
行政院國家科學委員會專題研究計畫 成果報告 

 

平行資料程式於計算網格上通訊與 I/O 局部化研究與應用
工具開發(3/3) 

研究成果報告(完整版) 

 
 
 
計 畫 類 別 ：整合型 

計 畫 編 號 ： NSC 96-2221-E-216-001- 

執 行 期 間 ： 96年 08 月 01 日至 97年 07 月 31 日 

執 行 單 位 ：中華大學資訊工程學系 

  

計 畫主持人：許慶賢 

  

計畫參與人員：碩士班研究生-兼任助理人員：張智鈞 

碩士班研究生-兼任助理人員：郁家豪 

碩士班研究生-兼任助理人員：蔡秉儒 

博士班研究生-兼任助理人員：陳泰龍 

 

  

  

報 告 附 件 ：出席國際會議研究心得報告及發表論文 

 

  

處 理 方 式 ：本計畫涉及專利或其他智慧財產權，2年後可公開查詢 
 
 
 

中 華 民 國   97年 10 月 30 日 
 



行政院國家科學委員會補助專題研究計畫 █ 成 果 報 告   
□期中進度報告 

 
 

平行資料程式於計算網格上通訊與 I/O局部化

研究與應用工具開發(3/3) 
 

 

計畫類別：  個別型計畫  □ 整合型計畫 

計畫編號：NSC95-2221-E-216-006  
執行期間：96 年 8 月 1 日至 97 年 7 月 31 日 

 

計畫主持人：許慶賢   中華大學資訊工程學系副教授 

共同主持人： 

計畫參與人員： 陳泰龍 (中華大學工程科學研究所博士生) 

     張智鈞、郁家豪、蔡秉儒(中華大學資訊工程學系研究生) 

 

成果報告類型(依經費核定清單規定繳交)：□精簡報告  完整報告 

 

本成果報告包括以下應繳交之附件： 

□赴國外出差或研習心得報告一份 

□赴大陸地區出差或研習心得報告一份 

出席國際學術會議心得報告及發表之論文各一份 

□國際合作研究計畫國外研究報告書一份 

 

 

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、列

管計畫及下列情形者外，得立即公開查詢 

          □涉及專利或其他智慧財產權，□一年 二年後可公開查詢 

          

執行單位：中華大學資訊工程學系 

 

中 華 民 國    97   年  10    月   31   日 



 1

行政院國家科學委員會專題研究計畫成果報告 
 

平行資料程式於計算網格上通訊與 I/O 局部化研究與

應用工具開發(3/3) 

Design and Implementation of Communication and I/O Localization 
Tools for Parallel Applications on Computational Grids (3/3) 

 
計畫編號：NSC95-2221-E-216-006 

執行期限：96 年 8 月 1 日至 97 年 7 月 31 日 
主持人：許慶賢   中華大學資訊工程學系副教授 
 
計畫參與人員：中華大學資訊工程學系研究生 

陳泰龍(博二)、張智鈞(研二)、郁家豪(研二)ヽ蔡秉儒(研二) 

 
 

一、中文摘要 
 

本報告是有關於在異質性計算網格系

統和網路拓樸下開發適應型的評估模組

與通訊局部化的技術之描述。本計畫執行

三年，我們完成自動資料分割工具、平行

資料程式效能預測工具、資料局部化選擇

器、以及針對特殊平行應用程式的資料局

部化學習系統。本項研究所發展的通訊局部

化技術與分析工具有助於提升平行資料程式

在計算網格上的執行效能。執行本計畫所得到

的研究理論、工具開發、與實務經驗亦可作為

相關領域學術研究與教學的素材。 
 

關鍵詞：通訊區域化、平行資料程式、計算網

格、平行 I/O、資料配置、通訊排程、效能預

測、平行編譯器、平行應用、SPMD。 
 
Abstract 

 
This report presents adaptive performance 

models for optimizing communications of real 
world parallel applications on heterogeneous 
grid systems and topologies. This project 
developed tools for automatic data partitioning, 
performance prediction of data parallel programs, 
web-based locality selector and learning systems 

for scientific applications. The integrated 
locality preserving techniques and analysis tools 
developed in this project will facilitate 
development of efficient data parallel 
applications on computational grids.  The 
achievements of theorems, tools and experience 
in this project can be applied in both academic 
teaching and research.  It is the main objective 
of this project. 

 
Keywords: Localized Communication, Data 
Parallel Program, Computational Grid, Parallel 
I/O, Data Distribution, Communication 
Scheduling, Performance Prediction, 
Parallelizing Compiler, Parallel Applications, 
SPMD. 
 
二、緣由與目的 
 

  整合計算資源的觀念使得網格計算成為

廣泛被接受的虛擬高效能計算平台。網格

(Grid Computing)計算系統不同於傳統平行電

腦，它連接分散於不同網域的電腦組成一個具

有高度擴充性的計算平台。叢集式的網格

(Cluster Grid)即是一個典型的系統。對於平行

資料程式(Data Parallel Program)而言，程式執

行的過程中有可能發生資料的切割、資料的交

換，這種情況，在網格系統中，節點之間的通



 2

訊必然發生。計算節點之間的通訊有可能發生

於相同叢集之內(Interior Communication)的電

腦，也有可能發生於不同叢集系統之間

(External Communication)的電腦。為了減少通

訊 產 生 的 代 價 ， 通 訊 局 部 化 (Localized 
Communication) 將資料分佈在適當的電腦，

使得程式執行過程中節點之間所必須的通訊

可以大部分集中在相同的叢集或相同的網域

之內。通訊局部化的問題不僅在通訊的層次，

其可能應用的範圍包含資料的局部化(Data 
Localization) 、 I/O 的 局 部 化 (Grid I/O 
Localization)、處理節點的局部化 (Processor 
Group Localization)。在傳統的平行電腦與分

散式記憶體環境之下，有許多類似的研究。這

些研究包括通訊的區域化或局部化、通訊排程

(Communication Scheduling)、資料分割(Data 
Partitioning) 、 資 料 重 新 分 佈 (Data 
Redistribution)、處理器映對(Logical Processor 
Mapping)技術等。我們在這一個計畫中，就是

要整合過去的這些技術，並且發展適用於網格

環境下的方法，同時開發相關輔助的分析與調

整工具，建立出一套有效而且簡單的方法與介

面，使得平行資料應用程式 (Data Parallel 
Applications)在未來的網格計算系統中可以有

更多的應用。 
 
三、研究方法與成果 

 
  針 對 異 質 性 網 格 計 算 環 境

(Non-identical Cluster Grid)內部與外部通

訊的問題，我們提出在實際應用程式上進

行最佳化的研究。圖一是網格環境中，

內、外部通訊的示意圖。在這個網格環境

中有三個電腦叢集，總共有十二個處理

器。P0~2 屬於第一組電腦叢集; P3~5 屬於第

二組電腦叢集; P6~11 屬於第三組電腦叢

集。這三組電腦叢集共有六筆資料(a1~3, 
f1~3, g1~3, h1~3, k1~3, l1~3)是傳送給內部處理

器，但也有六筆資料傳送給外部處理器

(b1~3, c1~3, d1~3, e1~3, i1~3, j1~3)。外部通訊量

等同於內部通訊量，在未經過通訊最佳化

的處理前，大量的外部通訊花費更多通訊

成本。 
 

 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 I E 

P0 a1 a2 a3          3 0 
P1    b1 b2 b3       0 3 
P2       c1 c2 c3    0 3 
P3          d1 d2 d3 0 3 
P4 e1 e2 e3          0 3 
P5    f1 f2 f3       3 0 
P6       g1 g2 g3    3 0 
P7          h1 h2 h3 3 0 
P8 i1 i2 i3          0 3 
P9    j1 j2 j3       0 3 
P10       k1 k2 k3    3 0 
P11          l1 l2 l3 3 0 
 Cluster-1 Cluster-2 Cluster-3 18 18  

圖一、異質性網格環境中的資料通訊示意圖。 
 
    圖二是處理器重新排序的示意圖，利用重

新排序的技術，將外部通訊轉換成內部通訊，

可有效減少通訊成本。切割 Source Data 以

後，由 Master Node 分配給每個 Source Node，
而 Reordering Agent 利用重新排序的技術，提

供 Source Node 新的 Destination Node。由於屬

於內部處理器的 Destination Node 個數提高

了，讓內部通訊量增加，使得通訊成本降低，

讓內部通訊量增加，使得通訊成本降低且更有

效率。 
 

 
圖二、重新排序處理器的邏輯 ID 之演算法流

程。 
 
    在經過 Reordering Agent 將處理器邏輯

ID 重新排序後，原本屬於外部通訊的 b1~3, 
c1~3, d1~3, e1~3, i1~3, j1~3 等六筆資料被轉換

成內部通訊，如圖三。使得所有通訊均為

內部通訊，有效降低通訊所花費的成本。

在實驗中也驗證了此一事實。 
 



 3

 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 I E 

P0 a1 a2 a3          3 0 
P3    b1 b2 b3       3 0 
P6       c1 c2 c3    3 0 
P9          d1 d2 d3 3 0 
P1 e1 e2 e3          3 0 
P4    f1 f2 f3       3 0 
P7       g1 g2 g3    3 0 
P10          h1 h2 h3 3 0 
P2 i1 i2 i3          3 0 
P5    j1 j2 j3       3 0 
P8       k1 k2 k3    3 0 
P11          l1 l2 l3 3 0 
 Cluster-1 Cluster-2 Cluster-3 36 0  

圖三、重新排序處理器 ID 後的資料通訊示意

圖。 
 
    針對每組電腦叢集提供不同數量的

處理器之問題，可利用此做法，提高資料

傳輸效能。 
 為了適用於多維度的處理器編排系

統 ， 我 們 也 提 出 多 維 陣 列

(Multi-Dimensional Array)資料對應模組，

希望可以動態調整通訊的瓶頸，提升程式

的執行效益。圖四是處理器跟資料通訊的

關係，(a)是 2-D 處理器編排系統，可視為

多維系統的表示圖，每個 P 皆視為一個處

理器，其所佔面積等同於二維陣列中所分

配的資料範圍；(b)為資料重新分配時的需

產生資料(m00~m22)示意圖，虛線表示二維

陣列新的分配方式。 

    
(a) 

 
(b) 

圖四、處理器與資料通訊的關係。(a)多維處理器

示意圖；(b)資料通訊示意圖 
 
 為了達到資料配置的要求，處理器經

常移動資料，而花費的通訊成本過高時會

影響執行效能。為此，我們提出了 Local 
Message Reduction Optimization，改善資料

重新配置之排程演算法，並建立效能對照

表。重新計算了每筆通訊的權重，評估並

對排程了所有的通訊，除了可以有效降低

通訊成本，更能避免資料傳輸所產生的衝

突。 
 
四、結論與討論 
 

下面我們歸納本計畫主要的成果: 
 完成自動資料分割模組的開發 
 完成平行資料分割效能預測系統的實

作。 
 提出重新排程與資料重新分配的技術 
 實作程式階層的效能預測、與其效能監

督工具所提供的資訊，進行程式判別。 
 發表三篇國際期刊與五篇國際研討會

論文 
Journal Papers: 
 

 Ching-Hsien Hsu, Min-Hao Chen, 
Chao-Tung Yang and Kuan-Ching Li, 
“Optimizing Communications of Dynamic 
Data Redistribution on Symmetrical 
Matrices in Parallelizing Compilers,” 
IEEE Transactions on Parallel and 
Distributed Systems, Vol. 17, No. 11, pp. 
1226-1241, Nov. 2006. (SCI, EI) 

 Ching-Hsien Hsu, Tai-Lung Chen and 
Kuan-Ching Li, "Performance Effective 
Pre-scheduling Strategy for Heterogeneous 
Communication Grid Systems," Future 
Generation Computer Science, Vol. 23, 
Issue 4, pp. 569-579, May 2007. Elsevier 
(SCI, EI) 

 Ching-Hsien Hsu, Shih-Chang Chen and 
Chao-Yang Lan, "Scheduling 
Contention-Free Irregular Redistribution in 
Parallelizing Compilers," The Journal of 
Supercomputing, Kluwer Academic 
Publisher, Vol. 40, No. 3, pp. 229-247, 
June 2007. (SCI, EI) 

 Ching-Hsien Hsu, Tai-Lung Chen and 
Jong-Hyuk Park, “On improving resource 
utilization and system throughput of 
master slave jobs scheduling in 
heterogeneous systems,” Journal of 
Supercomputing, Springer, Vol. 45, No. 1, 
pp. 129-150, July 2008. (SCI, EI). 

 
Conference Papers: 
 

 Ching-Hsien Hsu, Justin Zhan, Wai-Chi 
Fang and Jianhua Ma, “Towards 
Improving QoS-Guided Scheduling in 



 4

Grids,” IEEE Proceedings of the third 
ChinaGrid Annual Conference (ChinaGrid 
2008), Dunhunag, Gansu, China. 

 Ching-Hsien Hsu, Tai-Lung Chen, 
Bing-Ru Tsai and Kuan-Ching Li, 
“Scheduling for Atomic Broadcast 
Operation in Heterogeneous Networks 
with One Port Model,” Proceedings on the 
3rd International Conference on Grid and 
Pervasive Computing (GPC-08), LNCS 
5036, pp. 166-177, May 2008. 

 Ching-Hsien Hsu, Yi-Min Chen and 
Chao-Tung Yang, “A Layered 
Optimization Approach for Redundant 
Reader Elimination in Wireless RFID 
Networks,” Proceedings of 2007 IEEE 
Asia-Pacific Services Computing 
Conference (IEEE APSCC 2007), pp. 
138-145, Tsukuba, Japan, December 11-14, 
2007. 

 Ching-Hsien Hsu, Chih-Wei Hsieh and 
Chao-Tung Yang, “A Generalized Critical 
Task Anticipation Technique for DAG 
Scheduling,” Algorithm and Architecture 
for Parallel Processing - Lecture Notes in 
Computer Science, vol. 4494, pp. 493-505, 
Springer-Verlag, June 2007. (ICA3PP’07) 

 Ching-Hsien Hsu, Ming-Yuan Own and 
Kuan-Ching Li, ”Critical-Task 
Anticipation Scheduling Algorithm for 
Heterogeneous and Grid Computing,” 
Computer Systems Architecture - Lecture 
Notes in Computer Science, Vol. 4186, pp. 
95-108, Springer-Verlag, Sept. 2006. 
(ACSAC’06) (SCI Expanded, 
NSC92-2213-E-216-029) 

 
 
五、計畫成果自評 
 
    本計畫之研究成果已達到計畫預期之目

標。第三年年的研究中、針對這一個研究主題

上共計發表三篇國際期刊與五篇研討會論

文。本計畫有目前研究成果，感謝國科會給予

機會。未來，我們將更加努力，爭取經費建立

更完備的研究環境。另外，對於參與研究計畫

執行同學的認真，本人亦表達肯定與感謝。 
 
六、參考文獻 
 
[1] Taiwan UniGrid, http://unigrid.nchc.org.tw 
[2] B. Allcock, J. Bester, J. Bresnahan, A. L. 

Chervenak, I. Foster, C. Kesselman, S. 
Meder, V. Nefedova, D. Quesnal and S. 
Tuecke, “Data Management and Transfer in 
High Performance Computational Grid 

Environments,” Parallel Computing Journal, 
Vol. 28 (5), May 2002, pp. 749-771. 

[3] D. Angulo, I. Foster, C. Liu and L. Yang, 
“Design and Evaluation of a Resource 
Selection Framework for Grid 
Applications,” Proceedings of IEEE 
International Symposium on High 
Performance Distributed Computing 
(HPDC-11), Edinburgh, Scotland, July 2002. 

[4] Shih-Chang Chen and Ching-Hsien Hsu, 
“ISO: Comprehensive Techniques Towards 
Efficient GEN_BLOCK Redistribution with 
Multidimensional Arrays”, Parallel 
Computing Technologies (PaCT’07) - 
Lecture Notes in Computer Science, Vol. 
4671, pp. 507-515, Springer-Verlag, Sep. 
2007. 

[5] M. Colajanni and P.S. Yu, “A performance 
study of robust load sharing strategies for 
distributed heterogeneous Web servers,” 
IEEE Transactions on Knowledge and Data 
Engineering, vol. 14, no. 2, pp. 398-414, 
2002. 

[6] K. Czajkowski, I. Foster and C. Kesselman, 
“Resource Co-Allocation in Computational 
Grids,” Proceedings of the Eighth IEEE 
International Symposium on High 
Performance Distributed Computing 
(HPDC-8), pp. 219-228, 1999. 

[7] K. Czajkowski, I. Foster, N. Karonis, C. 
Kesselman, S. Martin, W. Smith and S. 
Tuecke, “A Resource Management 
Architecture for Metacomputing Systems,” 
Proc. IPPS/SPDP '98 Workshop on Job 
Scheduling Strategies for Parallel 
Processing, pg. 62-82, 1998. 

[8] I. Foster, C. Kesselman, C. Lee, R. Lindell, 
K. Nahrstedt and A. Roy, “A Distributed 
Resource Management Architecture that 
Supports Advance Reservations and 
Co-Allocation,” Intl Workshop on Quality of 
Service, 1999. 

[9] Ching-Hsien Hsu, Min-Hao Chen, Chao-Tung 
Yang and Kuan-Ching Li, “ Optimizing 
Communications of Dynamic Data 
Redistribution on Symmetrical Matrices in 
Parallelizing Compilers,＂ IEEE Transactions 
on Parallel and Distributed Systems, Vol. 17, 
No. 11, pp. 1226-1241, Nov. 2006. (SCI, EI, 
NSC93-2213-E-216-029, 
NCHC-KING-010200) 

[10] Ching-Hsien Hsu, Shih-Chang Chen and 
Chao-Yang Lan, “Scheduling Contention-Free 
Irregular Redistribution in Parallelizing 
Compilers,” Accepted, The Journal of 
Supercomputing, Kluwer Academic Publisher, 
2007. (SCI, EI, NSC93-2213-E-216-028, 
NCHC-KING-010200) 

[11] Ching-Hsien Hsu, Tai-Lung Chen and 
Kuan-Ching Li, “Performance Effective 



 5

Pre-scheduling Strategy for Heterogeneous 
Communication Grid Systems,” Accepted, 
Future Generation Computer Science, Elsevier, 
2007.  (SCI, EI, NSC93-2213-E-216-029) 

[12] Ching-Hsien Hsu, Chih-Wei Hsieh and 
Chao-Tung Yang, “ A Generalized Critical 
Task Anticipation Technique for DAG 
Scheduling,＂ Algorithm and Architecture for 
Parallel Processing - Lecture Notes in Computer 
Science, Springer-Verlag, June 2007. 
(ICA3PP＇07) 

[13] Ching-Hsien Hsu, Chao-Yang Lan and 
Shih-Chang Chen, “ Optimizing Scheduling 
Stability for Runtime Data Alignment, ＂ 
Embedded System Optimization - Lecture Notes 
in Computer Science, Vol. 4097, pp. 825-835, 
Springer-Verlag, Aug. 2006. (ESO＇06) (SCI 
Expanded, NSC92-2213-E-216-029) 

[14] Ching-Hsien Hsu, Guan-Hao Lin, Kuan-Ching 
Li and Chao-Tung Yang, “ Localization 
Techniques for Cluster-Based Data Grid, ＂ 
Algorithm and Architecture for Parallel 
Processing - Lecture Notes in Computer Science, 
Vol. 3719, pp. 83-92, Springer-Verlag, Oct. 
2005. (ICA3PP’05) (SCI Expanded, NSC 
93-2213-E-216-029) 

[15] Ching-Hsien Hsu, Ming-Yuan Own and 
Kuan-Ching Li, “Critical-Task Anticipation 
Scheduling Algorithm for Heterogeneous and 
Grid Computing,” Computer Systems 
Architecture - Lecture Notes in Computer 
Science, Vol. 4186, pp. 97-110, Springer-Verlag, 
Sept. 2006. (ACSAC’06) (SCI Expanded, 
NSC92-2213-E-216-029) 

[16] D.H. Kim, K.W. Kang, “Design and 
Implementation of Integrated Information System 
for Monitoring Resources in Grid Computing,” 
Computer Supported Cooperative Work in Design, 
10th Conf., pp. 1-6, 2006. 

[17] K.C. Li, Ching-Hsien Hsu, H.H. Wang and C.T. 
Yang, “Towards the Development of Visuel: a 
Novel Application and System Performance 
Monitoring Toolkit for Cluster and Grid 
Environments”, Accepted, International Journal 
of High Performance Computing and 
Networking (IJHPCN), Inderscience Publishers, 
2008. 

[18] Emmanuel Jeannot and Frédéric Wagner, “Two 
Fast and Efficient Message Scheduling 
Algorithms for Data Redistribution through a 
Backbone,” Proceedings of the 18th 
International Parallel and Distributed Processing 
Symposium, April 2004. 

[19] C. Lee, R. Wolski, I. Foster, C. Kesselman 
and J. Stepanek, “A Network Performance 
Tool for Grid Computations,” 

Supercomputing '99, 1999. 
[20] K.C. Li, H.H. Wang, C.T. Yang and 

Ching-Hsien Hsu, “Towards the Development 
of Visuel: a Novel Application and System 
Performance Monitoring Toolkit for Cluster and 
Grid Environments,” Accepted, International 
Journal of High Performance Computing and 
Networking (IJHPCN), Inderscience Publishers, 
2007. 

[21] J.M. Schopf and S. Vazhkudai, “Predicting 
Sporadic Grid Data Transfers,” 11th IEEE 
International Symposium on 
High-Performance Distributed Computing 
(HPDC-11), IEEE Press, Edinburg, Scotland, 
July 2002. 

[22] A. Smyk, M. Tudruj, L. Masko, “Open MP 
Extension for Multithreaded Computing with 
Dynamic SMP Processor Clusters with 
Communication on the Fly,” PAR ELEC, pp. 
83-88, 2006. 

[23] H. Stockinger, A. Samar, B. Allcock, I. 
Foster, K. Holtman and B. Tierney, “File and 
Object Replication in Data Grids,” Journal of 
Cluster Computing, 5(3)305-314, 2002. 

[24] M. Tudruj and L. Masko, “Fast Matrix 
Multiplication in Dynamic SMP Clusters with 
Communication on the Fly in Systems on Chip 
Technology,” PAR ELEC, pp. 77-82, 2006 

[25] S. Vazhkudai and J. Schopf, “Using Disk 
Throughput Data in Predictions of 
End-to-End Grid Transfers,” Proceedings of 
the 3rd International Workshop on Grid 
Computing (GRID 2002), Baltimore, MD, 
November 2002. 

[26] Chun-Ching Wang, Shih-Chang Chen, 
Ching-Hsien Hsu and Chao-Tung Yang, 
“Optimizing Communications of Data 
Parallel Programs in Scalable Cluster 
Systems,” Proceedings of the 3rd 
International Conference on Grid and 
Pervasive Computing (GPC-08), LNCS 5036, 
pp. 29-37, May 2008 

[27] C.T. Yang, I-Hsien Yang, Shih-Yu Wang, 
Ching-Hsien Hsu and Kuan-Ching Li, “A 
Recursive-Adjustment Co-Allocation Scheme 
with Cyber-Transformer in Data Grids,” 
Accepted, Future Generation Computer 
Science, Elsevier, 2008. 

[28] Kun-Ming Yu, Ching-Hsien Hsu and 
Chwani-Lii Sune, “A Genetic-Fuzzy Logic 
Based Load Balancing Algorithm in 
Heterogeneous Distributed Systems,” 
Proceedings of the IASTED International 
Conference on Neural Network and 
Computational Intelligence (NCI 2004), Feb. 
2004, Grindelwald, Switzerland. 



 6

 

 
 

行政院所屬各機關人員出國報告書提要                  
                                                 撰寫時間： 95 年  9 月  11  日   
姓 名 許慶賢 服 務 機 關 名 稱

 
中華大學

資工系 
連絡電話、 
電子信箱 

03-5186410 
chh@chu.edu.tw

出 生 日 期  62 年 2  月 23  日 職 稱 副教授 
出席國際會議 

名 稱 
Eleventh Asia-Pacific Computer Systems Architecture Conference (ACSAC-06), Shanghai, 

China 

到 達 國 家 

及 地 點 

ShangHai, China 出 國

期 間

自 95 年 09 月 06 日

迄 95 年 09 月 08 日

 

報告內容應包括下列各項： 

 

一、 參加會議經過 

 

    這一次在上海所舉行的國際學術研討會議共計三天。第一天上午由 Guang R. Gao 博士針對 The 
Era of Multi-Core Chips- A Fresh Look on Software Challenges主題發表精闢的演說作為研討會的開

始。同時當天也有許多重要的研究成果分為兩個平行的場次進行論文發表。本人選擇了 Languages and 
Compilers 場次聽取報告。本人也在同一天下午發表這一次被大會接受的論文。 
 
第一晚上本人亦參加酒會，並且與幾位國外學者及中國教授交換意見。第二天本人除了在上午參加

Multi-core，Architecture，Networks 場次，也在下午主持了 Power Management 場次，同時獲悉許多新

興起的研究主題，並了解目前國外大多數學者主要的研究方向。第二天晚上本人亦參與大會所舉辦的

晚宴。並且與幾位外國學者認識，交流，合影留念。會議最後一天，本人選擇與這一次論文較為相近

的 Scheduling, fault tolerance and mapping 以及分散式計算研究聽取論文發表，並且把握最後一天的機

會與國外的教授認識，希望能夠讓他們加深對台灣研究的印象。三天下來，本人聽了許多優秀的論文

發表。這些研究所涵蓋的主題包含有：ILP, TLP, Processor Architecture, Memory System, Operation 
System, High Performance I/O Architecture 等等熱門的研究課題。 

 

二、 與會心得 

 

    此次的國際學術研討會議有許多知名學者的參與，讓每一位參加這個會議的人士都能夠得到國際

上最新的技術與資訊。是一次非常成功的學術研討會。參加本次的國際學術研討會議，感受良多。讓

本人見識到許多國際知名的研究學者以及專業人才，得以與之交流。讓本人與其他教授面對面暢談所

學領域的種種問題。 



 7

 

三、 考察參觀活動(無是項活動者省略) 

 

四、 建議 

 
    看了眾多研究成果以及聽了數篇專題演講，最後，本人認為，會議所安排的會場以及邀請的講席

等，都相當的不錯，覺得會議舉辦得很成功，值得我們學習。 
 

五、 攜回資料名稱及內容 

 

1. Conference Program 
2. Proceedings 
 



 1

 
 

An Efficient Processor Selection Scheme for Master 
Slave Paradigm on Heterogeneous Networks 

Tai-Lung Chen      Ching-Hsien Hsu

Department of Computer Science and Information Engineering 
Chung Hua University, Hsinchu, Taiwan 

chh@chu.edu.tw 
 

Abstract.  It is well known that grid technology has the ability to achieve resources shared and 
tasks scheduled coordinately. In this paper, we present a performance effective pre-scheduling 
strategy for dispatching tasks onto heterogeneous processors. The main contribution of this study 
is the consideration of heterogeneous communication overheads in grid systems. One significant 
improvement of our approach is that average turnaround time could be minimized by selecting 
processor has the smallest communication ratio first. The other advantage of the proposed method 
is that system throughput can be increased via dispersing processor idle time. Our proposed 
technique can be applied to heterogeneous cluster systems as well as computational grid 
environments, in which the communication costs vary in different clusters. Experimental results 
show that our techniques outperform other previous algorithms in terms of lower average 
turnaround time, higher average throughput, less processor idle time and higher processors’ 
utilization.  
 

1   Introduction 

Computational grid system integrates geographically distributed computing resources to establish a virtual and high 
expandable parallel computing infrastructure. In recent years, there are several research investigations done in 
scheduling problem for heterogeneous grid systems. A centralized computational grid system can be viewed as the 
collection of one resource broker (the master processor) and several heterogeneous clusters (slave processors). Therefore, 
to investigate task scheduling problem, the master slave paradigm is a good vehicle for developing tasking technologies 
in centralized grid system. 

The master slave tasking is a simple and widely used technique [1, 2]. In a master slave tasking paradigm, the 
master node connects to n slave nodes. A set of independent tasks are dispatched by master processor and be processed 
on the n heterogeneous slave processors. Slave processors execute the tasks accordingly after they receive their tasks. 
This will restrict that the computation and communication can’t overlap. Moreover, communication between master 
and slave nodes is handled through a shared medium (e.g., bus) that can be accessed only in exclusive mode. Namely, 
the communications between master and different slave processors can not be overlapped. 

In general, the optimization of master slave tasking problem is twofold. One is to minimize total execution time for 
a given fix amount of tasks, namely minimize average turnaround time. The other one is to maximize total amount of 
finished tasks in a given time period, namely maximize throughput. 
In this paper, an efficient strategy for scheduling independent tasks to heterogeneous processors in master slave 
environment is presented. The main idea of the proposed technique is first to allocate tasks to processors that present 
lower communication ratio, which will be defined in section 3.2. Improvements of our approach towards both average 
turnaround time and system throughput. 

The remaining of this paper is organized as follows. Section 2 briefly discusses previous related researches, while 
in section 3 is introduced the research architecture and definition of notation and terminologies used in this paper, 



 2

where we also present a motivating example to demonstrate the characteristics of the master-slave pre-scheduling 
model. Section 4 assesses the new scheduling algorithm, the Smallest Communication Ratio (SCR), while the 
illustration of SCR on heterogeneous communication is examined in section 5. The performance comparisons and 
simulations results are discussed in section 6, and finally in section 7, some conclusions of this paper. 

2   Related Work 

The task scheduling research on heterogeneous processors can be classified into DAGs model, master-slave paradigm 
and computational grids. The main purpose of task scheduling is to achieve high performance computing and high 
throughput computing. The former aims at increasing execution efficiency and minimizing the execution time of tasks, 
whereas the latter aims at decreasing processor idle time and scheduling a set of independent tasks to increase the 
processing capacity of the systems over a long period of time. 

Thanalapati et al. [13] brought up the idea about adaptive scheduling scheme based on homogeneous processor 
platform, which applies space-sharing and time-sharing to schedule tasks. With the emergence of Grid and ubiquitous 
computing, new algorithms are in demand to address new concerns arising to grid environments, such as security, 
quality of service and high system throughput.  Berman et al. [6] and Cooper et al. [11] addressed the problem of 
scheduling incoming applications to available computation resources. Dynamically rescheduling mechanism was 
introduced to adaptive computing on the Grid.  In [8], some simple heuristics for dynamic matching and scheduling of 
a class of independent tasks onto a heterogeneous computing system have been presented.  Moreover, an extended 
suffrage heuristic was presented in [12] for scheduling the parameter sweep applications that have been implemented 
in AppLeS. They also presented a method to predict the computation time for a task/host pair by using previous host 
performance. 

Chronopoulos et al. [9], Charcranoon et al. [10] and Beaumont et al. [4, 5] introduced the research of master-slave 
paradigm with heterogeneous processors background. Based on this architecture, Beaumont et al. [1, 2] presented a 
method on master-slave paradigm to forecast the amount of tasks each processor needs to receive in a given period of 
time. Beaumont et al. [3] presented the pipelining broadcast method on master-slave platforms, focusing on message 
passing disregarding computation time. Intuitionally in their implementation, fast processor receives more tasks in the 
proportional distribution policy. Tasks are also prior allocated to faster slave processors and expected higher system 
throughput could be obtained. 

3   Preliminaries 

In this section, we first introduce basic concepts and models of this investigation, where we also define notations 
and terminologies that will be used in subsequent subsections. 

3.1   Research Architecture 

We have revised several characteristics that were introduced by Beaumont et al. [1, 2]. Based on the master 
slave paradigm introduced in section 1, this paper follows next assumptions as listed. 

 Heterogeneous processors: all processors have different computation speed. 
 Identical tasks: all tasks are of equal size. 
 Non-preemption: tasks are considered to be atomic. 
 Exclusive communication: communications from master node to different slave processors can not be 

overlapped.  
 Heterogeneous communication: communication costs between master and slave processors are of different 

overheads. 
 
 
 

3.2   Definitions 



 3

First, we list definitions, notations and terminologies used in this research paper.  
Definition 1: In a master slave system, master processor is denoted by M  and the n slave processors are 
represented by nPPP ,....,, 21 , where n is the number of slave processors. 

Definition 2: Upon the assumption of identical tasks and heterogeneous processors, the execution time of each 
one of slave processors to compute one task are different. We use Ti to represent the execution time of slave 
processor Pi to complete one task. In this paper, we assume the computation speed of n slave processors is sorted 
and T1 ≤ T2 ≤ … ≤ Tn. 

Definition 3: Given a master slave system, the time of slave processor Pi to receive one task from master 
processor is denoted as commiT _ . 

Definition 4: A Basic Scheduling Cycle (BSC) is defined as BSC = )...,,,( __22_11 commmmcommcomm TTTTTTlcm +++ , where 
m is the number of processors that will join the computation. 

Definition 5: Given a master slave system, the number of tasks processor Pi needs to receive in a basic scheduling cycle 
is defined as 

commii
i TT

BSCPtask
_

)(
+

= . 

Definition 6: Given a master slave system, the communication cost of processor Pi in BSC is defined as 
)()( _ icommii PtaskTPcomm ×= . 

Definition 7: Given a master slave system, the computation cost of processor Pi in BSC is defined as 
)()( iii PtaskTPcomp ×= . 

Definition 8: Given a master slave system, the Communication Ratio of processor Pi is defined as CRi = 

commii

commi

TT
T

_

_

+
. 

Definition 9: The computational capacity (δ) of a master slave system is defined as the sum of communication 
ratio of all processors that joined the computation, i.e., δ =∑ =

m

i iCR
1

, where m is the number of processors that 

involved in the computation.  

Definition 10: Given a master slave system with n heterogeneous slave processors, Pmax is the processor Pk such 

that }1|max{
1 _

_ ≤
+∑

=

k

i commii

commi

TT
T

k , where 1≤ k ≤ n. i.e.  1
1

1 _

_ >
+∑

+

=

k

i commii

commi

TT
T

. We use Pmax+1 to represent processor Pk+1. 

 

3.3   Master Slave Task Scheduling 

Discussions on the problem of task scheduling in master slave paradigm will be addressed in two cases, depending on 
the value of system computational capacity (δ). 

As mentioned in section 2, faster processors receive more tasks is an intuitional approach in which tasks are 
previously allocated to these faster processors, and this method is called Most Jobs First (MJF) scheduling 
algorithm [1, 2]. Fig. 1 shows the pre-scheduling of the MJF algorithm. As defined in definition 8, the 

communication ratio of P1 to P4 are 
3
1 , 

4
1 , 

4
1 , and 

6
1 , respectively. Because BSC = 12, we have task(P1)=4, 

task(P2)=3, task(P3)=3 and task(P4)=2. When the number of tasks is numerous, such scheduling achieves higher 
system utilization and less processor idle time than the greedy method.    



 4

 

Fig. 1. Most Jobs First (MJF) task scheduling when 1≤δ . 

 
Lemma 1: Given a master slave system with δ  > 1, in MJF scheduling, the amount of tasks being assigned to 
Pmax+1 can be calculated by the following equation, 

task(Pmax+1) = (BSC − ∑
=

max

1

)(
i

iPcomm ) / Tmax+1_com                                             (1) 

Lemma 2: Given a master slave system with δ  > 1, in MJF scheduling, the period of processor Pmax+1 stays idle 
denoted by MJF

idleT  and can be calculated by the following equation,  

MJF
idleT  = BSC − )()( 1max1max ++ − PcompPcomm                                (2) 

Another example of master slave task scheduling with identical communication (i.e., Ti_comm=1) and δ  > 1 is 
given in Fig. 2. Because δ  > 1, according to equation (1), we have task(Pmax+1=P4) = 10. We note that P4 
completes its tasks and becomes available at time 100. However, the master processor dispatches tasks to P3 
during time 100 ~ 110 and starts to send tasks to P4 at time 110. Such kind of idle situation also happens at time 
100~110, 160~170, 220~230, and so on. 

 

Fig. 2. Most Jobs First (MJF) Tasking when 1>δ . 

Lemma 3: In MJF scheduling algorithm with identical communication Ti_comm, when δ  > 1, the completion time of 
tasks in the jth BSC can be calculated by the following equation. 

T(BSCj) =∑
=

max

1

)(
i

iPcomm + ))()(( 1max1max
MJF

idleTPcompPcommj ++× ++  MJF
idleT−                       (3) 

 



 5

4   Smallest Communication Ratio (SCR) Scheduling with Identical Communication 

The MJF scheduling algorithm distributes tasks to slave processors according to processors’ speed, namely, faster 
processor receives tasks first. In this section, we demonstrate an efficient task scheduling algorithm, Smallest 
Communication Ratio (SCR), focuses on master slave task scheduling with identical communication. 

Lemma 4: In SCR scheduling algorithm, if δ  ≤ 1 and Ti_comm are identical, the task completion time of the jth BSC 
denoted by )( j

SCR
finish BSCT , can be calculated by the following equation. 

)( j
SCR
finish BSCT  = BSC + ))()(( 11 PcompPcommj +× )( 1Pcomm−                              (4) 

Lemma 5: Given a master slave system with δ  > 1, in scheduling, the amount of tasks being assigned to Pmax+1 
can be calculated by the following, 

commTT
BSCPtask

_1max1max
1max )(

++
+ +

=                                     (5) 

 
Lemma 6: In SCR scheduling algorithm, when δ  > 1, the idle time of a slave processor is denoted as SCR

idleT  and 
can be calculated by the following equation, 

SCR
idleT  = ∑

+

=

1max

1

)(
i

iPcomm  − BSC                                      (6) 

The other case in Fig. 3 is to demonstrate the SCR scheduling method with dispersive idle when δ > 1. We 
use the same example in Fig. 2 for the following illustration.  Because δ > 1, according to definition 10 and 
Lemma 5, we have task(Pmax+1=P4) = 12. Comparing to the example in Fig. 2, P4 stays 10 time units idle in MJF 
algorithm while the idle time is reduced and dispersed in SCR algorithm. In SCR, every processor has 2 units of 
time idle and totally 8 units of time idle. Moreover, we observe that the MJF algorithm finishes 60 tasks in 100 
units of time, showing a throughput of 0.6.  While in SCR, there are 62 tasks completed during 102 time units. 
The throughput of SCR is 62/102 (≈0.61) > 0.6. Consequently, the SCR algorithm delivers higher system 
throughput. 

Lemma 7: In SCR scheduling algorithm, if Ti_comm are identical for all slave processors and δ  > 1, the task completion 
time of the jth BSC denoted by )( j

SCR
finish BSCT , can be calculated by the following equation, 

)( j
SCR
finish BSCT = ∑

+

=

1max

1

)(
i

iPcomm +comp(P1)+ 

 ))()(()1( 11
SCR

idleTPcompPcommj ++×−                                        (7) 

 



 6

 

Fig. 3. Smallest Communication Ratio (SCR) Tasking when 1>δ . 

5   Generalized Smallest Communication Ratio (SCR) 

As computational grid integrates geographically distributed computing resources, the communication overheads 
from resource broker / master computer to different computing site are different. Therefore, towards an efficient 
scheduling algorithm, the heterogeneous communication overheads should be considered. In this section, we 
present the SCR task scheduling techniques work on master slave computing paradigm with heterogeneous 
communication. 
 
Lemma 8: Given a master slave system with heterogeneous communication and δ  > 1, in MJF scheduling, we 
have 

task(Pmax+1) = 

⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢

⎣

⎢
−

+

=
∑

comm

i
i

T

PcommBSC

_1max

max

1

)(
                                     (8) 

Lemma 9: Given an SCR scheduling with heterogeneous communication and δ > 1, SCR
idleT  is the idle time of one 

slave processor, we have the following equation,  

SCR
idleT  = ∑

+

=

1max

1

)(
i

iPcomm  − BSC.                                   (9) 

Lemma 10: Given an SCR scheduling with heterogeneous communication and δ > 1, )( j
SCR

start BSCT  is the start 
time to dispatch tasks in the jth BSC, we have the following equation,  

)()1()( SCR
idlej

SCR
start TBSCjBSCT +×−=                                    (10) 

Lemma 11: Given an SCR scheduling with heterogeneous communication and δ > 1, the task completion time of 
the jth BSC denoted by )( j

SCR
finish BSCT , we have 

)( j
SCR
finish BSCT = ∑

+

=

1max

1

)(
i

iPcomm +comp(Pk)+ ))()(()1( SCR
idlekk TPcompPcommj ++×−         (11) 



 7

where Pk is the slave processor with maximum communication cost. 
Another example of heterogeneous of communication with δ  > 1 master slave tasking is shown in Fig. 4(a). 

The communication overheads vary from 1 to 5.  The computational speeds vary from 3 to 13. In this example, 
we have BSC = 48. 

In SCR implementation, according to corollary 3, task distribution is task(P1) = 6, task(P2) = 6, task(P3) = 4 
and task(Pmax+1) = task(P4) = 3. The communication costs of slave processors are comm(P1) = 30, comm(P2) = 12, 
comm(P3) = 4 and comm(P4) = 9, respectively. Therefore, the SCR method distributes tasks by the order P3, P4, P2, 
P1. There are 19 tasks in the first BSC dispatched to P1 to P4 during time period 1~55. Processor P3 is the first 
processor to receive tasks and it finishes at time t = 48 and becomes available. In the meanwhile, processor P1 
receives tasks during t = 48~55. The second BSC starts to dispatch tasks at t = 55.  Namely, P3 starts to receive 
tasks at t = 55 in the second scheduling cycle.  Therefore, P3 has 7 unit of time idle. Lemmas 4 and 5 state the 
above phenomenon. The completion time of tasks in the first BSC depends on the finish time of processor P1. We 
have )( 1BSCT SCR

finish  = 73.  

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Task scheduling on heterogeneous communication environment with 1>δ . (a) Smallest Communication Ratio (b) 
Most Job First  (c) Largest communication ratio (LCR). 

 



 8

 

The MJF scheduling is depicted in Fig. 4(b). According to corollary 5, task(Pmax+1) = task(P4) = 0,  therefore, 
P4 will not be included in the scheduling.  MJF has the task distribution order P1, P2, P3. Another scheduling 
policy is called Longest Communication Ratio (LCR) which is an opposite approach to the SCR method. Fig. 4(c) 
shows the LCR scheduling result which has the dispatch order P1, P2, P4, P3. 

To investigate the performance of SCR scheduling technique, we observe that MJF algorithm completes 16 tasks 
in 90 units of time in the first BSC. On the other hand, in SCR scheduling, there are 19 tasks completed in 73 
units of time in the first BSC. In LCR, there are 19 tasks completed in 99 units of time. We can see that the 
system throughput of SCR (19/73≈0.260) > LCR (19/99≈0.192) > MJF (16/90≈0.178). Moreover, the average 
turnaround time of the SCR algorithm in the first three BSCs is 183/57 (≈3.2105) which is less than the LCR‘s 
average turnaround time 209/57 (≈3.6666) and the MJF‘s average turnaround time 186/48 (≈3.875). 

6   Performance Evaluation 

To evaluate the performance of the proposed method, we have implemented the SCR and the MJF algorithms. We 
compare different criteria, such as average turnaround time, system throughput and processor idle time, in 
Heterogeneous Processors with Heterogeneous Communications (HPHC). 

Simulation experiments for evaluating average turnaround time are made upon different number of 
processors and show in Fig. 7. The computational speed of slave processors is set as T1=3, T2=3, T3=5, T4=7, T5=11, 
and T6=13. For the cases when processor number is 2, 3… 6, we have 1≤δ . When processor number increases to 7, 
we have 1>δ . In either case, the SCR algorithm conduces better average turnaround time. From the above results, 
we conclude that the SCR algorithm outperforms MJF for most test samples. 

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 2 3 4 5 6
# of nodes

A
v
er

ag
e 

tu
rn

-a
ro

u
n
d

tim
e

MJF

SCR

 

Fig. 5. Average task turn-around time on different numbers of processors. 

Simulation results present the performance comparison of three task scheduling algorithms, SCR, MJF, LCR, 
on heterogeneous processors and heterogeneous communication paradigms. Fig. 6 shows the simulation results 
for the experiment setting that with ±10 processor speed variation and ±4 communication speed variation. The 
computation speed of slave processors are 1T =3, 2T =6, 3T =11, and 4T =13. The time of a slave processor to 
receive one task from master processor are commT _1  = 5, commT _2  = 2, commT _3  = 1 and commT _4 =3. The average task 
turnaround time, system throughput and processor idle time are measured.   

 



 9

0

1

2

3

4

5

6

1 2 3 4 5 BSC
A

ve
ra

ge
 t

ru
n-

ar
ou

nd
 t

im
e

(t
im

e 
un

it
)

MJF

LCR

SCR

 
(a) 

0

0.1

0.2

0.3

0.4

1 2 3 4 5 BSC

T
hr

ou
gh

pu
t

MJF
LCR
SCR

 
(b) 

0

50

100

150

200

250

1 2 3 4 5 BSC

T
ot

al
 p

ro
ce

ss
or

 i
dl

e

ti
m

e 
(t

im
e 

un
it
) MJF

LCR

SCR

 
(c) 

Fig. 6. Simulation results for 5 processors with ±10 computation speed variation and ±4 communication variation when 
1>δ  (a) average turnaround time (b) system throughput (c) processor idle time. 

 
Fig. 6(a) is the average turnaround time within different number of BSC. The SCR algorithm performs better 

than the LCR and MJF method. Similarly, the SCR method has higher throughput than the other two algorithms 
as shown in Fig. 6(b).  The processor idle time are estimated in Fig. 6(c). The SCR and LCR algorithms have the 
same period of processor idle time which is less than the MJF scheduling method. These phenomena match the 
theoretical analysis in section 5. 

The miscellaneous comparison in Fig. 7 presents the performance comparison of SCR, MJF with more cases.  
The simulation results for the experiment setting that with ±5~±30 processor speed variation and ±5~±30 
communication speed variation. The computation speed variation of 1T ~ nT =±5~±30. The communication speed 
variation of commT _1  ~ commnT _ =±5~±30. The system throughput is measured.  

0

0.1

0.2

0.3

0.4

5 10 15 20 25
# of Nodes

T
hr

ou
gh

pu
t MJF

LCR
SCR

 



 10

(a) 

0

0.05

0.1

0.15

0.2

0.25

5 10 15 20 25
# of Nodes

T
hr

ou
gh

pu
t

MJF
LCR
SCR

 
(b) 

Fig. 7. Simulation results of throughput for the range of 5~25 processors with ±30 computation speed variation and 
±30 communication variation in 100 cases and 100 BSC (a) system throughput of the cases when 0< iT ≤ 30 and 
0< commiT _ ≤ 5 (b) system throughput of the cases when 0< iT ≤ 5 and 0< commiT _ ≤ 30. 

Fig. 7(a) is the case of 0< iT ≤ 30, 0< commiT _ ≤ 5 and the parameter of computation speed and communication 
speed are to be random and uniformly distributed within different number of nodes and 100 BSC for 100 cases. 
Fig. 7(b) is the case of 0< iT ≤ 5 and 0< commiT _ ≤ 30. The SCR algorithm performs better than MJF method, and 
SCR method has higher throughput than the MJF algorithm as shown in Fig. 7(a) and Fig. 7(b).  From the 
above experimental tests, we have the following remarks. The proposed SCR scheduling technique has better 
task turnaround time and higher system throughput than the MJF algorithm. 

From the above experimental tests, we have the following remarks. 
 The proposed SCR scheduling technique has higher system throughput than the MJF algorithm. 
 The proposed SCR scheduling technique has better task turnaround time than the MJF algorithm. 

The SCR scheduling technique has less processor idle time than the MJF algorithm. 

7   Conclusions 

The problem of resource management and scheduling has been one of main challenges in grid computing. In this paper, 
we have presented an efficient algorithm, SCR for heterogeneous processors tasking problem. One significant 
improvement of our approach is that average turnaround time could be minimized by selecting processor has the 
smallest communication ratio first. The other advantage of the proposed method is that system throughput can be 
increased via dispersing processor idle time. Our preliminary analysis and simulation results indicate that the SCR 
algorithm outperforms Beaumont’s method in terms of lower average turnaround time, higher average throughput, less 
processor idle time and higher processors’ utilization. 

There are numbers of research issues that remains in this paper. Our proposed model can be applied to map tasks 
onto heterogeneous cluster systems in grid environments, in which the communication costs are various from clusters. 
In future, we intend to devote generalized tasking mechanisms for computational grid.  We will study realistic 
applications and analyze their performance on grid system.  Besides, rescheduling of processors / tasks for minimizing 
processor idle time on heterogeneous systems is also interesting and will be investigated. 

References 

1. O. Beaumont, A. Legrand and Y. Robert, “The Master-Slave Paradigm with Heterogeneous Processors,” IEEE Trans. on parallel 
and distributed systems, Vol. 14, No.9, pp. 897-908, September 2003. 

2. C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand and Y. Robert, ”Scheduling Strategies for Master-Slave Tasking on 
Heterogeneous Processor Platforms,” IEEE Trans. on parallel and distributed systems, Vol. 15, No.4, pp.319-330, April 2004. 

3. O. Beaumont, A. Legrand and Y. Robert, “Pipelining Broadcasts on Heterogeneous Platforms,” IEEE Trans. on parallel and 
distributed systems, Vol. 16, No.4, pp. 300-313 April 2005. 

4. O. Beaumont, V. Boudet, A. Petitet, F. Rastello and Y. Robert, “A Proposal for a Heterogeneous Cluster ScaLAPACK (Dense 
Linear Solvers),” IEEE Trans. Computers, Vol. 50, No. 10, pp. 1052-1070, Oct. 2001. 



 11

5. O. Beaumont, V. Boudet, F. Rastello and Y. Robert, “Matrix-Matrix Multiplication on Heterogeneous Platforms,” Proc. Int'l Conf. 
Parallel Processing, Vol. 12, No. 10, pp. 1033-1051, Oct. 2001. 

6. F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. 
Smallen, N. Spring, A. Su, and D. Zagorodnov, ”Adaptive Computing on the Grid Using AppLeS,” IEEE Trans. on parallel and 
distributed systems, Vol. 14, No. 4, pp.369-379, April 2003. 

7. S. Bataineh, T.Y. Hsiung and T.G. Robertazzi, “Closed Form Solutions for Bus and Tree Networks of Processors Load Sharing a 
Divisible Job,” IEEE Trans. Computers, Vol. 43, No. 10, pp. 1184-1196, Oct. 1994. 

8. T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys and B. Yao, “A 
taxonomy for describing matching and scheduling heuristics for mixed-machine heterogeneous computing systems,” Proceedings of 
the IEEE Workshop on Advances in Parallel and Distributed Systems, pp. 330-335, Oct. 1998. 

9. A.T. Chronopoulos and S. Jagannathan, “A Distributed Discrete-Time Neural Network Architecture for Pattern Allocation and 
Control,” Proc. IPDPS Workshop Bioinspired Solutions to Parallel Processing Problems, 2002. 

10. S. Charcranoon, T.G. Robertazzi and S. Luryi, “Optimizing Computing Costs Using Divisible Load Analysis,” IEEE Trans. 
Computers, Vol. 49, No. 9, pp. 987-991, Sept. 2000. 

11. K. Cooper, A. Dasgupta, K. Kennedy, C. Koelbel, A. Mandal, G. Marin, M. Mazina, J. Mellor-Crummey, F. Berman, H. Casanova, 
A. Chien, H. Dail, X. Liu, A. Olugbile, O. Sievert, H. Xia, L. Johnsson, B. Liu, M. Patel, D. Reed, W. Deng, C. Mendes, Z. Shi, A. 
YarKhan, J. Dongarra, ”New Grid Scheduling and Rescheduling Methods in the GrADS Project,” Proceedings of the 18th 
International Parallel and Distributed Processing Symposium (IPDPS’04), pp.209-229, April 2004. 

12. H. Casanova, A. Legrand, D. Zagorodnov and F. Berman, “Heuristics for Scheduling Parameter Sweep applications in Grid 
environments,” Proceedings of the 9th Heterogeneous Computing workshop (HCW'2000), pp. 349-363, 2000. 

13. T. Thanalapati and S. Dandamudi, ”An Efficient Adaptive Scheduling Scheme for Distributed Memory Multicomputers,” IEEE 
Trans. on parallel and distributed systems, Vol. 12, No. 7, pp.758-767, July 2001. 

 
 



 12

 
 

行政院所屬各機關人員出國報告書提要                  
                                                 撰寫時間： 96 年  6 月  20  日   
姓 名 許慶賢 服 務 機 關 名 稱

 
中華大學

資工系 
連絡電話、 
電子信箱 

03-5186410 
chh@chu.edu.tw

出 生 日 期  62 年 2  月 23  日 職 稱 副教授 
出席國際會議 

名 稱 

2007 International Conference on Algorithms and Architecture for Parallel 

Processing, June 11 -14 2007. 

到 達 國 家 

及 地 點 
Hangzhou, China 出 國

期 間

自 96 年 06 月 11 日

迄 96 年 06 月 19 日

內 容 提 要 

這一次在杭州所舉行的國際學術研討會議共計四天。第一天下午本人抵達會

場辦理報到。第二天各主持一場 invited session 的論文發表。同時，自己也

在上午的場次發表了這依次被大會接受的論文。第一天也聽取了 Dr. 
Byeongho Kang 有關於 Web Information Management 精闢的演說。第二天許

多重要的研究成果分為六個平行的場次進行論文發表。本人選擇了

Architecture and Infrastructure、Grid computing、以及 P2P computing 相關場

次聽取報告。晚上本人亦參加酒會，並且與幾位國外學者及中國、香港教授

交換意見，合影留念。第三天本人在上午聽取了 Data and Information 
Management 相關研究，同時獲悉許多新興起的研究主題，並了解目前國外

大多數學者主要的研究方向，並且把握最後一天的機會與國外的教授認識，

希望能夠讓他們加深對台灣研究的印象。三天下來，本人聽了許多優秀的論

文發表。這些研究所涵蓋的主題包含有：網格系統技術、工作排程、網格計

算、網格資料庫以及無線網路等等熱門的研究課題。此次的國際學術研討會

議有許多知名學者的參與，讓每一位參加這個會議的人士都能夠得到國際上

最新的技術與資訊。是一次非常成功的學術研討會。參加本次的國際學術研

討會議，感受良多。讓本人見識到許多國際知名的研究學者以及專業人才，

得以與之交流。讓本人與其他教授面對面暢談所學領域的種種問題。看了眾

多研究成果以及聽了數篇專題演講，最後，本人認為，會議所安排的會場以

及邀請的講席等，都相當的不錯，覺得會議舉辦得很成功，值得我們學習。

出 席 人 所 屬 機 

關 審 核 意 見 
 

層 轉 機 關 

審 核 意 見 
 

研 考 會 

處 理 意 見 
 



 13

(出席 ICA3PP-07 研討會所發表之論文) 
 

A Generalized Critical Task Anticipation Technique for DAG 
Scheduling 

 
Ching-Hsien Hsu1, Chih-Wei Hsieh1 and Chao-Tung Yang2 

 
1 Department of Computer Science and Information Engineering 

Chung Hua University, Hsinchu, Taiwan 300, R.O.C. 
chh@chu.edu.tw 

 
2 High-Performance Computing Laboratory 

Department of Computer Science and Information Engineering 
Tunghai University, Taichung City, 40704, Taiwan R.O.C. 

ctyang@thu.edu.tw 
 
Abstract.  The problem of scheduling a weighted directed acyclic graph 
(DAG) representing an application to a set of heterogeneous processors to 
minimize the completion time has been recently studied.  The 
NP-completeness of the problem has instigated researchers to propose different 
heuristic algorithms.  In this paper, we present a Generalized Critical-task 
Anticipation (GCA) algorithm for DAG scheduling in heterogeneous 
computing environment.  The GCA scheduling algorithm employs task 
prioritizing technique based on CA algorithm and introduces a new processor 
selection scheme by considering heterogeneous communication costs among 
processors for adapting grid and scalable computing.  To evaluate the 
performance of the proposed technique, we have developed a simulator that 
contains a parametric graph generator for generating weighted directed acyclic 
graphs with various characteristics.  We have implemented the GCA 
algorithm along with the CA and HEFT scheduling algorithms on the simulator.  
The GCA algorithm is shown to be effective in terms of speedup and low 
scheduling costs. 

 
1. Introduction 

The purpose of heterogeneous computing system is to drive processors 
cooperation to get the application done quickly.  Because of diverse quality among 
processors or some special requirements, like exclusive function, memory access speed, 
or the customize I/O devices, etc.; tasks might have distinct execution time on 
different resources.  Therefore, efficient task scheduling is important for achieving 
good performance in heterogeneous systems.  

The primary scheduling methods can be classified into three categories, dynamic 
scheduling, static scheduling and hybrid scheduling according to the time at which the 
scheduling decision is made.  In dynamic approach, the system performs 
redistribution of tasks between processors during run-time, expect to balance 
computational load, and reduce processor’s idle time. On the contrary, in static 



 14

approach, information of applications, such as tasks execution time, message size of 
communications among tasks, and tasks dependences are known a priori at 
compile-time; tasks are assigned to processors accordingly in order to minimize the 
entire application completion time and satisfy the precedence of tasks.  Hybrid 
scheduling techniques are mix of dynamic and static methods, where some 
preprocessing is done statically to guide the dynamic scheduler [8]. 

A Direct Acyclic Graph (DAG) [2] is usually used for modeling parallel 
applications that consists a number of tasks.  The nodes of DAG correspond to tasks 
and the edges of which indicate the precedence constraints between tasks.  In 
addition, the weight of an edge represents communication cost between tasks.  Each 
node is given a computation cost to be performed on a processor and is represented by 
a computation costs matrix.  Figure 1 shows an example of the model of DAG 
scheduling.  In Figure 1(a), it is assumed that task nj is a successor (predecessor) of 
task ni if there exists an edge from ni to nj (from nj to ni) in the graph.  Upon task 
precedence constraint, only if the predecessor ni completes its execution and then its 
successor nj receives the messages from ni, the successor nj can start its execution.  
Figure 1(b) demonstrates different computation costs of task that performed on 
heterogeneous processors.  It is also assumed that tasks can be executed only on 
single processor with non-preemptable style.  A simple fully connected processor 
network with asymmetrical data transfer rate is shown in Figures 1(c) and 1(d). 

 

            

 P1 P2 P3 iw  

n1 14 19 9 14 

n2 13 19 18 16.7 

n3 11 17 15 14.3 

n4 13 8 18 13 

n5 12 13 10 11.7 

n6 12 19 13 14.7 

n7 7 16 11 11 

n8 5 11 14 10 

n9 18 12 20 16.7 

n10 17 20 11 16  
(a)                                   (b) 

                  
 (c)                                  (d) 

Figure 1: An example of DAG scheduling problem (a) Directed Acyclic Graph (DAG-1) (b) 
computation cost matrix (W) (c) processor topology (d) communication weight. 

 
The scheduling problem has been widely studied in heterogeneous systems where 



 15

the computational ability of processors is different and the processors communicate 
over an underlying network.  Many researches have been proposed in the literature.  
The scheduling problem has been shown to be NP-complete [3] in general cases as 
well as in several restricted cases; so the desire of optimal scheduling shall lead to 
higher scheduling overhead.  The negative result motivates the requirement for 
heuristic approaches to solve the scheduling problem.  A comprehensive survey about 
static scheduling algorithms is given in [9].  The authors of have shown that the 
heuristic-based algorithms can be classified into a variety of categories, such as 
clustering algorithms, duplication-based algorithms, and list-scheduling algorithms.  
Due to page limitation, we omit the description for related works.   

In this paper, we present a Generalized Critical task Anticipation (GCA) algorithm, 
which is an approach of list scheduling for DAG task scheduling problem.  The main 
contribution of this paper is proposing a novel heuristic for DAG scheduling on 
heterogeneous machines and networks.  A significant improvement is that 
inter-processor communication costs are considered into processor selection phase 
such that tasks can be mapped to more suitable processors.  The GCA heuristic is 
compared favorable with previous CA [5] and HEFT heuristics in terms of schedule 
length and speedup under different parameters.  

The rest of this paper is organized as follows: Section 2 provides some 
background, describes preliminaries regarding heterogeneous scheduling system in 
DAG model and formalizes the research problem.  Section 3 defines notations and 
terminologies used in this paper.  Section 4 forms the main body of the paper, 
presents the Generalized Critical task Anticipation (GCA) scheduling algorithm and 
illustrating it with an example.  Section 5 discusses performance of the proposed 
heuristic and its simulation results.  Finally, Section 6 briefly concludes this paper.  

2. DAG Scheduling on Heterogeneous Systems 

The DAG scheduling problem studied in this paper is formalized as follows.  Given a 

parallel application represented by a DAG, in which nodes represent tasks and edges 

represent dependence between these tasks.  The target computing architecture of DAG 

scheduling problem is a set of heterogeneous processors, M = {Pk: k = 1: P} and P = |M|, 

communicate over an underlying network which is assumed fully connected.  We have 

the following assumptions: 
 Inter-processor communications are performed without network contention between 

arbitrary processors.  
 Computation of tasks is in non-preemptive style.  Namely, once a task is assigned to 

a processor and starts its execution, it will not be interrupted until its completion. 
 Computation and communication can be worked simultaneously because of the 

separated I/0. 
 If two tasks are assigned to the same processor, the communication cost between the 

two tasks can be discarded. 
 A processor is assumed to send the computational results of tasks to their immediate 

successor as soon as it completes the computation. 

Given a DAG scheduling system, W is an n × P matrix in which wi,j indicates 



 16

estimated computation time of processor Pj to execute task ni.  The mean execution time 

of task ni can be calculated by the following equation: 

∑=
=

P

j

ji
i P

w
w

1

,                         (1) 

Example of the mean execution time can be referred to Figure 1(b).   

 
For communication part, a P × P matrix T is structured to represent different 

data transfer rate among processors (Figure 1(d) demonstrates the example).  The 
communication cost of transferring data from task ni (execute on processor px) to task 
nj (execute on processor py) is denoted by ci,j and can be calculated by the following 
equation, 

yxjimji tMsgVc ,,, ×+= ,                    (2) 

Where: 
Vm is the communication latency of processor Pm, 
Msgi,j is the size of message from task ni to task nj, 
tx,y is data transfer rate from processor px to processor py, 1≤ x, y ≤P. 
 

In static DAG scheduling problem, it was usually to consider processors’ 
latency together with its data transfer rate.  Therefore, equation (2) can be 
simplified as follows, 

yxjiji tMsgc ,,, ×= ,                     (3) 

Given an application represented by Directed Acyclic Graph (DAG), G = (V, E), 
where V = {nj: j = 1: v} is the set of nodes and v = |V|; E = {ei,j = <ni, nj>} is the set 
of communication edges and e =|E|.  In this model, each node indicates least 
indivisible task.  Namely, each node must be executed on a processor from the start 
to its completion.  Edge <ni, nj> denotes precedence of tasks ni and nj.  In other 
words, task ni is the immediate predecessor of task nj and task nj is the immediate 
successor of task ni.  Such precedence represents that task nj can be start for 
execution only upon the completion of task ni.  Meanwhile, task nj should receive 
essential message from ni for its execution.  Weight of edge <ni, nj > indicates the 
average communication cost between ni and nj. 

Node without any inward edge is called entry node, denoted by nentry; while node 
without any outward edge is called exit node, denoted by nexit.  In general, it is supposed 
that the application has only one entry node and one exit node.  If the actual application 
claims more than one entry (exit) node, we can insert a dummy entry (exit) node with 
zero-cost edge. 

 
3. Preliminaries 
This study concentrates on list scheduling approaches in DAG model.  List 
scheduling was usually distinguished into list phase and processor selection phase.  
Therefore, priori to discuss the main content, we first define some notations and 
terminologies used in both phases in this section. 

3.1 Parameters for List Phase 



 17

Definition 1: Given a DAG scheduling system on G = (V, E), the Critical Score of task 
ni denoted by CS(ni) is an accumulative value that are computed recursively traverses 
along the graph upward, starting from the exit node.  CS(ni) is computed by the 
following equations,  

⎪⎩

⎪
⎨
⎧

++
=

=
∈

otherwise))((
)i.e.(ndoeexittheisif

)(
,)( jjinsucni

exitiiexit
i nCScMaxw

nnnw
nCS

ij

  (4) 

where exitw  is the average computation cost of task nexit, iw  is the average computation 
cost of task ni, suc(ni) is the set of immediate successors of task ni, 

jic ,  is the average communication cost of edge <ni, nj> which is defined as follows, 

)( 2
, 1

,,

, PP

tMsg
c Pyx

yxji

ji −

×

=
∑

≤≤ ,                          (5)  

 
3.2 Parameters for Processor Selection Phase 

Most algorithms in processor selection phase employ a partial schedule scheme to 
minimize overall schedule length of an application.  To achieve the partial 
optimization, an intuitional method is to evaluate the finish time (FT) of task ni 
executed on different processors.  According to the calculated results, one can select 
the processor who has minimum finish time as target processor to execute the task ni.  
In such approach, each processor Pk will maintain a list of tasks, task-list(Pk), keeps 
the latest status of tasks correspond to the EFT(ni, Pk), the earliest finish time of task ni 
that is assigned on processor Pk. 

Recall having been mentioned above that the application represented by DAG 
must satisfy the precedence relationship.  Taking into account the precedence of tasks 
in DAG, a task nj can start to execute on a processor Pk only if its all immediate 
predecessors send the essential messages to nj and nj successful receives all these 
messages.  Thus, the latest message arrive time of node nj on processor Pk, denoted 
by LMAT(nj, Pk), is calculated by the following equation, 

( ) ( ) ( ) )processoron  executedfor task,(, , uikuinprednkj PncnEFTMaxPnLMAT
ji

+=
∈

     (6) 

where pred(nj) is the set of immediate predecessors of task nj.  Note that if tasks ni 
and nj are assigned to the same processor, kuc ,  is assumed to be zero because it is 
negligible. 
Because the entry task nentry has no inward edge, thus we have 

( ) 0, =kentry PnLMAT                        (7) 
for all k = 1 to P. 
Definition 2: Given a DAG scheduling system on G = (V, E), the Start Time of task nj 
executed on processor Pk is denoted as ST(nj, Pk). 
Estimating task’s start time (for example, task nj) will facilitate search of available 
time slot on target processors that is large enough to execute that task (i.e., length of 
time slot > wj,k).  Note that the search of available time slot is started from 

( )kj PnLMAT , . 
Definition 3: Given a DAG scheduling system on G = (V, E), the finish time of task nj 
denoted by ),( kj PnFT , represents the completion time of task nj executed on processor 



 18

Pk.  ),( kj PnFT  is defined as follows, 

kjkjkj wPnSTPnFT ,),(),( +=                     (8) 
Definition 4: Given a DAG scheduling system on G = (V, E), the earliest finish time of 
task nj denoted by )( jnEFT , is formulated as follows,  

)},({)( kjPpj PnFTMinnEFT
k∈

=                      (9) 

Definition 5: Based on the determination of )( jnEFT  in equation (9), if the earliest finish 

time of task nj is obtained upon task nj executed on processor pt, then the target processor of 
task nj is denoted by TP(nj), and TP(nj) = pt. 

 
4. The Generalized Critical-task Anticipation Scheduling Algorithm 
Our approach takes advantages of list scheduling in lower algorithmic complexity and 
superior scheduling performance and furthermore came up with a novel heuristic 
algorithm, the generalized critical task anticipation (GCA) scheduling algorithm to 
improve the schedule length as well as speedup of applications.  The proposed 
scheduling algorithm will be verified beneficial for the readers while we delineate a 
sequence of the algorithm and show some example scenarios in three phases, 
prioritizing phase, listing phase and processor selection phase.  

In prioritizing phase, the CS(ni) is known as the maximal summation of scores 
including the average computation cost and communication cost from task ni to the 
exit task.  Therefore, the magnitude of the task’s critical score is regarded as the 
decisive factor when determining the priority of a task.  In listing phase, an ordered 
list of tasks should be determined for the subsequent phase of processor selection. The 
proposed GCA scheduling technique arranges tasks into a list L, not only according to 
critical scores but also considers tasks’ importance.  

Several observations bring the idea of GCA scheduling method.  Because of 
processor heterogeneity, there exist variations in execution cost from processor to 
processor for same task.  In such circumstance, tasks with larger computational cost 
should be assigned higher priority.  This observation aids some critical tasks to be 
executed earlier and enhances probability of tasks reduce its finish time.  Furthermore, 
each task has to receive the essential messages from its immediate predecessors.  In 
other words, a task will be in waiting state when it does not collect complete message 
yet.  For this reason, we emphasize the importance of the last arrival message such 
that the succeeding task can start its execution earlier.  Therefore, it is imperative to 
give the predecessor who sends the last arrival message higher priority.  This can aid 
the succeeding task to get chance to advance the start time.  On the other hand, if a 
task ni is inserted into the front of a scheduling list, it occupies vantage position.  
Namely, ni has higher probability to accelerate its execution and consequently the start 
time of suc(ni) can be advanced as well.   

In most list scheduling approaches, it was usually to demonstrate the algorithms 
in two phases, the list phase and the processor selection phase.  The list phase of 
proposed GCA scheduling algorithm consists of two steps, the CS (critical score) 
calculation step and task prioritization step. 

Let’s take examples for the demonstration of CS calculation, which is performed 
in level order and started from the deepest level, i.e., the level of exit task.  For 
example, according to equation (4), we have CS(n10)= 10w = 16.  For the upper 



 19

level tasks, n7, n8 and n9, CS(n7) = ))(( 1010,77 nCScw ++  = 47.12, CS(n8) = 

))(( 1010,88 nCScw ++ =37.83, CS(n9) = ))(( 1010,99 nCScw ++ =49.23.  The other 
tasks can be calculated by the same methods.  Table 1 shows complete calculated 
critical scores of all tasks for DAG-1. 

Table 1: Critical Scores of tasks in DAG-1 using GCA algorithm  
Critical Scores of tasks in GCA algorithm 

n1 n2 n 3 n 4 n 5 n 6 n 7 n 8 n 9 n 10 

120.13 84.83 88.67  89.45 76.28 70.25 47.12 37.83 49.23 16.00    
 
Follows the critical score calculation, the GCA scheduling method considers both 

tasks’ importance (i.e., critical score) and its relative urgency for prioritizing tasks.  
Based on the results obtained previously, we use the same example to demonstrate task 
prioritization in GCA.  Let’s start at the exit task n10, which has the lowest critical 
score.  Assume that tasks will be arranged into an ordered list L, therefore, we have L 
= {n10} initially.  Because task n10 has three immediate predecessors, with the order 
CS(n9) > CS(n7) > CS(n8), the list L will be updated to L={n9, n7, n8, n10}.  Applying 
the same prioritizing method by taking the front element of L, task n9; because task n9 
has three immediate predecessors, with the order CS(n4) > CS(n2) > CS(n5), we have 
the updated list L = { n4, n2, n5, n9, n7, n8, n10}.  Taking the same operations, insert 
task n1 in front of task n4, insert task n3 in front of task n7, insert tasks n4, n2, n6 
(because CS(n4) > CS(n2) > CS(n6)) in front of task n8; we have the list L = { n1, n4, n2, 
n5, n9, n3, n7, n6, n4, n2, n6, n8, n10}.  The final list L = {n1, n4, n2, n5, n9, n3, n7, n6, n8, 
n10} can be derived by removing duplicated tasks. 

In listing phases, the GCA scheduling algorithm proposes two enhancements from 
the majority of literatures.  First, GCA scheduling technique considers various 
transmission costs of messages among processors into the calculation of critical scores.  
Second, the GCA algorithm prioritizes tasks according to the influence on its 
successors and devotes to lead an accelerated chain while other techniques simply 
schedule high critical score tasks with higher priority.  In other words, the GCA 
algorithm is not only prioritizing tasks by its importance but also by the urgency 
among task.   The prioritizing scheme of GCA scheduling technique can be 
accomplished by using simple stack operations, push and pop, which are outlined in 
GCA_List_Phase procedure as follows. 

 
Begin_GCA_List_Phase 
1. Initially, construct an array of Boolean QV and a stack S. 
2. QV[nj] = false,∀ nj∈V. 
3. Push nexit on top of S. 
4. While S is not empty do 
5.   Peek task nj on the top of S; 
6.   If( all QV[ni] are true, for all ni∈pred(nj) or task nj is nentry)  { 
7.     Pop task nj from top of S and put nj into scheduling list L; 
8.     QV[ nj] = true; } 
9.   Else   /* search the CT(nj) */ 
10.     For each task ni, where ni∈pred(nj) do 
11.       If(QV[ni] = false) 



 20

12.         Put CS(ni) into container C; 
13.       Endif 
14.     Push tasks pred(nj) from C into S by non-decreasing order according to their 

critical scores; 
15.     Reset C to empty; 
16.     /* if there are 2+ tasks with same CS(ni), task ni is randomly pushed into S. 
17. EndWhile 
End_GCA_List_Phase 

 
In processor-selection phase, tasks will be deployed from list L that obtained in 

listing phase to suitable processor in FIFO manner.  According to the ordered list L = 
{n1, n4, n2, n5, n9, n3, n7, n6, n8, n10}, we have the complete calculated EFTs of tasks in 
DAG-1 and the schedule results of GCA algorithm are listed in Table 2 and Figure 2(a), 
respectively.   

Table 2: Earliest Finish Time of tasks in DAG-1 using GCA algorithm 
 

Earliest Finish Time of tasks in GCA algorithm 

n1 n2 n 3 n 4 n 5 n 6 n 7 n 8 n 9 n 10 

9 27 42 19.7 32.7 47.6 53 65.7 54.7 84.7   
 

P1 P2 P3 P1 P2 P3 P1 P2 P3

1

10

20

30

40

50

60

70

80

90

100

110

1

2
4

5
6

9

8

3

7

10

1

3
4

2

5

6

9

7

8

10

(a) (b) (c)

2
4

5

9

3

7

6

8

10

 
Figure 2: Schedule results of three algorithms on DAG-1 (a) GCA (makespan = 84.7) (b) CA 
(makespan = 92.4) (c) HEFT (makespan = 108.2). 

 
In order to profile significance of the GCA scheduling technique, the schedule 

results of other algorithms, CA and HEFT are depicted in Figure 2(b) and 2(c), 
respectively. The GCA scheduling techniques incorporates the consideration of 
heterogeneous communication costs among processors in processor selection phase.  
Such enhancement facilitates the selection of best candidate of processors to execute 
specific tasks.   
 
5. Performance Evaluation 



 21

5.1 Random Graph Generator 
We implemented a Random Graph Generator (RGG) to simulate application graphs 
with various characteristics.  RGG uses the following input parameters to produce 
diverse graphs. 

 Weight of graph (weight), which is a constant = {32, 128, 512, 1024}. 
 Number of tasks in the graph (n), where n = {20, 40, 60, 80, 100}. 
 Graph parallelism (p), the graph parallelism determines shape of a graph.  p is 

assigned for 0.5, 1.0 and 2.0.  The level of graph is defined as ⎣ ⎦pv / .  For 
example, graph with p = 2.0 has higher parallelism than graph with p = 1.0.  

 Out degree of a task (d), where d = {1, 2, 3, 4, 5}.  The out degree of a task 
indicates relationship with other tasks, the larger degree of a task the higher task 
dependence. 

 Heterogeneity (h), determines computational cost of task ni executed on processor 
Pk, i.e., wi,k, which is randomly generated by the following formula. 

.
2

1
2

1 , ⎟
⎠
⎞

⎜
⎝
⎛ +×≤≤⎟

⎠
⎞

⎜
⎝
⎛ −×

hwwhw ikii
                (10) 

RGG randomizes wi from the interval [1, weight].  Note that larger value of 
weight represents the estimation is with higher precision.  In our simulation, h was 
assigned by 0.1, 0.25, 0.5, 0.75 and 1.0. 

 Communication to Computation Ratio (CCR), where CCR = {0.1, 0.5, 1, 2, 10}.  
 

5.2 Comparison Metrics 
As mentioned earlier, the objective of DAG scheduling problem is to minimize the 

completion time of an application.  To verify the performance of a scheduling 
algorithm, several comparative metrics are given below for comparison: 

 Makespan, also known as schedule length, which is defined as follows, 
))(max( exitnEFTMakespan =                   (11) 

 Speedup, defined as following equation, 

makespan

w
Speedup Vn jiMP

ij
}{min ,∑ ∈∈

= , where M is the set of processors  (12) 

The numerator is the minimal accumulated sum of computation cost of tasks 
which are assigned on one processor.  Equation (12) represents the ratio of sequential 
execution time to parallel execution time.   

 Percentage of Quality of Schedules (PQS) 
The percentage of the GCA algorithm produces better, equal and worse quality of 

schedules compared to other algorithms. 
 

5.3 Simulation Results 
The first evaluation aims to demonstrate the merit of the GCA algorithm by showing 
quality of schedules using RGG.  Simulation results were obtained upon different 
parameters with totally 1875 DAGs.  Figure 3 reports the comparison by setting 
different weight = {32, 128, 512, 1024}.  The term “Better” represents percentage of 
testing samples the GCA algorithm outperforms the CA algorithm.  The term “Equal” 
represents both algorithm have same makespan in a given DAG.  The tem “Worse” 
represents opposite results to the “Better” cases.  Figure 4 gives the PQS results by 
setting different number of processors.  Overall, the GCA scheduling algorithm 
presents superior performance for 65% test samples.  

Speedup of the GCA, CA and HEFT algorithms to execute 1875 DAGs with fix 



 22

processor number (P=16) under different number of task (n) are shown in Figure 5.  
The speedup of these algorithms show placid when number of task is small and 
increased significantly when number of tasks becomes large.  In general, the GCA 
algorithm has better speedup than the other two algorithms.  Improvement rate of the 
GCA algorithm in terms of average speedup is about 7% to the CA algorithm and 34% 
to the HEFT algorithm.  The improvement rate (IRGCA) is estimated by the following 
equation: 

IRGCA = 
∑

∑∑ −
)(

)()(
CAorHEFTSpeedup

CAorHEFTSpeedupGCASpeedup         (13) 

 

 
Figure 3: PQS: GCA compared with CA (3 processors)   

 

 
Figure 4: PQS: GCA compared with CA (weight = 128) 

 

16 processors

2.00

3.50

5.00

6.50

8.00

20 40 60 80 100

# task

sp
ee

du
p

GCA

CA

HEFT

 
Figure 5: Speedup of GCA, CA and HEFT with different number of tasks (n). 



 23

 
3.50

4.50

5.50

6.50

7.50

3 4 5 6 7 8

degree

sp
ee

du
p

GCA CA HEFT

 
 

Figure 6: Speedup of GCA, CA and HEFT with different out-degree of tasks (d) 



 24

 
Speedup of the GCA, CA and HEFT algorithms to execute different DAGs with fix processor number (P=16) and 

task number (n=60) under different out-degree of tasks (d) are shown in Figure 6.  The results of Figure 6 demonstrate 
the speedup influence by task dependence.  We observe that speedups of scheduling algorithms are less dependent on 
tasks’ dependence.  Although the speedups of three algorithms are stable, the GCA algorithm outperforms the other two 
algorithms in most cases.  Improvement rate of the GCA algorithm in terms of average speedup is about 5% to the CA 
algorithm and 80% to the HEFT algorithm. 

Figure 7 shows simulation results of three algorithms upon different processor number and degree of parallelization.  
It is noticed that, graphs with larger value of p tends to with higher parallelism.  As shown in Figures 7(a) and (b), the 
GCA algorithm performs well in linear graphs (p=0.5) and general graphs (p=1.0).  On the contrary, Figure 7(c) shows 
that the HEFT scheduling algorithm has superior performance when degree of parallelism is high.  In general, for 
graphs with low parallelism (e.g., p = 0.5), the GCA algorithm has 33% improvement rate in terms of average speedup 
compare to the HEFT algorithm; for graphs with normal parallelism (e.g., p = 1), the GCA algorithm has 20% 
improvement rate.  For graphs with high parallelism (e.g., p = 2), the GCA algorithm performs worse than the HEFT by 
3% performance. 

Speedup of the GCA, CA and HEFT algorithms to execute different DAGs with fix processor number (P=16) and 
task number (n=60) under different out-degree of tasks (d) are shown in Figure 6.  The results of Figure 6 demonstrate 
the speedup influence by task dependence.  We observe that speedups of scheduling algorithms are less dependent on 
tasks’ dependence.  Although the speedups of three algorithms are stable, the GCA algorithm outperforms the other two 
algorithms in most cases.  Improvement rate of the GCA algorithm in terms of average speedup is about 5% to the CA 
algorithm and 80% to the HEFT algorithm. 

 

   
(a)                    (b)                     (c) 

Figure 7: Speedup with different degree of parallelism (p) (a) p = 0.5 (b) p = 1 (c) p = 2. 
The impact of communication overheads on speedup are plotted in Figure 8 by setting different value of CCR.  It is 

noticed that increase of CCR will downgrade the speedup we can obtained.  For example, speedup offered by CCR = 
0.1 has maximal value 8.3 in GCA with 12 processors; for CCR = 1.0, the GCA algorithm has maximal speedup 6.1 
when processor number is 12; and the same algorithm, GCA, has maximal speedup 3.1 for CCR = 5 with 12 processors.  
This is due to the fact that when communication overheads higher than computational overheads, costs for tasks 
migration will offset the benefit of moving tasks to faster processors.   

 

 
(a)                    (b)                     (c) 

Figure 8: Speedup results with different CCR (a) CCR=0.5 (b) CCR = 1 (c) CCR = 5. 
 
 

 
6. Conclusions 

The problem of scheduling a weighted directed acyclic graph (DAG) to a set of heterogeneous processors to 
minimize the completion time has been recently studied.  Several techniques have been presented in the literature to 
improve performance.  This paper presented a general Critical-task Anticipation (GCA) algorithm for DAG scheduling 



 25

system.  The GCA scheduling algorithm employs task prioritizing technique based on CA algorithm and introduces a 
new processor selection scheme by considering heterogeneous communication costs among processors.  GCA 
scheduling algorithm is a list scheduling approach with simple data structure and profitable for grid and scalable 
computing.  Experimental results show that GCA has superior performance compare to the well known HEFT 
scheduling heuristic algorithm and our previous proposed CA algorithm which did not incorporate the consideration of 
heterogeneous communication costs into processor selection phase.  Experimental results show that GCA is equal or 
superior to HEFT and CA scheduling algorithms in most cases and it enhances to fit more real grid system. 

Acknowledgements 
This paper is based upon work supported by National Science Council (NSC), Taiwan, under grants no. 
NSC95-2213-E-216-006. Any opinions, findings, and conclusions or recommendations expressed in this material are those of 
the authors and do not necessarily reflect the views of the NSC. 

References 
[1] R. Bajaj and D. P. Agrawal, “Improving Scheduling of Tasks in a Heterogeneous Environment,” IEEE Trans. on PDS, vol. 15, 

no. 2, pp. 107-118, 2004. 
[2] S. Behrooz, M. Wang, and G. Pathak, “Analysis and Evaluation of Heuristic Methods for Static Task Scheduling,” Jounal of 

Parallel and Distributed Computing, vol. 10, pp. 222-232, 1990. 
[3] M.R Gary and D.S. Johnson, “Computers and Interactability: A guide to the Theory of NP-Completeness”, W.H. Freeman and 

Co., 1979. 
[4] T. Hagras and J. Janecek,” A High Performance, Low Complexity Algorithm for Compile-Time Task Scheduling in 

Heterogeneous Systems,” Parallel Computing, vol. 31, Issue 7, pp. 653-670, 2005.  
[5] Ching-Hsieh Hsu and Ming-Yuan Weng, “An Improving Critical-Task Anticipation Scheduling Algorithm for Heterogeneous 

Computing Systems”, Proceedings of the Eleventh Asia-Pacific Computer Systems Architecture Conference, LNCS 4186, pp. 
97-110, 2006.  

[6] E. Ilavarasan P. Thambidurai and R. Mahilmannan, “Performance Effective Task Scheduling Algorithm for Heterogeneous 
Computing System,” IEEE Proceedings of IPDPS, pp. 28-38, 2005. 

[7] S. Ranaweera and D. P. Agrawal, “A Task Duplication Based Scheduling Algorithm for Heterogeneous Systems,” IEEE 
Proceedings of IPDPS, pp. 445-450, 2000. 

[8] Rizos Sakellariou and Henan Zhao, “A Hybrid Heuristic for DAG Scheduling on Heterogeneous Systems”, Proc. of the IEEE 
IPDPS Workshop 1, pp. 111b, 2004. 

[9] H. Topcuoglu, S. Hariri and W. Min-You, “Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous 
Computing,” IEEE Transactions on PDS, vol.13, no. 3, pp. 260-274, 2002. 

 
 



 26

 

行政院所屬各機關人員出國報告書提要                  
                                                 撰寫時間： 97 年  4 月  20  日  
姓 名 許慶賢 服 務 機 關 名 稱

 
中華大學

資工系 
連絡電話、 
電子信箱 

03-5186410 
chh@chu.edu.tw

出 生 日 期  62 年 2  月 23  日 職 稱 副教授 
出席國際會議 

名 稱 
The 22nd International Conference on Advanced Information Networking and 

Applications (AINA-08), March 25 -28 2008. 

到 達 國 家 

及 地 點 
Okinawa, Japan 出 國

期 間

自 97 年 03 月 25 日

迄 97 年 03 月 28 日
 

內容提要 

 
一、主要任務摘要（五十字以內） 

    AINA-08 是網路相關研究領域一個大型的研討會。這一次參與AINA-08除了發表

相關研究成果以外，也在會場上看到許多新的研究成果與方向。此外，也與許多學術

界的朋友交換研究心得。 
 
二、對計畫之效益（一百字以內） 

    這一次參與 AINA-08 除了發表我們在此一計劃最新的研究成果以外，也在會場

中，向多位國內外學者解釋我們的研究內容，彼此交換研究心得。除了讓別的團隊

知道我們的研究方向與成果，我們也可以學習他人的研究經驗。藉此，加強國際合

作，提升我們的研究質量。 
 
三、經過 

    這一次在 Okinawa 所舉行的國際學術研討會議共計四天。第一天是 Workshop 
Program。第二天，由Dr. Michel Raynal的專題演講， “Synchronization is Coming Back, 
But is it the Same?” 作為研討會的開始。緊接著是五個平行的場次，分為上下午進

行。本人全程參與研討會的議程。晚上在大會的地點舉行歡迎晚宴。晚上本人亦參

加酒會，並且與幾位國外學者及中國、香港教授交換意見，合影留念。第三天，專

題演講是由 Dr. Shigeki Yamada 針對  “Cyber Science Infrastructure (CSI) for 
Promoting Research Activities of Academia and Industries in Japan”發表演說。本人也參



 27

與的第三天全部的大會議程。晚宴，大會安排交通車到市郊一個花園餐廳舉行。最

後一天，本人亦參與了所有的場次，並且發表了這一次的論文。本人主要聽取 GRID
相關研究，同時獲悉許多新興起的研究主題，並了解目前國外大多數學者主要的研

究方向，並且把握最後一天的機會與國外的教授認識，希望能夠讓他們加深對台灣

研究的印象。四天下來，本人聽了許多優秀的論文發表。這些研究所涵蓋的主題包

含有：無線網路技術、網路安全、GRID、資料庫以及普及運算等等熱門的研究課題。

此次的國際學術研討會議有許多知名學者的參與，讓每一位參加這個會議的人士都

能夠得到國際上最新的技術與資訊。是一次非常成功的學術研討會。 
 
四、心得 
 

    參加本次的國際學術研討會議，感受良多。讓本人見識到許多國際知名的研究

學者以及專業人才，得以與之交流。讓本人與其他教授面對面暢談所學領域的種種

問題。看了眾多研究成果以及聽了數篇專題演講，最後，本人認為，會議所安排的

會場以及邀請的講席等，都相當的不錯，覺得會議舉辦得很成功，值得我們學習。 
 
五、建議與結語 

    出席國際會議，註冊費越來越貴(AINA-08 約兩萬元)，若會議在亞州舉行，補

助的經費免強足夠，但是若在歐美，經費往往不足。降低同學參與歐美的會議。 
大會安排的會場以及邀請的講席等，都相當的不錯，覺得會議舉辦得很成功，

值得我們學習。 
 
六、攜回資料  
 
     論文集光碟片 
 
七、出國行程表 
 
3/25 前往 Okinawa  下午研討會報到，參與 AINA-08 Workshop Progra, 
3/26 全日參與研討會 
3/27 全日參與研討會  
3/28 全日參與研討會、晚上飛機返回台灣 

 
 
 
 
 
 
 
 



 28

 
Towards Improving QoS-Guided Scheduling in Grids 

 

Ching-Hsien Hsu1, Justin Zhan2, Wai-Chi Fang3
 and Jianhua Ma4 

 

1Department of Computer Science and Information Engineering, Chung Hua University, Taiwan 
chh@chu.edu.tw 

2Heinz School, Carnegie Mellon University, USA 
justinzh@andrew.cmu.edu 

3Department of Electronics Engineering, National Chiao Tung University, Taiwan 
wfang@mail.nctu.edu.tw 

4Digital Media Department, Hosei University, Japan 
jianhua@hosei.ac.jp 

 
 

Abstract 
 

With the emergence of grid technologies, the 
problem of scheduling tasks in heterogeneous systems has 
been arousing attention. In this paper, we present two 
optimization schemes, Makespan Optimization 
Rescheduling (MOR) and Resource Optimization 
Rescheduling (ROR), which are based on the QoS 
Min-Min scheduling technique, for reducing the 
makespan of a schedule and the need of total resource 
amount. The main idea of the proposed techniques is to 
reduce overall execution time without increasing resource 
need; or reduce resource need without increasing overall 
execution time. To evaluate the effectiveness of the 
proposed techniques, we have implemented both 
techniques along with the QoS Min-Min scheduling 
algorithm. The experimental results show that the MOR 
and ROR optimization schemes provide noticeable 
improvements.  
 
1. Introduction 
 

With the emergence of IT technologies, 
the need of computing and storage are rapidly 
increased.  To invest more and more 
equipments is not an economic method for an 
organization to satisfy the even growing 
computational and storage need. As a result, 
grid has become a widely accepted paradigm 
for high performance computing.   

To realize the concept virtual organization, 
in [13], the grid is also defined as “A type of 
parallel and distributed system that enables the 
sharing, selection, and aggregation of 

geographically distributed autonomous and 
heterogeneous resources dynamically at 
runtime depending on their availability, 
capability, performance, cost, and users' 
quality-of-service requirements”.  As the grid 
system aims to satisfy users’ requirements with 
limit resources, scheduling grid resources plays 
an important factor to improve the overall 
performance of a grid.   

In general, grid scheduling can be 
classified in two categories: the performance 
guided schedulers and the economy guided 
schedulers [16]. Objective of the performance 
guided scheduling is to minimize turnaround 
time (or makespan) of grid applications. On the 
other hand, in economy guided scheduling, to 
minimize the cost of resource is the main 
objective.  However, both of the scheduling 
problems are NP-complete, which has also 
instigated many heuristic solutions [1, 6, 10, 14] 
to resolve. As mentioned in [23], a complete 
grid scheduling framework comprises 
application model, resource model, 
performance model, and scheduling policy. The 
scheduling policy can further decomposed into 
three phases, the resource discovery and 
selection phase, the job scheduling phase and 
the job monitoring and migration phase, where 
the second phase is the focus of this study.  

Although many research works have been 
devoted in scheduling grid applications on 



 29

heterogeneous system, to deal with QOS 
scheduling in grid is quite complicated due to 
more constrain factors in job scheduling, such 
as the need of large storage, big size memory, 
specific I/O devices or real-time services, 
requested by the tasks to be completed. In this 
paper, we present two QoS based rescheduling 
schemes aim to improve the makespan of 
scheduling batch jobs in grid.  In addition, 
based on the QoS guided scheduling scheme, 
the proposed rescheduling technique can also 
reduce the amount of resource need without 
increasing the makespan of grid jobs.  The 
main contribution of this work are twofold, one 
can shorten the turnaround time of grid 
applications without increasing the need of grid 
resources; the other one can minimize the need 
of grid resources without increasing the 
turnaround time of grid applications, compared 
with the traditional QoS guided scheduling 
method. To evaluate the performance of the 
proposed techniques, we have implemented our 
rescheduling approaches along with the QoS 
Min-Min scheduling algorithm [9] and the 
non-QoS based Min-Min scheduling algorithm. 
The experimental results show that the 
proposed techniques are effective in 
heterogeneous systems under different 
circumstances. The improvement is also 
significant in economic grid model [3]. 

The rest of this paper is organized as 
follows. Section 2 briefly describes related 
research in grid computing and job scheduling.  
Section 3 clarifies our research model by 
illustrating the traditional Min-min model and 
the QoS guided Min-min model.  In Section 4, 
two optimization schemes for reducing the total 
execution time of an application and reducing 
resource need are presented, where two 
rescheduling approaches are illustrated in detail. 
We conduct performance evaluation and 
discuss experiment results in Section 5. Finally, 
concluding remarks and future work are given 
in Section 6. 

2. Related Work 

Grid scheduling can be classified into traditional 

grid scheduling and QoS guided scheduling or economic 
based grid scheduling.  The former emphasizes the 
performance of systems of applications, such as system 
throughput, jobs’ completion time or response time.  
Swany et al. provides an approach to improving 
throughput for grid applications with network logistics by 
building a tree of “best” paths through the graph and has 
running time of O(NlogN) for implementations that keep 
the edges sorted [15].  Such approach is referred as the 
Minimax Path (MMP) and employs a greedy, 
tree-building algorithm that produces optimal results [20].  
Besides data-parallel applications requiring high 
performance in grid systems, there is a Dynamic Service 
Architecture (DSA) based on static compositions and 
optimizations, but also allows for high performance and 
flexibility, by use of a lookahead scheduling mechanism 
[4]. To minimizing the processing time of extensive 
processing loads originating from various sources, the 
approaches divisible load model [5] and single level tree 
network with two root processors with divisible load are 
proposed [12]. In addition to the job matching algorithm, 
the resource selection algorithm is at the core of the job 
scheduling decision module and must have the ability to 
integrate multi-site computation power.  The CGRS 
algorithm based on the distributed computing grid model 
and the grid scheduling model integrates a new 
density-based internet clustering algorithm into the 
decoupled scheduling approach of the GrADS and 
decreases its time complexity [24].  The scheduling of 
parallel jobs in a heterogeneous multi-site environment, 
where each site has a homogeneous cluster of processors, 
but processors at different sites has different speeds, is 
presented in [18]. Scheduling strategy is not only in batch 
but also can be in real-time.  The SAREG approach 
paves the way to the design of security-aware real-time 
scheduling algorithms for Grid computing environments 
[21].  

For QoS guided grid scheduling, 
apparently, applications in grids need various 
resources to run its completion.  In  [17], an 
architecture named public computing utility 
(PCU) is proposed uses virtual machine (VMs) 
to implement “time-sharing” over the resources 
and augments finite number of private resources 
to public resources to obtain higher level of 
quality of services.  However, the QoS 
demands maybe include various packet-type 
and class in executing job. As a result, a 
scheduling algorithm that can support multiple 
QoS classes is needed.  Based on this demand, 
a multi-QoS scheduling algorithm is proposed 
to improve the scheduling fairness and users’ 
demand [11].  He et al. [7] also presented a 
hybrid approach for scheduling moldable jobs 
with QoS demands.  In [9], a novel framework 
for policy based scheduling in resource 



 30

allocation of grid computing is also presented.  
The scheduling strategy can control the request 
assignment to grid resources by adjusting usage 
accounts or request priorities. Resource 
management is achieved by assigning usage 
quotas to intended users. The scheduling 
method also supports reservation based grid 
resource allocation and quality of service 
feature.  Sometimes the scheduler is not only 
to match the job to which resource, but also 
needs to find the optimized transfer path based 
on the cost in network. In [19], a distributed 
QoS network scheduler (DQNS) is presented to 
adapt to the ever-changing network conditions 
and aims to serve the path requests based on a 
cost function. 

3. Research Architecture 
  

Our research model considers the static 
scheduling of batch jobs in grids.  As this 
work is an extension and optimization of the 
QoS guided scheduling that is based on 
Min-Min scheduling algorithm [9], we briefly 
describe the Min-Min scheduling model and the 
QoS guided Min-Min algorithm.  To simplify 
the presentation, we first clarify the following 
terminologies and assumptions. 

 QoS Machine (MQ) – machines can provide 
special services. 

 QoS Task (TQ) – tasks can be run 
completion only on QoS machine. 

 Normal Machine (MN) – machines can only 
run normal tasks. 

 Normal Task (TN) – tasks can be run 
completion on both QoS machine and 
normal machine. 

 A chunk of tasks will be scheduled to run 
completion based on all available machines 
in a batch system. 

 A task will be executed from the beginning 
to completion without interrupt. 

 The completion time of task ti to be 
executed on machine mj is defined as  

 
CTij = dtij + etij              (1) 

 
Where etij denotes the estimated execution time 
of task ti executed on machine mj; dtij is the 
delay time of task ti on machine mj.   
 

The Min-Min algorithm is shown in Figure 
1. 

 
Algorithm_Min-Min()
{ 

while there are jobs to schedule 
for all job i to schedule 

for all machine j 
Compute CTi,j = CT(job i, machine j)

end for 
Compute minimum CTi,j 

end for 
Select best metric match m 
Compute minimum CTm,n 
Schedule job m on machine n 

end while 
} End_of_ Min-Min  

 
Figure 1. The Min-Min Algorithm 

 
Analysis: If there are m jobs to be scheduled in 
n machines, the time complexity of Min-Min 
algorithm is O(m2n). The Min-Min algorithm 
does not take into account the QoS issue in the 
scheduling.  In some situation, it is possible 
that normal tasks occupied machine that has 
special services (referred as QoS machine).  
This may increase the delay of QoS tasks or 
result idle of normal machines. 
 

The QoS guided scheduling is proposed to resolve 
the above defect in the Min-Min algorithm.  In QoS 
guided model, the scheduling is divided into two classes, 
the QoS class and the non-QoS class.  In each class, the 
Min-Min algorithm is employed.  As the QoS tasks have 
higher priority than normal tasks in QoS guided 
scheduling, the QoS tasks are prior to be allocated on 
QoS machines.  The normal tasks are then scheduled to 
all machines in Min-Min manner.  Figure 2 outlines the 
method of QoS guided scheduling model with the 
Min-Min scheme.   

Analysis: If there are m jobs to be scheduled in 
n machines, the time complexity of QoS guided 
scheduling algorithm is O(m2n).  

Figure 3 shows an example demonstrating 
the Min-Min and QoS Min-Min scheduling 
schemes.  The asterisk * means that 
tasks/machines with QoS demand/ability, and 
the X means that QoS tasks couldn’t be 
executed on that machine.  Obviously, the 
QoS guided scheduling algorithm gets the 
better performance than the Min-Min algorithm 
in term of makespan.  Nevertheless, the QoS 
guided model is not optimal in both makespan 
and resource cost. We will describe the 



 31

rescheduling optimization in next section. 
 

Algorithm_QOS-Min-Min() 
{ 

for all tasks ti in meta-task Mv (in an arbitrary order) 
for all hosts mj (in a fixed arbitrary order) 

       CTij = etij + dtj 
end for 

end for 
do until all tasks with QoS request in Mv are mapped 

for each task with high QoS in Mv,  
find a host in the QoS qualified host set that obtains 
the earliest completion time 

end for 
find task tk with the minimum earliest completion time 
assign task tk to host ml that gives the earliest completion 
time 
delete task tk from Mv 
update dtl 
update CTil for all i 

end do 
do until all tasks with non-QoS request in Mv are mapped 

for each task in Mv 
find the earliest completion time and the 
corresponding host 

       end for 
find the task tk with the minimum earliest completion time 
assign task tk to host ml that gives the earliest completion 
time 
delete task tk from Mv 
update dtl 

    update CTil for all i 
end do 

} End_of_ QOS-Min-Min 
 

Figure 2. The QoS Guided Algorithm 

 

4. Rescheduling Optimization 

Grid scheduling works as the mapping of individual 
tasks to computer resources, with respecting service level 
agreements (SLAs) [2].  In order to achieve the 
optimized performance, how to mapping heterogeneous 
tasks to the best fit resource is an important factor.  The 
Min-Min algorithm and the QoS guided method aims at 
scheduling jobs to achieve better makespan.  However, 
there are still having rooms to make improvements.  In 
this section, we present two optimization schemes based 
on the QoS guided Min-Min approach.  

 

 *M1 M2 

T1 7 4 

T2 3 3 

T3 9 5 

*T4 5 X 

Machine 

Makespan 

A. The Min-Min algorithm B. The QOS guided scheduling algorithm  

M3 

7 

5 

7 

X 

T5 9 8 6 

*T6 5 X X 

Machine 
0 

M1 M2 

*T4 

*T6 

T1 

3 

8 

12 

M3 

T3 

T5 

Makespan 

T2 

0 
M1 M2 

T2

*T4

*T6

T13 

8 

13

M3 

T3

T5

 
Figure 3. Min-Min and QoS Guided Min-Min 
 

4.1 Makespan Optimization Rescheduling (MOR) 

The first one is Makespan Optimization Rescheduling 
(MOR), which focuses on improving the makespan to 
achieve better performance than the QoS guided 
scheduling algorithm. Assume the makespan achieved by 
the QoS guided approach in different machines are CT1, 
CT2, …, CTm, with CTk = max { CT1, CT2, …, CTm }, 
where m is the number of machines and 1 ≤ k ≤ m.  By 
subtracting CTk – CTi, where 1 ≤ i ≤ m and i ≠ k, we can 
have m-1 available time fragments.  According to the 
size of these available time fragments and the size of tasks 
in machine Mk, the MOR dispatches suitable tasks from 
machine Mk to any other machine that has available and 
large enough time fragments.  Such optimization is 
repeated until there is no task can be moved.   

 



 32

 12 

 *M1 M2 

T1 7 4 

T2 3 3 

T3 9 5 

*T4 5 X 

B. The Makespan Optimization 
Rescheduling (MOR) algorithm  

M3 

7 

5 

7 

X 

T5 9 8 6 

*T6 5 X X 

Machine 0 
*M1 M2 

*T4 

*T6 

T1 3 

8 

11 

M3 

T3 

T5 

Makespan 

T2 

Machine 

T1 

T2 

T3 

M2 

T5 

M3 

A. The QOS guided scheduling 
algorithm 

*T6 

*T4 

*M1 

Makespan 

12 

8 

3 

 
Figure 4. Example of MOR 

 
Recall the example given in Figure 3, 

Figure 4 shows the optimization of the MOR 
approach.  The left side of Figure 4 
demonstrates that the QoS guided scheme gives 
a schedule with makespan = 12, wheremachine 
M2 presents maximum CT (completion time), 
which is assembled by tasks T2, T1 and T3.  
Since the CT of machine ‘M3’ is 6, so ‘M3’ has 
an available time fragment (6).  Checking all 
tasks in machine M2, only T2 is small enough 
to be allocated in the available time fragment in 
M3.  Therefore, task M2 is moved to M3, 
resulting machine ‘M3’ has completion time 
CT=11, which is better than the QoS guided 
scheme. 

As mentioned above, the MOR is based on the QoS 
guided scheduling algorithm.  If there are m tasks to be 
scheduled in n machines, the time complexity of MOR is 
O(m2n).  Figure 5 outlines a pseudo of the MOR scheme.   

 

Algorithm_MOR()
{ 

for CTj in all machines 
find out the machine with maximum makespan CTmax and 
set it to be the standard 

end for 
do until no job can be rescheduled 

for job i in the found machine with CTmax  
            for all machine j 

  according to the job’s QOS demand, find the 
adaptive machine j  

if (the execute time of job i in machine j + the 
CTj < makespan) 

           rescheduling the job i to machine j   
           update the CTj and CTmax 

       exit for 
end if 

            next for 
            if the job i can be reschedule 

find out the new machine with maximum CTmax
            exit for 

end if 
next for 

end do  
} End_of_ MOR  

Figure 5. The MOR Algorithm 

4.2 Resource Optimization Rescheduling (ROR) 

Following the assumptions described in MOR, the main 
idea of the ROR scheme is to re-dispatch tasks from the 
machine with minimum number of tasks to other 
machines, expecting a decrease of resource need.  
Consequently, if we can dispatch all tasks from machine 
Mx to other machines, the total amount of resource need 
will be decreased.  

Figure 6 gives another example of QoS scheduling, 
where the QoS guided scheduling presents makespan = 13. 
According to the clarification of ROR, machine ‘M1’ has 
the fewest amount of tasks.  We can dispatch the task 
‘T4’ to machine ‘M3’ with the following constraint 

 
CTij + CTj <= CTmax             (2) 

 
The above constraint means that the rescheduling can be 
performed only if the movement of tasks does not 
increase the overall makespan.  In this example, CT43 = 2, 
CT3=7 and CTmax=CT2=13.  Because the makespan of 
M3 (CT3) will be increased from 7 to 9, which is smaller 
than the CTmax, therefore, the task migration can be 
performed.  As the only task in M1 is moved to M3, the 
amount of resource need is also decreased comparing 
with the QoS guided scheduling.   



 33

 

 M1 *M2 

T1 3 4 

T2 6 6 

*T3 X 7 

T4 4 6 

B. The Resource Optimization Rescheduling 
(ROR) Algorithm 

M3 

2 

3 

X 

2 

T5 5 7 2 

*T6 X 6 X 

Machine 
0 

M1 *M2 

*T6 

T1

4 

8 

13

M3 

*T3 

T5

T2

Makespan 

Machine 

T4

M1 

A. The QOS guided scheduling 

0 
*M2 

T4 
*T6 

T1 

4 

8 

13 

M3 

*T3 

T5 

T2 

Makespan 

 
Figure 6. Example of ROR 

 
The ROR is an optimization scheme which aims to 

minimize resource cost. If there are m tasks to be 
scheduled in n machines, the time complexity of ROR is 
also O(m2n).  Figure 7 depicts a high level description of 
the ROR optimization scheme. 

 
Algorithm_MOR() 
{ 

for m in all machines 
        find out the machine m with minimum count of jobs 

end for 
do until no job can be rescheduled 

for job i in the found machine with minimum count of jobs
            for all machine j 

according to the job’s QOS demand, find the 
adaptive machine j  
if (the execute time of job i in machine j + the 

CTj <= makespan CTmax) 
           rescheduling the job i to machine j   
           update the CTj  
           update the count of jobs in machine m and 

machine j  
       exit for 

end if 
            next for         

next for 
end do 

} End_of_ MOR 
 

Figure 7. The ROR Algorithm  
5. Performance Evaluation 

5.1 Parameters and Metrics 

 

To evaluate the performance of the proposed 
techniques, we have implemented the Min-Min 
scheduling algorithm and the QoS guided Min-Min 
scheme. The experiment model consists of heterogeneous 
machines and tasks.  Both of the Machines and tasks are 
classified into QoS type and non-QoS type.  Table 1 
summarizes six parameters and two comparison metrics 
used in the experiments.  The number of tasks is ranged 
from 200 to 600. The number of machines is ranged from 
50 to 130. The percentage of QoS machines and tasks are 
set between 15% and 75%.  Heterogeneity of tasks are 
defined as Ht (for non-QoS task) and HQ (for QoS task), 
which is used in generating random tasks.  For example, 
the execution time of a non-QoS task is randomly 
generated from the interval [10, Ht×102] and execution 
time of a QoS task is randomly generated from the 
interval [102, HQ×103] to reflect the real application world.  
All of the parameters used in the experiments are 
generated randomly with a uniform distribution.  The 
results demonstrated in this section are the average values 
of running 100 random test samples.  

 

Table 1: Parameters and Comparison Metrics 
 

Task number (NT) {200, 300, 400, 500, 600} 

Resource number (NR) {50, 70, 90, 110, 130} 

Percentage of QOS resources (QR %) {15%, 30%, 45%, 60%, 75%}

Percentage of QOS tasks (QT %) {15%, 30%, 45%, 60%, 75%}

Heterogeneity of non-QOS tasks (HT) {1, 3, 5, 7, 9} 

Heterogeneity of QOS tasks (HQ) {3, 5, 7, 9, 11} 

Makespan The completion time of a set of 
tasks 

Resource Used (RU) Number of machines used for 
executing a set of tasks  

 
5.2 Experimental Results of MOR 
 
Table 2 compares the performance of the MOR, Min-Min 
algorithm and the QoS guided Min-Min scheme in term 
of makespan.  There are six tests that are conducted with 
different parameters.  In each test, the configurations are 
outlined beside the table caption from (a) to (f).  Table (a) 
changes the number of tasks to analyze the performance 
results.  Increasing the number of tasks, improvement of 
MOR is limited. An average improvement ratio is from 
6% to 14%.  Table (b) changes the number of machines.  
It is obvious that the MOR has significant improvement in 
larger grid systems, i.e., large amount of machines.  The 
average improvement rate is 7% to 15%.  Table (c) 
discusses the influence of changing percentages of QoS 
machines.  Intuitionally, the MOR performs best with 
45% QoS machines.  However, this observation is not 
always true.  By analyzing the four best ones in (a) to (d), 
we observe that the four tests (a) NT=200 (NR=50, QR=30%, 
QT=20%) (b) NR=130 (NT=500, QR=30%, QT=20%) (c) 



 34

QR=45% (NT=300, NR=50, QT=20%) and (d) QT=15% 
(NT=300, NR=50, QR=40%) have best improvements.  All of 
the four configurations conform to the following relation, 
 

0.4 × (NT × QT) = NR × QR          (3) 
 

This observation indicates that the improvement of MOR 
is significant when the number of QoS tasks is 2.5 times 
to the number of QoS machines.  Tables (e) and (f) 
change heterogeneity of tasks.  We observed that 
heterogeneity of tasks is not critical to the improvement 
rate of the MOR technique, which achieves 7% 
improvements under different heterogeneity of tasks. 

 
Table 2: Comparison of Makespan 

 

(a) (NR=50, QR=30%, QT=20%, HT=1, HQ=1) 
Task Number (NT) 200 300 400 500 600 

Min-Min 978.2 1299.7 1631.8 1954.6 2287.8

QOS Guided Min-Min 694.6 917.8 1119.4 1359.9 1560.1

MOR 597.3 815.5 1017.7 1254.8 1458.3

Improved Ratio 14.01% 11.15% 9.08% 7.73% 6.53%
 

(b) (NT=500, QR=30%, QT=20%, HT=1, HQ=1) 
Resource Number (NR) 50 70 90 110 130 

Min-Min 1931.5 1432.2 1102.1 985.3 874.2 

QOS Guided Min-Min 1355.7 938.6 724.4 590.6 508.7 

MOR 1252.6 840.8 633.7 506.2 429.4 

Improved Ratio 7.60% 10.42% 12.52% 14.30% 15.58%
 

(c) (NT=300, NR=50, QT=20%, HT=1, HQ=1) 
QR% 15% 30% 45% 60% 75% 

Min-Min 2470.8 1319.4 888.2 777.6 650.1 

QOS Guided Min-Min 1875.9 913.6 596.1 463.8 376.4 

MOR 1767.3 810.4 503.5 394.3 339.0 

Improved Ratio 5.79% 11.30% 15.54% 14.99% 9.94% 
 

(d) (NT=300, NR=50, QR=40%, HT=1, HQ=1) 
QT% 15% 30% 45% 60% 75% 

Min-Min 879.9 1380.2 1801.8 2217.0 2610.1

QOS Guided Min-Min 558.4 915.9 1245.2 1580.3 1900.6

MOR 474.2 817.1 1145.1 1478.5 1800.1

Improved Ratio 15.07% 10.79% 8.04% 6.44% 5.29% 
 

(e) (NT=500, NR=50, QR=30%, QT=20%, HQ=1) 
HT 1 3 5 7 9 

Min-Min 1891.9 1945.1 1944.6 1926.1 1940.1

QOS Guided Min-Min 1356.0 1346.4 1346.4 1354.9 1357.3

MOR 1251.7 1241.4 1244.3 1252.0 1254.2

Improved Ratio 7.69% 7.80% 7.58% 7.59% 7.59% 
 

(f) (NT=500, NR=50, QR=30%, QT=20%, HT=1) 
HQ 3 5 7 9 11 

Min-Min 1392.4 1553.9 1724.9 1871.7 2037.8

QOS Guided Min-Min 867.5 1007.8 1148.2 1273.2 1423.1

MOR 822.4 936.2 1056.7 1174.3 1316.7

Improved Ratio 5.20% 7.11% 7.97% 7.77% 7.48%
 

5.3 Experimental Results of ROR 

Table 3 analyzes the effectiveness of the ROR technique 
under different circumstances.   

 
Table 3: Comparison of Resource Used 

 

(a) (NR=100, QR=30%, QT=20%, HT=1, HQ=1) 
Task Number (NT) 200 300 400 500 600 

QOS Guided Min-Min 100 100 100 100 100 

ROR 39.81 44.18 46.97 49.59 51.17 

Improved Ratio 60.19% 55.82% 53.03% 50.41% 48.83%

(b) (NT=500, QR=30%, QT=20%, HT=1, HQ=1) 
Resource Number (NR) 50 70 90 110 130 

QOS Guided Min-Min 50 70 90 110 130 

ROR 26.04 35.21 43.65 50.79 58.15 

Improved Ratio 47.92% 49.70% 51.50% 53.83% 55.27%

(c) (NT=500, NR=50, QT=20%, HT=1, HQ=1) 

QR% 15% 30% 45% 60% 75% 

QOS Guided Min-Min 50 50 50 50 50 

ROR 14.61 25.94 35.12 40.18 46.5 

Improved Ratio 70.78% 48.12% 29.76% 19.64% 7.00% 

(d) (NT=500, NR=100, QR=40%, HT=1, HQ=1) 

QT% 15% 30% 45% 60% 75% 

QOS Guided Min-Min 100 100 100 100 100 

ROR 57.74 52.9 48.54 44.71 41.49 

Improved Ratio 42.26% 47.10% 51.46% 55.29% 58.51%

(e) (NT=500, NR=100, QR=30%, QT=20%, HQ=1) 

HT 1 3 5 7 9 

QOS Guided Min-Min 100 100 100 100 100 

ROR 47.86 47.51 47.62 47.61 47.28 

Improved Ratio 52.14% 52.49% 52.38% 52.39% 52.72%

(f) (NT=500, NR=100, QR=30%, QT=20%, HT=1) 
HQ 3 5 7 9 11 

QOS Guided Min-Min 100 100 100 100 100

ROR 54.61 52.01 50.64 48.18 46.53

Improved Ratio 45.39% 47.99% 49.36% 51.82% 53.47%



 35

 
Similar to those of Table 2, Table (a) changes the 

number of tasks to verify the reduction of resource that 
needs to be achieved by the ROR technique.  We noticed 
that the ROR has significant improvement in minimizing 
grid resources.  Comparing with the QoS guided 
Min-Min scheduling algorithm, the ROR achieves 50% ~ 
60% improvements without increasing overall makespan 
of a chunk of grid tasks.  Table (b) changes the number 
of machines.  The ROR retains 50% improvement ratio.  
Table (c) adjusts percentages of QoS machine.  Because 
this test has 20% QoS tasks, the ROR performs best at 
15% QoS machines.  This observation implies that the 
ROR has significant improvement when QoS tasks and 
QoS machines are with the same percentage.  Table (d) 
sets 40% QoS machine and changes the percentages of 
QoS tasks.  Following the above analysis, the ROR 
technique achieves more than 50% improvements when 
QoS tasks are with 45%, 60% and 75%.  Tables (e) and 
(f) change the heterogeneity of tasks.  Similar to the 
results of section 5.2, the heterogeneity of tasks is not 
critical to the improvement rate of the ROR technique.  
Overall speaking, the ROR technique presents 50% 
improvements in minimizing total resource need compare 
with the QoS guided Min-Min scheduling algorithm. 

 

6. Conclusions 
In this paper we have presented two optimization 

schemes aiming to reduce the overall completion time 
(makespan) of a chunk of grid tasks and minimize the 
total resource cost.  The proposed techniques are based 
on the QoS guided Min-Min scheduling algorithm. The 
optimization achieved by this work is twofold; firstly, 
without increasing resource costs, the overall task 
execution time could be reduced by the MOR scheme 
with 7%~15% improvements. Second, without increasing 
task completion time, the overall resource cost could be 
reduced by the ROR scheme with 50% reduction on 
average, which is a significant improvement to the state of 
the art scheduling technique. The proposed MOR and 
ROR techniques have characteristics of low complexity, 
high effectiveness in large-scale grid systems with QoS 
services.  

 

References 

 
[1] A. Abraham, R. Buyya, and B. Nath, "Nature’s Heuristics for 

Scheduling Jobs on Computational Grids", Proc. 8th IEEE 
International Conference on Advanced Computing and 
Communications (ADCOM-2000), pp.45-52, 2000. 

[2] A. Andrieux, D. Berry, J. Garibaldi, S. Jarvis, J. MacLaren, D. 
Ouelhadj, D. Snelling, "Open Issues in Grid Scheduling", 
National e-Science Centre and the Inter-disciplinary Scheduling 
Network Technical Paper, UKeS-2004-03. 

[3] R. Buyya, D. Abramson, Jonathan Giddy, Heinz Stockinger, 

“Economic Models for Resource Management and Scheduling 
in Grid Computing”, Journal of Concurrency: Practice and 
Experience, vol. 14, pp. 13-15, 2002. 

[4] Jesper Andersson, Morgan Ericsson, Welf Löwe, and Wolf 
Zimmermann, "Lookahead Scheduling for Reconfigurable 
GRID Systems", 10th International Europar'04: Parallel 
Processing, vol. 3149, pp. 263-270, 2004. 

[5] D Yu, Th G Robertazzi, "Divisible Load Scheduling for Grid 
Computing", 15th IASTED Int’l. Conference on Parallel and 
Distributed Computing and Systems, Vol. 1, pp. 1-6, 2003 

[6] Fangpeng Dong and Selim G. Akl, "Scheduling Algorithms for 
Grid Computing: State of the Art and Open Problems", 
Technical Report No. 2006-504, 2006. 

[7] Ligang He, Stephen A. Jarvis, Daniel P. Spooner, Xinuo Chen, 
Graham R. Nudd, "Hybrid Performance-oriented Scheduling of 
Moldable Jobs with QoS Demands in Multiclusters and Grids", 
Grid and Cooperative Computing (GCC 2004), vol. 3251, pp. 
217–224, 2004.  

[8] Xiaoshan He, Xian-He Sun, Gregor Von Laszewski, "A QoS 
Guided Scheduling Algorithm for Grid Computing", Journal of 
Computer Science and Technology, vol.18, pp.442-451, 2003. 

[9] Jang-uk In, Paul Avery, Richard Cavanaugh, Sanjay Ranka, 
"Policy Based Scheduling for Simple Quality of Service in Grid 
Computing", IPDPS 2004, pp. 23, 2004. 

[10] J. Schopf. "Ten Actions when Superscheduling: A Grid 
Scheduling Architecture", Scheduling Architecture Workshop, 
7th Global Grid Forum, 2003. 

[11] Junsu Kim, Sung Ho Moon, and Dan Keun Sung, "Multi-QoS 
Scheduling Algorithm for Class Fairness in High Speed 
Downlink Packet Access", Proceedings of IEEE Personal, 
Indoor and Mobile Radio Communications Conference (PIMRC 
2005), vol. 3, pp. 1813-1817, 2005 

[12] M.A. Moges and T.G. Robertazzi, "Grid Scheduling Divisible 
Loads from Multiple Sources via Linear Programming", 16th 
IASTED International Conference on Parallel and Distributed 
Computing and Systems (PDCS), pp. 423-428, 2004. 

[13] M. Baker, R. Buyya and D. Laforenza, "Grids and Grid 
Technologies for Wide-area Distributed Computing", in Journal 
of Software-Practice & Experience, Vol. 32, No.15, pp. 
1437-1466, 2002. 

[14] Jennifer M. Schopf, "A General Architecture for Scheduling on 
the Grid", Technical Report ANL/MCS, pp. 1000-1002, 2002. 

[15] M. Swany, "Improving Throughput for Grid Applications with 
Network Logistics", Proc. IEEE/ACM Conference on High 
Performance Computing and Networking, 2004. 

[16] R. Moreno and A.B. Alonso, "Job Scheduling and Resource 
Management Techniques in Economic Grid Environments", 
LNCS 2970, pp. 25-32, 2004. 

[17] Shah Asaduzzaman and Muthucumaru Maheswaran, 
"Heuristics for Scheduling Virtual Machines for Improving QoS 
in Public Computing Utilities", Proc. 9th International 
Conference on Computer and Information Technology 
(ICCIT’06), 2006. 

[18] Gerald Sabin, Rajkumar Kettimuthu, Arun Rajan and P 
Sadayappan, "Scheduling of Parallel Jobs in a Heterogeneous 
Multi-Site Environment", in the Proc. of the 9th International 
Workshop on Job Scheduling Strategies for Parallel Processing, 
LNCS 2862, pp. 87-104 , June 2003. 

[19] Sriram Ramanujam, Mitchell D. Theys, "Adaptive Scheduling 
based on Quality of Service in Distributed Environments", 
PDPTA’05, pp. 671-677, 2005. 

[20] T. H. Cormen, C. L. Leiserson, and R. L. Rivest, "Introduction 
to Algorithms", First edition, MIT Press and McGraw-Hill, 
ISBN 0-262-03141-8, 1990. 

[21] Tao Xie and Xiao Qin, "Enhancing Security of Real-Time 
Applications on Grids through Dynamic Scheduling", Proc. the 
11th Workshop on Job Scheduling Strategies for Parallel 



 36

Processing (JSSPP'05), pp. 146-158, 2005.  
[22] Haobo Yu, Andreas Gerstlauer, Daniel Gajski, "RTOS 

Scheduling in Transaction Level Models", in Proc. of the 1st 
IEEE/ACM/IFIP international conference on Hardware/software 
Codesign & System Synpaper, pp. 31-36, 2003.  

[23] Y. Zhu, "A Survey on Grid Scheduling Systems", LNCS 4505, 
pp. 419-427, 2007. 

[24] Weizhe Zhang, Hongli Zhang, Hui He, Mingzeng Hu, 
"Multisite Task Scheduling on Distributed Computing Grid", 
LNCS 3033, pp. 57–64, 2004. 



 
 

 
 

 
 

 
 
 



行政院國家科學委員會補助專題研究計畫 █ 成 果 報 告   
□期中進度報告 

 
 

平行資料程式於計算網格上通訊與 I/O局部化

研究與應用工具開發(3/3) 
 

 

計畫類別：  個別型計畫  □ 整合型計畫 

計畫編號：NSC95-2221-E-216-006  
執行期間：96 年 8 月 1 日至 97 年 7 月 31 日 

 

計畫主持人：許慶賢   中華大學資訊工程學系副教授 

共同主持人： 

計畫參與人員： 陳泰龍 (中華大學工程科學研究所博士生) 

     張智鈞、郁家豪、蔡秉儒(中華大學資訊工程學系研究生) 

 

成果報告類型(依經費核定清單規定繳交)：□精簡報告  完整報告 

 

本成果報告包括以下應繳交之附件： 

□赴國外出差或研習心得報告一份 

□赴大陸地區出差或研習心得報告一份 

出席國際學術會議心得報告及發表之論文各一份 

□國際合作研究計畫國外研究報告書一份 

 

 

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、列

管計畫及下列情形者外，得立即公開查詢 

          □涉及專利或其他智慧財產權，□一年 二年後可公開查詢 

          

執行單位：中華大學資訊工程學系 

 

中 華 民 國    97   年  10    月   31   日 



 2

 
 

行政院所屬各機關人員出國報告書提要                  
                                                 撰寫時間： 95 年  9 月  11  日   
姓 名 許慶賢 服 務 機 關 名 稱

 
中華大學

資工系 
連絡電話、 
電子信箱 

03-5186410 
chh@chu.edu.tw

出 生 日 期  62 年 2  月 23  日 職 稱 副教授 
出席國際會議 

名 稱 
Eleventh Asia-Pacific Computer Systems Architecture Conference (ACSAC-06), Shanghai, 

China 

到 達 國 家 

及 地 點 

ShangHai, China 出 國

期 間

自 95 年 09 月 06 日

迄 95 年 09 月 08 日

 

報告內容應包括下列各項： 

 

一、 參加會議經過 

 

    這一次在上海所舉行的國際學術研討會議共計三天。第一天上午由 Guang R. Gao 博士針對 The 
Era of Multi-Core Chips- A Fresh Look on Software Challenges主題發表精闢的演說作為研討會的開

始。同時當天也有許多重要的研究成果分為兩個平行的場次進行論文發表。本人選擇了 Languages and 
Compilers 場次聽取報告。本人也在同一天下午發表這一次被大會接受的論文。 
 
第一晚上本人亦參加酒會，並且與幾位國外學者及中國教授交換意見。第二天本人除了在上午參加

Multi-core，Architecture，Networks 場次，也在下午主持了 Power Management 場次，同時獲悉許多新

興起的研究主題，並了解目前國外大多數學者主要的研究方向。第二天晚上本人亦參與大會所舉辦的

晚宴。並且與幾位外國學者認識，交流，合影留念。會議最後一天，本人選擇與這一次論文較為相近

的 Scheduling, fault tolerance and mapping 以及分散式計算研究聽取論文發表，並且把握最後一天的機

會與國外的教授認識，希望能夠讓他們加深對台灣研究的印象。三天下來，本人聽了許多優秀的論文

發表。這些研究所涵蓋的主題包含有：ILP, TLP, Processor Architecture, Memory System, Operation 
System, High Performance I/O Architecture 等等熱門的研究課題。 

 

二、 與會心得 

 

    此次的國際學術研討會議有許多知名學者的參與，讓每一位參加這個會議的人士都能夠得到國際

上最新的技術與資訊。是一次非常成功的學術研討會。參加本次的國際學術研討會議，感受良多。讓

本人見識到許多國際知名的研究學者以及專業人才，得以與之交流。讓本人與其他教授面對面暢談所

學領域的種種問題。 



 3

 

三、 考察參觀活動(無是項活動者省略) 

 

四、 建議 

 
    看了眾多研究成果以及聽了數篇專題演講，最後，本人認為，會議所安排的會場以及邀請的講席

等，都相當的不錯，覺得會議舉辦得很成功，值得我們學習。 
 

五、 攜回資料名稱及內容 

 

1. Conference Program 
2. Proceedings 
 



 1

 
 

An Efficient Processor Selection Scheme for Master 
Slave Paradigm on Heterogeneous Networks 

Tai-Lung Chen      Ching-Hsien Hsu

Department of Computer Science and Information Engineering 
Chung Hua University, Hsinchu, Taiwan 

chh@chu.edu.tw 
 

Abstract.  It is well known that grid technology has the ability to achieve resources shared and 
tasks scheduled coordinately. In this paper, we present a performance effective pre-scheduling 
strategy for dispatching tasks onto heterogeneous processors. The main contribution of this study 
is the consideration of heterogeneous communication overheads in grid systems. One significant 
improvement of our approach is that average turnaround time could be minimized by selecting 
processor has the smallest communication ratio first. The other advantage of the proposed method 
is that system throughput can be increased via dispersing processor idle time. Our proposed 
technique can be applied to heterogeneous cluster systems as well as computational grid 
environments, in which the communication costs vary in different clusters. Experimental results 
show that our techniques outperform other previous algorithms in terms of lower average 
turnaround time, higher average throughput, less processor idle time and higher processors’ 
utilization.  
 

1   Introduction 

Computational grid system integrates geographically distributed computing resources to establish a virtual and high 
expandable parallel computing infrastructure. In recent years, there are several research investigations done in 
scheduling problem for heterogeneous grid systems. A centralized computational grid system can be viewed as the 
collection of one resource broker (the master processor) and several heterogeneous clusters (slave processors). Therefore, 
to investigate task scheduling problem, the master slave paradigm is a good vehicle for developing tasking technologies 
in centralized grid system. 

The master slave tasking is a simple and widely used technique [1, 2]. In a master slave tasking paradigm, the 
master node connects to n slave nodes. A set of independent tasks are dispatched by master processor and be processed 
on the n heterogeneous slave processors. Slave processors execute the tasks accordingly after they receive their tasks. 
This will restrict that the computation and communication can’t overlap. Moreover, communication between master 
and slave nodes is handled through a shared medium (e.g., bus) that can be accessed only in exclusive mode. Namely, 
the communications between master and different slave processors can not be overlapped. 

In general, the optimization of master slave tasking problem is twofold. One is to minimize total execution time for 
a given fix amount of tasks, namely minimize average turnaround time. The other one is to maximize total amount of 
finished tasks in a given time period, namely maximize throughput. 
In this paper, an efficient strategy for scheduling independent tasks to heterogeneous processors in master slave 
environment is presented. The main idea of the proposed technique is first to allocate tasks to processors that present 
lower communication ratio, which will be defined in section 3.2. Improvements of our approach towards both average 
turnaround time and system throughput. 

The remaining of this paper is organized as follows. Section 2 briefly discusses previous related researches, while 
in section 3 is introduced the research architecture and definition of notation and terminologies used in this paper, 



 2

where we also present a motivating example to demonstrate the characteristics of the master-slave pre-scheduling 
model. Section 4 assesses the new scheduling algorithm, the Smallest Communication Ratio (SCR), while the 
illustration of SCR on heterogeneous communication is examined in section 5. The performance comparisons and 
simulations results are discussed in section 6, and finally in section 7, some conclusions of this paper. 

2   Related Work 

The task scheduling research on heterogeneous processors can be classified into DAGs model, master-slave paradigm 
and computational grids. The main purpose of task scheduling is to achieve high performance computing and high 
throughput computing. The former aims at increasing execution efficiency and minimizing the execution time of tasks, 
whereas the latter aims at decreasing processor idle time and scheduling a set of independent tasks to increase the 
processing capacity of the systems over a long period of time. 

Thanalapati et al. [13] brought up the idea about adaptive scheduling scheme based on homogeneous processor 
platform, which applies space-sharing and time-sharing to schedule tasks. With the emergence of Grid and ubiquitous 
computing, new algorithms are in demand to address new concerns arising to grid environments, such as security, 
quality of service and high system throughput.  Berman et al. [6] and Cooper et al. [11] addressed the problem of 
scheduling incoming applications to available computation resources. Dynamically rescheduling mechanism was 
introduced to adaptive computing on the Grid.  In [8], some simple heuristics for dynamic matching and scheduling of 
a class of independent tasks onto a heterogeneous computing system have been presented.  Moreover, an extended 
suffrage heuristic was presented in [12] for scheduling the parameter sweep applications that have been implemented 
in AppLeS. They also presented a method to predict the computation time for a task/host pair by using previous host 
performance. 

Chronopoulos et al. [9], Charcranoon et al. [10] and Beaumont et al. [4, 5] introduced the research of master-slave 
paradigm with heterogeneous processors background. Based on this architecture, Beaumont et al. [1, 2] presented a 
method on master-slave paradigm to forecast the amount of tasks each processor needs to receive in a given period of 
time. Beaumont et al. [3] presented the pipelining broadcast method on master-slave platforms, focusing on message 
passing disregarding computation time. Intuitionally in their implementation, fast processor receives more tasks in the 
proportional distribution policy. Tasks are also prior allocated to faster slave processors and expected higher system 
throughput could be obtained. 

3   Preliminaries 

In this section, we first introduce basic concepts and models of this investigation, where we also define notations 
and terminologies that will be used in subsequent subsections. 

3.1   Research Architecture 

We have revised several characteristics that were introduced by Beaumont et al. [1, 2]. Based on the master 
slave paradigm introduced in section 1, this paper follows next assumptions as listed. 

 Heterogeneous processors: all processors have different computation speed. 
 Identical tasks: all tasks are of equal size. 
 Non-preemption: tasks are considered to be atomic. 
 Exclusive communication: communications from master node to different slave processors can not be 

overlapped.  
 Heterogeneous communication: communication costs between master and slave processors are of different 

overheads. 
 
 
 

3.2   Definitions 



 3

First, we list definitions, notations and terminologies used in this research paper.  
Definition 1: In a master slave system, master processor is denoted by M  and the n slave processors are 
represented by nPPP ,....,, 21 , where n is the number of slave processors. 

Definition 2: Upon the assumption of identical tasks and heterogeneous processors, the execution time of each 
one of slave processors to compute one task are different. We use Ti to represent the execution time of slave 
processor Pi to complete one task. In this paper, we assume the computation speed of n slave processors is sorted 
and T1 ≤ T2 ≤ … ≤ Tn. 

Definition 3: Given a master slave system, the time of slave processor Pi to receive one task from master 
processor is denoted as commiT _ . 

Definition 4: A Basic Scheduling Cycle (BSC) is defined as BSC = )...,,,( __22_11 commmmcommcomm TTTTTTlcm +++ , where 
m is the number of processors that will join the computation. 

Definition 5: Given a master slave system, the number of tasks processor Pi needs to receive in a basic scheduling cycle 
is defined as 

commii
i TT

BSCPtask
_

)(
+

= . 

Definition 6: Given a master slave system, the communication cost of processor Pi in BSC is defined as 
)()( _ icommii PtaskTPcomm ×= . 

Definition 7: Given a master slave system, the computation cost of processor Pi in BSC is defined as 
)()( iii PtaskTPcomp ×= . 

Definition 8: Given a master slave system, the Communication Ratio of processor Pi is defined as CRi = 

commii

commi

TT
T

_

_

+
. 

Definition 9: The computational capacity (δ) of a master slave system is defined as the sum of communication 
ratio of all processors that joined the computation, i.e., δ =∑ =

m

i iCR
1

, where m is the number of processors that 

involved in the computation.  

Definition 10: Given a master slave system with n heterogeneous slave processors, Pmax is the processor Pk such 

that }1|max{
1 _

_ ≤
+∑

=

k

i commii

commi

TT
T

k , where 1≤ k ≤ n. i.e.  1
1

1 _

_ >
+∑

+

=

k

i commii

commi

TT
T

. We use Pmax+1 to represent processor Pk+1. 

 

3.3   Master Slave Task Scheduling 

Discussions on the problem of task scheduling in master slave paradigm will be addressed in two cases, depending on 
the value of system computational capacity (δ). 

As mentioned in section 2, faster processors receive more tasks is an intuitional approach in which tasks are 
previously allocated to these faster processors, and this method is called Most Jobs First (MJF) scheduling 
algorithm [1, 2]. Fig. 1 shows the pre-scheduling of the MJF algorithm. As defined in definition 8, the 

communication ratio of P1 to P4 are 
3
1 , 

4
1 , 

4
1 , and 

6
1 , respectively. Because BSC = 12, we have task(P1)=4, 

task(P2)=3, task(P3)=3 and task(P4)=2. When the number of tasks is numerous, such scheduling achieves higher 
system utilization and less processor idle time than the greedy method.    



 4

 

Fig. 1. Most Jobs First (MJF) task scheduling when 1≤δ . 

 
Lemma 1: Given a master slave system with δ  > 1, in MJF scheduling, the amount of tasks being assigned to 
Pmax+1 can be calculated by the following equation, 

task(Pmax+1) = (BSC − ∑
=

max

1

)(
i

iPcomm ) / Tmax+1_com                                             (1) 

Lemma 2: Given a master slave system with δ  > 1, in MJF scheduling, the period of processor Pmax+1 stays idle 
denoted by MJF

idleT  and can be calculated by the following equation,  

MJF
idleT  = BSC − )()( 1max1max ++ − PcompPcomm                                (2) 

Another example of master slave task scheduling with identical communication (i.e., Ti_comm=1) and δ  > 1 is 
given in Fig. 2. Because δ  > 1, according to equation (1), we have task(Pmax+1=P4) = 10. We note that P4 
completes its tasks and becomes available at time 100. However, the master processor dispatches tasks to P3 
during time 100 ~ 110 and starts to send tasks to P4 at time 110. Such kind of idle situation also happens at time 
100~110, 160~170, 220~230, and so on. 

 

Fig. 2. Most Jobs First (MJF) Tasking when 1>δ . 

Lemma 3: In MJF scheduling algorithm with identical communication Ti_comm, when δ  > 1, the completion time of 
tasks in the jth BSC can be calculated by the following equation. 

T(BSCj) =∑
=

max

1

)(
i

iPcomm + ))()(( 1max1max
MJF

idleTPcompPcommj ++× ++  MJF
idleT−                       (3) 

 



 5

4   Smallest Communication Ratio (SCR) Scheduling with Identical Communication 

The MJF scheduling algorithm distributes tasks to slave processors according to processors’ speed, namely, faster 
processor receives tasks first. In this section, we demonstrate an efficient task scheduling algorithm, Smallest 
Communication Ratio (SCR), focuses on master slave task scheduling with identical communication. 

Lemma 4: In SCR scheduling algorithm, if δ  ≤ 1 and Ti_comm are identical, the task completion time of the jth BSC 
denoted by )( j

SCR
finish BSCT , can be calculated by the following equation. 

)( j
SCR
finish BSCT  = BSC + ))()(( 11 PcompPcommj +× )( 1Pcomm−                              (4) 

Lemma 5: Given a master slave system with δ  > 1, in scheduling, the amount of tasks being assigned to Pmax+1 
can be calculated by the following, 

commTT
BSCPtask

_1max1max
1max )(

++
+ +

=                                     (5) 

 
Lemma 6: In SCR scheduling algorithm, when δ  > 1, the idle time of a slave processor is denoted as SCR

idleT  and 
can be calculated by the following equation, 

SCR
idleT  = ∑

+

=

1max

1

)(
i

iPcomm  − BSC                                      (6) 

The other case in Fig. 3 is to demonstrate the SCR scheduling method with dispersive idle when δ > 1. We 
use the same example in Fig. 2 for the following illustration.  Because δ > 1, according to definition 10 and 
Lemma 5, we have task(Pmax+1=P4) = 12. Comparing to the example in Fig. 2, P4 stays 10 time units idle in MJF 
algorithm while the idle time is reduced and dispersed in SCR algorithm. In SCR, every processor has 2 units of 
time idle and totally 8 units of time idle. Moreover, we observe that the MJF algorithm finishes 60 tasks in 100 
units of time, showing a throughput of 0.6.  While in SCR, there are 62 tasks completed during 102 time units. 
The throughput of SCR is 62/102 (≈0.61) > 0.6. Consequently, the SCR algorithm delivers higher system 
throughput. 

Lemma 7: In SCR scheduling algorithm, if Ti_comm are identical for all slave processors and δ  > 1, the task completion 
time of the jth BSC denoted by )( j

SCR
finish BSCT , can be calculated by the following equation, 

)( j
SCR
finish BSCT = ∑

+

=

1max

1

)(
i

iPcomm +comp(P1)+ 

 ))()(()1( 11
SCR

idleTPcompPcommj ++×−                                        (7) 

 



 6

 

Fig. 3. Smallest Communication Ratio (SCR) Tasking when 1>δ . 

5   Generalized Smallest Communication Ratio (SCR) 

As computational grid integrates geographically distributed computing resources, the communication overheads 
from resource broker / master computer to different computing site are different. Therefore, towards an efficient 
scheduling algorithm, the heterogeneous communication overheads should be considered. In this section, we 
present the SCR task scheduling techniques work on master slave computing paradigm with heterogeneous 
communication. 
 
Lemma 8: Given a master slave system with heterogeneous communication and δ  > 1, in MJF scheduling, we 
have 

task(Pmax+1) = 

⎥
⎥
⎥
⎥
⎥

⎦

⎥

⎢
⎢
⎢
⎢
⎢

⎣

⎢
−

+

=
∑

comm

i
i

T

PcommBSC

_1max

max

1

)(
                                     (8) 

Lemma 9: Given an SCR scheduling with heterogeneous communication and δ > 1, SCR
idleT  is the idle time of one 

slave processor, we have the following equation,  

SCR
idleT  = ∑

+

=

1max

1

)(
i

iPcomm  − BSC.                                   (9) 

Lemma 10: Given an SCR scheduling with heterogeneous communication and δ > 1, )( j
SCR

start BSCT  is the start 
time to dispatch tasks in the jth BSC, we have the following equation,  

)()1()( SCR
idlej

SCR
start TBSCjBSCT +×−=                                    (10) 

Lemma 11: Given an SCR scheduling with heterogeneous communication and δ > 1, the task completion time of 
the jth BSC denoted by )( j

SCR
finish BSCT , we have 

)( j
SCR
finish BSCT = ∑

+

=

1max

1

)(
i

iPcomm +comp(Pk)+ ))()(()1( SCR
idlekk TPcompPcommj ++×−         (11) 



 7

where Pk is the slave processor with maximum communication cost. 
Another example of heterogeneous of communication with δ  > 1 master slave tasking is shown in Fig. 4(a). 

The communication overheads vary from 1 to 5.  The computational speeds vary from 3 to 13. In this example, 
we have BSC = 48. 

In SCR implementation, according to corollary 3, task distribution is task(P1) = 6, task(P2) = 6, task(P3) = 4 
and task(Pmax+1) = task(P4) = 3. The communication costs of slave processors are comm(P1) = 30, comm(P2) = 12, 
comm(P3) = 4 and comm(P4) = 9, respectively. Therefore, the SCR method distributes tasks by the order P3, P4, P2, 
P1. There are 19 tasks in the first BSC dispatched to P1 to P4 during time period 1~55. Processor P3 is the first 
processor to receive tasks and it finishes at time t = 48 and becomes available. In the meanwhile, processor P1 
receives tasks during t = 48~55. The second BSC starts to dispatch tasks at t = 55.  Namely, P3 starts to receive 
tasks at t = 55 in the second scheduling cycle.  Therefore, P3 has 7 unit of time idle. Lemmas 4 and 5 state the 
above phenomenon. The completion time of tasks in the first BSC depends on the finish time of processor P1. We 
have )( 1BSCT SCR

finish  = 73.  

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Task scheduling on heterogeneous communication environment with 1>δ . (a) Smallest Communication Ratio (b) 
Most Job First  (c) Largest communication ratio (LCR). 

 



 8

 

The MJF scheduling is depicted in Fig. 4(b). According to corollary 5, task(Pmax+1) = task(P4) = 0,  therefore, 
P4 will not be included in the scheduling.  MJF has the task distribution order P1, P2, P3. Another scheduling 
policy is called Longest Communication Ratio (LCR) which is an opposite approach to the SCR method. Fig. 4(c) 
shows the LCR scheduling result which has the dispatch order P1, P2, P4, P3. 

To investigate the performance of SCR scheduling technique, we observe that MJF algorithm completes 16 tasks 
in 90 units of time in the first BSC. On the other hand, in SCR scheduling, there are 19 tasks completed in 73 
units of time in the first BSC. In LCR, there are 19 tasks completed in 99 units of time. We can see that the 
system throughput of SCR (19/73≈0.260) > LCR (19/99≈0.192) > MJF (16/90≈0.178). Moreover, the average 
turnaround time of the SCR algorithm in the first three BSCs is 183/57 (≈3.2105) which is less than the LCR‘s 
average turnaround time 209/57 (≈3.6666) and the MJF‘s average turnaround time 186/48 (≈3.875). 

6   Performance Evaluation 

To evaluate the performance of the proposed method, we have implemented the SCR and the MJF algorithms. We 
compare different criteria, such as average turnaround time, system throughput and processor idle time, in 
Heterogeneous Processors with Heterogeneous Communications (HPHC). 

Simulation experiments for evaluating average turnaround time are made upon different number of 
processors and show in Fig. 7. The computational speed of slave processors is set as T1=3, T2=3, T3=5, T4=7, T5=11, 
and T6=13. For the cases when processor number is 2, 3… 6, we have 1≤δ . When processor number increases to 7, 
we have 1>δ . In either case, the SCR algorithm conduces better average turnaround time. From the above results, 
we conclude that the SCR algorithm outperforms MJF for most test samples. 

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 2 3 4 5 6
# of nodes

A
v
er

ag
e 

tu
rn

-a
ro

u
n
d

tim
e

MJF

SCR

 

Fig. 5. Average task turn-around time on different numbers of processors. 

Simulation results present the performance comparison of three task scheduling algorithms, SCR, MJF, LCR, 
on heterogeneous processors and heterogeneous communication paradigms. Fig. 6 shows the simulation results 
for the experiment setting that with ±10 processor speed variation and ±4 communication speed variation. The 
computation speed of slave processors are 1T =3, 2T =6, 3T =11, and 4T =13. The time of a slave processor to 
receive one task from master processor are commT _1  = 5, commT _2  = 2, commT _3  = 1 and commT _4 =3. The average task 
turnaround time, system throughput and processor idle time are measured.   

 



 9

0

1

2

3

4

5

6

1 2 3 4 5 BSC
A

ve
ra

ge
 t

ru
n-

ar
ou

nd
 t

im
e

(t
im

e 
un

it
)

MJF

LCR

SCR

 
(a) 

0

0.1

0.2

0.3

0.4

1 2 3 4 5 BSC

T
hr

ou
gh

pu
t

MJF
LCR
SCR

 
(b) 

0

50

100

150

200

250

1 2 3 4 5 BSC

T
ot

al
 p

ro
ce

ss
or

 i
dl

e

ti
m

e 
(t

im
e 

un
it
) MJF

LCR

SCR

 
(c) 

Fig. 6. Simulation results for 5 processors with ±10 computation speed variation and ±4 communication variation when 
1>δ  (a) average turnaround time (b) system throughput (c) processor idle time. 

 
Fig. 6(a) is the average turnaround time within different number of BSC. The SCR algorithm performs better 

than the LCR and MJF method. Similarly, the SCR method has higher throughput than the other two algorithms 
as shown in Fig. 6(b).  The processor idle time are estimated in Fig. 6(c). The SCR and LCR algorithms have the 
same period of processor idle time which is less than the MJF scheduling method. These phenomena match the 
theoretical analysis in section 5. 

The miscellaneous comparison in Fig. 7 presents the performance comparison of SCR, MJF with more cases.  
The simulation results for the experiment setting that with ±5~±30 processor speed variation and ±5~±30 
communication speed variation. The computation speed variation of 1T ~ nT =±5~±30. The communication speed 
variation of commT _1  ~ commnT _ =±5~±30. The system throughput is measured.  

0

0.1

0.2

0.3

0.4

5 10 15 20 25
# of Nodes

T
hr

ou
gh

pu
t MJF

LCR
SCR

 



 10

(a) 

0

0.05

0.1

0.15

0.2

0.25

5 10 15 20 25
# of Nodes

T
hr

ou
gh

pu
t

MJF
LCR
SCR

 
(b) 

Fig. 7. Simulation results of throughput for the range of 5~25 processors with ±30 computation speed variation and 
±30 communication variation in 100 cases and 100 BSC (a) system throughput of the cases when 0< iT ≤ 30 and 
0< commiT _ ≤ 5 (b) system throughput of the cases when 0< iT ≤ 5 and 0< commiT _ ≤ 30. 

Fig. 7(a) is the case of 0< iT ≤ 30, 0< commiT _ ≤ 5 and the parameter of computation speed and communication 
speed are to be random and uniformly distributed within different number of nodes and 100 BSC for 100 cases. 
Fig. 7(b) is the case of 0< iT ≤ 5 and 0< commiT _ ≤ 30. The SCR algorithm performs better than MJF method, and 
SCR method has higher throughput than the MJF algorithm as shown in Fig. 7(a) and Fig. 7(b).  From the 
above experimental tests, we have the following remarks. The proposed SCR scheduling technique has better 
task turnaround time and higher system throughput than the MJF algorithm. 

From the above experimental tests, we have the following remarks. 
 The proposed SCR scheduling technique has higher system throughput than the MJF algorithm. 
 The proposed SCR scheduling technique has better task turnaround time than the MJF algorithm. 

The SCR scheduling technique has less processor idle time than the MJF algorithm. 

7   Conclusions 

The problem of resource management and scheduling has been one of main challenges in grid computing. In this paper, 
we have presented an efficient algorithm, SCR for heterogeneous processors tasking problem. One significant 
improvement of our approach is that average turnaround time could be minimized by selecting processor has the 
smallest communication ratio first. The other advantage of the proposed method is that system throughput can be 
increased via dispersing processor idle time. Our preliminary analysis and simulation results indicate that the SCR 
algorithm outperforms Beaumont’s method in terms of lower average turnaround time, higher average throughput, less 
processor idle time and higher processors’ utilization. 

There are numbers of research issues that remains in this paper. Our proposed model can be applied to map tasks 
onto heterogeneous cluster systems in grid environments, in which the communication costs are various from clusters. 
In future, we intend to devote generalized tasking mechanisms for computational grid.  We will study realistic 
applications and analyze their performance on grid system.  Besides, rescheduling of processors / tasks for minimizing 
processor idle time on heterogeneous systems is also interesting and will be investigated. 

References 

1. O. Beaumont, A. Legrand and Y. Robert, “The Master-Slave Paradigm with Heterogeneous Processors,” IEEE Trans. on parallel 
and distributed systems, Vol. 14, No.9, pp. 897-908, September 2003. 

2. C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand and Y. Robert, ”Scheduling Strategies for Master-Slave Tasking on 
Heterogeneous Processor Platforms,” IEEE Trans. on parallel and distributed systems, Vol. 15, No.4, pp.319-330, April 2004. 

3. O. Beaumont, A. Legrand and Y. Robert, “Pipelining Broadcasts on Heterogeneous Platforms,” IEEE Trans. on parallel and 
distributed systems, Vol. 16, No.4, pp. 300-313 April 2005. 

4. O. Beaumont, V. Boudet, A. Petitet, F. Rastello and Y. Robert, “A Proposal for a Heterogeneous Cluster ScaLAPACK (Dense 
Linear Solvers),” IEEE Trans. Computers, Vol. 50, No. 10, pp. 1052-1070, Oct. 2001. 



 11

5. O. Beaumont, V. Boudet, F. Rastello and Y. Robert, “Matrix-Matrix Multiplication on Heterogeneous Platforms,” Proc. Int'l Conf. 
Parallel Processing, Vol. 12, No. 10, pp. 1033-1051, Oct. 2001. 

6. F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. 
Smallen, N. Spring, A. Su, and D. Zagorodnov, ”Adaptive Computing on the Grid Using AppLeS,” IEEE Trans. on parallel and 
distributed systems, Vol. 14, No. 4, pp.369-379, April 2003. 

7. S. Bataineh, T.Y. Hsiung and T.G. Robertazzi, “Closed Form Solutions for Bus and Tree Networks of Processors Load Sharing a 
Divisible Job,” IEEE Trans. Computers, Vol. 43, No. 10, pp. 1184-1196, Oct. 1994. 

8. T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys and B. Yao, “A 
taxonomy for describing matching and scheduling heuristics for mixed-machine heterogeneous computing systems,” Proceedings of 
the IEEE Workshop on Advances in Parallel and Distributed Systems, pp. 330-335, Oct. 1998. 

9. A.T. Chronopoulos and S. Jagannathan, “A Distributed Discrete-Time Neural Network Architecture for Pattern Allocation and 
Control,” Proc. IPDPS Workshop Bioinspired Solutions to Parallel Processing Problems, 2002. 

10. S. Charcranoon, T.G. Robertazzi and S. Luryi, “Optimizing Computing Costs Using Divisible Load Analysis,” IEEE Trans. 
Computers, Vol. 49, No. 9, pp. 987-991, Sept. 2000. 

11. K. Cooper, A. Dasgupta, K. Kennedy, C. Koelbel, A. Mandal, G. Marin, M. Mazina, J. Mellor-Crummey, F. Berman, H. Casanova, 
A. Chien, H. Dail, X. Liu, A. Olugbile, O. Sievert, H. Xia, L. Johnsson, B. Liu, M. Patel, D. Reed, W. Deng, C. Mendes, Z. Shi, A. 
YarKhan, J. Dongarra, ”New Grid Scheduling and Rescheduling Methods in the GrADS Project,” Proceedings of the 18th 
International Parallel and Distributed Processing Symposium (IPDPS’04), pp.209-229, April 2004. 

12. H. Casanova, A. Legrand, D. Zagorodnov and F. Berman, “Heuristics for Scheduling Parameter Sweep applications in Grid 
environments,” Proceedings of the 9th Heterogeneous Computing workshop (HCW'2000), pp. 349-363, 2000. 

13. T. Thanalapati and S. Dandamudi, ”An Efficient Adaptive Scheduling Scheme for Distributed Memory Multicomputers,” IEEE 
Trans. on parallel and distributed systems, Vol. 12, No. 7, pp.758-767, July 2001. 

 
 



 12

 
 

行政院所屬各機關人員出國報告書提要                  
                                                 撰寫時間： 96 年  6 月  20  日   
姓 名 許慶賢 服 務 機 關 名 稱

 
中華大學

資工系 
連絡電話、 
電子信箱 

03-5186410 
chh@chu.edu.tw

出 生 日 期  62 年 2  月 23  日 職 稱 副教授 
出席國際會議 

名 稱 
2007 International Conference on Algorithms and Architecture for Parallel 

Processing, June 11 -14 2007. 

到 達 國 家 

及 地 點 
Hangzhou, China 出 國

期 間

自 96 年 06 月 11 日

迄 96 年 06 月 19 日

內 容 提 要 

這一次在杭州所舉行的國際學術研討會議共計四天。第一天下午本人抵達會

場辦理報到。第二天各主持一場 invited session 的論文發表。同時，自己也

在上午的場次發表了這依次被大會接受的論文。第一天也聽取了 Dr. 
Byeongho Kang 有關於 Web Information Management 精闢的演說。第二天許

多重要的研究成果分為六個平行的場次進行論文發表。本人選擇了

Architecture and Infrastructure、Grid computing、以及 P2P computing 相關場

次聽取報告。晚上本人亦參加酒會，並且與幾位國外學者及中國、香港教授

交換意見，合影留念。第三天本人在上午聽取了 Data and Information 
Management 相關研究，同時獲悉許多新興起的研究主題，並了解目前國外

大多數學者主要的研究方向，並且把握最後一天的機會與國外的教授認識，

希望能夠讓他們加深對台灣研究的印象。三天下來，本人聽了許多優秀的論

文發表。這些研究所涵蓋的主題包含有：網格系統技術、工作排程、網格計

算、網格資料庫以及無線網路等等熱門的研究課題。此次的國際學術研討會

議有許多知名學者的參與，讓每一位參加這個會議的人士都能夠得到國際上

最新的技術與資訊。是一次非常成功的學術研討會。參加本次的國際學術研

討會議，感受良多。讓本人見識到許多國際知名的研究學者以及專業人才，

得以與之交流。讓本人與其他教授面對面暢談所學領域的種種問題。看了眾

多研究成果以及聽了數篇專題演講，最後，本人認為，會議所安排的會場以

及邀請的講席等，都相當的不錯，覺得會議舉辦得很成功，值得我們學習。

出 席 人 所 屬 機 

關 審 核 意 見 
 

層 轉 機 關 

審 核 意 見 
 

研 考 會 

處 理 意 見 
 



 13

(出席 ICA3PP-07 研討會所發表之論文) 
 

A Generalized Critical Task Anticipation Technique for DAG 
Scheduling 

 
Ching-Hsien Hsu1, Chih-Wei Hsieh1 and Chao-Tung Yang2 

 
1 Department of Computer Science and Information Engineering 

Chung Hua University, Hsinchu, Taiwan 300, R.O.C. 
chh@chu.edu.tw 

 
2 High-Performance Computing Laboratory 

Department of Computer Science and Information Engineering 
Tunghai University, Taichung City, 40704, Taiwan R.O.C. 

ctyang@thu.edu.tw 
 
Abstract.  The problem of scheduling a weighted directed acyclic graph 
(DAG) representing an application to a set of heterogeneous processors to 
minimize the completion time has been recently studied.  The 
NP-completeness of the problem has instigated researchers to propose different 
heuristic algorithms.  In this paper, we present a Generalized Critical-task 
Anticipation (GCA) algorithm for DAG scheduling in heterogeneous 
computing environment.  The GCA scheduling algorithm employs task 
prioritizing technique based on CA algorithm and introduces a new processor 
selection scheme by considering heterogeneous communication costs among 
processors for adapting grid and scalable computing.  To evaluate the 
performance of the proposed technique, we have developed a simulator that 
contains a parametric graph generator for generating weighted directed acyclic 
graphs with various characteristics.  We have implemented the GCA 
algorithm along with the CA and HEFT scheduling algorithms on the simulator.  
The GCA algorithm is shown to be effective in terms of speedup and low 
scheduling costs. 

 
1. Introduction 

The purpose of heterogeneous computing system is to drive processors 
cooperation to get the application done quickly.  Because of diverse quality among 
processors or some special requirements, like exclusive function, memory access speed, 
or the customize I/O devices, etc.; tasks might have distinct execution time on 
different resources.  Therefore, efficient task scheduling is important for achieving 
good performance in heterogeneous systems.  

The primary scheduling methods can be classified into three categories, dynamic 
scheduling, static scheduling and hybrid scheduling according to the time at which the 
scheduling decision is made.  In dynamic approach, the system performs 
redistribution of tasks between processors during run-time, expect to balance 
computational load, and reduce processor’s idle time. On the contrary, in static 



 14

approach, information of applications, such as tasks execution time, message size of 
communications among tasks, and tasks dependences are known a priori at 
compile-time; tasks are assigned to processors accordingly in order to minimize the 
entire application completion time and satisfy the precedence of tasks.  Hybrid 
scheduling techniques are mix of dynamic and static methods, where some 
preprocessing is done statically to guide the dynamic scheduler [8]. 

A Direct Acyclic Graph (DAG) [2] is usually used for modeling parallel 
applications that consists a number of tasks.  The nodes of DAG correspond to tasks 
and the edges of which indicate the precedence constraints between tasks.  In 
addition, the weight of an edge represents communication cost between tasks.  Each 
node is given a computation cost to be performed on a processor and is represented by 
a computation costs matrix.  Figure 1 shows an example of the model of DAG 
scheduling.  In Figure 1(a), it is assumed that task nj is a successor (predecessor) of 
task ni if there exists an edge from ni to nj (from nj to ni) in the graph.  Upon task 
precedence constraint, only if the predecessor ni completes its execution and then its 
successor nj receives the messages from ni, the successor nj can start its execution.  
Figure 1(b) demonstrates different computation costs of task that performed on 
heterogeneous processors.  It is also assumed that tasks can be executed only on 
single processor with non-preemptable style.  A simple fully connected processor 
network with asymmetrical data transfer rate is shown in Figures 1(c) and 1(d). 

 

            

 P1 P2 P3 iw  

n1 14 19 9 14 

n2 13 19 18 16.7 

n3 11 17 15 14.3 

n4 13 8 18 13 

n5 12 13 10 11.7 

n6 12 19 13 14.7 

n7 7 16 11 11 

n8 5 11 14 10 

n9 18 12 20 16.7 

n10 17 20 11 16  
(a)                                   (b) 

                  
 (c)                                  (d) 

Figure 1: An example of DAG scheduling problem (a) Directed Acyclic Graph (DAG-1) (b) 
computation cost matrix (W) (c) processor topology (d) communication weight. 

 
The scheduling problem has been widely studied in heterogeneous systems where 



 15

the computational ability of processors is different and the processors communicate 
over an underlying network.  Many researches have been proposed in the literature.  
The scheduling problem has been shown to be NP-complete [3] in general cases as 
well as in several restricted cases; so the desire of optimal scheduling shall lead to 
higher scheduling overhead.  The negative result motivates the requirement for 
heuristic approaches to solve the scheduling problem.  A comprehensive survey about 
static scheduling algorithms is given in [9].  The authors of have shown that the 
heuristic-based algorithms can be classified into a variety of categories, such as 
clustering algorithms, duplication-based algorithms, and list-scheduling algorithms.  
Due to page limitation, we omit the description for related works.   

In this paper, we present a Generalized Critical task Anticipation (GCA) algorithm, 
which is an approach of list scheduling for DAG task scheduling problem.  The main 
contribution of this paper is proposing a novel heuristic for DAG scheduling on 
heterogeneous machines and networks.  A significant improvement is that 
inter-processor communication costs are considered into processor selection phase 
such that tasks can be mapped to more suitable processors.  The GCA heuristic is 
compared favorable with previous CA [5] and HEFT heuristics in terms of schedule 
length and speedup under different parameters.  

The rest of this paper is organized as follows: Section 2 provides some 
background, describes preliminaries regarding heterogeneous scheduling system in 
DAG model and formalizes the research problem.  Section 3 defines notations and 
terminologies used in this paper.  Section 4 forms the main body of the paper, 
presents the Generalized Critical task Anticipation (GCA) scheduling algorithm and 
illustrating it with an example.  Section 5 discusses performance of the proposed 
heuristic and its simulation results.  Finally, Section 6 briefly concludes this paper.  

2. DAG Scheduling on Heterogeneous Systems 

The DAG scheduling problem studied in this paper is formalized as follows.  Given a 

parallel application represented by a DAG, in which nodes represent tasks and edges 

represent dependence between these tasks.  The target computing architecture of DAG 

scheduling problem is a set of heterogeneous processors, M = {Pk: k = 1: P} and P = |M|, 

communicate over an underlying network which is assumed fully connected.  We have 

the following assumptions: 
 Inter-processor communications are performed without network contention between 

arbitrary processors.  
 Computation of tasks is in non-preemptive style.  Namely, once a task is assigned to 

a processor and starts its execution, it will not be interrupted until its completion. 
 Computation and communication can be worked simultaneously because of the 

separated I/0. 
 If two tasks are assigned to the same processor, the communication cost between the 

two tasks can be discarded. 
 A processor is assumed to send the computational results of tasks to their immediate 

successor as soon as it completes the computation. 

Given a DAG scheduling system, W is an n × P matrix in which wi,j indicates 



 16

estimated computation time of processor Pj to execute task ni.  The mean execution time 

of task ni can be calculated by the following equation: 

∑=
=

P

j

ji
i P

w
w

1

,                         (1) 

Example of the mean execution time can be referred to Figure 1(b).   

 
For communication part, a P × P matrix T is structured to represent different 

data transfer rate among processors (Figure 1(d) demonstrates the example).  The 
communication cost of transferring data from task ni (execute on processor px) to task 
nj (execute on processor py) is denoted by ci,j and can be calculated by the following 
equation, 

yxjimji tMsgVc ,,, ×+= ,                    (2) 

Where: 
Vm is the communication latency of processor Pm, 
Msgi,j is the size of message from task ni to task nj, 
tx,y is data transfer rate from processor px to processor py, 1≤ x, y ≤P. 
 

In static DAG scheduling problem, it was usually to consider processors’ 
latency together with its data transfer rate.  Therefore, equation (2) can be 
simplified as follows, 

yxjiji tMsgc ,,, ×= ,                     (3) 

Given an application represented by Directed Acyclic Graph (DAG), G = (V, E), 
where V = {nj: j = 1: v} is the set of nodes and v = |V|; E = {ei,j = <ni, nj>} is the set 
of communication edges and e =|E|.  In this model, each node indicates least 
indivisible task.  Namely, each node must be executed on a processor from the start 
to its completion.  Edge <ni, nj> denotes precedence of tasks ni and nj.  In other 
words, task ni is the immediate predecessor of task nj and task nj is the immediate 
successor of task ni.  Such precedence represents that task nj can be start for 
execution only upon the completion of task ni.  Meanwhile, task nj should receive 
essential message from ni for its execution.  Weight of edge <ni, nj > indicates the 
average communication cost between ni and nj. 

Node without any inward edge is called entry node, denoted by nentry; while node 
without any outward edge is called exit node, denoted by nexit.  In general, it is supposed 
that the application has only one entry node and one exit node.  If the actual application 
claims more than one entry (exit) node, we can insert a dummy entry (exit) node with 
zero-cost edge. 

 
3. Preliminaries 
This study concentrates on list scheduling approaches in DAG model.  List 
scheduling was usually distinguished into list phase and processor selection phase.  
Therefore, priori to discuss the main content, we first define some notations and 
terminologies used in both phases in this section. 

3.1 Parameters for List Phase 



 17

Definition 1: Given a DAG scheduling system on G = (V, E), the Critical Score of task 
ni denoted by CS(ni) is an accumulative value that are computed recursively traverses 
along the graph upward, starting from the exit node.  CS(ni) is computed by the 
following equations,  

⎪⎩

⎪
⎨
⎧

++
=

=
∈

otherwise))((
)i.e.(ndoeexittheisif

)(
,)( jjinsucni

exitiiexit
i nCScMaxw

nnnw
nCS

ij

  (4) 

where exitw  is the average computation cost of task nexit, iw  is the average computation 
cost of task ni, suc(ni) is the set of immediate successors of task ni, 

jic ,  is the average communication cost of edge <ni, nj> which is defined as follows, 

)( 2
, 1

,,

, PP

tMsg
c Pyx

yxji

ji −

×

=
∑

≤≤ ,                          (5)  

 
3.2 Parameters for Processor Selection Phase 

Most algorithms in processor selection phase employ a partial schedule scheme to 
minimize overall schedule length of an application.  To achieve the partial 
optimization, an intuitional method is to evaluate the finish time (FT) of task ni 
executed on different processors.  According to the calculated results, one can select 
the processor who has minimum finish time as target processor to execute the task ni.  
In such approach, each processor Pk will maintain a list of tasks, task-list(Pk), keeps 
the latest status of tasks correspond to the EFT(ni, Pk), the earliest finish time of task ni 
that is assigned on processor Pk. 

Recall having been mentioned above that the application represented by DAG 
must satisfy the precedence relationship.  Taking into account the precedence of tasks 
in DAG, a task nj can start to execute on a processor Pk only if its all immediate 
predecessors send the essential messages to nj and nj successful receives all these 
messages.  Thus, the latest message arrive time of node nj on processor Pk, denoted 
by LMAT(nj, Pk), is calculated by the following equation, 

( ) ( ) ( ) )processoron  executedfor task,(, , uikuinprednkj PncnEFTMaxPnLMAT
ji

+=
∈

     (6) 

where pred(nj) is the set of immediate predecessors of task nj.  Note that if tasks ni 
and nj are assigned to the same processor, kuc ,  is assumed to be zero because it is 
negligible. 
Because the entry task nentry has no inward edge, thus we have 

( ) 0, =kentry PnLMAT                        (7) 
for all k = 1 to P. 
Definition 2: Given a DAG scheduling system on G = (V, E), the Start Time of task nj 
executed on processor Pk is denoted as ST(nj, Pk). 
Estimating task’s start time (for example, task nj) will facilitate search of available 
time slot on target processors that is large enough to execute that task (i.e., length of 
time slot > wj,k).  Note that the search of available time slot is started from 

( )kj PnLMAT , . 
Definition 3: Given a DAG scheduling system on G = (V, E), the finish time of task nj 
denoted by ),( kj PnFT , represents the completion time of task nj executed on processor 



 18

Pk.  ),( kj PnFT  is defined as follows, 

kjkjkj wPnSTPnFT ,),(),( +=                     (8) 
Definition 4: Given a DAG scheduling system on G = (V, E), the earliest finish time of 
task nj denoted by )( jnEFT , is formulated as follows,  

)},({)( kjPpj PnFTMinnEFT
k∈

=                      (9) 

Definition 5: Based on the determination of )( jnEFT  in equation (9), if the earliest finish 

time of task nj is obtained upon task nj executed on processor pt, then the target processor of 
task nj is denoted by TP(nj), and TP(nj) = pt. 

 
4. The Generalized Critical-task Anticipation Scheduling Algorithm 
Our approach takes advantages of list scheduling in lower algorithmic complexity and 
superior scheduling performance and furthermore came up with a novel heuristic 
algorithm, the generalized critical task anticipation (GCA) scheduling algorithm to 
improve the schedule length as well as speedup of applications.  The proposed 
scheduling algorithm will be verified beneficial for the readers while we delineate a 
sequence of the algorithm and show some example scenarios in three phases, 
prioritizing phase, listing phase and processor selection phase.  

In prioritizing phase, the CS(ni) is known as the maximal summation of scores 
including the average computation cost and communication cost from task ni to the 
exit task.  Therefore, the magnitude of the task’s critical score is regarded as the 
decisive factor when determining the priority of a task.  In listing phase, an ordered 
list of tasks should be determined for the subsequent phase of processor selection. The 
proposed GCA scheduling technique arranges tasks into a list L, not only according to 
critical scores but also considers tasks’ importance.  

Several observations bring the idea of GCA scheduling method.  Because of 
processor heterogeneity, there exist variations in execution cost from processor to 
processor for same task.  In such circumstance, tasks with larger computational cost 
should be assigned higher priority.  This observation aids some critical tasks to be 
executed earlier and enhances probability of tasks reduce its finish time.  Furthermore, 
each task has to receive the essential messages from its immediate predecessors.  In 
other words, a task will be in waiting state when it does not collect complete message 
yet.  For this reason, we emphasize the importance of the last arrival message such 
that the succeeding task can start its execution earlier.  Therefore, it is imperative to 
give the predecessor who sends the last arrival message higher priority.  This can aid 
the succeeding task to get chance to advance the start time.  On the other hand, if a 
task ni is inserted into the front of a scheduling list, it occupies vantage position.  
Namely, ni has higher probability to accelerate its execution and consequently the start 
time of suc(ni) can be advanced as well.   

In most list scheduling approaches, it was usually to demonstrate the algorithms 
in two phases, the list phase and the processor selection phase.  The list phase of 
proposed GCA scheduling algorithm consists of two steps, the CS (critical score) 
calculation step and task prioritization step. 

Let’s take examples for the demonstration of CS calculation, which is performed 
in level order and started from the deepest level, i.e., the level of exit task.  For 
example, according to equation (4), we have CS(n10)= 10w = 16.  For the upper 



 19

level tasks, n7, n8 and n9, CS(n7) = ))(( 1010,77 nCScw ++  = 47.12, CS(n8) = 

))(( 1010,88 nCScw ++ =37.83, CS(n9) = ))(( 1010,99 nCScw ++ =49.23.  The other 
tasks can be calculated by the same methods.  Table 1 shows complete calculated 
critical scores of all tasks for DAG-1. 

Table 1: Critical Scores of tasks in DAG-1 using GCA algorithm  
Critical Scores of tasks in GCA algorithm 

n1 n2 n 3 n 4 n 5 n 6 n 7 n 8 n 9 n 10 

120.13 84.83 88.67  89.45 76.28 70.25 47.12 37.83 49.23 16.00    
 
Follows the critical score calculation, the GCA scheduling method considers both 

tasks’ importance (i.e., critical score) and its relative urgency for prioritizing tasks.  
Based on the results obtained previously, we use the same example to demonstrate task 
prioritization in GCA.  Let’s start at the exit task n10, which has the lowest critical 
score.  Assume that tasks will be arranged into an ordered list L, therefore, we have L 
= {n10} initially.  Because task n10 has three immediate predecessors, with the order 
CS(n9) > CS(n7) > CS(n8), the list L will be updated to L={n9, n7, n8, n10}.  Applying 
the same prioritizing method by taking the front element of L, task n9; because task n9 
has three immediate predecessors, with the order CS(n4) > CS(n2) > CS(n5), we have 
the updated list L = { n4, n2, n5, n9, n7, n8, n10}.  Taking the same operations, insert 
task n1 in front of task n4, insert task n3 in front of task n7, insert tasks n4, n2, n6 
(because CS(n4) > CS(n2) > CS(n6)) in front of task n8; we have the list L = { n1, n4, n2, 
n5, n9, n3, n7, n6, n4, n2, n6, n8, n10}.  The final list L = {n1, n4, n2, n5, n9, n3, n7, n6, n8, 
n10} can be derived by removing duplicated tasks. 

In listing phases, the GCA scheduling algorithm proposes two enhancements from 
the majority of literatures.  First, GCA scheduling technique considers various 
transmission costs of messages among processors into the calculation of critical scores.  
Second, the GCA algorithm prioritizes tasks according to the influence on its 
successors and devotes to lead an accelerated chain while other techniques simply 
schedule high critical score tasks with higher priority.  In other words, the GCA 
algorithm is not only prioritizing tasks by its importance but also by the urgency 
among task.   The prioritizing scheme of GCA scheduling technique can be 
accomplished by using simple stack operations, push and pop, which are outlined in 
GCA_List_Phase procedure as follows. 

 
Begin_GCA_List_Phase 
1. Initially, construct an array of Boolean QV and a stack S. 
2. QV[nj] = false,∀ nj∈V. 
3. Push nexit on top of S. 
4. While S is not empty do 
5.   Peek task nj on the top of S; 
6.   If( all QV[ni] are true, for all ni∈pred(nj) or task nj is nentry)  { 
7.     Pop task nj from top of S and put nj into scheduling list L; 
8.     QV[ nj] = true; } 
9.   Else   /* search the CT(nj) */ 
10.     For each task ni, where ni∈pred(nj) do 
11.       If(QV[ni] = false) 



 20

12.         Put CS(ni) into container C; 
13.       Endif 
14.     Push tasks pred(nj) from C into S by non-decreasing order according to their 

critical scores; 
15.     Reset C to empty; 
16.     /* if there are 2+ tasks with same CS(ni), task ni is randomly pushed into S. 
17. EndWhile 
End_GCA_List_Phase 

 
In processor-selection phase, tasks will be deployed from list L that obtained in 

listing phase to suitable processor in FIFO manner.  According to the ordered list L = 
{n1, n4, n2, n5, n9, n3, n7, n6, n8, n10}, we have the complete calculated EFTs of tasks in 
DAG-1 and the schedule results of GCA algorithm are listed in Table 2 and Figure 2(a), 
respectively.   

Table 2: Earliest Finish Time of tasks in DAG-1 using GCA algorithm 
 

Earliest Finish Time of tasks in GCA algorithm 

n1 n2 n 3 n 4 n 5 n 6 n 7 n 8 n 9 n 10 

9 27 42 19.7 32.7 47.6 53 65.7 54.7 84.7   
 

P1 P2 P3 P1 P2 P3 P1 P2 P3

1

10

20

30

40

50

60

70

80

90

100

110

1

2
4

5
6

9

8

3

7

10

1

3
4

2

5

6

9

7

8

10

(a) (b) (c)

2
4

5

9

3

7

6

8

10

 
Figure 2: Schedule results of three algorithms on DAG-1 (a) GCA (makespan = 84.7) (b) CA 
(makespan = 92.4) (c) HEFT (makespan = 108.2). 

 
In order to profile significance of the GCA scheduling technique, the schedule 

results of other algorithms, CA and HEFT are depicted in Figure 2(b) and 2(c), 
respectively. The GCA scheduling techniques incorporates the consideration of 
heterogeneous communication costs among processors in processor selection phase.  
Such enhancement facilitates the selection of best candidate of processors to execute 
specific tasks.   
 
5. Performance Evaluation 



 21

5.1 Random Graph Generator 
We implemented a Random Graph Generator (RGG) to simulate application graphs 
with various characteristics.  RGG uses the following input parameters to produce 
diverse graphs. 

 Weight of graph (weight), which is a constant = {32, 128, 512, 1024}. 
 Number of tasks in the graph (n), where n = {20, 40, 60, 80, 100}. 
 Graph parallelism (p), the graph parallelism determines shape of a graph.  p is 

assigned for 0.5, 1.0 and 2.0.  The level of graph is defined as ⎣ ⎦pv / .  For 
example, graph with p = 2.0 has higher parallelism than graph with p = 1.0.  

 Out degree of a task (d), where d = {1, 2, 3, 4, 5}.  The out degree of a task 
indicates relationship with other tasks, the larger degree of a task the higher task 
dependence. 

 Heterogeneity (h), determines computational cost of task ni executed on processor 
Pk, i.e., wi,k, which is randomly generated by the following formula. 

.
2

1
2

1 , ⎟
⎠
⎞

⎜
⎝
⎛ +×≤≤⎟

⎠
⎞

⎜
⎝
⎛ −×

hwwhw ikii
                (10) 

RGG randomizes wi from the interval [1, weight].  Note that larger value of 
weight represents the estimation is with higher precision.  In our simulation, h was 
assigned by 0.1, 0.25, 0.5, 0.75 and 1.0. 

 Communication to Computation Ratio (CCR), where CCR = {0.1, 0.5, 1, 2, 10}.  
 

5.2 Comparison Metrics 
As mentioned earlier, the objective of DAG scheduling problem is to minimize the 

completion time of an application.  To verify the performance of a scheduling 
algorithm, several comparative metrics are given below for comparison: 

 Makespan, also known as schedule length, which is defined as follows, 
))(max( exitnEFTMakespan =                   (11) 

 Speedup, defined as following equation, 

makespan

w
Speedup Vn jiMP

ij
}{min ,∑ ∈∈

= , where M is the set of processors  (12) 

The numerator is the minimal accumulated sum of computation cost of tasks 
which are assigned on one processor.  Equation (12) represents the ratio of sequential 
execution time to parallel execution time.   

 Percentage of Quality of Schedules (PQS) 
The percentage of the GCA algorithm produces better, equal and worse quality of 

schedules compared to other algorithms. 
 

5.3 Simulation Results 
The first evaluation aims to demonstrate the merit of the GCA algorithm by showing 
quality of schedules using RGG.  Simulation results were obtained upon different 
parameters with totally 1875 DAGs.  Figure 3 reports the comparison by setting 
different weight = {32, 128, 512, 1024}.  The term “Better” represents percentage of 
testing samples the GCA algorithm outperforms the CA algorithm.  The term “Equal” 
represents both algorithm have same makespan in a given DAG.  The tem “Worse” 
represents opposite results to the “Better” cases.  Figure 4 gives the PQS results by 
setting different number of processors.  Overall, the GCA scheduling algorithm 
presents superior performance for 65% test samples.  

Speedup of the GCA, CA and HEFT algorithms to execute 1875 DAGs with fix 



 22

processor number (P=16) under different number of task (n) are shown in Figure 5.  
The speedup of these algorithms show placid when number of task is small and 
increased significantly when number of tasks becomes large.  In general, the GCA 
algorithm has better speedup than the other two algorithms.  Improvement rate of the 
GCA algorithm in terms of average speedup is about 7% to the CA algorithm and 34% 
to the HEFT algorithm.  The improvement rate (IRGCA) is estimated by the following 
equation: 

IRGCA = 
∑

∑∑ −
)(

)()(
CAorHEFTSpeedup

CAorHEFTSpeedupGCASpeedup         (13) 

 

 
Figure 3: PQS: GCA compared with CA (3 processors)   

 

 
Figure 4: PQS: GCA compared with CA (weight = 128) 

 

16 processors

2.00

3.50

5.00

6.50

8.00

20 40 60 80 100

# task

sp
ee

du
p

GCA

CA

HEFT

 
Figure 5: Speedup of GCA, CA and HEFT with different number of tasks (n). 



 23

 
3.50

4.50

5.50

6.50

7.50

3 4 5 6 7 8

degree

sp
ee

du
p

GCA CA HEFT

 
 

Figure 6: Speedup of GCA, CA and HEFT with different out-degree of tasks (d) 



 24

 
Speedup of the GCA, CA and HEFT algorithms to execute different DAGs with fix processor number (P=16) and 

task number (n=60) under different out-degree of tasks (d) are shown in Figure 6.  The results of Figure 6 demonstrate 
the speedup influence by task dependence.  We observe that speedups of scheduling algorithms are less dependent on 
tasks’ dependence.  Although the speedups of three algorithms are stable, the GCA algorithm outperforms the other two 
algorithms in most cases.  Improvement rate of the GCA algorithm in terms of average speedup is about 5% to the CA 
algorithm and 80% to the HEFT algorithm. 

Figure 7 shows simulation results of three algorithms upon different processor number and degree of parallelization.  
It is noticed that, graphs with larger value of p tends to with higher parallelism.  As shown in Figures 7(a) and (b), the 
GCA algorithm performs well in linear graphs (p=0.5) and general graphs (p=1.0).  On the contrary, Figure 7(c) shows 
that the HEFT scheduling algorithm has superior performance when degree of parallelism is high.  In general, for 
graphs with low parallelism (e.g., p = 0.5), the GCA algorithm has 33% improvement rate in terms of average speedup 
compare to the HEFT algorithm; for graphs with normal parallelism (e.g., p = 1), the GCA algorithm has 20% 
improvement rate.  For graphs with high parallelism (e.g., p = 2), the GCA algorithm performs worse than the HEFT by 
3% performance. 

Speedup of the GCA, CA and HEFT algorithms to execute different DAGs with fix processor number (P=16) and 
task number (n=60) under different out-degree of tasks (d) are shown in Figure 6.  The results of Figure 6 demonstrate 
the speedup influence by task dependence.  We observe that speedups of scheduling algorithms are less dependent on 
tasks’ dependence.  Although the speedups of three algorithms are stable, the GCA algorithm outperforms the other two 
algorithms in most cases.  Improvement rate of the GCA algorithm in terms of average speedup is about 5% to the CA 
algorithm and 80% to the HEFT algorithm. 

 

   
(a)                    (b)                     (c) 

Figure 7: Speedup with different degree of parallelism (p) (a) p = 0.5 (b) p = 1 (c) p = 2. 
The impact of communication overheads on speedup are plotted in Figure 8 by setting different value of CCR.  It is 

noticed that increase of CCR will downgrade the speedup we can obtained.  For example, speedup offered by CCR = 
0.1 has maximal value 8.3 in GCA with 12 processors; for CCR = 1.0, the GCA algorithm has maximal speedup 6.1 
when processor number is 12; and the same algorithm, GCA, has maximal speedup 3.1 for CCR = 5 with 12 processors.  
This is due to the fact that when communication overheads higher than computational overheads, costs for tasks 
migration will offset the benefit of moving tasks to faster processors.   

 

 
(a)                    (b)                     (c) 

Figure 8: Speedup results with different CCR (a) CCR=0.5 (b) CCR = 1 (c) CCR = 5. 
 
 

 
6. Conclusions 

The problem of scheduling a weighted directed acyclic graph (DAG) to a set of heterogeneous processors to 
minimize the completion time has been recently studied.  Several techniques have been presented in the literature to 
improve performance.  This paper presented a general Critical-task Anticipation (GCA) algorithm for DAG scheduling 



 25

system.  The GCA scheduling algorithm employs task prioritizing technique based on CA algorithm and introduces a 
new processor selection scheme by considering heterogeneous communication costs among processors.  GCA 
scheduling algorithm is a list scheduling approach with simple data structure and profitable for grid and scalable 
computing.  Experimental results show that GCA has superior performance compare to the well known HEFT 
scheduling heuristic algorithm and our previous proposed CA algorithm which did not incorporate the consideration of 
heterogeneous communication costs into processor selection phase.  Experimental results show that GCA is equal or 
superior to HEFT and CA scheduling algorithms in most cases and it enhances to fit more real grid system. 

Acknowledgements 
This paper is based upon work supported by National Science Council (NSC), Taiwan, under grants no. 
NSC95-2213-E-216-006. Any opinions, findings, and conclusions or recommendations expressed in this material are those of 
the authors and do not necessarily reflect the views of the NSC. 

References 
[1] R. Bajaj and D. P. Agrawal, “Improving Scheduling of Tasks in a Heterogeneous Environment,” IEEE Trans. on PDS, vol. 15, 

no. 2, pp. 107-118, 2004. 
[2] S. Behrooz, M. Wang, and G. Pathak, “Analysis and Evaluation of Heuristic Methods for Static Task Scheduling,” Jounal of 

Parallel and Distributed Computing, vol. 10, pp. 222-232, 1990. 
[3] M.R Gary and D.S. Johnson, “Computers and Interactability: A guide to the Theory of NP-Completeness”, W.H. Freeman and 

Co., 1979. 
[4] T. Hagras and J. Janecek,” A High Performance, Low Complexity Algorithm for Compile-Time Task Scheduling in 

Heterogeneous Systems,” Parallel Computing, vol. 31, Issue 7, pp. 653-670, 2005.  
[5] Ching-Hsieh Hsu and Ming-Yuan Weng, “An Improving Critical-Task Anticipation Scheduling Algorithm for Heterogeneous 

Computing Systems”, Proceedings of the Eleventh Asia-Pacific Computer Systems Architecture Conference, LNCS 4186, pp. 
97-110, 2006.  

[6] E. Ilavarasan P. Thambidurai and R. Mahilmannan, “Performance Effective Task Scheduling Algorithm for Heterogeneous 
Computing System,” IEEE Proceedings of IPDPS, pp. 28-38, 2005. 

[7] S. Ranaweera and D. P. Agrawal, “A Task Duplication Based Scheduling Algorithm for Heterogeneous Systems,” IEEE 
Proceedings of IPDPS, pp. 445-450, 2000. 

[8] Rizos Sakellariou and Henan Zhao, “A Hybrid Heuristic for DAG Scheduling on Heterogeneous Systems”, Proc. of the IEEE 
IPDPS Workshop 1, pp. 111b, 2004. 

[9] H. Topcuoglu, S. Hariri and W. Min-You, “Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous 
Computing,” IEEE Transactions on PDS, vol.13, no. 3, pp. 260-274, 2002. 

 
 



 26

 

行政院所屬各機關人員出國報告書提要                  
                                                 撰寫時間： 97 年  4 月  20  日  
姓 名 許慶賢 服 務 機 關 名 稱

 
中華大學

資工系 
連絡電話、 
電子信箱 

03-5186410 
chh@chu.edu.tw

出 生 日 期  62 年 2  月 23  日 職 稱 副教授 
出席國際會議 

名 稱 
The 22nd International Conference on Advanced Information Networking and 

Applications (AINA-08), March 25 -28 2008. 

到 達 國 家 

及 地 點 
Okinawa, Japan 出 國

期 間

自 97 年 03 月 25 日

迄 97 年 03 月 28 日
 

內容提要 

 
一、主要任務摘要（五十字以內） 

    AINA-08 是網路相關研究領域一個大型的研討會。這一次參與AINA-08除了發表

相關研究成果以外，也在會場上看到許多新的研究成果與方向。此外，也與許多學術

界的朋友交換研究心得。 
 
二、對計畫之效益（一百字以內） 

    這一次參與 AINA-08 除了發表我們在此一計劃最新的研究成果以外，也在會場

中，向多位國內外學者解釋我們的研究內容，彼此交換研究心得。除了讓別的團隊

知道我們的研究方向與成果，我們也可以學習他人的研究經驗。藉此，加強國際合

作，提升我們的研究質量。 
 
三、經過 

    這一次在 Okinawa 所舉行的國際學術研討會議共計四天。第一天是 Workshop 
Program。第二天，由Dr. Michel Raynal的專題演講， “Synchronization is Coming Back, 
But is it the Same?” 作為研討會的開始。緊接著是五個平行的場次，分為上下午進

行。本人全程參與研討會的議程。晚上在大會的地點舉行歡迎晚宴。晚上本人亦參

加酒會，並且與幾位國外學者及中國、香港教授交換意見，合影留念。第三天，專

題演講是由 Dr. Shigeki Yamada 針對  “Cyber Science Infrastructure (CSI) for 
Promoting Research Activities of Academia and Industries in Japan”發表演說。本人也參



 27

與的第三天全部的大會議程。晚宴，大會安排交通車到市郊一個花園餐廳舉行。最

後一天，本人亦參與了所有的場次，並且發表了這一次的論文。本人主要聽取 GRID
相關研究，同時獲悉許多新興起的研究主題，並了解目前國外大多數學者主要的研

究方向，並且把握最後一天的機會與國外的教授認識，希望能夠讓他們加深對台灣

研究的印象。四天下來，本人聽了許多優秀的論文發表。這些研究所涵蓋的主題包

含有：無線網路技術、網路安全、GRID、資料庫以及普及運算等等熱門的研究課題。

此次的國際學術研討會議有許多知名學者的參與，讓每一位參加這個會議的人士都

能夠得到國際上最新的技術與資訊。是一次非常成功的學術研討會。 
 
四、心得 
 

    參加本次的國際學術研討會議，感受良多。讓本人見識到許多國際知名的研究

學者以及專業人才，得以與之交流。讓本人與其他教授面對面暢談所學領域的種種

問題。看了眾多研究成果以及聽了數篇專題演講，最後，本人認為，會議所安排的

會場以及邀請的講席等，都相當的不錯，覺得會議舉辦得很成功，值得我們學習。 
 
五、建議與結語 

    出席國際會議，註冊費越來越貴(AINA-08 約兩萬元)，若會議在亞州舉行，補

助的經費免強足夠，但是若在歐美，經費往往不足。降低同學參與歐美的會議。 
大會安排的會場以及邀請的講席等，都相當的不錯，覺得會議舉辦得很成功，

值得我們學習。 
 
六、攜回資料  
 
     論文集光碟片 
 
七、出國行程表 
 
3/25 前往 Okinawa  下午研討會報到，參與 AINA-08 Workshop Progra, 
3/26 全日參與研討會 
3/27 全日參與研討會  
3/28 全日參與研討會、晚上飛機返回台灣 

 
 
 
 
 
 
 
 



 28

 
Towards Improving QoS-Guided Scheduling in Grids 

 

Ching-Hsien Hsu1, Justin Zhan2, Wai-Chi Fang3
 and Jianhua Ma4 

 

1Department of Computer Science and Information Engineering, Chung Hua University, Taiwan 
chh@chu.edu.tw 

2Heinz School, Carnegie Mellon University, USA 
justinzh@andrew.cmu.edu 

3Department of Electronics Engineering, National Chiao Tung University, Taiwan 
wfang@mail.nctu.edu.tw 

4Digital Media Department, Hosei University, Japan 
jianhua@hosei.ac.jp 

 
 

Abstract 
 

With the emergence of grid technologies, the 
problem of scheduling tasks in heterogeneous systems has 
been arousing attention. In this paper, we present two 
optimization schemes, Makespan Optimization 
Rescheduling (MOR) and Resource Optimization 
Rescheduling (ROR), which are based on the QoS 
Min-Min scheduling technique, for reducing the 
makespan of a schedule and the need of total resource 
amount. The main idea of the proposed techniques is to 
reduce overall execution time without increasing resource 
need; or reduce resource need without increasing overall 
execution time. To evaluate the effectiveness of the 
proposed techniques, we have implemented both 
techniques along with the QoS Min-Min scheduling 
algorithm. The experimental results show that the MOR 
and ROR optimization schemes provide noticeable 
improvements.  
 
1. Introduction 
 

With the emergence of IT technologies, 
the need of computing and storage are rapidly 
increased.  To invest more and more 
equipments is not an economic method for an 
organization to satisfy the even growing 
computational and storage need. As a result, 
grid has become a widely accepted paradigm 
for high performance computing.   

To realize the concept virtual organization, 
in [13], the grid is also defined as “A type of 
parallel and distributed system that enables the 
sharing, selection, and aggregation of 

geographically distributed autonomous and 
heterogeneous resources dynamically at 
runtime depending on their availability, 
capability, performance, cost, and users' 
quality-of-service requirements”.  As the grid 
system aims to satisfy users’ requirements with 
limit resources, scheduling grid resources plays 
an important factor to improve the overall 
performance of a grid.   

In general, grid scheduling can be 
classified in two categories: the performance 
guided schedulers and the economy guided 
schedulers [16]. Objective of the performance 
guided scheduling is to minimize turnaround 
time (or makespan) of grid applications. On the 
other hand, in economy guided scheduling, to 
minimize the cost of resource is the main 
objective.  However, both of the scheduling 
problems are NP-complete, which has also 
instigated many heuristic solutions [1, 6, 10, 14] 
to resolve. As mentioned in [23], a complete 
grid scheduling framework comprises 
application model, resource model, 
performance model, and scheduling policy. The 
scheduling policy can further decomposed into 
three phases, the resource discovery and 
selection phase, the job scheduling phase and 
the job monitoring and migration phase, where 
the second phase is the focus of this study.  

Although many research works have been 
devoted in scheduling grid applications on 



 29

heterogeneous system, to deal with QOS 
scheduling in grid is quite complicated due to 
more constrain factors in job scheduling, such 
as the need of large storage, big size memory, 
specific I/O devices or real-time services, 
requested by the tasks to be completed. In this 
paper, we present two QoS based rescheduling 
schemes aim to improve the makespan of 
scheduling batch jobs in grid.  In addition, 
based on the QoS guided scheduling scheme, 
the proposed rescheduling technique can also 
reduce the amount of resource need without 
increasing the makespan of grid jobs.  The 
main contribution of this work are twofold, one 
can shorten the turnaround time of grid 
applications without increasing the need of grid 
resources; the other one can minimize the need 
of grid resources without increasing the 
turnaround time of grid applications, compared 
with the traditional QoS guided scheduling 
method. To evaluate the performance of the 
proposed techniques, we have implemented our 
rescheduling approaches along with the QoS 
Min-Min scheduling algorithm [9] and the 
non-QoS based Min-Min scheduling algorithm. 
The experimental results show that the 
proposed techniques are effective in 
heterogeneous systems under different 
circumstances. The improvement is also 
significant in economic grid model [3]. 

The rest of this paper is organized as 
follows. Section 2 briefly describes related 
research in grid computing and job scheduling.  
Section 3 clarifies our research model by 
illustrating the traditional Min-min model and 
the QoS guided Min-min model.  In Section 4, 
two optimization schemes for reducing the total 
execution time of an application and reducing 
resource need are presented, where two 
rescheduling approaches are illustrated in detail. 
We conduct performance evaluation and 
discuss experiment results in Section 5. Finally, 
concluding remarks and future work are given 
in Section 6. 

2. Related Work 

Grid scheduling can be classified into traditional 

grid scheduling and QoS guided scheduling or economic 
based grid scheduling.  The former emphasizes the 
performance of systems of applications, such as system 
throughput, jobs’ completion time or response time.  
Swany et al. provides an approach to improving 
throughput for grid applications with network logistics by 
building a tree of “best” paths through the graph and has 
running time of O(NlogN) for implementations that keep 
the edges sorted [15].  Such approach is referred as the 
Minimax Path (MMP) and employs a greedy, 
tree-building algorithm that produces optimal results [20].  
Besides data-parallel applications requiring high 
performance in grid systems, there is a Dynamic Service 
Architecture (DSA) based on static compositions and 
optimizations, but also allows for high performance and 
flexibility, by use of a lookahead scheduling mechanism 
[4]. To minimizing the processing time of extensive 
processing loads originating from various sources, the 
approaches divisible load model [5] and single level tree 
network with two root processors with divisible load are 
proposed [12]. In addition to the job matching algorithm, 
the resource selection algorithm is at the core of the job 
scheduling decision module and must have the ability to 
integrate multi-site computation power.  The CGRS 
algorithm based on the distributed computing grid model 
and the grid scheduling model integrates a new 
density-based internet clustering algorithm into the 
decoupled scheduling approach of the GrADS and 
decreases its time complexity [24].  The scheduling of 
parallel jobs in a heterogeneous multi-site environment, 
where each site has a homogeneous cluster of processors, 
but processors at different sites has different speeds, is 
presented in [18]. Scheduling strategy is not only in batch 
but also can be in real-time.  The SAREG approach 
paves the way to the design of security-aware real-time 
scheduling algorithms for Grid computing environments 
[21].  

For QoS guided grid scheduling, 
apparently, applications in grids need various 
resources to run its completion.  In  [17], an 
architecture named public computing utility 
(PCU) is proposed uses virtual machine (VMs) 
to implement “time-sharing” over the resources 
and augments finite number of private resources 
to public resources to obtain higher level of 
quality of services.  However, the QoS 
demands maybe include various packet-type 
and class in executing job. As a result, a 
scheduling algorithm that can support multiple 
QoS classes is needed.  Based on this demand, 
a multi-QoS scheduling algorithm is proposed 
to improve the scheduling fairness and users’ 
demand [11].  He et al. [7] also presented a 
hybrid approach for scheduling moldable jobs 
with QoS demands.  In [9], a novel framework 
for policy based scheduling in resource 



 30

allocation of grid computing is also presented.  
The scheduling strategy can control the request 
assignment to grid resources by adjusting usage 
accounts or request priorities. Resource 
management is achieved by assigning usage 
quotas to intended users. The scheduling 
method also supports reservation based grid 
resource allocation and quality of service 
feature.  Sometimes the scheduler is not only 
to match the job to which resource, but also 
needs to find the optimized transfer path based 
on the cost in network. In [19], a distributed 
QoS network scheduler (DQNS) is presented to 
adapt to the ever-changing network conditions 
and aims to serve the path requests based on a 
cost function. 

3. Research Architecture 
  

Our research model considers the static 
scheduling of batch jobs in grids.  As this 
work is an extension and optimization of the 
QoS guided scheduling that is based on 
Min-Min scheduling algorithm [9], we briefly 
describe the Min-Min scheduling model and the 
QoS guided Min-Min algorithm.  To simplify 
the presentation, we first clarify the following 
terminologies and assumptions. 

 QoS Machine (MQ) – machines can provide 
special services. 

 QoS Task (TQ) – tasks can be run 
completion only on QoS machine. 

 Normal Machine (MN) – machines can only 
run normal tasks. 

 Normal Task (TN) – tasks can be run 
completion on both QoS machine and 
normal machine. 

 A chunk of tasks will be scheduled to run 
completion based on all available machines 
in a batch system. 

 A task will be executed from the beginning 
to completion without interrupt. 

 The completion time of task ti to be 
executed on machine mj is defined as  

 
CTij = dtij + etij              (1) 

 
Where etij denotes the estimated execution time 
of task ti executed on machine mj; dtij is the 
delay time of task ti on machine mj.   
 

The Min-Min algorithm is shown in Figure 
1. 

 
Algorithm_Min-Min()
{ 

while there are jobs to schedule 
for all job i to schedule 

for all machine j 
Compute CTi,j = CT(job i, machine j)

end for 
Compute minimum CTi,j 

end for 
Select best metric match m 
Compute minimum CTm,n 
Schedule job m on machine n 

end while 
} End_of_ Min-Min  

 
Figure 1. The Min-Min Algorithm 

 
Analysis: If there are m jobs to be scheduled in 
n machines, the time complexity of Min-Min 
algorithm is O(m2n). The Min-Min algorithm 
does not take into account the QoS issue in the 
scheduling.  In some situation, it is possible 
that normal tasks occupied machine that has 
special services (referred as QoS machine).  
This may increase the delay of QoS tasks or 
result idle of normal machines. 
 

The QoS guided scheduling is proposed to resolve 
the above defect in the Min-Min algorithm.  In QoS 
guided model, the scheduling is divided into two classes, 
the QoS class and the non-QoS class.  In each class, the 
Min-Min algorithm is employed.  As the QoS tasks have 
higher priority than normal tasks in QoS guided 
scheduling, the QoS tasks are prior to be allocated on 
QoS machines.  The normal tasks are then scheduled to 
all machines in Min-Min manner.  Figure 2 outlines the 
method of QoS guided scheduling model with the 
Min-Min scheme.   

Analysis: If there are m jobs to be scheduled in 
n machines, the time complexity of QoS guided 
scheduling algorithm is O(m2n).  

Figure 3 shows an example demonstrating 
the Min-Min and QoS Min-Min scheduling 
schemes.  The asterisk * means that 
tasks/machines with QoS demand/ability, and 
the X means that QoS tasks couldn’t be 
executed on that machine.  Obviously, the 
QoS guided scheduling algorithm gets the 
better performance than the Min-Min algorithm 
in term of makespan.  Nevertheless, the QoS 
guided model is not optimal in both makespan 
and resource cost. We will describe the 



 31

rescheduling optimization in next section. 
 

Algorithm_QOS-Min-Min() 
{ 

for all tasks ti in meta-task Mv (in an arbitrary order) 
for all hosts mj (in a fixed arbitrary order) 

       CTij = etij + dtj 
end for 

end for 
do until all tasks with QoS request in Mv are mapped 

for each task with high QoS in Mv,  
find a host in the QoS qualified host set that obtains 
the earliest completion time 

end for 
find task tk with the minimum earliest completion time 
assign task tk to host ml that gives the earliest completion 
time 
delete task tk from Mv 
update dtl 
update CTil for all i 

end do 
do until all tasks with non-QoS request in Mv are mapped 

for each task in Mv 
find the earliest completion time and the 
corresponding host 

       end for 
find the task tk with the minimum earliest completion time 
assign task tk to host ml that gives the earliest completion 
time 
delete task tk from Mv 
update dtl 

    update CTil for all i 
end do 

} End_of_ QOS-Min-Min 
 

Figure 2. The QoS Guided Algorithm 

 

4. Rescheduling Optimization 

Grid scheduling works as the mapping of individual 
tasks to computer resources, with respecting service level 
agreements (SLAs) [2].  In order to achieve the 
optimized performance, how to mapping heterogeneous 
tasks to the best fit resource is an important factor.  The 
Min-Min algorithm and the QoS guided method aims at 
scheduling jobs to achieve better makespan.  However, 
there are still having rooms to make improvements.  In 
this section, we present two optimization schemes based 
on the QoS guided Min-Min approach.  

 

 *M1 M2 

T1 7 4 

T2 3 3 

T3 9 5 

*T4 5 X 

Machine 

Makespan 

A. The Min-Min algorithm B. The QOS guided scheduling algorithm  

M3 

7 

5 

7 

X 

T5 9 8 6 

*T6 5 X X 

Machine 
0 

M1 M2 

*T4 

*T6 

T1 

3 

8 

12 

M3 

T3 

T5 

Makespan 

T2 

0 
M1 M2 

T2

*T4

*T6

T13 

8 

13

M3 

T3

T5

 
Figure 3. Min-Min and QoS Guided Min-Min 
 

4.1 Makespan Optimization Rescheduling (MOR) 

The first one is Makespan Optimization Rescheduling 
(MOR), which focuses on improving the makespan to 
achieve better performance than the QoS guided 
scheduling algorithm. Assume the makespan achieved by 
the QoS guided approach in different machines are CT1, 
CT2, …, CTm, with CTk = max { CT1, CT2, …, CTm }, 
where m is the number of machines and 1 ≤ k ≤ m.  By 
subtracting CTk – CTi, where 1 ≤ i ≤ m and i ≠ k, we can 
have m-1 available time fragments.  According to the 
size of these available time fragments and the size of tasks 
in machine Mk, the MOR dispatches suitable tasks from 
machine Mk to any other machine that has available and 
large enough time fragments.  Such optimization is 
repeated until there is no task can be moved.   

 



 32

 12 

 *M1 M2 

T1 7 4 

T2 3 3 

T3 9 5 

*T4 5 X 

B. The Makespan Optimization 
Rescheduling (MOR) algorithm  

M3 

7 

5 

7 

X 

T5 9 8 6 

*T6 5 X X 

Machine 0 
*M1 M2 

*T4 

*T6 

T1 3 

8 

11 

M3 

T3 

T5 

Makespan 

T2 

Machine 

T1 

T2 

T3 

M2 

T5 

M3 

A. The QOS guided scheduling 
algorithm 

*T6 

*T4 

*M1 

Makespan 

12 

8 

3 

 
Figure 4. Example of MOR 

 
Recall the example given in Figure 3, 

Figure 4 shows the optimization of the MOR 
approach.  The left side of Figure 4 
demonstrates that the QoS guided scheme gives 
a schedule with makespan = 12, wheremachine 
M2 presents maximum CT (completion time), 
which is assembled by tasks T2, T1 and T3.  
Since the CT of machine ‘M3’ is 6, so ‘M3’ has 
an available time fragment (6).  Checking all 
tasks in machine M2, only T2 is small enough 
to be allocated in the available time fragment in 
M3.  Therefore, task M2 is moved to M3, 
resulting machine ‘M3’ has completion time 
CT=11, which is better than the QoS guided 
scheme. 

As mentioned above, the MOR is based on the QoS 
guided scheduling algorithm.  If there are m tasks to be 
scheduled in n machines, the time complexity of MOR is 
O(m2n).  Figure 5 outlines a pseudo of the MOR scheme.   

 

Algorithm_MOR()
{ 

for CTj in all machines 
find out the machine with maximum makespan CTmax and 
set it to be the standard 

end for 
do until no job can be rescheduled 

for job i in the found machine with CTmax  
            for all machine j 

  according to the job’s QOS demand, find the 
adaptive machine j  

if (the execute time of job i in machine j + the 
CTj < makespan) 

           rescheduling the job i to machine j   
           update the CTj and CTmax 

       exit for 
end if 

            next for 
            if the job i can be reschedule 

find out the new machine with maximum CTmax
            exit for 

end if 
next for 

end do  
} End_of_ MOR  

Figure 5. The MOR Algorithm 

4.2 Resource Optimization Rescheduling (ROR) 

Following the assumptions described in MOR, the main 
idea of the ROR scheme is to re-dispatch tasks from the 
machine with minimum number of tasks to other 
machines, expecting a decrease of resource need.  
Consequently, if we can dispatch all tasks from machine 
Mx to other machines, the total amount of resource need 
will be decreased.  

Figure 6 gives another example of QoS scheduling, 
where the QoS guided scheduling presents makespan = 13. 
According to the clarification of ROR, machine ‘M1’ has 
the fewest amount of tasks.  We can dispatch the task 
‘T4’ to machine ‘M3’ with the following constraint 

 
CTij + CTj <= CTmax             (2) 

 
The above constraint means that the rescheduling can be 
performed only if the movement of tasks does not 
increase the overall makespan.  In this example, CT43 = 2, 
CT3=7 and CTmax=CT2=13.  Because the makespan of 
M3 (CT3) will be increased from 7 to 9, which is smaller 
than the CTmax, therefore, the task migration can be 
performed.  As the only task in M1 is moved to M3, the 
amount of resource need is also decreased comparing 
with the QoS guided scheduling.   



 33

 

 M1 *M2 

T1 3 4 

T2 6 6 

*T3 X 7 

T4 4 6 

B. The Resource Optimization Rescheduling 
(ROR) Algorithm 

M3 

2 

3 

X 

2 

T5 5 7 2 

*T6 X 6 X 

Machine 
0 

M1 *M2 

*T6 

T1

4 

8 

13

M3 

*T3 

T5

T2

Makespan 

Machine 

T4

M1 

A. The QOS guided scheduling 

0 
*M2 

T4 
*T6 

T1 

4 

8 

13 

M3 

*T3 

T5 

T2 

Makespan 

 
Figure 6. Example of ROR 

 
The ROR is an optimization scheme which aims to 

minimize resource cost. If there are m tasks to be 
scheduled in n machines, the time complexity of ROR is 
also O(m2n).  Figure 7 depicts a high level description of 
the ROR optimization scheme. 

 
Algorithm_MOR() 
{ 

for m in all machines 
        find out the machine m with minimum count of jobs 

end for 
do until no job can be rescheduled 

for job i in the found machine with minimum count of jobs
            for all machine j 

according to the job’s QOS demand, find the 
adaptive machine j  
if (the execute time of job i in machine j + the 

CTj <= makespan CTmax) 
           rescheduling the job i to machine j   
           update the CTj  
           update the count of jobs in machine m and 

machine j  
       exit for 

end if 
            next for         

next for 
end do 

} End_of_ MOR 
 

Figure 7. The ROR Algorithm  
5. Performance Evaluation 

5.1 Parameters and Metrics 

 

To evaluate the performance of the proposed 
techniques, we have implemented the Min-Min 
scheduling algorithm and the QoS guided Min-Min 
scheme. The experiment model consists of heterogeneous 
machines and tasks.  Both of the Machines and tasks are 
classified into QoS type and non-QoS type.  Table 1 
summarizes six parameters and two comparison metrics 
used in the experiments.  The number of tasks is ranged 
from 200 to 600. The number of machines is ranged from 
50 to 130. The percentage of QoS machines and tasks are 
set between 15% and 75%.  Heterogeneity of tasks are 
defined as Ht (for non-QoS task) and HQ (for QoS task), 
which is used in generating random tasks.  For example, 
the execution time of a non-QoS task is randomly 
generated from the interval [10, Ht×102] and execution 
time of a QoS task is randomly generated from the 
interval [102, HQ×103] to reflect the real application world.  
All of the parameters used in the experiments are 
generated randomly with a uniform distribution.  The 
results demonstrated in this section are the average values 
of running 100 random test samples.  

 

Table 1: Parameters and Comparison Metrics 
 

Task number (NT) {200, 300, 400, 500, 600} 

Resource number (NR) {50, 70, 90, 110, 130} 

Percentage of QOS resources (QR %) {15%, 30%, 45%, 60%, 75%}

Percentage of QOS tasks (QT %) {15%, 30%, 45%, 60%, 75%}

Heterogeneity of non-QOS tasks (HT) {1, 3, 5, 7, 9} 

Heterogeneity of QOS tasks (HQ) {3, 5, 7, 9, 11} 

Makespan The completion time of a set of 
tasks 

Resource Used (RU) Number of machines used for 
executing a set of tasks  

 
5.2 Experimental Results of MOR 
 
Table 2 compares the performance of the MOR, Min-Min 
algorithm and the QoS guided Min-Min scheme in term 
of makespan.  There are six tests that are conducted with 
different parameters.  In each test, the configurations are 
outlined beside the table caption from (a) to (f).  Table (a) 
changes the number of tasks to analyze the performance 
results.  Increasing the number of tasks, improvement of 
MOR is limited. An average improvement ratio is from 
6% to 14%.  Table (b) changes the number of machines.  
It is obvious that the MOR has significant improvement in 
larger grid systems, i.e., large amount of machines.  The 
average improvement rate is 7% to 15%.  Table (c) 
discusses the influence of changing percentages of QoS 
machines.  Intuitionally, the MOR performs best with 
45% QoS machines.  However, this observation is not 
always true.  By analyzing the four best ones in (a) to (d), 
we observe that the four tests (a) NT=200 (NR=50, QR=30%, 
QT=20%) (b) NR=130 (NT=500, QR=30%, QT=20%) (c) 



 34

QR=45% (NT=300, NR=50, QT=20%) and (d) QT=15% 
(NT=300, NR=50, QR=40%) have best improvements.  All of 
the four configurations conform to the following relation, 
 

0.4 × (NT × QT) = NR × QR          (3) 
 

This observation indicates that the improvement of MOR 
is significant when the number of QoS tasks is 2.5 times 
to the number of QoS machines.  Tables (e) and (f) 
change heterogeneity of tasks.  We observed that 
heterogeneity of tasks is not critical to the improvement 
rate of the MOR technique, which achieves 7% 
improvements under different heterogeneity of tasks. 

 
Table 2: Comparison of Makespan 

 

(a) (NR=50, QR=30%, QT=20%, HT=1, HQ=1) 
Task Number (NT) 200 300 400 500 600 

Min-Min 978.2 1299.7 1631.8 1954.6 2287.8

QOS Guided Min-Min 694.6 917.8 1119.4 1359.9 1560.1

MOR 597.3 815.5 1017.7 1254.8 1458.3

Improved Ratio 14.01% 11.15% 9.08% 7.73% 6.53%
 

(b) (NT=500, QR=30%, QT=20%, HT=1, HQ=1) 
Resource Number (NR) 50 70 90 110 130 

Min-Min 1931.5 1432.2 1102.1 985.3 874.2 

QOS Guided Min-Min 1355.7 938.6 724.4 590.6 508.7 

MOR 1252.6 840.8 633.7 506.2 429.4 

Improved Ratio 7.60% 10.42% 12.52% 14.30% 15.58%
 

(c) (NT=300, NR=50, QT=20%, HT=1, HQ=1) 
QR% 15% 30% 45% 60% 75% 

Min-Min 2470.8 1319.4 888.2 777.6 650.1 

QOS Guided Min-Min 1875.9 913.6 596.1 463.8 376.4 

MOR 1767.3 810.4 503.5 394.3 339.0 

Improved Ratio 5.79% 11.30% 15.54% 14.99% 9.94% 
 

(d) (NT=300, NR=50, QR=40%, HT=1, HQ=1) 
QT% 15% 30% 45% 60% 75% 

Min-Min 879.9 1380.2 1801.8 2217.0 2610.1

QOS Guided Min-Min 558.4 915.9 1245.2 1580.3 1900.6

MOR 474.2 817.1 1145.1 1478.5 1800.1

Improved Ratio 15.07% 10.79% 8.04% 6.44% 5.29% 
 

(e) (NT=500, NR=50, QR=30%, QT=20%, HQ=1) 
HT 1 3 5 7 9 

Min-Min 1891.9 1945.1 1944.6 1926.1 1940.1

QOS Guided Min-Min 1356.0 1346.4 1346.4 1354.9 1357.3

MOR 1251.7 1241.4 1244.3 1252.0 1254.2

Improved Ratio 7.69% 7.80% 7.58% 7.59% 7.59% 
 

(f) (NT=500, NR=50, QR=30%, QT=20%, HT=1) 
HQ 3 5 7 9 11 

Min-Min 1392.4 1553.9 1724.9 1871.7 2037.8

QOS Guided Min-Min 867.5 1007.8 1148.2 1273.2 1423.1

MOR 822.4 936.2 1056.7 1174.3 1316.7

Improved Ratio 5.20% 7.11% 7.97% 7.77% 7.48%
 

5.3 Experimental Results of ROR 

Table 3 analyzes the effectiveness of the ROR technique 
under different circumstances.   

 
Table 3: Comparison of Resource Used 

 

(a) (NR=100, QR=30%, QT=20%, HT=1, HQ=1) 
Task Number (NT) 200 300 400 500 600 

QOS Guided Min-Min 100 100 100 100 100 

ROR 39.81 44.18 46.97 49.59 51.17 

Improved Ratio 60.19% 55.82% 53.03% 50.41% 48.83%

(b) (NT=500, QR=30%, QT=20%, HT=1, HQ=1) 
Resource Number (NR) 50 70 90 110 130 

QOS Guided Min-Min 50 70 90 110 130 

ROR 26.04 35.21 43.65 50.79 58.15 

Improved Ratio 47.92% 49.70% 51.50% 53.83% 55.27%

(c) (NT=500, NR=50, QT=20%, HT=1, HQ=1) 

QR% 15% 30% 45% 60% 75% 

QOS Guided Min-Min 50 50 50 50 50 

ROR 14.61 25.94 35.12 40.18 46.5 

Improved Ratio 70.78% 48.12% 29.76% 19.64% 7.00% 

(d) (NT=500, NR=100, QR=40%, HT=1, HQ=1) 

QT% 15% 30% 45% 60% 75% 

QOS Guided Min-Min 100 100 100 100 100 

ROR 57.74 52.9 48.54 44.71 41.49 

Improved Ratio 42.26% 47.10% 51.46% 55.29% 58.51%

(e) (NT=500, NR=100, QR=30%, QT=20%, HQ=1) 

HT 1 3 5 7 9 

QOS Guided Min-Min 100 100 100 100 100 

ROR 47.86 47.51 47.62 47.61 47.28 

Improved Ratio 52.14% 52.49% 52.38% 52.39% 52.72%

(f) (NT=500, NR=100, QR=30%, QT=20%, HT=1) 
HQ 3 5 7 9 11 

QOS Guided Min-Min 100 100 100 100 100

ROR 54.61 52.01 50.64 48.18 46.53

Improved Ratio 45.39% 47.99% 49.36% 51.82% 53.47%



 35

 
Similar to those of Table 2, Table (a) changes the 

number of tasks to verify the reduction of resource that 
needs to be achieved by the ROR technique.  We noticed 
that the ROR has significant improvement in minimizing 
grid resources.  Comparing with the QoS guided 
Min-Min scheduling algorithm, the ROR achieves 50% ~ 
60% improvements without increasing overall makespan 
of a chunk of grid tasks.  Table (b) changes the number 
of machines.  The ROR retains 50% improvement ratio.  
Table (c) adjusts percentages of QoS machine.  Because 
this test has 20% QoS tasks, the ROR performs best at 
15% QoS machines.  This observation implies that the 
ROR has significant improvement when QoS tasks and 
QoS machines are with the same percentage.  Table (d) 
sets 40% QoS machine and changes the percentages of 
QoS tasks.  Following the above analysis, the ROR 
technique achieves more than 50% improvements when 
QoS tasks are with 45%, 60% and 75%.  Tables (e) and 
(f) change the heterogeneity of tasks.  Similar to the 
results of section 5.2, the heterogeneity of tasks is not 
critical to the improvement rate of the ROR technique.  
Overall speaking, the ROR technique presents 50% 
improvements in minimizing total resource need compare 
with the QoS guided Min-Min scheduling algorithm. 

 

6. Conclusions 
In this paper we have presented two optimization 

schemes aiming to reduce the overall completion time 
(makespan) of a chunk of grid tasks and minimize the 
total resource cost.  The proposed techniques are based 
on the QoS guided Min-Min scheduling algorithm. The 
optimization achieved by this work is twofold; firstly, 
without increasing resource costs, the overall task 
execution time could be reduced by the MOR scheme 
with 7%~15% improvements. Second, without increasing 
task completion time, the overall resource cost could be 
reduced by the ROR scheme with 50% reduction on 
average, which is a significant improvement to the state of 
the art scheduling technique. The proposed MOR and 
ROR techniques have characteristics of low complexity, 
high effectiveness in large-scale grid systems with QoS 
services.  

 

References 

 
[1] A. Abraham, R. Buyya, and B. Nath, "Nature’s Heuristics for 

Scheduling Jobs on Computational Grids", Proc. 8th IEEE 
International Conference on Advanced Computing and 
Communications (ADCOM-2000), pp.45-52, 2000. 

[2] A. Andrieux, D. Berry, J. Garibaldi, S. Jarvis, J. MacLaren, D. 
Ouelhadj, D. Snelling, "Open Issues in Grid Scheduling", 
National e-Science Centre and the Inter-disciplinary Scheduling 
Network Technical Paper, UKeS-2004-03. 

[3] R. Buyya, D. Abramson, Jonathan Giddy, Heinz Stockinger, 

“Economic Models for Resource Management and Scheduling 
in Grid Computing”, Journal of Concurrency: Practice and 
Experience, vol. 14, pp. 13-15, 2002. 

[4] Jesper Andersson, Morgan Ericsson, Welf Löwe, and Wolf 
Zimmermann, "Lookahead Scheduling for Reconfigurable 
GRID Systems", 10th International Europar'04: Parallel 
Processing, vol. 3149, pp. 263-270, 2004. 

[5] D Yu, Th G Robertazzi, "Divisible Load Scheduling for Grid 
Computing", 15th IASTED Int’l. Conference on Parallel and 
Distributed Computing and Systems, Vol. 1, pp. 1-6, 2003 

[6] Fangpeng Dong and Selim G. Akl, "Scheduling Algorithms for 
Grid Computing: State of the Art and Open Problems", 
Technical Report No. 2006-504, 2006. 

[7] Ligang He, Stephen A. Jarvis, Daniel P. Spooner, Xinuo Chen, 
Graham R. Nudd, "Hybrid Performance-oriented Scheduling of 
Moldable Jobs with QoS Demands in Multiclusters and Grids", 
Grid and Cooperative Computing (GCC 2004), vol. 3251, pp. 
217–224, 2004.  

[8] Xiaoshan He, Xian-He Sun, Gregor Von Laszewski, "A QoS 
Guided Scheduling Algorithm for Grid Computing", Journal of 
Computer Science and Technology, vol.18, pp.442-451, 2003. 

[9] Jang-uk In, Paul Avery, Richard Cavanaugh, Sanjay Ranka, 
"Policy Based Scheduling for Simple Quality of Service in Grid 
Computing", IPDPS 2004, pp. 23, 2004. 

[10] J. Schopf. "Ten Actions when Superscheduling: A Grid 
Scheduling Architecture", Scheduling Architecture Workshop, 
7th Global Grid Forum, 2003. 

[11] Junsu Kim, Sung Ho Moon, and Dan Keun Sung, "Multi-QoS 
Scheduling Algorithm for Class Fairness in High Speed 
Downlink Packet Access", Proceedings of IEEE Personal, 
Indoor and Mobile Radio Communications Conference (PIMRC 
2005), vol. 3, pp. 1813-1817, 2005 

[12] M.A. Moges and T.G. Robertazzi, "Grid Scheduling Divisible 
Loads from Multiple Sources via Linear Programming", 16th 
IASTED International Conference on Parallel and Distributed 
Computing and Systems (PDCS), pp. 423-428, 2004. 

[13] M. Baker, R. Buyya and D. Laforenza, "Grids and Grid 
Technologies for Wide-area Distributed Computing", in Journal 
of Software-Practice & Experience, Vol. 32, No.15, pp. 
1437-1466, 2002. 

[14] Jennifer M. Schopf, "A General Architecture for Scheduling on 
the Grid", Technical Report ANL/MCS, pp. 1000-1002, 2002. 

[15] M. Swany, "Improving Throughput for Grid Applications with 
Network Logistics", Proc. IEEE/ACM Conference on High 
Performance Computing and Networking, 2004. 

[16] R. Moreno and A.B. Alonso, "Job Scheduling and Resource 
Management Techniques in Economic Grid Environments", 
LNCS 2970, pp. 25-32, 2004. 

[17] Shah Asaduzzaman and Muthucumaru Maheswaran, 
"Heuristics for Scheduling Virtual Machines for Improving QoS 
in Public Computing Utilities", Proc. 9th International 
Conference on Computer and Information Technology 
(ICCIT’06), 2006. 

[18] Gerald Sabin, Rajkumar Kettimuthu, Arun Rajan and P 
Sadayappan, "Scheduling of Parallel Jobs in a Heterogeneous 
Multi-Site Environment", in the Proc. of the 9th International 
Workshop on Job Scheduling Strategies for Parallel Processing, 
LNCS 2862, pp. 87-104 , June 2003. 

[19] Sriram Ramanujam, Mitchell D. Theys, "Adaptive Scheduling 
based on Quality of Service in Distributed Environments", 
PDPTA’05, pp. 671-677, 2005. 

[20] T. H. Cormen, C. L. Leiserson, and R. L. Rivest, "Introduction 
to Algorithms", First edition, MIT Press and McGraw-Hill, 
ISBN 0-262-03141-8, 1990. 

[21] Tao Xie and Xiao Qin, "Enhancing Security of Real-Time 
Applications on Grids through Dynamic Scheduling", Proc. the 
11th Workshop on Job Scheduling Strategies for Parallel 



 36

Processing (JSSPP'05), pp. 146-158, 2005.  
[22] Haobo Yu, Andreas Gerstlauer, Daniel Gajski, "RTOS 

Scheduling in Transaction Level Models", in Proc. of the 1st 
IEEE/ACM/IFIP international conference on Hardware/software 
Codesign & System Synpaper, pp. 31-36, 2003.  

[23] Y. Zhu, "A Survey on Grid Scheduling Systems", LNCS 4505, 
pp. 419-427, 2007. 

[24] Weizhe Zhang, Hongli Zhang, Hui He, Mingzeng Hu, 
"Multisite Task Scheduling on Distributed Computing Grid", 
LNCS 3033, pp. 57–64, 2004. 



 
 

 
 

 
 

 
 
 


