘burst-read’ 
failure mode of AMBA bus on the system behaviors. 
There are five classes of system outcomes [9]: fatal 
error (FE), silent data corruption (SDC), correct 
data/incorrect time (CD/IT), deadlock (DL) and no 
effect (NE) appeared in the injection campaigns. The 
system crash or process hang are classified into fatal 
error; silent data corruption is caused by the errors that 
remain unnoticed until the end of the simulation but 
provide incorrect results; one kind of errors which 
won’t affect the correctness of final results but changes 
the program execution time is classified into correct 
data/incorrect time; deadlock is the errors that lead the 
system to get into no progress states; no effect is the 
errors which have no impact on the system operation at 
all. 

The results of each row listed in Table II were 
derived from one hundred injection campaigns 
respectively. From the results of Table II, we can see 
that for example an AHB address fault occurring during 
‘burst-read’ bus transaction results in 21% FE, 44% 
SDC, 6% CD/IT, 1% DL and 28% NE for matrix 

multiplication benchmark. The meaning of data for 
other rows in Table II is similar to the row of HADDR 
fault. Table III generated from the data of Table II 
illustrates the effect of ‘burst-read’ failures on the 
system operation, i.e. the occurring probability of FE, 
SDC, CD/IT, DL and no effect when the system 
encounters the ‘burst-read’ failures. We note that the 
FMEA results are program-variant as evidenced in 
Table III. It is clear that the system is more sensitive to 
errors while system executes the matrix multiplication 
program. The preliminary results obtained indicate that 
the attributes of benchmarks have a significant impact 
on the FMEA results.  

From the demonstration of this experiment, our 
proposed fault injection methodology and tool for 
assisting the performing of FMEA can be validated. In 
the near future, we will further provide more complete 
FMEA results with more benchmarks and more 
fault-targeted signals in AMBA bus. The effect of 
attributes of benchmarks on FMEA results will be 
discussed in depth. We will also investigate how to 
enhance the efficiency of performing FMEA procedure 
by conducting the fault injection (component’s failure 
mode production) with different combination of events. 

TABLE II 
 FMEA DATA FOR ‘BURST-READ’ FAILURE MODE. (a) 

MATRIX MULTIPLICATION (b) QUICKSORT 

System failure FE SDC CD/IT DL NE 

HADDR fault 21% 44% 6% 1% 28% 

HRDATA fault 3% 45% 0% 1% 51% 

HSIZE fault 3% 43% 28% 1% 25% 

(a) 

System failure   FE SDC CD/IT DL NE 

HADDR fault 19% 12% 12% 1% 56% 

HRDATA fault 7% 17% 13% 2% 61% 

HSIZE fault 7% 21% 69% 0% 3% 

(b) 

TABLE III 
 THE PROBABILITY OF FE, SDC, CD/IT, DL AND NE FOR 

VARIOUS BENCHMARKS 
  FE SDC CD/IT DL NE 

Matrix 9% 44% 11.3% 1% 34.7% 
Quicksort 11% 16.7% 31.3% 1% 40% 

Matrix + 
Quicksort 

10% 30.4% 21.3% 1% 37.3% 

VI.  CONCLUSIONS AND FUTURE WORKS 

In this work, a system-bus fault injection 
methodology in SystemC design platform is presented, 
and a fault injection tool is developed for performing 
the FMEA of SoC platform. The main contributions of 
this study are to raise the level of fault injection to the 
untimed/timed functional TLM and devise an effective 



event-driven fault-triggering method. The proposed 
event-driven method offers diverse event formation and 
efficient injection capability for FMEA applications. 
Our fault injection tool can dramatically increase the 
efficiency of carrying out the FMEA and system 
robustness validation. Several experiments based on 
CoWare Architect Platform were conducted to validate 
the feasibility of our fault injection approach and tool 
ability. We will conduct more fault injection campaigns 
for FMEA experiments with more benchmarks and 
carry out a thorough analysis of the effect of various 
failure modes, like ‘burst-write’ failure, on the system 
behavior.  
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An Estimation Model of Vulnerability for Embedded Microprocessors 
 

Abstract — Embedded systems, and also the embedded 
microprocessors, have encountered the reliability 
challenge because the occurring probability of soft 
errors has a rising trend. When they are applied to 
safety-critical applications, designs with the fault 
tolerant consideration are required. For the 
complicated embedded systems or IP-based 
system-on-chip (SoC), it is unpractical and not 
cost-effective to protect the entire system or SoC. 
Analyzing the vulnerability of systems can help 
designers not only invest limited resource on the most 
crucial region but also understand the gain derived 
from the investment. In this study we propose a model to 
fast estimate the microprocessor’s vulnerability with 
only slight simulation effort. From our assessment 
results, the rank of component vulnerability related to 
the probability of causing the microprocessor failure 
can be acquired. By choosing one of the mainstream 
microprocessors — VLIW (Very Long Instruction Word) 
processor — as an example, the practical usefulness of 
our estimation model is demonstrated. 

 

1. Introduction 

Soft errors caused by SEU (Single Event Upset) have 
more and more apparent influence upon electronic 
products including the microprocessors [1]. Some 
techniques, like the structural duplication or ECC (Error 
Correcting Code), can be utilized to improve the 
microprocessor’s vulnerability to soft errors. These 
techniques are effective but also cost-consumed. 
Performing the FMEA procedure is imperative to 
validate the reliability of systems and to acquire the 
vulnerability of the systems. Based on the results of 
FMEA, we can achieve a more effective investment of 
the precious resources to the system to enhance the 
reliability in an efficient manner. Therefore, the effect 
of soft errors on the system behaviors/failures needs to 
be analyzed and modeled. 

Many literatures such as [2-4] have proposed their 
own estimating methodologies to derive the 
microprocessor’s vulnerability. However, these 
modeling procedures are complicated and maybe 
difficult to be adopted by designers. In this work, we 
want to propose a simple and effective model which can 
provide designers knowledge about: (i) how vulnerable 



 

a microprocessor is and (ii) rank of components by their 
contribution to the microprocessor’s vulnerability. Thus 
this model must be able to sincerely reflect the 
influence of each component’s malfunction to whole 
microprocessor. In the following section, this model is 
proposed, and then in Section 3 some experimental 
results for a VLIW processor are provided and 
discussed. 

2. Estimation Model for Microprocessor’s 
Vulnerability 

For simplifying the estimation model, two hypotheses 
are given below: 
(a). The circumstances of unexpected transmissions 

are regarded as equivalent to components’ 
malfunction and therefore our estimation model 
only takes the components into account. Thus 
components which are assumed to be critical must 
be collected into a set called component set {C1, 
C2, ..., Cn}; other non-critical components are 
viewed as error-free. If designers do better at this 
step, then our model have more precise results. 

(b). The single-fault assumption is adopted. 
In this work, the vulnerability of a microprocessor, 

VMP, is defined as the probability that an inner error 
ultimately results in a failure of this microprocessor. We 
can use VMP to model the entire process from a 
component’s error to whole microprocessor’s failure. (A 
similar estimation model can be found in [6] but it is for 
the AMBA architecture.) For this end, we defined three 
parameters: ARCi, UCi and SESCi for each component Ci 
in component set — where i is from 1 to n. ARCi is the 
area ratio of Ci, UCi is the frequency of activating Ci, 
also named Ci’s utilization ratio and SESCi — termed 
Ci’s soft error sensitivity — defined as the probability of 
system failure caused by an error emerged form Ci and 
the error has effectively propagated to the system. Their 
values can be derived by equations (1) ~ (3): 
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Firstly, the area of a component will dominate the 
probability that particles strike it, so ARCi can be used to 
represent the error rate of Ci. Then, assumed the striking 
triggers an error emerged on Ci, this error will still be 
ineffective if Ci is not used presently, thus UCi is 
required to model the probability of error propagation. 
Moreover, even an error has been propagated, it may 
not cause the microprocessor failed. For example, an 
error which propagates to the branch predicting unit 

won’t have influence on consequences of benchmark 
programs. Therefore how this error propagates is the 
last factor which needs to be considered and modeled 
by SESCi. Both of UCi and SESCi are very relevant to the 
characteristic of benchmark programs as observed from 
Table 1. To identify the component which is most 
vulnerable, we define another parameter VCi which is 
the product of three factors above. Finally, we can 
compute the microprocessor’s vulnerability by the 
summation of VCi as shown in the equation (4): 

∑
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(4) 

3. Experimental Results 

To derive SESCi, we have conducted a set of error 
injection simulations on the RTL model of the VLIW 
processor proposed in [5] (but without involving the 
fault tolerant components in the execution stage). For 
each component in the component set — assigned as 
{ALU_A, ALU_B, ALU_C, control unit, forwarding 
unit, branch unit, instruction dispatch unit} — 2000 
simulations are performed and the processor is 
monitored to gather the statistic data. Besides, an extra 
simulation without error injection is performed to 
derive the UCi. It is worthy to note that the storages such 
as the instruction cache and data cache are not put into 
this set. The reason is that their vulnerability has been 
finely investigated in many literatures (e.g. [2-4]), so 
we place our interests on the other components. 
However, our estimation model is still applicable to 
storage components. Experimental results shown in 
Table 1 are preliminary with two benchmark 
programs — matrix multiplication and IDCT. 

According to Table 1, the VMP of VLIW is 0.4658. 
From Table 1, not only the most vulnerable component 
can be identified by the rank, but also the effect of the 
three factors on the vulnerability can be analyzed. It is 
very interesting that ALU_B, ALU_C and branch unit 
are first three components with highest soft error 
sensitivity but their rank of VCi is totally inversed. On 
the contrary, the forwarding unit has smallest SESCi but 
largest VCi. This dramatic reverse proves that none of 
ARCi, UCi and SESCi can be neglected. This is a first 
confirmation of our estimation model for helping us 
precisely identify the vulnerable components. 
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Table 1. Experimental results for two benchmark programs 
           parameter 
Component ARCi UCi SESCi VCi Rank by VCi

Alu_A 0.092 0.849 0.697 0.0550 4 
Alu_B 0.092 0.271 0.861 0.0217 5 
Alu_C 0.092 0.178 0.881 0.0146 6 

Control unit 0.149 0.895 0.579 0.0772 3 
Forwarding unit 0.368 0.876 0.483 0.1557 1 

Branch unit 0.017 0.019 0.952 0.0003 7 
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Self-Evaluation of Research Results: 
 The above report summarizes the second-year results accomplished from this three-year research 

project. The extended versions of the results will be submitted to be considered for journal publication. 
In the first-year report, we stated: “We are going to develop a system-level fault-injection tool, which 
exploits the simulation-based fault injection scheme proposed in this research and can be installed in 
the CoWare Architect Platform. The tool takes the fault scenario description from the user and then 
automatically generates the system platform supplemented with the fault injection capability. This 
kind of fault injection tool can not only facilitate the failure mode and effects analysis (FMEA) and 
the fault-tolerant validation process, but raise the validation efficiency. The embedded fault-tolerant 
systems have found fertile ground in intelligent system applications, such as intelligent driver 
assistance system or intelligent robot system, which require a stringent dependability while the 
systems are in operation. Since more works depend on the intelligent machines, the reliability issue 
becomes more important than ever. The fault-tolerant verification platform developed from this 
research can be applied to the design and analysis of the fault-tolerant systems modeled at high level 
of abstraction to enhance the overall system dependability. The previous study for the fault injection 
approach mainly focuses on the VHDL modeling level and rarely discusses the fault injection in 
SystemC system-level design. We want to fulfill this lack.” The above statements describe the main 
research goal of this three-year project. From this report, it is evident that we definitely achieve the 
second-year goal with one extra supplement, i.e. software-implemented fault injection (SWIFI) 
technique. The SWIFI approach can enhance the injection capability and diversity for dependable 
IP-based SoC design platform.  

 However, the subjects expressed in our proposal are big and deserve to be further explored. The 
ongoing works are depicted as follows: First, we will port the Linux O.S. to CoWare Architect 
Platform and then the SWIFI technique will be added to the fault injection tool as well. As a result, our 
fault injection tool will provide more comprehensive injection functions. Second, we are going to 
develop a useful analysis tool with some analysis functions for validation of system robustness and 
dependability. Thirdly, we are building a more complex system using CoWare Architect Platform to 
completely study the effects of faults on system behaviors, and to detect the weaknesses in the 
reliability of the system. Finally, a fault-robust IP approach will be proposed to improve the system 
dependability by using the results of FMEA and safety-critical component’s analysis. The contribution 
of this research is to construct a complete and comprehensive dependability validation framework that 
consists of the system-level fault injection to study the system’s failure behavior, and to perform the 
FMEA procedure to locate the weaknesses in the reliability of the system, and to exploit the 
fault-tolerant design to effectively enhance the system dependability. 

Publications associated with the second-year research: 
 Kun-Chun Chang, Yi-Chinag Wang, Chung-Hsien Hsu, Kuen-Long Leu and Yung-Yuan Chen, “System-Bus 

Fault Injection in SystemC Design Platform,” 2nd IEEE International Conference on Secure System Integration 
and Reliability Improvement, pp. 211-212, July 2008. (EI) 

 Yung-Yuan Chen, Shu-Hao Hsu, and Kuen-Long Leu, “An Estimation Model of Vulnerability for Embedded 
Microprocessors,” 2nd IEEE International Conference on Secure System Integration and Reliability Improvement, 
pp. 224-225, July 2008. (EI) 

 Yung-Yuan Chen, Yi-Chiang Wang, and Jian-Min Peng, “SoC-Level Fault Injection Methodology in 
SystemC Design Platform,” Asia Simulation Conference 2008/ the 7th International Conference on System 
Simulation and Scientific Computing, pp. 1787-1794, October 2008. (EI) 

 汪碩彥、陳永源， “利用軟體實踐錯誤注入進行嵌入式系統的強韌度驗證”, 2008 資訊系統應用學術研討
會, October 2008. 

 



 

Appendix 

利用軟體實踐錯誤注入進行嵌入式系統的強韌度驗證 

摘要 

當製程技術進入深次微米(deep submicron)之後，系統因為雜訊或輻射線干擾而產生軟性錯誤(soft error)的機

率也會明顯增加，因此必需在系統設計的過程中加入容錯設計來提高系統的可靠度。透過軟體實踐錯誤注入結果

提供有關失敗模式與效應分析(Failure Mode and Effect Analysis，FMEA)參考數據給系統設計者，讓設計者了解哪

些元件對錯誤較敏感，可以根據不同需求選擇最需要保護的元件來加入容錯設計。在本研究中，我們以不用更改

系統內部資源為前提下，提出一個適用於一般嵌入式系統的軟體實踐錯誤注入(Software-Implemented Fault 
Injection)方法，並利用 ARM 為基礎的系統晶片中的暫存器單元進行實驗，利用實驗的結果來進行失敗模式與效

應分析及失敗類型的分類。最後我們可以歸納出 ARM 處理器對於錯誤較敏感的暫存器種類，以及錯誤一旦發生

在暫存器單元時系統可能產生的八種失敗類型。 
關鍵詞：軟性錯誤 (soft error) ，軟體實踐錯誤注入 (Software-Implemented Fault Injection) ，系統晶片

(System-on-Chip)，失敗模式與效應分析(Failure Mode and Effect Analysis)。 

1. 前言 

隨著嵌入式應用產品的普及化，例如智慧型的手

持裝置到汽車、機器人及航太運用上，皆內建嵌入式

系統或系統晶片(System-on-Chip, SoC)於其中。由於應

用的範圍相當廣泛，當其應用於需要高安全性及可靠

性的系統時，相對就有較高的風險會造成人身生命上

的威脅，因此系統的可靠度就會是一個很重要的課題。 
當製程進入深次微米時代之後，系統晶片的設計

越來越複雜，包含的電晶體也越來越多，晶片面臨輻

射性干擾或是雜訊所產生軟性錯誤的機率也會大大的

提升，特別是在暫存器及記憶體元件中[1][2]。因此就

必須在系統晶片設計的過程中加入容錯設計來提高系

統的可靠度。 
在考量如何有效的在系統晶片設計時加入容錯技

術，有兩個很重要的問題需要探討。一是如何更早的

在系統設計初期去驗證其強韌度，二是如何更快並且

有效的提供系統晶片設計時，有關失效模式及效應分

析的資料，讓設計者了解哪些元件對錯誤較敏感，可

以根據不同需求選擇最需要保護的元件來加入容錯設

計，進而降低重新設計的成本。而這兩項問題的解決

方式都仰賴錯誤注入實驗能否提供有效數據給系統設

計者。 
 錯誤注入是用來驗證系統可靠度的方法，主要是

利用硬體或軟體的錯誤注入器將錯誤注入到硬體或是

軟體的目標中，再來觀察系統產生的行為。一般來說

錯誤注入的方式有(i)實體錯誤注入(ii)模擬基礎錯誤注

入(iii)軟體實踐錯誤注入。第一種方法主要是利用特殊

目的的硬體來做錯誤注入及觀察系統產生的行為，優

點是有較快的速度及較高的準確度，缺點是要花費較

高的開發成本以及有較高的風險會造成系統的損害。

第二種方法是利用硬體描述語言模擬器 (HDL 
simulator)來對模擬電路進行錯誤注入。由於是在模擬

的基礎下，所以其準確度可能較差，但可節省開發的

成本及時間。而軟體實踐錯誤注入則比較多樣化，目

標可以是實際硬體或是軟體，通常比較容易實踐而且

也可以因為不同的需求去做改變，更不需要有額外的

硬體需求。雖然進行實驗所需的時間較長，但可以節

省較多的成本，在可攜性上也優於其它兩種錯誤注入

方式。 
在先前關於軟體實踐錯誤注入的相關研究中，

FERRARI(Fault and ERRor Automatic Real-time 
Injector) [3]利用 UNIX ptrace 系統函式對於運行中的

行程(process)插入軟體中斷。當程式執行到軟體中斷時

就觸發(trigger)錯誤注入，去破壞行程使用的暫存器或

記憶體空間。這個工具提供了注入永久性及暫時性錯

誤的方法。在這篇文章中作者只針對程式計數器

(Program Counter)進行實驗，主要是在觀察當程式流程

出錯時系統可能的反應，以及偵測錯誤的覆蓋率及錯

誤在被偵測到之前的潛伏時間。由於測試的目標點只

有一個，所以如果當錯誤發生在不同特性的暫存器

時，系統會產生什麼樣的結果，我們並沒有辦法從中

得知。在[4]中，作者提出一個商業化的錯誤注入工具

Xception，利用其除錯(debugging)和監控(monitoring)
的特性來進行錯誤注入。這個方法不需要去修改目標

程式的原始碼和插入任何的軟體中斷，由於它使用的

是內建的硬體例外事件(exception)來觸發錯誤注入，所

以必需更改中斷處理器(interrupt handler)。而當嵌入式

系統資源有限的情況下，任意的更改系統資源可能會

增加開發上的複雜度。在[5]中，作者詳細的介紹了如

何利用 ptrace (process trace)函式，來開發錯誤注入工

具，並透過經驗告訴我們，利用 ptrace 開發錯誤注入

工具時有哪些重點是需要注意的: 
 由於大部份的 Unix 系統時間解析度 (clock 

resolution)不盡相同，可能是 1/60 秒或是 1/100
秒，所以在時間的測量上會有些許的不同。 

 作者也提出 ptrace 函式，在執行上會很慢，會有

許多次的內文切換(context switch)介於錯誤注入

行程及目標行程之間。因此每一次的內文切換就

會使得記憶體管理單元 (MMU)及快取記憶體

(cache)的內容需要重新更新，如果當目標程式使

用了更多的記憶體空間，這個情況會更明顯。 
而作者在文章中也提出利用 ptrace 實踐錯誤注入可能

會有的優缺點。 
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優點： 
 以 ptrace 函式實踐的錯誤注入方式，只要稍做修

改即可移植到以 Unix 為主的系統上。 
 由於使用了許多系統函式，來實踐錯誤注入程

式，因此產生的執行檔很小。 
 在進行的實驗過程中，不需要更改目標程式的原

始檔案，也不需要對原始檔案重新編譯。 
缺點： 

 錯誤注入只能針對目前作業系統在執行的行程。 
 在同一時間只有一個行程能被注入錯誤。 

在[5]中，作者不但提出了 ptrace 函式可能會有的

優缺點，也詳細的介紹如何利用 ptrace 來進行錯誤注

入。 
在 [6] 中，作者利用硬體除錯介面 (On Chip 

Debug)，利用非侵入式的技術，利用軟體實踐錯誤注

入，透過內建除錯電路去存取系統內部的資訊，在不

用修改或中止目標程式的情況下來進行容錯能力的驗

證。但是如果我們的系統晶片在不具有內建除錯電路

的情況下，就無法執行同樣的錯誤注入。 
過去的研究都是在高效能的工作站或是具有內建

除錯電路的環境下進行實驗。由於應用的層面不同，

在嵌入式開發環境下，成本及系統資源有限(暫存器、

記憶體)的情況下，並沒有辦法完全以過去的軟體錯誤

注入方式來進行實驗。所以在本研究中我們以不用更

改系統內部資源為前提下，提出一個適用於一般嵌入

式系統的錯誤注入方法，而且利用此錯誤注入方法對

暫存器進行錯誤注入實驗。我們可以觀察暫存器單元

在軟性錯誤發生的情況下，那些暫存器具有較高的錯

誤敏感度，並且提出相關的失敗模式與效應分析數

據，告訴設計者不同的暫存器會有那些不同的失敗類

型。使得設計者可以在系統設計初期，對於較敏感的

元件加入適當的容錯機制，以提高系統的可靠度。 

2. 錯誤注入架構 

2.1 錯誤注入流程 

為了達成上述目標，我們利用具有超級用戶權限

(root)的 ptrace 系統函式，透過所設計的錯誤注入行程

(fault injection process)對目標行程(target application 
process)中所執行的測試程式進行監控及更改暫存器

或記憶體的內容，以此改變目標行程中程式運行的狀

態，達到系統晶片內部元件受到干擾時產生錯誤的目

的。在錯誤注入的過程中，錯誤注入行程利用 fork()
產生目標行程，而且設定為可被追蹤，使我們設計的

錯誤注入行程可以針對它進行錯誤注入，然後利用

ptrace 函式中的引數 GETREGS / SETREGS 及

PEEKTEXT / POKETEXT 去對目標行程的暫存器及記

憶體進行錯誤注入。當錯誤注入完成後再讓目標程式

繼續執行，最後比較執行的結果，看錯誤是否被激發，

再根據不同的暫存器特性做失敗類型的分類。 

2.2 錯誤注入環境 

我們利用上述的軟體實踐錯誤注入方法，在一個

嵌入式系統開發平台上進行錯誤注入實驗。為了收集

模擬時間及暫存器使用頻率等錯誤注入參數，首先要

執行一次無錯誤注入(fault free)模擬實驗。接下來即可

利用收集的結果決定錯誤注入的時間點以及為之後的

失敗類型分析時所用。在錯誤注入的過程中，我們利

用時間觸發(timing trigger)的方式，透過 setitimer()及
alarm()製作計時器。當計時器倒數為 0 時，錯誤注入

行程就會透過 kill()送出 ‘SIGINT’ 訊號暫停目標行

程，以進行錯誤注入。錯誤注入的值以亂數選擇 32 位

元的其中 1 個位元，進行位元翻轉(bit-flip)錯誤注入。

實驗流程如圖 1 所示，先執行(1)錯誤注入，利用 ptrace
系統函式呼叫核心 (kernel)，  (2)錯誤注入器 (fault 
injector)透過核心對目標行程進行錯誤注入，(3)目標行

程回傳錯誤注入結束狀態給錯誤注入器，透過回傳的

狀態我們再分析比較系統錯誤行為，找出對於錯誤較

敏感的元件。 

 
圖 1. Experimental Environment 

2.3 實驗設定 

由於軟性錯誤發生在暫存器的機率相當的高[2]，
所以我們針對系統晶片中的暫存器單元進行軟體實踐

錯誤注入，來驗證它的敏感度及可能會導致的失敗類

型。在本研究中我們利用嵌入式系統開發平台(CDK)1

作為錯誤注入的實驗環境，而整個開發平台包含

ARM926EJ-S的處理器及Open Linux 2.6.19 為核心的

作業系統[7]，並且選擇ARM 處理器使用者模式(user 
mode) 下 R0-R12 及 SP(stack pointer) 、 LR(linker 
register)、PC(program counter)、CPSR(Current Program 
Status Register)等暫存器，設計A、B兩個實驗來執行灌

入錯誤實驗。 
A. 我們利用30x30的矩陣相乘及500個數字的快速排

序兩個測試程式，測試系統晶片在執行一般程式時

發生錯誤可能產生的失敗類型，以及暫存器出錯可

能造成系統失敗的機率。最後再利用統計的結果，

分析出不同的失敗類型可能是哪些暫存器所造成。 
B. 分析當特殊用途(special purpose)暫存器(PC、

LR、SP)存取到錯誤的程式區段(code segment)、資料

區段(data segment)、周邊裝置(I/O)及作業系統核心

(Kernel)等非法空間時，系統可能產生的失敗類型。由

                                                 
1 Socle Technology – SoC Platform Solution and Service 
Company 
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於這些暫存器控制了系統晶片執行程式的流程，所以

我們要對這些比較重要的元件進行詳細的測試與分

析。 
根據這兩項實驗，我們希望可以看到不同特性的暫存

器在執行程式時可能會產生哪些失敗類型, 以及每一

個暫存器對錯誤的敏感度，進而再針對特殊用途的暫

存器探討它存取到非法空間時系統可能產生的行為。

最後根據實驗的結果可以觀察不同的暫存器錯誤時所

導致系統產生不同的失敗類型。在下一章節我們會針

對這些不同的失敗類型做深入的探討。 

2.4 失敗類型 

根據不同的程式特性，執行完錯誤注入之後可能

對系統產生不同的影響，不同特性的暫存器也會有不

同的失敗類型。透過分析被注入且激發的錯誤，我們

可將其可能造成的失敗類型加以歸納如圖 2 所示。首

先第一層將程式執行結果分成未完成(Incomplete)及完

成(Complete)兩類，第二層再根據未完成的部份分出異

常結束(Abnormal Ending)及沒有結束(No Ending)；在

完成的部份又可根據執行時間分為正確時間(Correct 
Time)及錯誤的時間(Incorrect Time)結束，最後總共可

分出圖 2 所列的八種失敗類型。 

 
圖 2. System Failure Mode 

 System Crash (SC)：因為系統晶片內部執行出

錯，導致整個作業系統崩潰，而無法繼續執行。 
 Process Hang (PH)：因為測試程式所使用的記憶

體空間或暫存器內容出錯，導致程式執行到錯誤

的代碼使測試程式中止，但此時作業系統還是可

以正常運作。 
 Infinite Loop (IL)：因為更改到條件判斷式的變

數，導致程式無法結束，進入無窮迴圈。 
 Error Detected Mechanism (EDM)：此類型會被作

業系統 EDM 偵測出來(例如分頁錯誤)。 
 Correct Time Correct Data (CTCD)：注入的錯誤沒

有造成任何失敗，有可能是因為錯誤被注入到下

一次是執行寫入的元件時，錯誤會被正確的值覆

蓋，使得程式依然可以正常執行。 
 Correct Time Incorrect Data (CTID)：此類型可能

因為暫存的變數出錯，導致最後運算產生錯誤的

結果，但是在合理的時間內結束。 
 Incorrect Time Incorrect Data (ITID)：此類型可能

因為控制流程錯誤(control flow error)[10]，會使

得程式最後的執行時間及結果都是不正確。 
 Incorrect Time Correct Data(ITCD)：此類型因為控

制流程錯誤，使程式執行時間延長，但運算的結

果是正確的。 

3. 實驗結果與分析 

由於不同特性的暫存器，在錯誤發生時可能會產

生的反應行為也會有所不同，所以我們為了分析出在

系統晶片中對於錯誤敏感度較高的元件，進行了章節

2.3 所描述的實驗 A 和 B。針對每一個測試程式，在每

一個暫存器注入了 1000 個錯，總共注入了 17000 個錯

誤在不同的暫存器當中，再根據系統晶片產生的行為

做出下面的分析。 

A-1 暫存器在受到干擾時，不同失敗類型的分佈。 
由圖 3 我們可以看出，系統晶片在相同的環境

下，執行不同程式時，暫存器單元發生錯誤的情況下，

有 27.14%錯誤會被激發造成系統失敗。其中有高達

22.17%的機率會使測試程式無法執行完成，只有 0.07%
的比例會被系統所偵測出來。以一個系統的角度來

看，如果錯誤被系統偵測出來的機率如此的低，此嵌

入式系統的可靠度可能會受到質疑。換句話說，當暫

存器單元出錯時，有 27.14%的可能性會使得測試程式

出錯，而導致嵌入式系統無法正常執行，這是一個相

當高的比例。如果當這個系統是應用在需要高安全度

及可靠度的環境下，所造成的影響就會是不可預期

的。透過上述的分析，我們再利用圖 4 和 5 可以看出

在不同的測試程式中錯誤所造成的失敗類型及其機率

分佈。 
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圖 3. Failure Mode Distribution for all Registers 
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圖 4. Failure Mode distribution for Matrix 
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圖 5. Failure Mode distribution for Q-sort 

A-2 不同暫存器的系統失敗機率。 
從表 1 和 2 可以看出，每一個不同的暫存器，在

不同的測試程式下，發生錯誤所造成系統失敗的機

率。失敗機率(failure rate)主要是根據每一個暫存器發

生的失敗總數除以所注入錯誤總數所統計出來。在這

裡以 R11、SP、PC 錯誤被激發的機率最高。根據[8][9]，
R11 暫存器可以是儲存變數或者是指向堆疊框架(stack 
frame) 的框架指標(frame pointer)，當系統要存取區域

變數時需透過 R11 找出資料位置。所以當它出錯時會

造成失敗的機率也會相對較高。而 SP 主要是用來記錄

所儲存資料的位置，當 SP 出錯時抓取到錯誤的值也會

造成失敗的情形，而 PC 出錯則會使程式執行到錯誤位

址中的的指令或資料，使得系統出錯的比例升高。而

值得一提的是 CPSR，失敗的機率只有 3%-5%。這個

暫存器主要是儲存 ARM 處理器目前的狀態，在錯誤

注入的情況下失敗的類型都是落在 PH 中，並沒有因為

錯誤注入導致其改變處理器的模式位元(mode bit)中的

內容，而使程式進到錯誤的處理器模式下執行，產生

未知的後果。  

表 1.  Register Failure Rate in Matrix 

表 2. Register Failure Rate in Q-sort 

再從表 3 我們可以看出 R11、SP、PC 這三類暫

存器，在不同的測試程式下失敗的類型大部份都是落

在 PH 的比例較高。這也意味著當這三類暫存器出錯

時，大部份都會導致應用程式無法執行結束。因此系

統廠商可以在系統設計初期將這些數據列入考量。 

表 3. Failure Mode Distribution of R11,SP,PC 

最後我們利用實驗 B，將錯誤注入在特殊用途的

暫存器 SP、LR 及 PC 中，分析比較當這些暫存器存取

到錯誤的位址時(此錯誤的位址可能是落在 Code、
Data、I/O 或 Kernel 記憶體區段)，系統會產生怎樣的

反應。由表 4 我們可以看出，由於 LR 只有在程式執行

過程中，有呼叫副程式時才會使用到。而它可能因為

跳回錯誤的位置，而導致大部份都是落在 PH 的失敗類

型。由於整個程式中 LR 的使用頻率較低，所以造成系

統失敗的機率也會偏低；而 SP 及 PC 存取到錯誤的位

址時，有很高的機率會造成系統失敗。SP 因為存取到

錯誤區段，而導致程式變數或暫存器的值出錯，使得

它失敗的機率也會偏高；PC 所存的是下一道指令的位

址，所以 PC 執行到錯誤的程式區段時，會造成程式控

制流程的錯誤。由上述的統計分析發現，使用頻率越

高的暫存器，出錯的機率也會變高。透過失敗模式與

效應分析我們可以看出，在特殊用途的暫存器中，SP
及 PC 這兩類暫存器對於錯誤較為敏感。 

表 4. Failure Mode Distribution of Special Purpose 
Registers 

PC SC PH EDM IL CTCD CTID ITID ITCD
Code 0% 54.38% 1.25% 0% 16.46% 11.46% 6.04% 10.42%

Data 0% 100% 0% 0% 0% 0% 0% 0% 
I/O 0% 100% 0% 0% 0% 0% 0% 0% 

Kernel 0% 100% 0% 0% 0% 0% 0% 0% 

LR SC PH EDM IL CTCD CTID ITID ITCD
Code 0% 7.5% 0% 0% 90.5% 1% 0% 1% 

Data 0% 12% 0% 0% 88% 0% 0% 0% 
I/O 0% 9% 0% 0% 91% 0% 0% 0% 

Kernel 0% 9.5% 0% 0% 90.5% 0% 0% 0% 

SP SC PH EDM IL CTCD CTID ITID ITCD
Code 0% 98.5% 0% 0% 1.5% 0% 0% 0% 

Data 0% 77% 0% 5% 18% 0% 0% 0% 
I/O 0% 97% 0% 0% 3% 0% 0% 0% 

Kernel 0% 100% 0% 0% 0% 0% 0% 0% 

透過實驗 A 的結果，我們也可以反過來估算，不

同的失敗類型可能是由哪些暫存器所引起的。從圖 6
中可以看出，主要導致系統產生 SC 的暫存器以 R0 及

SP 最高。由於 R0 主要是儲存程式所使用的參數、計

算時暫存的值及運算後的結果，因此當 R0 及 SP 出錯

時，有很高的機率會造成 SC。 

Reg. &failure 
rate SC PH IL EDM CTCD CTID ITID ITCD

R11 0.2% 86% 0% 1.4% 4.6% 7.8% 0% 0%

SP 2% 61% 0% 0% 36.6% 0.4% 0% 0%

M
atrix 

PC 0.2% 72.8% 0% 0.2% 20% 4.8% 0% 2%

R11 0.2% 93.4% 0% 0.4% 4.4% 1.6% 0% 0%

SP 0% 69.2% 0% 0% 29.8% 1% 0% 0%

Q
-sort 

PC 0% 79.8% 0% 0% 15.8% 3.2% 0.2% 1%

Reg. failure rate Reg. failure rate Reg. failure rate

R0 18.60% R6 41.60% R12 10.80%

R1 11.80% R7 10% SP 63.40%

R2 20.80% R8 1.20% LR 8.40% 

R3 23% R9 7.20% PC 80% 

R4 10% R10 25.20% CPSR 3% 

R5 14.80% R11 95.40%   

Reg. failure rate Reg. failure rate Reg. failure rate

R0 19.8% R6 55.2% R12 1.8% 

R1 9.8% R7 12% SP 70.2% 

R2 13% R8 2.4% LR 12.4% 

R3 15.2% R9 6.8% PC 84.2% 

R4 36.4% R10 19.2% CPSR 5.4% 

R5 18% R11 95.6%   

 16



 

29.03%

3.23% 6.45%

19.35%

6.45%

32.26%

3.23%

0.00

10.00

20.00

30.00

40.00

R0 R1 R3 R5 R11 SP PC

SC

 
圖 6. Register Failure Mode Distribution of SC 
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圖 7. Register Failure Mode Distribution of PH 

從圖 8 我們可以看出，R5 造成無窮迴圈的機率

最高。而導致這種失敗類型的原因，可能因為 R5 中儲

存了條件判斷式的變數，一旦 R5 發生錯誤，造成可能

永遠都無法符合離開迴圈的條件，導致系統進入無窮

迴圈。 

9.09%

90.91%

0.00

50.00

100.00

R3 R5

IL

 
圖 8. Register Failure Mode Distribution of IL 

從圖 9 中我們可以看出， R11 的錯誤會被錯誤偵

測機制所偵測出來的機率最高。從圖 9 中我們可以判

斷，實驗所使用的嵌入式系統的錯誤偵測機制並不完

善，系統設計者需要提出更完善的偵測方法，來提升

系統可靠度。 
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圖 9.Register Failure Mode Distribution of EDM 

4. 結論 

在本研究中，我們以不用更改系統內部資源為前

提下，提出一個適用於一般嵌入式系統的錯誤注入方

法。由於軟性錯誤發生在暫存器的機率偏高，我們利

用所提出的錯誤注入方法對暫存器進行錯誤注入實

驗，來針對系統晶片的暫存器單元進行失敗模式與效

應分析及失敗類型的分類。根據實驗結果及分析歸納

出，以 ARM 為主的處理器，在使用者模式下，R11、
SP、PC 這三類暫存器，在遭遇到較惡劣的環境時，對

於錯誤是較敏感的。而且我們根據錯誤導致系統產生

的行為分出八種失敗類型，最後我們再根據不同失敗

類型，找出其可能導致的暫存器單元。透過這樣的分

析，提供有效的數據給系統設計者。讓設計者根據其

需求，選擇最需要保護的暫存器。因此對於嵌入式系

統的設計者來說，可以利用此錯誤注入方式來驗證其

原始系統，對於錯誤的敏感度。進而了解其中一旦發

生錯誤時，最容易造成系統失敗的元件。根據此分析

結果，設計者即可決定容錯機制的設計方針。這也是

本研究所提供的軟體實踐錯誤注入方法最重要的貢

獻。 
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