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Abstract

This report presents adaptive performance
models for optimizing communications of real
world parallel applications on heterogeneous
grid systems and topologies. This project
developed tools for automatic data partitioning,

performance prediction of data parallel programs,

web-based locality selector and learning systems
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for scientific applications. The integrated
locality preserving techniques and analysis tools

developed in this project will facilitate
development of efficient data parallel
applications on computational grids.  The

achievements of theorems, tools and experience
in this project can be applied in both academic
teaching and research. It is the main objective
of this project.

Keywords: Localized Communication, Data
Parallel Program, Computational Grid, Parallel

I/0, Data Distribution, Communication
Scheduling, Performance Prediction,
Parallelizing Compiler, Parallel Applications,
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An Efficient Processor Selection Scheme for Master
Slave Paradigm on Heterogeneous Networks

Tai-Lung Chen Ching-Hsien Hsu

Department of Computer Science and Information Engineering
Chung Hua University, Hsinchu, Taiwan

chh@chu.edu.tw

Abstract. It is well known that grid technology has the ability to achieve resources shared and
tasks scheduled coordinately. In this paper, we present a performance effective pre-scheduling
strategy for dispatching tasks onto heterogeneous processors. The main contribution of this study
is the consideration of heterogeneous communication overheads in grid systems. One significant
improvement of our approach is that average turnaround time could be minimized by selecting
processor has the smallest communication ratio first. The other advantage of the proposed method
is that system throughput can be increased via dispersing processor idle time. Our proposed
technique can be applied to heterogeneous cluster systems as well as computational grid
environments, in which the communication costs vary in different clusters. Experimental results
show that our techniques outperform other previous algorithms in terms of lower average
turnaround time, higher average throughput, less processor idle time and higher processors’
utilization.

1 Introduction

Computational grid system integrates geographically distributed computing resources to establish a virtual and high
expandable parallel computing infrastructure. In recent years, there are several research investigations done in
scheduling problem for heterogeneous grid systems. A centralized computational grid system can be viewed as the
collection of one resource broker (the master processor) and several heterogeneous clusters (slave processors). Therefore,
to investigate task scheduling problem, the master slave paradigm is a good vehicle for developing tasking technologies
in centralized grid system.

The master slave tasking is a simple and widely used technique [1, 2]. In a master slave tasking paradigm, the
master node connects to n slave nodes. A set of independent tasks are dispatched by master processor and be processed
on the n heterogeneous slave processors. Slave processors execute the tasks accordingly after they receive their tasks.
This will restrict that the computation and communication can’t overlap. Moreover, communication between master
and slave nodes is handled through a shared medium (e.g., bus) that can be accessed only in exclusive mode. Namely,
the communications between master and different slave processors can not be overlapped.

In general, the optimization of master slave tasking problem is twofold. One is to minimize total execution time for

a given fix amount of tasks, namely minimize average turnaround time. The other one is to maximize total amount of
finished tasks in a given time period, namely maximize throughput.
In this paper, an efficient strategy for scheduling independent tasks to heterogeneous processors in master slave
environment is presented. The main idea of the proposed technique is first to allocate tasks to processors that present
lower communication ratio, which will be defined in section 3.2. Improvements of our approach towards both average
turnaround time and system throughput.

The remaining of this paper is organized as follows. Section 2 briefly discusses previous related researches, while
in section 3 is introduced the research architecture and definition of notation and terminologies used in this paper,



where we also present a motivating example to demonstrate the characteristics of the master-slave pre-scheduling
model. Section 4 assesses the new scheduling algorithm, the Smallest Communication Ratio (SCE), while the
illustration of SCR on heterogeneous communication is examined in section 5. The performance comparisons and
simulations results are discussed in section 6, and finally in section 7, some conclusions of this paper.

2 Related Work

The task scheduling research on heterogeneous processors can be classified into DAGs model, master-slave paradigm
and computational grids. The main purpose of task scheduling is to achieve high performance computing and high
throughput computing. The former aims at increasing execution efficiency and minimizing the execution time of tasks,
whereas the latter aims at decreasing processor idle time and scheduling a set of independent tasks to increase the
processing capacity of the systems over a long period of time.

Thanalapati et al. [13] brought up the idea about adaptive scheduling scheme based on homogeneous processor
platform, which applies space-sharing and time-sharing to schedule tasks. With the emergence of Grid and ubiquitous
computing, new algorithms are in demand to address new concerns arising to grid environments, such as security,
quality of service and high system throughput. Berman et al. [6] and Cooper et al. [11] addressed the problem of
scheduling incoming applications to available computation resources. Dynamically rescheduling mechanism was
introduced to adaptive computing on the Grid. In [8], some simple heuristics for dynamic matching and scheduling of
a class of independent tasks onto a heterogeneous computing system have been presented. Moreover, an extended
suffrage heuristic was presented in [12] for scheduling the parameter sweep applications that have been implemented
in AppLeS. They also presented a method to predict the computation time for a task/host pair by using previous host
performance.

Chronopoulos et al. [9], Charcranoon et al. [10] and Beaumont et al. [4, 5] introduced the research of master-slave
paradigm with heterogeneous processors background. Based on this architecture, Beaumont et al. [1, 2] presented a
method on master-slave paradigm to forecast the amount of tasks each processor needs to receive in a given period of
time. Beaumont et al. [3] presented the pipelining broadcast method on master-slave platforms, focusing on message
passing disregarding computation time. Intuitionally in their implementation, fast processor receives more tasks in the
proportional distribution policy. Tasks are also prior allocated to faster slave processors and expected higher system
throughput could be obtained.

3 Preliminaries

In this section, we first introduce basic concepts and models of this investigation, where we also define notations
and terminologies that will be used in subsequent subsections.

3.1 Research Architecture

We have revised several characteristics that were introduced by Beaumont et al. [1, 2]. Based on the master
slave paradigm introduced in section 1, this paper follows next assumptions as listed.

° Heterogeneous processors: all processors have different computation speed.

® Identical tasks: all tasks are of equal size.

® Non-preemption: tasks are considered to be atomic.

® Exclusive communication: communications from master node to different slave processors can not be
overlapped.

] Heterogeneous communication: communication costs between master and slave processors are of different
overheads.

3.2 Definitions



First, we list definitions, notations and terminologies used in this research paper.
Definition 1: In a master slave system, master processor is denoted by M and the n slave processors are
represented by P, P,,...,P,, where nis the number of slave processors.

Definition 2: Upon the assumption of identical tasks and heterogeneous processors, the execution time of each
one of slave processors to compute one task are different. We use 77 to represent the execution time of slave
processor P;to complete one task. In this paper, we assume the computation speed of n slave processors is sorted
and 71 < T2 < ... < T

Definition 3: Given a master slave system, the time of slave processor P; to receive one task from master
processor is denoted as T; comm -

Definition 4: A Basic Scheduling Cycle (BSO) is defined as BSC =lem(T, + T,

m is the number of processors that will join the computation.

T,+T, ST +T

2_comm? *** 'm m_comm) ’ Where

_comm?

Definition 5: Given a master slave system, the number of tasks processor Z; needs to receive in a basic scheduling cycle

is defined as task(P) __ BsCc |
YUOT 4T

i i_comm

Definition 6: Given a master slave system, the communication cost of processor P; in BSC is defined as
comm(R) :Ti_comm xtask(R) .

Definition 7: Given a master slave system, the computation cost of processor P in BSC is defined as

comp(P,) =T, xtask(P).

Definition 8: Given a master slave system, the Communication Ratio of processor P; is defined as CR; =

Tiicomm

i _ comm

Definition 9: The computational capacity (8) of a master slave system is defined as the sum of communication

ratio of all processors that joined the computation, i.e., d = Z _mlCR . » where m is the number of processors that
i=

involved in the computation.

Definition 10: Given a master slave system with n heterogeneous slave processors, Pnax 1s the processor Pr such

Kk T k+1 T
that max{k| » —=2""" <1}, where 1< k< n. i.e. =T > 1. We use Puax+1 to represent processor Pis1.
T+T T +T,
i= i + i_comm i=1 i + i_comm

3.3 Master Slave Task Scheduling

Discussions on the problem of task scheduling in master slave paradigm will be addressed in two cases, depending on
the value of system computational capacity (5).

As mentioned in section 2, faster processors receive more tasks is an intuitional approach in which tasks are
previously allocated to these faster processors, and this method is called Most Jobs First (MJF) scheduling
algorithm [1, 2]. Fig. 1 shows the pre-scheduling of the MJF algorithm. As defined in definition 8, the

communication ratio of P to Ps are %, i, l, and %, respectively. Because BSC = 12, we have task(P1)=4,

4 4
task(P)=3, task(Ps)=3 and task(P;)=2. When the number of tasks is numerous, such scheduling achieves higher

system utilization and less processor idle time than the greedy method.
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Fig. 1. Most Jobs First (MJF) task scheduling when &6 <1.

Lemma 1: Given a master slave system with § > 1, in MJF scheduling, the amount of tasks being assigned to

Prax+1 can be calculated by the following equation,
max

L‘HS’]((.Pmmﬁl) = (BSO - ZCOmm(PI)) / Tmax+17com (1)
i=1

Lemma 2: Given a master slave system with § > 1, in MJF scheduling, the period of processor Pmax+1 stays idle

denoted by Ti('j\fgp and can be calculated by the following equation,

Title™ = BSC — comm(Pya,1) = COMP(Prayr) @)

Another example of master slave task scheduling with identical communication G.e., 7% comn=1) and & > 1is
given in Fig. 2. Because & > 1, according to equation (1), we have task(Pmax+1=Pi) = 10. We note that P,
completes its tasks and becomes available at time 100. However, the master processor dispatches tasks to P
during time 100 ~ 110 and starts to send tasks to Ps at time 110. Such kind of idle situation also happens at time
100~110, 160~170, 220~230, and so on.

60 110 160
[T comn @ T:T,=F ,T,T,=080 ,T.= C40] Idetme:

Fig. 2. Most Jobs First (MJF) Tasking when & >1.

Lemma 3: In MJF scheduling algorithm with identical communication 77 comm, when & > 1, the completion time of
tasks in the jit BSC'can be calculated by the following equation.
max
T(BSC) ZZcomm(Pi)+j><(comm(Pmam)+comp(Pmax+1)+Ti§ij) —TiF 3
i=1



4  Smallest Communication Ratio (SCE) Scheduling with Identical Communication

The MJF scheduling algorithm distributes tasks to slave processors according to processors’ speed, namely, faster
processor receives tasks first. In this section, we demonstrate an efficient task scheduling algorithm, Smallest
Communication Ratio (SCR), focuses on master slave task scheduling with identical communication.

Lemma 4: In SCR scheduling algorithm, if 6 < 1 and 7;comm are identical, the task completion time of the jh BSC
denoted by Tiok (BSC j) » can be calculated by the following equation.

T (BSC;) = BSC + jx(comm(R,) +comp(R,)) —comm(P,) (4)

Lemma 5: Given a master slave system with 6 > 1, in scheduling, the amount of tasks being assigned to Pumax+1
can be calculated by the following,

BSC
taSk(PmaX+1) = T T (5)

max+1 T max+1_ comm

Lemma 6: In SCR scheduling algorithm, when ¢ > 1, the idle time of a slave processor is denoted as TiggR and

can be calculated by the following equation,

sC max+1
Tge = Y. comm(R) - BSC (6)

i=1

The other case in Fig. 3 is to demonstrate the SCR scheduling method with dispersive idle when &> 1. We
use the same example in Fig. 2 for the following illustration. Because ¢ > 1, according to definition 10 and
Lemma 5, we have task(Puax+1=P1) = 12. Comparing to the example in Fig. 2, P; stays 10 time units idle in MJF
algorithm while the idle time is reduced and dispersed in SCR algorithm. In SCRE, every processor has 2 units of
time idle and totally 8 units of time idle. Moreover, we observe that the MJF algorithm finishes 60 tasks in 100
units of time, showing a throughput of 0.6. While in SCR, there are 62 tasks completed during 102 time units.
The throughput of SCR is 62/102 (=0.61) > 0.6. Consequently, the SCR algorithm delivers higher system
throughput.

Lemma 7: In SCR scheduling algorithm, if 7} commare identical for all slave processors and § > 1, the task completion
time of the j* BSC denoted by Tfsir?isRh(BSCj) , can be calculated by the following equation,

max+1
Tf?r(]:isRh(BSCj) = Z comm(PR,) +comp(P)+
i-L

(j —1) x (comm(P,) + comp(P,) + T,557) @)
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Fig. 8. Smallest Communication Ratio (SCE) Tasking when &>1.

5 Generalized Smallest Communication Ratio (SCR)

As computational grid integrates geographically distributed computing resources, the communication overheads
from resource broker / master computer to different computing site are different. Therefore, towards an efficient
scheduling algorithm, the heterogeneous communication overheads should be considered. In this section, we
present the SCR task scheduling techniques work on master slave computing paradigm with heterogeneous
communication.

Lemma 8: Given a master slave system with heterogeneous communication and § > 1, in MJF scheduling, we
have

max
BSC - ) comm(P;)
taS.k(Pmax+1) = i=1 (8)
T

max-+1_comm

Lemma 9: Given an SCR scheduling with heterogeneous communication and &> 1, Tje is the idle time of one

slave processor, we have the following equation,

SCR max+1
Tidle = zComm(Pi) - BSC. (9)

i=1

Lemma 10: Given an SCR scheduling with heterogeneous communication and > 1, T;;?(BSCJ-) is the start

time to dispatch tasks in the jfh BSC, we have the following equation,
Taut (BSC;) = (j 1) x (BSC +T;gc") (10)

Lemma 11: Given an SCR scheduling with heterogeneous communication and &> 1, the task completion time of
the j" BSC denoted by Ty, (BSC;), we have

max+1
Tio (BSC) =S comm(R) +comp( P+ (j~1)x (comm(P, ) + comp(P, ) + Tige" an

i=1



where Psis the slave processor with maximum communication cost.

Another example of heterogeneous of communication with § > 1 master slave tasking is shown in Fig. 4(a).
The communication overheads vary from 1 to 5. The computational speeds vary from 3 to 13. In this example,
we have BSC= 48.

In SCR implementation, according to corollary 3, task distribution is task(P:) = 6, task(P:) = 6, task(Ps) = 4
and task(Prax+1) = task(Pi) = 3. The communication costs of slave processors are comm(Py) = 30, comm(P,) = 12,
comm(Ps) = 4 and comm(Py) = 9, respectively. Therefore, the SCR method distributes tasks by the order P, Pi, P,
P1. There are 19 tasks in the first BSC dispatched to P to Pi during time period 1~55. Processor Ps is the first
processor to receive tasks and it finishes at time ¢ = 48 and becomes available. In the meanwhile, processor P
receives tasks during ¢ = 48~55. The second BSC starts to dispatch tasks at £ = 55. Namely, P5 starts to receive
tasks at £ = 55 in the second scheduling cycle. Therefore, Ps has 7 unit of time idle. Lemmas 4 and 5 state the
above phenomenon. The completion time of tasks in the first BSC depends on the finish time of processor Pi. We

have Too (BSC,) =73.

finish

55| |73 128 183
Ti_ comm * Ti_comm™= =1 112 comm™= 2, T3 <x>mm:I ar <x>|nm=-
L =Bl =06, T.=_ 111 T.=[ g3 ] Idle:[J
(a)
[ [ 48 [ 48

46 90 138 186
T =5 'TZ_m|:|rn= 2] ’ TJ wc.-m|=l Ty B

‘ T I _cemm = "1 comm™ 4_comm—
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Fig. 4. Task scheduling on heterogeneous communication environment with §>1. (a) Smallest Communication Ratio (b)
Most Job First (c) Largest communication ratio (LCR).



The MJF scheduling is depicted in Fig. 4(b). According to corollary 5, task(Pnax+1) = task(Ps) = 0, therefore,
P, will not be included in the scheduling. MJF has the task distribution order P, P, Ps. Another scheduling
policy is called Longest Communication Ratio (LCE) which is an opposite approach to the SCR method. Fig. 4(c)
shows the LCR scheduling result which has the dispatch order P, P, P, Ps.

To investigate the performance of SCR scheduling technique, we observe that MJF algorithm completes 16 tasks
in 90 units of time in the first BSC. On the other hand, in SCR scheduling, there are 19 tasks completed in 73
units of time in the first BSC. In LCR, there are 19 tasks completed in 99 units of time. We can see that the
system throughput of SCE (19/73~0.260) > LCR (19/99~0.192) > MJF (16/90~0.178). Moreover, the average
turnaround time of the SCR algorithm in the first three BSCs is 183/57 (%3.2105) which is less than the LCR's
average turnaround time 209/57 (=3.6666) and the MJF's average turnaround time 186/48 (=3.875).

6 Performance Evaluation

To evaluate the performance of the proposed method, we have implemented the SCR and the MJF algorithms. We
compare different criteria, such as average turnaround time, system throughput and processor idle time, in
Heterogeneous Processors with Heterogeneous Communications (HPHO).

Simulation experiments for evaluating average turnaround time are made upon different number of
processors and show in Fig. 7. The computational speed of slave processors is set as 71=3, 75=3, 75=5, T4,=7, T5=11,
and 75=13. For the cases when processor number is 2, 3... 6, we have §<1. When processor number increases to 7,
we have §>1. In either case, the SCR algorithm conduces better average turnaround time. From the above results,
we conclude that the SCR algorithm outperforms MJF for most test samples.
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Fig. 5. Average task turn-around time on different numbers of processors.

Simulation results present the performance comparison of three task scheduling algorithms, SCR, MJF, LCR,
on heterogeneous processors and heterogeneous communication paradigms. Fig. 6 shows the simulation results
for the experiment setting that with +10 processor speed variation and +4 communication speed variation. The

computation speed of slave processors are T1 =3, T,=6, T3=11, and T,=13. The time of a slave processor to
receive one task from master processor are T, cuum =5, Ty comm = 2, T3 comm = 1 and T, un=3. The average task

turnaround time, system throughput and processor idle time are measured.
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Fig. 6. Simulation results for 5 processors with £10 computation speed variation and 4 communication variation when
0 >1 (a) average turnaround time (b) system throughput (c¢) processor idle time.

Fig. 6(a) is the average turnaround time within different number of BSC. The SCR algorithm performs better
than the LCR and MJF method. Similarly, the SCR method has higher throughput than the other two algorithms
as shown in Fig. 6(b). The processor idle time are estimated in Fig. 6(c). The SCR and LCR algorithms have the
same period of processor idle time which is less than the MJF scheduling method. These phenomena match the
theoretical analysis in section 5.

The miscellaneous comparison in Fig. 7 presents the performance comparison of SCE, MJF with more cases.
The simulation results for the experiment setting that with +5~+30 processor speed variation and +5~%30
communication speed variation. The computation speed variation of T,~T,=£5~+30. The communication speed

variation of T, .om ~T =+5~+30. The system throughput is measured.
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Fig. 7. Simulation results of throughput for the range of 5~25 processors with +30 computation speed variation and
+30 communication variation in 100 cases and 100 BSC (a) system throughput of the cases when 0<T, <30 and

0<T <5 (b) system throughput of the cases when 0<T, <5 and O<T, <30.
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Fig. 7(a) is the case of 0<T; <30, 0<T; (yun <5 and the parameter of computation speed and communication

speed are to be random and uniformly distributed within different number of nodes and 100 BSC for 100 cases.
Fig. 7(b) is the case of 0<T; <5 and 0<T, <30. The SCR algorithm performs better than MJF method, and

i_comm =
SCR method has higher throughput than the MJF algorithm as shown in Fig. 7(a) and Fig. 7(b). From the
above experimental tests, we have the following remarks. The proposed SCR scheduling technique has better
task turnaround time and higher system throughput than the MJF algorithm.

From the above experimental tests, we have the following remarks.
® The proposed SCR scheduling technique has higher system throughput than the MJF algorithm.
® The proposed SCR scheduling technique has better task turnaround time than the MJF algorithm.
The SCR scheduling technique has less processor idle time than the MJF algorithm.

7  Conclusions

The problem of resource management and scheduling has been one of main challenges in grid computing. In this paper,
we have presented an efficient algorithm, SCE for heterogeneous processors tasking problem. One significant
improvement of our approach is that average turnaround time could be minimized by selecting processor has the
smallest communication ratio first. The other advantage of the proposed method is that system throughput can be
increased via dispersing processor idle time. Our preliminary analysis and simulation results indicate that the SCR
algorithm outperforms Beaumont’s method in terms of lower average turnaround time, higher average throughput, less
processor idle time and higher processors’ utilization.

There are numbers of research issues that remains in this paper. Our proposed model can be applied to map tasks
onto heterogeneous cluster systems in grid environments, in which the communication costs are various from clusters.
In future, we intend to devote generalized tasking mechanisms for computational grid. We will study realistic
applications and analyze their performance on grid system. Besides, rescheduling of processors / tasks for minimizing
processor idle time on heterogeneous systems is also interesting and will be investigated.

References

1. O. Beaumont, A. Legrand and Y. Robert, “The Master-Slave Paradigm with Heterogeneous Processors,” IEEE Trans. on parallel
and distributed systems, Vol. 14, No.9, pp. 897-908, September 2003.

2. C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand and Y. Robert, ”Scheduling Strategies for Master-Slave Tasking on
Heterogeneous Processor Platforms,” IEEE Trans. on parallel and distributed systems, Vol. 15, No.4, pp.319-330, April 2004.

3. O. Beaumont, A. Legrand and Y. Robert, “Pipelining Broadcasts on Heterogeneous Platforms,” IEEE Trans. on parallel and
distributed systems, Vol. 16, No.4, pp. 300-313 April 2005.

4. O. Beaumont, V. Boudet, A. Petitet, F. Rastello and Y. Robert, “A Proposal for a Heterogeneous Cluster ScaLAPACK (Dense
Linear Solvers),” IEEE Trans. Computers, Vol. 50, No. 10, pp. 1052-1070, Oct. 2001.

10



10.

11

12.

13.

O. Beaumont, V. Boudet, F. Rastello and Y. Robert, “Matrix-Matrix Multiplication on Heterogeneous Platforms,” Proc. Int'l Conf.
Parallel Processing, Vol. 12, No. 10, pp. 1033-1051, Oct. 2001.

F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S.
Smallen, N. Spring, A. Su, and D. Zagorodnov, ”Adaptive Computing on the Grid Using AppLeS,” IEEE Trans. on parallel and
distributed systems, Vol. 14, No. 4, pp.369-379, April 2003.

S. Bataineh, T.Y. Hsiung and T.G. Robertazzi, “Closed Form Solutions for Bus and Tree Networks of Processors Load Sharing a
Divisible Job,” IEEE Trans. Computers, Vol. 43, No. 10, pp. 1184-1196, Oct. 1994.

T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys and B. Yao, “A
taxonomy for describing matching and scheduling heuristics for mixed-machine heterogeneous computing systems,” Proceedings of
the IEEE Workshop on Advances in Parallel and Distributed Systems, pp. 330-335, Oct. 1998.

A.T. Chronopoulos and S. Jagannathan, “A Distributed Discrete-Time Neural Network Architecture for Pattern Allocation and
Control,” Proc. IPDPS Workshop Bioinspired Solutions to Parallel Processing Problems, 2002.

S. Charcranoon, T.G. Robertazzi and S. Luryi, “Optimizing Computing Costs Using Divisible Load Analysis,” IEEE Trans.
Computers, Vol. 49, No. 9, pp. 987-991, Sept. 2000.

K. Cooper, A. Dasgupta, K. Kennedy, C. Koelbel, A. Mandal, G. Marin, M. Mazina, J. Mellor-Crummey, F. Berman, H. Casanova,
A. Chien, H. Dail, X. Liu, A. Olugbile, O. Sievert, H. Xia, L. Johnsson, B. Liu, M. Patel, D. Reed, W. Deng, C. Mendes, Z. Shi, A.
YarKhan, J. Dongarra, "New Grid Scheduling and Rescheduling Methods in the GrADS Project,” Proceedings of the 18"
International Parallel and Distributed Processing Symposium (IPDPS’04), pp.209-229, April 2004.

H. Casanova, A. Legrand, D. Zagorodnov and F. Berman, “Heuristics for Scheduling Parameter Sweep applications in Grid
environments,” Proceedings of the 9th Heterogeneous Computing workshop (HCW'2000), pp. 349-363, 2000.

T. Thanalapati and S. Dandamudi, ”"An Efficient Adaptive Scheduling Scheme for Distributed Memory Multicomputers,” IEEE

Trans. on parallel and distributed systems, Vol. 12, No. 7, pp.758-767, July 2001.

11



FrRlafT LM A R RIS 2 R

EREE: 96 F 6 F] 20 I

e

AR [RAB M LY EAF BETHE 03-5186410
[ chh@chu.edu.tw

7
62 # 2 " 23 p B H s

% 12007 International Conference on Algorithms and Architecture for Parallel

Processing, June 11 -14 2007.

“IHangzhou, China N Bl p 96 # 06 * 11 p

Hy Al iz 96 = 06 * 19 p

Yk

#

&

o A AR EOREERF I ERE TR o 5o AT I ARG E
H-y#9 3R T o - X & 3 4F - 3 invited session cihC B A o B p ey
B I F AT ERARYERI DB o F - X4 KB Dr
Byeongho Kang 3 B ** Web Information Management ## @ gz o % = % 3%
S ERGF T A RN LA BT EFNE I RFH T E o A AER
Architecture and Infrastructure ~ Grid computing ~ ©2 2 P2P computing #p i 3%
ﬁ%%ﬁ%oﬁpikﬁ&ﬁﬁg,ﬁpﬁggwﬂgﬁgﬂ@\éﬁﬁﬁ
THILAL LT A o 2% AL A = KB Data and Information
Management a2 F > FRFIELF 5 3T@A 00 7 A48 > &7 29 B B¢
S FPEEFARTFEY e o T 0 R IEERL - X ol € 8 R i
FHRREE PAFH BT R o 2 X T Rk AT F LIRS aA
2 A o BT Y AT E %Ea" ZF MR RSB 1 ITRE - e
EoRRETHEEN: BARRESHAM O] I o MR OREE I
%**?ﬁrﬁjmﬁh’ﬁA—Eﬁﬁw@Qﬁm‘iﬁuﬁfﬂ@%J
BATENPLATE T o § - 2L A # B T € o S A DR F e
HER BX LS o RIACARIFIRNF AP EE R L E LA
Errgrz dgn o R A A H W edke e W E AT AN 51 R
PR R RN R R BRIFHE B MR 0 ERITEEDE TN
SR R o PR e g R E GBS RS @A PEY -

T

pﬂw@&:

12




(1R ICA3PP-07T =3 € “18 2 28 <)

A Generalized Critical Task Anticipation Technique for DAG
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Abstract. The problem of scheduling a weighted directed acyclic graph
(DAG) representing an application to a set of heterogeneous processors to
minimize the completion time has been recently studied. The
NP-completeness of the problem has instigated researchers to propose different
heuristic algorithms. In this paper, we present a Generalized Critical-task
Anticipation (GCA) algorithm for DAG scheduling in heterogeneous
computing environment. The GCA scheduling algorithm employs task
prioritizing technique based on CA algorithm and introduces a new processor
selection scheme by considering heterogeneous communication costs among
processors for adapting grid and scalable computing. To evaluate the
performance of the proposed technique, we have developed a simulator that
contains a parametric graph generator for generating weighted directed acyclic
graphs with various characteristics. ~We have implemented the GCA
algorithm along with the CA and HEFT scheduling algorithms on the simulator.
The GCA algorithm is shown to be effective in terms of speedup and low
scheduling costs.

1. Introduction

The purpose of heterogeneous computing system is to drive processors
cooperation to get the application done quickly. Because of diverse quality among
processors or some special requirements, like exclusive function, memory access speed,
or the customize 1/O devices, etc.; tasks might have distinct execution time on
different resources. Therefore, efficient task scheduling is important for achieving
good performance in heterogeneous systems.

The primary scheduling methods can be classified into three categories, dynamic
scheduling, static scheduling and hybrid scheduling according to the time at which the
scheduling decision is made. In dynamic approach, the system performs
redistribution of tasks between processors during run-time, expect to balance
computational load, and reduce processor’s idle time. On the contrary, in static

13



approach, information of applications, such as tasks execution time, message size of
communications among tasks, and tasks dependences are known a priori at
compile-time; tasks are assigned to processors accordingly in order to minimize the
entire application completion time and satisfy the precedence of tasks. Hybrid
scheduling techniques are mix of dynamic and static methods, where some
preprocessing is done statically to guide the dynamic scheduler [8].

A Direct Acyclic Graph (DAG) [2] is usually used for modeling parallel
applications that consists a number of tasks. The nodes of DAG correspond to tasks
and the edges of which indicate the precedence constraints between tasks. In
addition, the weight of an edge represents communication cost between tasks. Each
node is given a computation cost to be performed on a processor and is represented by
a computation costs matrix. Figure 1 shows an example of the model of DAG
scheduling. In Figure 1(a), it is assumed that task n; is a successor (predecessor) of
task n; if there exists an edge from n; to n; (from n; to n;) in the graph. Upon task
precedence constraint, only if the predecessor n; completes its execution and then its
successor n; receives the messages from n;, the successor n; can start its execution.
Figure 1(b) demonstrates different computation costs of task that performed on
heterogeneous processors. It is also assumed that tasks can be executed only on
single processor with non-preemptable style. A simple fully connected processor
network with asymmetrical data transfer rate is shown in Figures 1(c) and 1(d).
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Figure 1: An example of DAG scheduling problem (a) Directed Acyclic Graph (DAG-1) (b)
computation cost matrix (W) (c) processor topology (d) communication weight.

The scheduling problem has been widely studied in heterogeneous systems where
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the computational ability of processors is different and the processors communicate
over an underlying network. Many researches have been proposed in the literature.
The scheduling problem has been shown to be NP-complete [3] in general cases as
well as in several restricted cases; so the desire of optimal scheduling shall lead to
higher scheduling overhead. The negative result motivates the requirement for
heuristic approaches to solve the scheduling problem. A comprehensive survey about
static scheduling algorithms is given in [9]. The authors of have shown that the
heuristic-based algorithms can be classified into a variety of categories, such as
clustering algorithms, duplication-based algorithms, and list-scheduling algorithms.
Due to page limitation, we omit the description for related works.

In this paper, we present a Generalized Critical task Anticipation (GCA) algorithm,
which is an approach of list scheduling for DAG task scheduling problem. The main
contribution of this paper is proposing a novel heuristic for DAG scheduling on
heterogeneous machines and networks. A significant improvement is that
inter-processor communication costs are considered into processor selection phase
such that tasks can be mapped to more suitable processors. The GCA heuristic is
compared favorable with previous CA [5] and HEFT heuristics in terms of schedule
length and speedup under different parameters.

The rest of this paper is organized as follows: Section 2 provides some
background, describes preliminaries regarding heterogeneous scheduling system in
DAG model and formalizes the research problem. Section 3 defines notations and
terminologies used in this paper. Section 4 forms the main body of the paper,
presents the Generalized Critical task Anticipation (GCA) scheduling algorithm and
illustrating it with an example. Section 5 discusses performance of the proposed
heuristic and its simulation results.  Finally, Section 6 briefly concludes this paper.

2. DAG Scheduling on Heterogeneous Systems

The DAG scheduling problem studied in this paper is formalized as follows. Given a
parallel application represented by a DAG, in which nodes represent tasks and edges
represent dependence between these tasks. The target computing architecture of DAG
scheduling problem is a set of heterogeneous processors, M = {P,: k = 1: P} and P = |M|,
communicate over an underlying network which is assumed fully connected. We have

the following assumptions:

® Inter-processor communications are performed without network contention between
arbitrary processors.

® Computation of tasks is in non-preemptive style. Namely, once a task is assigned to
a processor and starts its execution, it will not be interrupted until its completion.

® Computation and communication can be worked simultaneously because of the
separated 1/0.

® If two tasks are assigned to the same processor, the communication cost between the
two tasks can be discarded.

® A processor is assumed to send the computational results of tasks to their immediate
successor as soon as it completes the computation.

Given a DAG scheduling system, W is an n x P matrix in which w;; indicates
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estimated computation time of processor P; to execute task n;.  The mean execution time

of task n; can be calculated by the following equation:
J— P W .
_ 1)
W; = z “p 1)

Example of the mean execution time can be referred to Figure 1(b).

For communication part, a P x P matrix T is structured to represent different
data transfer rate among processors (Figure 1(d) demonstrates the example). The
communication cost of transferring data from task n; (execute on processor p,) to task
n; (execute on processor py) is denoted by c;; and can be calculated by the following
equation,

Ci,j :Vm+MSgi,j XtX,y’ (2)

Where:

V,, is the communication latency of processor P,,,

Msg;; is the size of message from task n; to task n;,

t.y is data transfer rate from processor p, to processor p,, 1< x, y <P.

In static DAG scheduling problem, it was usually to consider processors’
latency together with its data transfer rate. Therefore, equation (2) can be
simplified as follows,

Ci,j = Msgj j <ty y, (3)

Given an application represented by Directed Acyclic Graph (DAG), G = (V, E),
where V = {n;: j = 1: v} is the set of nodes and v = |V|; E = {e;; = <n;, nj>} is the set
of communication edges and e =|E|. In this model, each node indicates least
indivisible task. Namely, each node must be executed on a processor from the start
to its completion. Edge <n;, n;> denotes precedence of tasks n; and n;. In other
words, task n; is the immediate predecessor of task n; and task n; is the immediate
successor of task n;. Such precedence represents that task n; can be start for
execution only upon the completion of task ni. Meanwhile, task n; should receive
essential message from n; for its execution. Weight of edge <n;, n; > indicates the
average communication cost between n; and n;.

Node without any inward edge is called entry node, denoted by Nenry; While node
without any outward edge is called exit node, denoted by n. In general, it is supposed
that the application has only one entry node and one exit node. If the actual application
claims more than one entry (exit) node, we can insert a dummy entry (exit) node with
zero-cost edge.

3. Preliminaries

This study concentrates on list scheduling approaches in DAG model.  List
scheduling was usually distinguished into list phase and processor selection phase.
Therefore, priori to discuss the main content, we first define some notations and
terminologies used in both phases in this section.

3.1 Parameters for List Phase
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Definition 1: Given a DAG scheduling system on G = (V, E), the Critical Score of task
n; denoted by CS(n;) is an accumulative value that are computed recursively traverses
along the graph upward, starting from the exit node. CS(n;) is computed by the
following equations,

Wit if n; is the exit ndoe (i.e. n; =n.;) (4)
CS(m) = w, + Ma)(( )(; +CS(n;)) otherwise
njesuc (n
where w,,;, is the average computation cost of task ne, w, is the average computation

cost of task n;, suc(n;) is the set of immediate successors of task n;,
C;; Isthe average communication cost of edge <n;, n;> which is defined as follows,
Msg jx Dt

[ (PZ ig;:()y;gp , (5)

o
|

3.2 Parameters for Processor Selection Phase

Most algorithms in processor selection phase employ a partial schedule scheme to
minimize overall schedule length of an application. To achieve the partial
optimization, an intuitional method is to evaluate the finish time (FT) of task n;
executed on different processors. According to the calculated results, one can select
the processor who has minimum finish time as target processor to execute the task n;.
In such approach, each processor P, will maintain a list of tasks, task-list(P,), keeps
the latest status of tasks correspond to the EFT(n;, Py), the earliest finish time of task n;
that is assigned on processor P,.

Recall having been mentioned above that the application represented by DAG
must satisfy the precedence relationship. Taking into account the precedence of tasks
in DAG, a task n; can start to execute on a processor P, only if its all immediate
predecessors send the essential messages to n; and n; successful receives all these
messages. Thus, the latest message arrive time of node n; on processor Py, denoted
by LMAT(n;, Py), is calculated by the following equation,

LMAT(nj,Pk): Ma (EFT(ni)+ C,, . for task n; executed on processor P,) (6)

njepred nj)
where pred(n;) is the set of immediate predecessors of task n;. Note that if tasks n;
and n; are assigned to the same processor, ¢, , is assumed to be zero because it is

negligible.
Because the entry task nenyy has no inward edge, thus we have
LMAT (. P )= 0 )

entry !
forallk=1to P

Definition 2: Given a DAG scheduling system on G = (V, E), the Start Time of task n;
executed on processor Py is denoted as ST(n;, Py).

Estimating task’s start time (for example, task n;) will facilitate search of available
time slot on target processors that is large enough to execute that task (i.e., length of
time slot > w;j,). Note that the search of available time slot is started from
LMAT (n;,P, )-

Definition 3: Given a DAG scheduling system on G = (V, E), the finish time of task n;
denoted by FT(n;,R), represents the completion time of task n; executed on processor
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Pe.  FT(n;,R,) isdefined as follows,
FT(n,,R)=ST(n,,P)+Ww,, (®)

Definition 4: Given a DAG scheduling system on G = (V, E), the earliest finish time of
task n; denoted by EFT(n,) is formulated as follows,

EFT(n,) = Min{FT(n,R)} ©)
Py €
Definition 5: Based on the determination of EFT(n;) in equation (9), if the earliest finish

time of task n; is obtained upon task n; executed on processor p;, then the target processor of
task n; is denoted by TP(n;), and TP(n;) = p..

4. The Generalized Critical-task Anticipation Scheduling Algorithm

Our approach takes advantages of list scheduling in lower algorithmic complexity and
superior scheduling performance and furthermore came up with a novel heuristic
algorithm, the generalized critical task anticipation (GCA) scheduling algorithm to
improve the schedule length as well as speedup of applications. The proposed
scheduling algorithm will be verified beneficial for the readers while we delineate a
sequence of the algorithm and show some example scenarios in three phases,
prioritizing phase, listing phase and processor selection phase.

In prioritizing phase, the CS(n;) is known as the maximal summation of scores
including the average computation cost and communication cost from task n; to the
exit task. Therefore, the magnitude of the task’s critical score is regarded as the
decisive factor when determining the priority of a task. In listing phase, an ordered
list of tasks should be determined for the subsequent phase of processor selection. The
proposed GCA scheduling technique arranges tasks into a list L, not only according to
critical scores but also considers tasks’ importance.

Several observations bring the idea of GCA scheduling method. Because of
processor heterogeneity, there exist variations in execution cost from processor to
processor for same task. In such circumstance, tasks with larger computational cost
should be assigned higher priority. This observation aids some critical tasks to be
executed earlier and enhances probability of tasks reduce its finish time. Furthermore,
each task has to receive the essential messages from its immediate predecessors. In
other words, a task will be in waiting state when it does not collect complete message
yet. For this reason, we emphasize the importance of the last arrival message such
that the succeeding task can start its execution earlier. Therefore, it is imperative to
give the predecessor who sends the last arrival message higher priority. This can aid
the succeeding task to get chance to advance the start time. On the other hand, if a
task n; is inserted into the front of a scheduling list, it occupies vantage position.
Namely, n; has higher probability to accelerate its execution and consequently the start
time of suc(n;) can be advanced as well.

In most list scheduling approaches, it was usually to demonstrate the algorithms
in two phases, the list phase and the processor selection phase. The list phase of
proposed GCA scheduling algorithm consists of two steps, the CS (critical score)
calculation step and task prioritization step.

Let’s take examples for the demonstration of CS calculation, which is performed
in level order and started from the deepest level, i.e., the level of exit task. For

example, according to equation (4), we have CS(nj)= Wy = 16. For the upper
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level tasks, n;, ng and ng, CS(n;) = W_7+(C7'10 +CS(Mg)) = 47.12, CS(ng) =

W_8+(C8,10 +CS(n10)) =37.83, CS(ng) = W_9+(C9,10 +CS(n10)) =49.23. The other

tasks can be calculated by the same methods. Table 1 shows complete calculated
critical scores of all tasks for DAG-1.

Table 1: Critical Scores of tasks in DAG-1 using GCA algorithm
Critical Scores of tasks in GCA algorithm

M 1”) N3 Ny Ns Ng nz Ng Ng Nio
12013 | 8483| 8867| 8945| 7628| 7025| 4712| 37.83| 4923| 16.00

Follows the critical score calculation, the GCA scheduling method considers both
tasks’ importance (i.e., critical score) and its relative urgency for prioritizing tasks.
Based on the results obtained previously, we use the same example to demonstrate task
prioritization in GCA. Let’s start at the exit task n;o, which has the lowest critical
score. Assume that tasks will be arranged into an ordered list L, therefore, we have L
= {nyo} initially. Because task nj, has three immediate predecessors, with the order
CS(ng) > CS(n;) > CS(ng), the list L will be updated to L={ng, n;, ng, nyg}. Applying
the same prioritizing method by taking the front element of L, task ng; because task ng
has three immediate predecessors, with the order CS(ng) > CS(n,) > CS(ns), we have
the updated list L = { n4, Ny, ns, Ny, N7, Ng, Nyg}. Taking the same operations, insert
task n; in front of task n,, insert task n; in front of task n;, insert tasks ns Ny, ng
(because CS(ng) > CS(ny) > CS(ng)) in front of task ng; we have the list L = { ny, ny, n,,
Ns, Ng, N3, N7, Ng, N4, Ny, Ng, Ng, Nyo}.  The final list L = {ny, ny4, ny, N5, Ng, N3, N7, Ng, Ng,
nio} can be derived by removing duplicated tasks.

In listing phases, the GCA scheduling algorithm proposes two enhancements from
the majority of literatures. First, GCA scheduling technique considers various
transmission costs of messages among processors into the calculation of critical scores.
Second, the GCA algorithm prioritizes tasks according to the influence on its
successors and devotes to lead an accelerated chain while other techniques simply
schedule high critical score tasks with higher priority. In other words, the GCA
algorithm is not only prioritizing tasks by its importance but also by the urgency
among task. The prioritizing scheme of GCA scheduling technique can be
accomplished by using simple stack operations, push and pop, which are outlined in
GCA_List_Phase procedure as follows.

Begin_GCA_List_Phase
. Initially, construct an array of Boolean QV and a stack S.
QV[n;] = false, V nje V.
Push neit on top of S.
While S is not empty do
Peek task n;on the top of S;
If( all QV[n;] are true, for all n; € pred(n;) or task nj is Nentry)  {
Pop task n; from top of S and put n; into scheduling list L;
QV[ nj] =true; }
Else  /* search the CT(n;) */
0. For each task n;j, where n; € pred(n;) do
1 1f(QV[ni] = false)

HBoOo~NooG~wWN =
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12. Put CS(n;) into container C;

13. Endif

14. Push tasks pred(n;) from C into S by non-decreasing order according to their
critical scores;

15. Reset C to empty;

16. /* if there are 2+ tasks with same CS(n;), task n; is randomly pushed into S.

17.  EndWhile
End GCA List Phase

In processor-selection phase, tasks will be deployed from list L that obtained in
listing phase to suitable processor in FIFO manner. According to the ordered list L =
{n1, ng, Nz, Ns, Ng, N3, N7, Ng, Ng, N1}, We have the complete calculated EFTs of tasks in
DAG-1 and the schedule results of GCA algorithm are listed in Table 2 and Figure 2(a),
respectively.

Table 2: Earliest Finish Time of tasks in DAG-1 using GCA algorithm

Earliest Finish Time of tasks in GCA algorithm

ny n, ns Ny ns Ng ny Ng Ng N1o
9 27 42 19.7 32.7 47.6 53 65.7 54.7 84.7
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Figure 2: Schedule results of three algorithms on DAG-1 (a) GCA (makespan = 84.7) (b) CA
(makespan = 92.4) (c) HEFT (makespan = 108.2).

In order to profile significance of the GCA scheduling technique, the schedule
results of other algorithms, CA and HEFT are depicted in Figure 2(b) and 2(c),
respectively. The GCA scheduling techniques incorporates the consideration of
heterogeneous communication costs among processors in processor selection phase.
Such enhancement facilitates the selection of best candidate of processors to execute
specific tasks.

5. Performance Evaluation
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5.1 Random Graph Generator

We implemented a Random Graph Generator (RGG) to simulate application graphs

with various characteristics. RGG uses the following input parameters to produce

diverse graphs.

®  Weight of graph (weight), which is a constant = {32, 128, 512, 1024}.

® Number of tasks in the graph (n), where n = {20, 40, 60, 80, 100}.

®  Graph parallelism (p), the graph parallelism determines shape of a graph. p is
assigned for 0.5, 1.0 and 2.0. The level of graph is defined as |_W/ pJ. For

example, graph with p = 2.0 has higher parallelism than graph with p = 1.0.
® Out degree of a task (d), where d = {1, 2, 3, 4, 5}. The out degree of a task
indicates relationship with other tasks, the larger degree of a task the higher task
dependence.
® Heterogeneity (h), determines computational cost of task n; executed on processor
Pk i.e., w;y, which is randomly generated by the following formula.

WiX[l—%jswi‘k SWiX(1+%j. (10)

RGG randomizes w; from the interval [1, weight]. Note that larger value of
weight represents the estimation is with higher precision. In our simulation, h was
assigned by 0.1, 0.25, 0.5, 0.75 and 1.0.
® Communication to Computation Ratio (CCR), where CCR = {0.1, 0.5, 1, 2, 10}.

5.2 Comparison Metrics

As mentioned earlier, the objective of DAG scheduling problem is to minimize the
completion time of an application. To verify the performance of a scheduling
algorithm, several comparative metrics are given below for comparison:
® Makespan, also known as schedule length, which is defined as follows,

Makespan = max(EFT (Ngyit)) (11)
® Speedup, defined as following equation,

mine .y {ane\/ W}

makespan
The numerator is the minimal accumulated sum of computation cost of tasks
which are assigned on one processor. Equation (12) represents the ratio of sequential
execution time to parallel execution time.
® Percentage of Quality of Schedules (PQS)
The percentage of the GCA algorithm produces better, equal and worse quality of
schedules compared to other algorithms.

Speedup = , Where M is the set of processors (12)

5.3 Simulation Results
The first evaluation aims to demonstrate the merit of the GCA algorithm by showing
quality of schedules using RGG. Simulation results were obtained upon different
parameters with totally 1875 DAGs. Figure 3 reports the comparison by setting
different weight = {32, 128, 512, 1024}. The term “Better” represents percentage of
testing samples the GCA algorithm outperforms the CA algorithm. The term “Equal”
represents both algorithm have same makespan in a given DAG. The tem “Worse”
represents opposite results to the “Better” cases. Figure 4 gives the PQS results by
setting different number of processors. Overall, the GCA scheduling algorithm
presents superior performance for 65% test samples.

Speedup of the GCA, CA and HEFT algorithms to execute 1875 DAGs with fix
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processor number (P=16) under different number of task (n) are shown in Figure 5.
The speedup of these algorithms show placid when number of task is small and
increased significantly when number of tasks becomes large.

algorithm has better speedup than the other two algorithms.

In general, the GCA
Improvement rate of the

GCA algorithm in terms of average speedup is about 7% to the CA algorithm and 34%
to the HEFT algorithm. The improvement rate (IRgca) is estimated by the following

equation:
IRgca = > Speedup(GCA) — > Speedup(HEFT or CA)
Y Speedup(HEFT or CA)
gight | 33 128 512 1024
Better | 65.33% | 61.13% | 67.07% | 67.47%
Equal | 34.40% | 38.87% | 32.93% | 32.53%

Worse 0.27%

0%

0% 0%

Figure 3: PQS: GCA compared with CA (3 processors)
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Figure 4: PQS: GCA compared with CA (weight = 128)
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Figure 5: Speedup of GCA, CA and HEFT with different number of tasks (n).
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Figure 6: Speedup of GCA, CA and HEFT with different out-degree of tasks (d)
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Speedup of the GCA, CA and HEFT algorithms to execute different DAGs with fix processor number (P=16) and
task number (n=60) under different out-degree of tasks (d) are shown in Figure 6. The results of Figure 6 demonstrate
the speedup influence by task dependence. We observe that speedups of scheduling algorithms are less dependent on
tasks’ dependence. Although the speedups of three algorithms are stable, the GCA algorithm outperforms the other two
algorithms in most cases. Improvement rate of the GCA algorithm in terms of average speedup is about 5% to the CA
algorithm and 80% to the HEFT algorithm.

Figure 7 shows simulation results of three algorithms upon different processor number and degree of parallelization.
It is noticed that, graphs with larger value of p tends to with higher parallelism. As shown in Figures 7(a) and (b), the
GCA algorithm performs well in linear graphs (p=0.5) and general graphs (p=1.0). On the contrary, Figure 7(c) shows
that the HEFT scheduling algorithm has superior performance when degree of parallelism is high. In general, for
graphs with low parallelism (e.g., p = 0.5), the GCA algorithm has 33% improvement rate in terms of average speedup
compare to the HEFT algorithm; for graphs with normal parallelism (e.g., p = 1), the GCA algorithm has 20%
improvement rate.  For graphs with high parallelism (e.g., p = 2), the GCA algorithm performs worse than the HEFT by
3% performance.

Speedup of the GCA, CA and HEFT algorithms to execute different DAGs with fix processor number (P=16) and
task number (n=60) under different out-degree of tasks (d) are shown in Figure 6. The results of Figure 6 demonstrate
the speedup influence by task dependence. We observe that speedups of scheduling algorithms are less dependent on
tasks’ dependence. Although the speedups of three algorithms are stable, the GCA algorithm outperforms the other two
algorithms in most cases. Improvement rate of the GCA algorithm in terms of average speedup is about 5% to the CA
algorithm and 80% to the HEFT algorithm.

]

(@) (b) (©
Figure 7: Speedup with different degree of parallelism (p) (@) p=05(()p=1(c)p=2.

The impact of communication overheads on speedup are plotted in Figure 8 by setting different value of CCR. It is
noticed that increase of CCR will downgrade the speedup we can obtained. For example, speedup offered by CCR =
0.1 has maximal value 8.3 in GCA with 12 processors; for CCR = 1.0, the GCA algorithm has maximal speedup 6.1
when processor number is 12; and the same algorithm, GCA, has maximal speedup 3.1 for CCR = 5 with 12 processors.
This is due to the fact that when communication overheads higher than computational overheads, costs for tasks
migration will offset the benefit of moving tasks to faster processors.

(@) (b) (©
Figure 8: Speedup results with different CCR (a) CCR=0.5 (b)) CCR =1 (c) CCR =5.

6. Conclusions

The problem of scheduling a weighted directed acyclic graph (DAG) to a set of heterogeneous processors to
minimize the completion time has been recently studied. Several techniques have been presented in the literature to
improve performance. This paper presented a general Critical-task Anticipation (GCA) algorithm for DAG scheduling
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system. The GCA scheduling algorithm employs task prioritizing technique based on CA algorithm and introduces a
new processor selection scheme by considering heterogeneous communication costs among processors. GCA
scheduling algorithm is a list scheduling approach with simple data structure and profitable for grid and scalable
computing. Experimental results show that GCA has superior performance compare to the well known HEFT
scheduling heuristic algorithm and our previous proposed CA algorithm which did not incorporate the consideration of
heterogeneous communication costs into processor selection phase. Experimental results show that GCA is equal or
superior to HEFT and CA scheduling algorithms in most cases and it enhances to fit more real grid system.

Acknowledgements

This paper is based upon work supported by National Science Council (NSC), Taiwan, under grants no.
NSC95-2213-E-216-006. Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the NSC.

References

[1] R. Bajaj and D. P. Agrawal, “Improving Scheduling of Tasks in a Heterogeneous Environment,” IEEE Trans. on PDS, vol. 15,
no. 2, pp. 107-118, 2004.

[2] S. Behrooz, M. Wang, and G. Pathak, “Analysis and Evaluation of Heuristic Methods for Static Task Scheduling,” Jounal of
Parallel and Distributed Computing, vol. 10, pp. 222-232, 1990.

[3] M.R Gary and D.S. Johnson, “Computers and Interactability: A guide to the Theory of NP-Completeness”, W.H. Freeman and
Co., 1979.

[4] T. Hagras and J. Janecek,” A High Performance, Low Complexity Algorithm for Compile-Time Task Scheduling in
Heterogeneous Systems,” Parallel Computing, vol. 31, Issue 7, pp. 653-670, 2005.

[5] Ching-Hsieh Hsu and Ming-Yuan Weng, “An Improving Critical-Task Anticipation Scheduling Algorithm for Heterogeneous
Computing Systems”, Proceedings of the Eleventh Asia-Pacific Computer Systems Architecture Conference, LNCS 4186, pp.
97-110, 2006.

[6] E. llavarasan P. Thambidurai and R. Mahilmannan, “Performance Effective Task Scheduling Algorithm for Heterogeneous
Computing System,” IEEE Proceedings of IPDPS, pp. 28-38, 2005.

[7]1 S. Ranaweera and D. P. Agrawal, “A Task Duplication Based Scheduling Algorithm for Heterogeneous Systems,” IEEE
Proceedings of IPDPS, pp. 445-450, 2000.

[8] Rizos Sakellariou and Henan Zhao, “A Hybrid Heuristic for DAG Scheduling on Heterogeneous Systems”, Proc. of the IEEE
IPDPS Workshop 1, pp. 111b, 2004.

[91 H. Topcuoglu, S. Hariri and W. Min-You, “Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous
Computing,” IEEE Transactions on PDS, vol.13, no. 3, pp. 260-274, 2002.

25



\

i

R T T R R

EREE : 97 & 4 5] 20 |
. tFRT O Rar s M op A0 E2 8 (%2 | 03-5186410

Faik |TFE4 chh@chu.edu.tw
o4 p ] 62 F 2 7 23 P B e EAE
R R g # [The 22nd International Conference on Advanced Information Networking and
z, i Applications (AINA-08), March 25 -28 2008.
I & K FJOkinawa, Japan ul Bl p 97 & 03 % 25 P
3 2 2 2y Bl iz 97 & 03 * 28 P
nERE

AR ERER (T EFUN)
AINA-08 & 4§ #EW’MAE&%— B2 AR g o iE- S 2 AINAO8S T3 4
ML A& L A G FRF AT L A EE S D oo gth sy Bir ) B
B ARG W e

CHPE2RE (FFUR)

- :zf‘w"iAlNAO8f P A A R - P RIERATE L F R S A
o S RN F RS g0 F o R L EE e e RN B R
fof AR L S ﬁ$%’nwkvu%?wk R AL B e B
T fAAPDFALFE o

| iE

i— = & OKinawa #7# {7 hp"% § fier7 5 § sk £ 352 % » % - % 4_ Workshop
Programe % = % »d Dr. Michel Raynal % {2 % :#> “Synchronization is Coming Back,
But is it the Same?” T 5 F73t g e dp - RRF AT BT Fendh=x > £ 5 P T =&
7o h A XAEFBATIFE ARAL o B P X B BER TR E c ) AL R
“ﬁﬁ’ifﬁﬁﬁﬁﬂﬁﬁiﬂﬁ‘é%%ﬁiﬁ%%’@%?ﬁo%i%’%
2w # 4 _d Dr. Shigeki Yamada 4% “Cyber Science Infrastructure (CSI) for
Promoting Research Activities of Academia and Industries in Japan™# # if#.o & £ 5 %

26




(%]

BOFZ X 2NN gAML BT > A EXPIE DTN BEFEREG o &
%—%’%&*kﬁi%pm%f’lfﬁalé—iﬁﬁé°%Af$%%GMD
wwpf R r%ﬁ&inﬁ’jﬁzpfmﬂ%iﬁﬁilzmp
ERC RN G ﬁf’sw" X s g 'VE’W’P zEeie - C R I SR TE ST 'Fué‘flr’ﬂ'r/?
Fzmwaom%Ti AAF SRS AR %aoébpx Tl E P AL
gﬁ.ﬁﬁ& ﬁm-%w*\(mm\?ﬁ&uaga S S G S
B =X %‘flﬁfjp‘}gpi}’v ﬁfrﬁ'g—%}zﬁj&‘h’ig_'ﬂé& —~E"[§g\=§:mk"1jﬁn
it 59 ff»’i'JJ?ﬂ FBRATORGESE T o A - 2Ly A F g e

w8

bk X REERFHER R L LS MR A RWIF L W LT g
S RS SRR SEE S RE LN IR TR L L Lt

RALo 57 RS & %02 fT 3K BAwHE B0 ARG §RITERD
EH UG R E  PRE A & RFREFRIRAS  EEAPEY .

N 3R
ZRE B

IR B G P FARKAET (AINAOB §5 §A) 0 £ ERLLIRF A
LA gkl R TR f&{%’ ‘@% P ERAMAT K o FMPE FEREDER
= g*#kmgb@—u % B ﬁl_)ﬁ % > ‘F’K#B’é‘ A s FF g ;i;%ff#c,« RE-VS

s
B

ks
=
=

3/25
3/26
3/27
3/28

CRE RN
1B 7 A

% Okinawa = #%34 € 47 7| » %22 AINA-08 Workshop Progra,
2P EEEE

>PSEFEEE

2P RBEE R BBEY 5

27



Towards Improving QoS-Guided Scheduling in Grids

Ching-Hsien Hsu®, Justin Zhan? Wai-Chi Fang®and Jianhua Ma*

'Department of Computer Science and Information Engineering, Chung Hua University, Taiwan
chh@chu.edu.tw

Heinz School, Carnegie Mellon University, USA
justinzh@andrew.cmu.edu

*Department of Electronics Engineering, National Chiao Tung University, Taiwan
wfang@mail.nctu.edu.tw

“Digital Media Department, Hosei University, Japan
jianhua@hosei.ac.jp

Abstract

With the emergence of grid technologies, the
problem of scheduling tasks in heterogeneous systems has
been arousing attention. In this paper, we present two
optimization schemes, Makespan Optimization
Rescheduling (MOR) and Resource Optimization
Rescheduling (ROR), which are based on the QoS
Min-Min scheduling technique, for reducing the
makespan of a schedule and the need of total resource
amount. The main idea of the proposed techniques is to
reduce overall execution time without increasing resource
need; or reduce resource need without increasing overall
execution time. To evaluate the effectiveness of the
proposed techniques, we have implemented both
techniques along with the QoS Min-Min scheduling
algorithm. The experimental results show that the MOR
and ROR optimization schemes provide noticeable
improvements.

1. Introduction

With the emergence of IT technologies,
the need of computing and storage are rapidly
increased. To invest more and more
equipments is not an economic method for an
organization to satisfy the even growing
computational and storage need. As a result,
grid has become a widely accepted paradigm
for high performance computing.

To realize the concept virtual organization,
in [13], the grid is also defined as “A type of
parallel and distributed system that enables the
sharing, selection, and aggregation of
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geographically distributed autonomous and
heterogeneous  resources dynamically at
runtime depending on their availability,
capability, performance, cost, and users'
quality-of-service requirements”. As the grid
system aims to satisfy users’ requirements with
limit resources, scheduling grid resources plays
an important factor to improve the overall
performance of a grid.

In general, grid scheduling can be
classified in two categories: the performance
guided schedulers and the economy guided
schedulers [16]. Objective of the performance
guided scheduling is to minimize turnaround
time (or makespan) of grid applications. On the
other hand, in economy guided scheduling, to
minimize the cost of resource is the main
objective. However, both of the scheduling
problems are NP-complete, which has also
instigated many heuristic solutions [1, 6, 10, 14]
to resolve. As mentioned in [23], a complete
grid  scheduling  framework  comprises
application model, resource model,
performance model, and scheduling policy. The
scheduling policy can further decomposed into
three phases, the resource discovery and
selection phase, the job scheduling phase and
the job monitoring and migration phase, where
the second phase is the focus of this study.

Although many research works have been
devoted in scheduling grid applications on



heterogeneous system, to deal with QOS
scheduling in grid is quite complicated due to
more constrain factors in job scheduling, such
as the need of large storage, big size memory,
specific 1/0 devices or real-time services,
requested by the tasks to be completed. In this
paper, we present two QoS based rescheduling
schemes aim to improve the makespan of
scheduling batch jobs in grid. In addition,
based on the QoS guided scheduling scheme,
the proposed rescheduling technique can also
reduce the amount of resource need without
increasing the makespan of grid jobs. The
main contribution of this work are twofold, one
can shorten the turnaround time of grid
applications without increasing the need of grid
resources; the other one can minimize the need
of grid resources without increasing the
turnaround time of grid applications, compared
with the traditional QoS guided scheduling
method. To evaluate the performance of the
proposed techniques, we have implemented our
rescheduling approaches along with the QoS
Min-Min scheduling algorithm [9] and the
non-QoS based Min-Min scheduling algorithm.
The experimental results show that the
proposed techniques are effective in
heterogeneous  systems  under  different
circumstances. The improvement is also
significant in economic grid model [3].

The rest of this paper is organized as
follows. Section 2 briefly describes related
research in grid computing and job scheduling.
Section 3 clarifies our research model by
illustrating the traditional Min-min model and
the QoS guided Min-min model. In Section 4,
two optimization schemes for reducing the total
execution time of an application and reducing
resource need are presented, where two

rescheduling approaches are illustrated in detail.

We conduct performance evaluation and
discuss experiment results in Section 5. Finally,
concluding remarks and future work are given
in Section 6.

2. Related Work

Grid scheduling can be classified into traditional
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grid scheduling and QoS guided scheduling or economic
based grid scheduling. The former emphasizes the
performance of systems of applications, such as system
throughput, jobs’ completion time or response time.
Swany et al. provides an approach to improving
throughput for grid applications with network logistics by
building a tree of “best” paths through the graph and has
running time of O(NlogN) for implementations that keep
the edges sorted [15]. Such approach is referred as the
Minimax Path (MMP) and employs a greedy,
tree-building algorithm that produces optimal results [20].
Besides data-parallel applications requiring high
performance in grid systems, there is a Dynamic Service
Architecture (DSA) based on static compositions and
optimizations, but also allows for high performance and
flexibility, by use of a lookahead scheduling mechanism
[4]. To minimizing the processing time of extensive
processing loads originating from various sources, the
approaches divisible load model [5] and single level tree
network with two root processors with divisible load are
proposed [12]. In addition to the job matching algorithm,
the resource selection algorithm is at the core of the job
scheduling decision module and must have the ability to
integrate multi-site computation power. The CGRS
algorithm based on the distributed computing grid model
and the grid scheduling model integrates a new
density-based internet clustering algorithm into the
decoupled scheduling approach of the GrADS and
decreases its time complexity [24]. The scheduling of
parallel jobs in a heterogeneous multi-site environment,
where each site has a homogeneous cluster of processors,
but processors at different sites has different speeds, is
presented in [18]. Scheduling strategy is not only in batch
but also can be in real-time. The SAREG approach
paves the way to the design of security-aware real-time
scheduling algorithms for Grid computing environments
[21].

For QoS guided grid scheduling,
apparently, applications in grids need various
resources to run its completion. In [17], an
architecture named public computing utility
(PCU) is proposed uses virtual machine (VMs)
to implement “time-sharing” over the resources
and augments finite number of private resources
to public resources to obtain higher level of
quality of services. However, the QoS
demands maybe include various packet-type
and class in executing job. As a result, a
scheduling algorithm that can support multiple
QoS classes is needed. Based on this demand,
a multi-QoS scheduling algorithm is proposed
to improve the scheduling fairness and users’
demand [11]. He et al. [7] also presented a
hybrid approach for scheduling moldable jobs
with QoS demands. In [9], a novel framework
for policy based scheduling in resource



allocation of grid computing is also presented.
The scheduling strategy can control the request
assignment to grid resources by adjusting usage
accounts or request priorities. Resource
management is achieved by assigning usage
quotas to intended users. The scheduling
method also supports reservation based grid
resource allocation and quality of service
feature. Sometimes the scheduler is not only
to match the job to which resource, but also
needs to find the optimized transfer path based
on the cost in network. In [19], a distributed
QoS network scheduler (DQNS) is presented to
adapt to the ever-changing network conditions
and aims to serve the path requests based on a
cost function.

3. Research Architecture

Our research model considers the static
scheduling of batch jobs in grids. As this
work is an extension and optimization of the
QoS guided scheduling that is based on
Min-Min scheduling algorithm [9], we briefly
describe the Min-Min scheduling model and the
QoS guided Min-Min algorithm. To simplify
the presentation, we first clarify the following
terminologies and assumptions.

® QoS Machine (Mg) — machines can provide
special services.

® QoS Task (Tg) — tasks can be run
completion only on QoS machine.

® Normal Machine (My) — machines can only
run normal tasks.

® Normal Task (Tn) — tasks can be run
completion on both QoS machine and
normal machine.

® A chunk of tasks will be scheduled to run
completion based on all available machines
in a batch system.

® A task will be executed from the beginning
to completion without interrupt.

® The completion time of task t; to be

executed on machine m; is defined as

CTy = dtij + efjj @
Where et;; denotes the estimated execution time
of task t; executed on machine m;; dt; is the
delay time of task t; on machine m;.
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The Min-Min algorithm is shown in Figure

Algorithm_Min-Min()

while there are jobs to schedule
for all job i to schedule
for all machine j
Compute CT;; = CT(job i, machine j)
end for
Compute minimum CT; ;
end for
Select best metric match m
Compute minimum CTpp,
Schedule job m on machine n
end while
} End_of _Min-Min

Figure 1. The Min-Min Algorithm

Analysis: If there are m jobs to be scheduled in
n machines, the tlme complexity of Min-Min
algorithm is O(m?n). The Min-Min algorithm
does not take into account the QoS issue in the
scheduling. In some situation, it is possible
that normal tasks occupied machine that has
special services (referred as QoS machine).
This may increase the delay of QoS tasks or
result idle of normal machines.

The QoS guided scheduling is proposed to resolve
the above defect in the Min-Min algorithm. In QoS
guided model, the scheduling is divided into two classes,
the QoS class and the non-QoS class. In each class, the
Min-Min algorithm is employed. As the QoS tasks have
higher priority than normal tasks in QoS guided
scheduling, the QoS tasks are prior to be allocated on
QoS machines. The normal tasks are then scheduled to
all machines in Min-Min manner. Figure 2 outlines the
method of QoS guided scheduling model with the
Min-Min scheme.

Analysis: If there are m jobs to be scheduled in
n machines, the time compIeX|ty of QoS guided
scheduling algorlthm is O(m*n).

Figure 3 shows an example demonstrating
the Min-Min and QoS Min-Min scheduling
schemes. The asterisk * means that
tasks/machines with QoS demand/ability, and
the X means that QoS tasks couldn’t be
executed on that machine. Obviously, the
QoS guided scheduling algorithm gets the
better performance than the Min-Min algorithm
in term of makespan. Nevertheless, the QoS
guided model is not optimal in both makespan
and resource cost. We will describe the



rescheduling optimization in next section.

Algorithm_QOS-Min-Min()

for all tasks ti in meta-task Mv (in an arbitrary order)
for all hosts m; (in a fixed arbitrary order)
CTij =et; +df
end for
end for
do until all tasks with QoS request in Mv are mapped
for each task with high QoS in Mv,
find a host in the QoS qualified host set that obtains
the earliest completion time
end for
find task t, with the minimum earliest completion time
assign task t; to host m, that gives the earliest completion
time
delete task t, from Mv
update dy
update CT; for all i
end do
do until all tasks with non-QoS request in Mv are mapped
for each task in Mv
find the earliest
corresponding host
end for
find the task t, with the minimum earliest completion time
assign task t; to host m, that gives the earliest completion
time
delete task t, from Mv
update dy
update CT; for all i
end do
} End_of _ QOS-Min-Min

completion time and the

Figure 2. The QoS Guided Algorithm

4. Rescheduling Optimization

Grid scheduling works as the mapping of individual
tasks to computer resources, with respecting service level
agreements (SLAs) [2]. In order to achieve the
optimized performance, how to mapping heterogeneous
tasks to the best fit resource is an important factor. The
Min-Min algorithm and the QoS guided method aims at
scheduling jobs to achieve better makespan. However,
there are still having rooms to make improvements. In
this section, we present two optimization schemes based
on the QoS guided Min-Min approach.
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*M1 M2 M3
T1 7 4 7
T2 3 3 5
T3 9 5 7
*T4 5 X X
T5 9 8 6
*T6 5 X X

Makespan Makespan

12 |—

Machine M1 M2 M3 Machine

B. The QOS guided scheduling algorithm

A. The Min-Min algorithm

Figure 3. Min-Min and QoS Guided Min-Min

4.1 Makespan Optimization Rescheduling (MOR)

The first one is Makespan Optimization Rescheduling
(MOR), which focuses on improving the makespan to
achieve better performance than the QoS guided
scheduling algorithm. Assume the makespan achieved by
the QoS guided approach in different machines are CT;,
CT,, ..., CTp, with CTy = max { CTy, CT,, ..., CTy },
where m is the number of machinesand 1 <k <m. By
subtracting CT, — CT;, where 1 <i <mand i #k, we can
have m-1 available time fragments. According to the
size of these available time fragments and the size of tasks
in machine My, the MOR dispatches suitable tasks from
machine My to any other machine that has available and
large enough time fragments. Such optimization is
repeated until there is no task can be moved.



*M1 M2 M3
T1 7 4 7
T2 3 3 5
T3 9 5 7
*T4 5 X X
T5 9 8 6
*T6 5 X X
Makespan
Makespan
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*T6 *T6
s 8 |— T3
Tl
5 T5
3 - [T 3= |4 [T
]
0

*M1 M2 M3 Machine *M1 M2 M3 Machine

A. The QOS guided scheduling B. The Makespan Optimization

algorithm Rescheduling (MOR) algorithm

Figure 4. Example of MOR

Recall the example given in Figure 3,
Figure 4 shows the optimization of the MOR
approach. The left side of Figure 4
demonstrates that the QoS guided scheme gives
a schedule with makespan = 12, wheremachine
M2 presents maximum CT (completion time),
which is assembled by tasks T2, T1 and T3.
Since the CT of machine ‘M3’ is 6, so ‘M3’ has
an available time fragment (6). Checking all
tasks in machine M2, only T2 is small enough
to be allocated in the available time fragment in
M3. Therefore, task M2 is moved to M3,
resulting machine ‘M3’ has completion time
CT=11, which is better than the QoS guided
scheme.

As mentioned above, the MOR is based on the QoS
guided scheduling algorithm. If there are m tasks to be
scheduled in n machines, the time complexity of MOR is
O(m?n).  Figure 5 outlines a pseudo of the MOR scheme.
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Algorithm_MOR()

for CT; in all machines
find out the machine with maximum makespan CT,x and
set it to be the standard
end for
do until no job can be rescheduled
for job i in the found machine with CT s
for all machine j
according to the job’s QOS demand, find the
adaptive machine j
if (the execute time of job i in machine j + the
CT; < makespan)
rescheduling the job i to machine j
update the CT; and CTpax
exit for
end if
next for
if the job i can be reschedule
find out the new machine with maximum CTpax
exit for
end if
next for
end do
} End_of _ MOR

Figure 5. The MOR Algorithm

4.2 Resource Optimization Rescheduling (ROR)

Following the assumptions described in MOR, the main
idea of the ROR scheme is to re-dispatch tasks from the
machine with minimum number of tasks to other
machines, expecting a decrease of resource need.
Consequently, if we can dispatch all tasks from machine
M, to other machines, the total amount of resource need
will be decreased.

Figure 6 gives another example of QoS scheduling,
where the QoS guided scheduling presents makespan = 13.
According to the clarification of ROR, machine ‘M1’ has
the fewest amount of tasks. We can dispatch the task
“T4’ to machine ‘M3’ with the following constraint

CTij + CTJ' <= CTmax (2)
The above constraint means that the rescheduling can be
performed only if the movement of tasks does not
increase the overall makespan. In this example, CT43= 2,
CTs=7 and CT»=CT,=13. Because the makespan of
M3 (CTs) will be increased from 7 to 9, which is smaller
than the CTna therefore, the task migration can be
performed. As the only task in M1 is moved to M3, the
amount of resource need is also decreased comparing
with the QoS guided scheduling.



o Tom s To evaluate the performance of the proposed
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scheduling algorithm and the QoS guided Min-Min

el ¢ : scheme. The experiment model consists of heterogeneous

X 7 X machines and tasks. Both of the Machines and tasks are

T |4 6 2 classified into QoS type and non-QoS type. Table 1
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e |x e x used in the experiments. The number of tasks is ranged
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Makespan Makespan 50 to 130. The percentage of QoS machines and tasks are

set between 15% and 75%. Heterogeneity of tasks are

13 = 3 13 = — defined as H; (for non-QoS task) and Hq (for QoS task),

which is used in generating random tasks. For example,

8 |- 8 |- the execution time of a non-QoS task is randomly

o s generated from the interval [10, Hx10?] and execution

‘r m ‘r time of a QoS task is randomly generated from the

. i ], interval [10°, Hox10°] to reflect the real application world.
M1 *M2 M3 Machine ML *M2 Mg Machine

All of the parameters used in the experiments are
A. The QOS guided scheduling B The Resource Optimization Rescheduling generated randomly with a uniform distribution. The

(ROR) Algorithm
results demonstrated in this section are the average values
of running 100 random test samples.
Figure 6. Example of ROR Table 1: Parameters and Comparison Metrics
The ROR is an optimization scheme which aims to Task number (Nr) {200, 300, 400, 500, 600}
minimize resource cost. If there are m tasks to be Resource number (Ng) {50, 70, 90, 110, 130}
scheduled in n machines, the time complexity of ROR is Percentage of QOS resources (Qz %) | {15%, 30%, 45%, 60%, 75%}
also O(m?n).  Figure 7 depicts a high level description of Percentage of QOS tasks (Qr %) {15%, 30%, 45%, 60%, 75%}
the ROR optimization scheme. Heterogeneity of non-QOS tasks (Hy) | {1, 3,5,7,9}
Heterogeneity of QOS tasks (Hg) {3,5,7,9,11}
Algorithm_MOR() ¥ The completion time of a set of
akespan tasks
for m in all machines o . Number of machines used for
find out the machine m with minimum count of jobs Resource Used (Ry) executing a set of tasks

end for
do until no job can be rescheduled
for job i in the found machine with minimum count of jobs
for all machine j
according to the job’s QOS demand, find the 52 Experimental Results of MOR
adaptive machine j
if (the execute time of job i in machine j + the

CT; <= makespan CTyay) Table_ 2 compares the perfqrmance_ of the MOR, M_in-Min
rescheduling the job i to machine algorithm and the QoS guided Min-Min scheme in term
Upga:e ttT]e CT;  of obs i . d of makespan. There are six tests that are conducted with
e je gount ot Jobs in machine m an different parameters.  In each test, the configurations are
exit for outlined beside the table caption from (a) to (f). Table (a)
end if changes the number of tasks to analyze the performance
next for results. Increasing the number of tasks, improvement of
next for L . .
end do MOR is limited. An average improvement ratio is from
} End_of MOR 6% to 14%. Table (b) changes the number of machines.

It is obvious that the MOR has significant improvement in
larger grid systems, i.e., large amount of machines. The
average improvement rate is 7% to 15%. Table (c)
discusses the influence of changing percentages of QoS
machines. Intuitionally, the MOR performs best with
45% QoS machines. However, this observation is not
always true. By analyzing the four best ones in (a) to (d),
we observe that the four tests (a) Nt=200 (Nz=50, Qz=30%,
Qr=20%) (b) Ng=130 (N;=500, Qr=30%, Q=20%) (c)

Figure 7. The ROR Algorithm

5. Performance Evaluation

5.1 Parameters and Metrics
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Qr=45% (N;=300, Ng=50, Q;=20%) and (d) Q=15%
(Ny=300, Ng=50, Qzr=40%) have best improvements. All of
the four configurations conform to the following relation,

0.4 x (Nrx Qr) = Nrx Qg @)
This observation indicates that the improvement of MOR
is significant when the number of QoS tasks is 2.5 times
to the number of QoS machines. Tables (e) and (f)
change heterogeneity of tasks. We observed that
heterogeneity of tasks is not critical to the improvement

rate of the MOR technique, which achieves 7%
improvements under different heterogeneity of tasks.
Table 2: Comparison of Makespan

(@) (Nr=50, Qr=30%, Qr=20%, H=1, Ho=1)

Task Number (N7) 200 300 400 500 600
Min-Min 9782 1299.7| 1631.8| 1954.6] 2287.8
QOS Guided Min-Min 6946 917.8| 1119.4[ 1359.9| 1560.1
MOR 507.3 8155 1017.7| 1254.8| 14583
Improved Ratio 14.01%| 11.15% 9.08% 7.73% 6.53%)
(b) (N7=500, Qr=30%, Qr=20%, H=1, Ho=1)

Resource Number (Ng)| 50 70 90 110 130
Min-Min 19315 | 1432.2 | 11021 | 9853 | 874.2
QOS Guided Min-Min | 13557 | 938.6 | 724.4 | 590.6 | 508.7
MOR 1252.6 840.8 633.7 506.2 429.4
Improved Ratio 7.60% | 10.42% | 12.52% | 14.30% | 15.58%

(c) (Ny=300, Ng=50, Qr=20%, H=1, Ho=1)

Qe% 15% | 30% 45% | 60% 75%
Min-Min 2470.8 1319.4 888.2 777.6 650.1
QOS Guided Min-Min | 18759 | 913.6 | 596.1 | 4638 | 376.4
MOR 1767.3 810.4 503.5 394.3 339.0
Improved Ratio 5.79% | 11.30% | 15.54% | 14.99% | 9.94%

(d) (Nt=300, Nr=50, Qr=40%, H=1, Hy=1)

Q% 15% 30% 45% 60% 75%
Min-Min 879.9 | 1380.2 | 1801.8 | 2217.0 | 2610.1
QOS Guided Min-Min 558.4 915.9 1245.2 1580.3 1900.6
MOR 474.2 817.1 1145.1 1478.5 1800.1
Improved Ratio 15.07% | 10.79% | 8.04% 6.44% 5.29%

(e) (N+=500, Ng=50, Qr=30%, Q:=20%, Ho=1)
Hr 1 3 5 7 9
Min-Min 1891.9 1945.1 1944.6 1926.1 1940.1
QOS Guided Min-Min 1356.0 1346.4 1346.4 1354.9 1357.3
MOR 1251.7 1241.4 1244.3 1252.0 1254.2
Improved Ratio 7.69% 7.80% 7.58% 7.59% 7.59%
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(f) (N1=500, Ng=50, Qz=30%, Q;=20%, H,=1)

Ho 3 5 7 9 1
Min-Min 1392.4)  1553.9 1724.9 1871.7 2037.8
QOS Guided Min-Min 867.5| 1007.8 1148.2 1273.2 1423.1
MOR 822.4 936.2, 1056.7 1174.3 1316.7
Improved Ratio 5.20% 7.11% 7.97% 7.77% 7.48%

5.3 Experimental Results of ROR

Table 3 analyzes the effectiveness of the ROR technique
under different circumstances.

Table 3: Comparison of Resource Used

(@) (Ng=100, Qz=30%, Q;=20%, H,=1, Ho=1)

Task Number (Nr) 200 300 400 500 600
QOS Guided Min-Min 100 100 100 100 100
ROR 39.81 44.18 46.97 49.59 51.17
Improved Ratio 60.19% | 55.82% | 53.03% | 50.41% | 48.83%
(b) (NTZSOO, QR:30%1 QTZZO%, HT:]., HQ:].)

Resource Number (Ng) 50 70 90 110 130
QOS Guided Min-Min 50 70 90 110 130
ROR 26.04 35.21 43.65 50.79 58.15
Improved Ratio 47.92% | 49.70% | 51.50% | 53.83% | 55.27%

(C) (NT:5001 NR:50, QTZZO%, HT:]., HQ:l)

Qr% 15% 30% 45% 60% 75%
QOS Guided Min-Min 50 50 50 50 50
ROR 14.61 25.94 35.12 40.18 46.5
Improved Ratio 70.78% | 48.12% | 29.76% | 19.64% | 7.00%

(d) (N;=500, Ng=100, Qx=40%, Hr=1, Ho=1)

Q1% 15% 30% 45% 60% 75%
QOS Guided Min-Min 100 100 100 100 100
ROR 57.74 52.9 48.54 44.71 41.49
Improved Ratio 42.26% | 47.10% | 51.46% | 55.29% | 58.51%

(6) (N+=500, Ng=100, Q¢=30%, Q;=20%, Hq=1)
Hr 1 3 5 7 9
QOS Guided Min-Min 100 100 100 100 100
ROR 47.86 47.51 47.62 47.61 47.28
Improved Ratio 52.14% | 52.49% | 52.38% | 52.39% | 52.72%
(f) (N7=500, Ng=100, Qu=30%, Qr=20%, H,=1)

Hq 3 5 7 9 11
QOS Guided Min-Min 100] 100 100] 100 100)
ROR 54.61] 52.01 50.64] 48.18 46.53]
Improved Ratio 45.39%| 47.99%| 49.36%| 51.82%| 53.47%)




Similar to those of Table 2, Table (a) changes the
number of tasks to verify the reduction of resource that
needs to be achieved by the ROR technique. We noticed
that the ROR has significant improvement in minimizing
grid resources.  Comparing with the QoS guided
Min-Min scheduling algorithm, the ROR achieves 50% ~
60% improvements without increasing overall makespan
of a chunk of grid tasks. Table (b) changes the number
of machines. The ROR retains 50% improvement ratio.
Table (c) adjusts percentages of QoS machine. Because
this test has 20% QoS tasks, the ROR performs best at
15% QoS machines. This observation implies that the
ROR has significant improvement when QoS tasks and
QoS machines are with the same percentage. Table (d)
sets 40% QoS machine and changes the percentages of
QoS tasks. Following the above analysis, the ROR
technique achieves more than 50% improvements when
QoS tasks are with 45%, 60% and 75%. Tables (e) and
(f) change the heterogeneity of tasks. Similar to the
results of section 5.2, the heterogeneity of tasks is not
critical to the improvement rate of the ROR technique.
Overall speaking, the ROR technique presents 50%
improvements in minimizing total resource need compare
with the QoS guided Min-Min scheduling algorithm.

6. Conclusions

In this paper we have presented two optimization
schemes aiming to reduce the overall completion time
(makespan) of a chunk of grid tasks and minimize the
total resource cost. The proposed techniques are based
on the QoS guided Min-Min scheduling algorithm. The
optimization achieved by this work is twofold; firstly,
without increasing resource costs, the overall task
execution time could be reduced by the MOR scheme
with 7%~15% improvements. Second, without increasing
task completion time, the overall resource cost could be
reduced by the ROR scheme with 50% reduction on
average, which is a significant improvement to the state of
the art scheduling technique. The proposed MOR and
ROR techniques have characteristics of low complexity,
high effectiveness in large-scale grid systems with QoS
Services.
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An Efficient Processor Selection Scheme for Master
Slave Paradigm on Heterogeneous Networks

Tai-Lung Chen Ching-Hsien Hsu

Department of Computer Science and Information Engineering
Chung Hua University, Hsinchu, Taiwan

chh@chu.edu.tw

Abstract. It is well known that grid technology has the ability to achieve resources shared and
tasks scheduled coordinately. In this paper, we present a performance effective pre-scheduling
strategy for dispatching tasks onto heterogeneous processors. The main contribution of this study
is the consideration of heterogeneous communication overheads in grid systems. One significant
improvement of our approach is that average turnaround time could be minimized by selecting
processor has the smallest communication ratio first. The other advantage of the proposed method
is that system throughput can be increased via dispersing processor idle time. Our proposed
technique can be applied to heterogeneous cluster systems as well as computational grid
environments, in which the communication costs vary in different clusters. Experimental results
show that our techniques outperform other previous algorithms in terms of lower average
turnaround time, higher average throughput, less processor idle time and higher processors’
utilization.

1 Introduction

Computational grid system integrates geographically distributed computing resources to establish a virtual and high
expandable parallel computing infrastructure. In recent years, there are several research investigations done in
scheduling problem for heterogeneous grid systems. A centralized computational grid system can be viewed as the
collection of one resource broker (the master processor) and several heterogeneous clusters (slave processors). Therefore,
to investigate task scheduling problem, the master slave paradigm is a good vehicle for developing tasking technologies
in centralized grid system.

The master slave tasking is a simple and widely used technique [1, 2]. In a master slave tasking paradigm, the
master node connects to n slave nodes. A set of independent tasks are dispatched by master processor and be processed
on the n heterogeneous slave processors. Slave processors execute the tasks accordingly after they receive their tasks.
This will restrict that the computation and communication can’t overlap. Moreover, communication between master
and slave nodes is handled through a shared medium (e.g., bus) that can be accessed only in exclusive mode. Namely,
the communications between master and different slave processors can not be overlapped.

In general, the optimization of master slave tasking problem is twofold. One is to minimize total execution time for

a given fix amount of tasks, namely minimize average turnaround time. The other one is to maximize total amount of
finished tasks in a given time period, namely maximize throughput.
In this paper, an efficient strategy for scheduling independent tasks to heterogeneous processors in master slave
environment is presented. The main idea of the proposed technique is first to allocate tasks to processors that present
lower communication ratio, which will be defined in section 3.2. Improvements of our approach towards both average
turnaround time and system throughput.

The remaining of this paper is organized as follows. Section 2 briefly discusses previous related researches, while
in section 3 is introduced the research architecture and definition of notation and terminologies used in this paper,



where we also present a motivating example to demonstrate the characteristics of the master-slave pre-scheduling
model. Section 4 assesses the new scheduling algorithm, the Smallest Communication Ratio (SCE), while the
illustration of SCR on heterogeneous communication is examined in section 5. The performance comparisons and
simulations results are discussed in section 6, and finally in section 7, some conclusions of this paper.

2 Related Work

The task scheduling research on heterogeneous processors can be classified into DAGs model, master-slave paradigm
and computational grids. The main purpose of task scheduling is to achieve high performance computing and high
throughput computing. The former aims at increasing execution efficiency and minimizing the execution time of tasks,
whereas the latter aims at decreasing processor idle time and scheduling a set of independent tasks to increase the
processing capacity of the systems over a long period of time.

Thanalapati et al. [13] brought up the idea about adaptive scheduling scheme based on homogeneous processor
platform, which applies space-sharing and time-sharing to schedule tasks. With the emergence of Grid and ubiquitous
computing, new algorithms are in demand to address new concerns arising to grid environments, such as security,
quality of service and high system throughput. Berman et al. [6] and Cooper et al. [11] addressed the problem of
scheduling incoming applications to available computation resources. Dynamically rescheduling mechanism was
introduced to adaptive computing on the Grid. In [8], some simple heuristics for dynamic matching and scheduling of
a class of independent tasks onto a heterogeneous computing system have been presented. Moreover, an extended
suffrage heuristic was presented in [12] for scheduling the parameter sweep applications that have been implemented
in AppLeS. They also presented a method to predict the computation time for a task/host pair by using previous host
performance.

Chronopoulos et al. [9], Charcranoon et al. [10] and Beaumont et al. [4, 5] introduced the research of master-slave
paradigm with heterogeneous processors background. Based on this architecture, Beaumont et al. [1, 2] presented a
method on master-slave paradigm to forecast the amount of tasks each processor needs to receive in a given period of
time. Beaumont et al. [3] presented the pipelining broadcast method on master-slave platforms, focusing on message
passing disregarding computation time. Intuitionally in their implementation, fast processor receives more tasks in the
proportional distribution policy. Tasks are also prior allocated to faster slave processors and expected higher system
throughput could be obtained.

3 Preliminaries

In this section, we first introduce basic concepts and models of this investigation, where we also define notations
and terminologies that will be used in subsequent subsections.

3.1 Research Architecture

We have revised several characteristics that were introduced by Beaumont et al. [1, 2]. Based on the master
slave paradigm introduced in section 1, this paper follows next assumptions as listed.

° Heterogeneous processors: all processors have different computation speed.

® Identical tasks: all tasks are of equal size.

® Non-preemption: tasks are considered to be atomic.

® Exclusive communication: communications from master node to different slave processors can not be
overlapped.

] Heterogeneous communication: communication costs between master and slave processors are of different
overheads.

3.2 Definitions



First, we list definitions, notations and terminologies used in this research paper.
Definition 1: In a master slave system, master processor is denoted by M and the n slave processors are
represented by P, P,,...,P,, where nis the number of slave processors.

Definition 2: Upon the assumption of identical tasks and heterogeneous processors, the execution time of each
one of slave processors to compute one task are different. We use 77 to represent the execution time of slave
processor P;to complete one task. In this paper, we assume the computation speed of n slave processors is sorted
and 71 < T2 < ... < T

Definition 3: Given a master slave system, the time of slave processor P; to receive one task from master
processor is denoted as T; comm -

Definition 4: A Basic Scheduling Cycle (BSO) is defined as BSC =lem(T, + T,

m is the number of processors that will join the computation.

T,+T, ST +T

2_comm? *** 'm m_comm) ’ Where

_comm?

Definition 5: Given a master slave system, the number of tasks processor 7 needs to receive in a basic scheduling cycle

is defined as task(P) __ BsCc |
YUOT 4T

i i_comm

Definition 6: Given a master slave system, the communication cost of processor P; in BSC is defined as
comm(R) :Ti_comm xtask(R) .

Definition 7: Given a master slave system, the computation cost of processor P in BSC is defined as

comp(P,) =T, xtask(P).

Definition 8: Given a master slave system, the Communication Ratio of processor P; is defined as CR; =

Tiicomm

i _ comm

Definition 9: The computational capacity (8) of a master slave system is defined as the sum of communication

ratio of all processors that joined the computation, i.e., d = Z _mlCR . » where m is the number of processors that
i=

involved in the computation.

Definition 10: Given a master slave system with n heterogeneous slave processors, Pnax 1s the processor Pr such

Kk T k+1 T
that max{k| » —=2""" <1}, where 1< k< n. i.e. =T > 1. We use Puax+1 to represent processor Pis1.
T+T T +T,
i= i + i_comm i=1 i + i_comm

3.3 Master Slave Task Scheduling

Discussions on the problem of task scheduling in master slave paradigm will be addressed in two cases, depending on
the value of system computational capacity (5).

As mentioned in section 2, faster processors receive more tasks is an intuitional approach in which tasks are
previously allocated to these faster processors, and this method is called Most Jobs First (MJF) scheduling
algorithm [1, 2]. Fig. 1 shows the pre-scheduling of the MJF algorithm. As defined in definition 8, the

communication ratio of P to Ps are %, i, l, and %, respectively. Because BSC = 12, we have task(P1)=4,

4 4
task(P)=3, task(Ps)=3 and task(P;)=2. When the number of tasks is numerous, such scheduling achieves higher

system utilization and less processor idle time than the greedy method.
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Fig. 1. Most Jobs First (MJF) task scheduling when &6 <1.

Lemma 1: Given a master slave system with § > 1, in MJF scheduling, the amount of tasks being assigned to

Prax+1 can be calculated by the following equation,
max

L‘HS’]((.Pmmﬁl) = (BSO - ZCOmm(PI)) / Tmax+17com (1)
i=1

Lemma 2: Given a master slave system with § > 1, in MJF scheduling, the period of processor Pmax+1 stays idle

denoted by Ti('j\fgp and can be calculated by the following equation,

Title™ = BSC — comm(Pya,1) = COMP(Prayr) @)

Another example of master slave task scheduling with identical communication G.e., 7% comn=1) and & > 1is
given in Fig. 2. Because & > 1, according to equation (1), we have task(Pmax+1=Pi) = 10. We note that P,
completes its tasks and becomes available at time 100. However, the master processor dispatches tasks to P
during time 100 ~ 110 and starts to send tasks to Ps at time 110. Such kind of idle situation also happens at time
100~110, 160~170, 220~230, and so on.

60 110 160
[T comn @ T:T,=F ,T,T,=080 ,T.= C40] Idetme:

Fig. 2. Most Jobs First (MJF) Tasking when & >1.

Lemma 3: In MJF scheduling algorithm with identical communication 77 comm, when & > 1, the completion time of
tasks in the jit BSC'can be calculated by the following equation.
max
T(BSC) ZZcomm(Pi)+j><(comm(Pmam)+comp(Pmax+1)+Ti§ij) —TiF 3
i=1



4  Smallest Communication Ratio (SCE) Scheduling with Identical Communication

The MJF scheduling algorithm distributes tasks to slave processors according to processors’ speed, namely, faster
processor receives tasks first. In this section, we demonstrate an efficient task scheduling algorithm, Smallest
Communication Ratio (SCR), focuses on master slave task scheduling with identical communication.

Lemma 4: In SCR scheduling algorithm, if 6 < 1 and 7;comm are identical, the task completion time of the jh BSC
denoted by Tiok (BSC j) » can be calculated by the following equation.

T (BSC;) = BSC + jx(comm(R,) +comp(R,)) —comm(P,) (4)

Lemma 5: Given a master slave system with 6 > 1, in scheduling, the amount of tasks being assigned to Pumax+1
can be calculated by the following,

BSC
taSk(PmaX+1) = T T (5)

max+1 T max+1_ comm

Lemma 6: In SCR scheduling algorithm, when ¢ > 1, the idle time of a slave processor is denoted as TiggR and

can be calculated by the following equation,

sC max+1
Tge = Y. comm(R) - BSC (6)

i=1

The other case in Fig. 3 is to demonstrate the SCR scheduling method with dispersive idle when &> 1. We
use the same example in Fig. 2 for the following illustration. Because ¢ > 1, according to definition 10 and
Lemma 5, we have task(Puax+1=P1) = 12. Comparing to the example in Fig. 2, P; stays 10 time units idle in MJF
algorithm while the idle time is reduced and dispersed in SCR algorithm. In SCRE, every processor has 2 units of
time idle and totally 8 units of time idle. Moreover, we observe that the MJF algorithm finishes 60 tasks in 100
units of time, showing a throughput of 0.6. While in SCR, there are 62 tasks completed during 102 time units.
The throughput of SCR is 62/102 (=0.61) > 0.6. Consequently, the SCR algorithm delivers higher system
throughput.

Lemma 7: In SCR scheduling algorithm, if 7} commare identical for all slave processors and § > 1, the task completion
time of the j* BSC denoted by Tfsir?isRh(BSCj) , can be calculated by the following equation,

max+1
Tf?r(]:isRh(BSCj) = Z comm(PR,) +comp(P)+
i-L

(j —1) x (comm(P,) + comp(P,) + T,557) @)
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Fig. 8. Smallest Communication Ratio (SCE) Tasking when &>1.

5 Generalized Smallest Communication Ratio (SCR)

As computational grid integrates geographically distributed computing resources, the communication overheads
from resource broker / master computer to different computing site are different. Therefore, towards an efficient
scheduling algorithm, the heterogeneous communication overheads should be considered. In this section, we
present the SCR task scheduling techniques work on master slave computing paradigm with heterogeneous
communication.

Lemma 8: Given a master slave system with heterogeneous communication and § > 1, in MJF scheduling, we
have

max
BSC - ) comm(P;)
taS.k(Pmax+1) = i=1 (8)
T

max-+1_comm

Lemma 9: Given an SCR scheduling with heterogeneous communication and &> 1, Tje is the idle time of one

slave processor, we have the following equation,

SCR max+1
Tidle = zComm(Pi) - BSC. (9)

i=1

Lemma 10: Given an SCR scheduling with heterogeneous communication and > 1, T;;?(BSCJ-) is the start

time to dispatch tasks in the jfh BSC, we have the following equation,
Taut (BSC;) = (j 1) x (BSC +T;gc") (10)

Lemma 11: Given an SCR scheduling with heterogeneous communication and &> 1, the task completion time of
the j" BSC denoted by Ty, (BSC;), we have

max+1
Tio (BSC) =S comm(R) +comp( P+ (j~1)x (comm(P, ) + comp(P, ) + Tige" an

i=1



where Psis the slave processor with maximum communication cost.

Another example of heterogeneous of communication with § > 1 master slave tasking is shown in Fig. 4(a).
The communication overheads vary from 1 to 5. The computational speeds vary from 3 to 13. In this example,
we have BSC= 48.

In SCR implementation, according to corollary 3, task distribution is task(P:) = 6, task(P:) = 6, task(Ps) = 4
and task(Prax+1) = task(Pi) = 3. The communication costs of slave processors are comm(Py) = 30, comm(P,) = 12,
comm(Ps) = 4 and comm(Py) = 9, respectively. Therefore, the SCR method distributes tasks by the order P, Pi, P,
P1. There are 19 tasks in the first BSC dispatched to P to Pi during time period 1~55. Processor Ps is the first
processor to receive tasks and it finishes at time ¢ = 48 and becomes available. In the meanwhile, processor P
receives tasks during ¢ = 48~55. The second BSC starts to dispatch tasks at £ = 55. Namely, P starts to receive
tasks at £ = 55 in the second scheduling cycle. Therefore, Ps has 7 unit of time idle. Lemmas 4 and 5 state the
above phenomenon. The completion time of tasks in the first BSC depends on the finish time of processor Pi. We

have Too (BSC,) =73.

finish

55| |73 128 183
Ti_ comm * Ti_comm™= =1 112 comm™= 2, T3 <x>mm:I ar <x>|nm=-
L =Bl =06, T.=_ 111 T.=[ g3 ] Idle:[J
(a)
[ [ 48 [ 48

46 90 138 186
T =5 'TZ_m|:|rn= 2] ’ TJ wc.-m|=l Ty B
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Fig. 4. Task scheduling on heterogeneous communication environment with §>1. (a) Smallest Communication Ratio (b)
Most Job First (c) Largest communication ratio (LCR).



The MJF scheduling is depicted in Fig. 4(b). According to corollary 5, task(Pnax+1) = task(Ps) = 0, therefore,
P, will not be included in the scheduling. MJF has the task distribution order P, P, Ps. Another scheduling
policy is called Longest Communication Ratio (LCE) which is an opposite approach to the SCR method. Fig. 4(c)
shows the LCR scheduling result which has the dispatch order P, P, P, Ps.

To investigate the performance of SCR scheduling technique, we observe that MJF algorithm completes 16 tasks
in 90 units of time in the first BSC. On the other hand, in SCR scheduling, there are 19 tasks completed in 73
units of time in the first BSC. In LCR, there are 19 tasks completed in 99 units of time. We can see that the
system throughput of SCE (19/73~0.260) > LCR (19/99~0.192) > MJF (16/90~0.178). Moreover, the average
turnaround time of the SCR algorithm in the first three BSCs is 183/57 (%3.2105) which is less than the LCR's
average turnaround time 209/57 (=3.6666) and the MJF's average turnaround time 186/48 (=3.875).

6 Performance Evaluation

To evaluate the performance of the proposed method, we have implemented the SCR and the MJF algorithms. We
compare different criteria, such as average turnaround time, system throughput and processor idle time, in
Heterogeneous Processors with Heterogeneous Communications (HPHO).

Simulation experiments for evaluating average turnaround time are made upon different number of
processors and show in Fig. 7. The computational speed of slave processors is set as 71=3, 75=3, 75=5, T4,=7, T5=11,
and 75=13. For the cases when processor number is 2, 3... 6, we have §<1. When processor number increases to 7,
we have §>1. In either case, the SCR algorithm conduces better average turnaround time. From the above results,
we conclude that the SCR algorithm outperforms MJF for most test samples.
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Fig. 5. Average task turn-around time on different numbers of processors.

Simulation results present the performance comparison of three task scheduling algorithms, SCR, MJF, LCR,
on heterogeneous processors and heterogeneous communication paradigms. Fig. 6 shows the simulation results
for the experiment setting that with +10 processor speed variation and +4 communication speed variation. The

computation speed of slave processors are T1 =3, T,=6, T3=11, and T,=13. The time of a slave processor to
receive one task from master processor are T, cuum =5, Ty comm = 2, T3 comm = 1 and T, un=3. The average task

turnaround time, system throughput and processor idle time are measured.



g 6
E
g
o4
g5 3 — —
5z [=3wF ] | B
5 € 2 l=3Ler
g 1 |-—m—scr [ ] [
CRN St
<t
1 2 3 4 5 BSC
(a)
0.4
203 [ a—" 4.———-?_7
z 02 0 = wE|| |
S
£ 01 —— C—JLCR|H
0 —8—SCR
1 2 3 4 5 BSC
(b)
%538 =awF =
é'glso C—ILCR ]
g g —B—SCR
g <100
= 8
0 ‘ ‘
1 2 3 4 5 BSC
(c)

Fig. 6. Simulation results for 5 processors with £10 computation speed variation and 4 communication variation when
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Fig. 6(a) is the average turnaround time within different number of BSC. The SCR algorithm performs better
than the LCR and MJF method. Similarly, the SCR method has higher throughput than the other two algorithms
as shown in Fig. 6(b). The processor idle time are estimated in Fig. 6(c). The SCR and LCR algorithms have the
same period of processor idle time which is less than the MJF scheduling method. These phenomena match the
theoretical analysis in section 5.

The miscellaneous comparison in Fig. 7 presents the performance comparison of SCE, MJF with more cases.
The simulation results for the experiment setting that with +5~+30 processor speed variation and +5~%30
communication speed variation. The computation speed variation of T,~T,=£5~+30. The communication speed

variation of T, .om ~T =+5~+30. The system throughput is measured.
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Fig. 7. Simulation results of throughput for the range of 5~25 processors with +30 computation speed variation and
+30 communication variation in 100 cases and 100 BSC (a) system throughput of the cases when 0<T, <30 and

0<T <5 (b) system throughput of the cases when 0<T, <5 and O<T, <30.

i_comm i_comm

Fig. 7(a) is the case of 0<T; <30, 0<T; (yun <5 and the parameter of computation speed and communication

speed are to be random and uniformly distributed within different number of nodes and 100 BSC for 100 cases.
Fig. 7(b) is the case of 0<T; <5 and 0<T, <30. The SCR algorithm performs better than MJF method, and

i_comm =
SCR method has higher throughput than the MJF algorithm as shown in Fig. 7(a) and Fig. 7(b). From the
above experimental tests, we have the following remarks. The proposed SCR scheduling technique has better
task turnaround time and higher system throughput than the MJF algorithm.

From the above experimental tests, we have the following remarks.
® The proposed SCR scheduling technique has higher system throughput than the MJF algorithm.
® The proposed SCR scheduling technique has better task turnaround time than the MJF algorithm.
The SCR scheduling technique has less processor idle time than the MJF algorithm.

7  Conclusions

The problem of resource management and scheduling has been one of main challenges in grid computing. In this paper,
we have presented an efficient algorithm, SCE for heterogeneous processors tasking problem. One significant
improvement of our approach is that average turnaround time could be minimized by selecting processor has the
smallest communication ratio first. The other advantage of the proposed method is that system throughput can be
increased via dispersing processor idle time. Our preliminary analysis and simulation results indicate that the SCR
algorithm outperforms Beaumont’s method in terms of lower average turnaround time, higher average throughput, less
processor idle time and higher processors’ utilization.

There are numbers of research issues that remains in this paper. Our proposed model can be applied to map tasks
onto heterogeneous cluster systems in grid environments, in which the communication costs are various from clusters.
In future, we intend to devote generalized tasking mechanisms for computational grid. We will study realistic
applications and analyze their performance on grid system. Besides, rescheduling of processors / tasks for minimizing
processor idle time on heterogeneous systems is also interesting and will be investigated.
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Abstract. The problem of scheduling a weighted directed acyclic graph
(DAG) representing an application to a set of heterogeneous processors to
minimize the completion time has been recently studied. The
NP-completeness of the problem has instigated researchers to propose different
heuristic algorithms. In this paper, we present a Generalized Critical-task
Anticipation (GCA) algorithm for DAG scheduling in heterogeneous
computing environment. The GCA scheduling algorithm employs task
prioritizing technique based on CA algorithm and introduces a new processor
selection scheme by considering heterogeneous communication costs among
processors for adapting grid and scalable computing. To evaluate the
performance of the proposed technique, we have developed a simulator that
contains a parametric graph generator for generating weighted directed acyclic
graphs with various characteristics. ~We have implemented the GCA
algorithm along with the CA and HEFT scheduling algorithms on the simulator.
The GCA algorithm is shown to be effective in terms of speedup and low
scheduling costs.

1. Introduction

The purpose of heterogeneous computing system is to drive processors
cooperation to get the application done quickly. Because of diverse quality among
processors or some special requirements, like exclusive function, memory access speed,
or the customize 1/O devices, etc.; tasks might have distinct execution time on
different resources. Therefore, efficient task scheduling is important for achieving
good performance in heterogeneous systems.

The primary scheduling methods can be classified into three categories, dynamic
scheduling, static scheduling and hybrid scheduling according to the time at which the
scheduling decision is made. In dynamic approach, the system performs
redistribution of tasks between processors during run-time, expect to balance
computational load, and reduce processor’s idle time. On the contrary, in static
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approach, information of applications, such as tasks execution time, message size of
communications among tasks, and tasks dependences are known a priori at
compile-time; tasks are assigned to processors accordingly in order to minimize the
entire application completion time and satisfy the precedence of tasks. Hybrid
scheduling techniques are mix of dynamic and static methods, where some
preprocessing is done statically to guide the dynamic scheduler [8].

A Direct Acyclic Graph (DAG) [2] is usually used for modeling parallel
applications that consists a number of tasks. The nodes of DAG correspond to tasks
and the edges of which indicate the precedence constraints between tasks. In
addition, the weight of an edge represents communication cost between tasks. Each
node is given a computation cost to be performed on a processor and is represented by
a computation costs matrix. Figure 1 shows an example of the model of DAG
scheduling. In Figure 1(a), it is assumed that task n; is a successor (predecessor) of
task n; if there exists an edge from n; to n; (from n; to n;) in the graph. Upon task
precedence constraint, only if the predecessor n; completes its execution and then its
successor n; receives the messages from n;, the successor n; can start its execution.
Figure 1(b) demonstrates different computation costs of task that performed on
heterogeneous processors. It is also assumed that tasks can be executed only on
single processor with non-preemptable style. A simple fully connected processor
network with asymmetrical data transfer rate is shown in Figures 1(c) and 1(d).

Py P, Ps

= |

ny 14 19 9 14

n, 13 | 19 | 18 | 16.7

ns | 11 | 17 | 15 | 143
ng | 13 8 18 | 13

N 12 13 10 11.7

ng 12 19 13 14.7

n; 7 16 11 11

ng 5 11 14 10

Ny 18 12 20 16.7

(b)

DP
= by | P | Ps

P 0 |07]21

P |13 0 |08

Pl1o|o3| o

(c) (d)

Figure 1: An example of DAG scheduling problem (a) Directed Acyclic Graph (DAG-1) (b)
computation cost matrix (W) (c) processor topology (d) communication weight.

The scheduling problem has been widely studied in heterogeneous systems where
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the computational ability of processors is different and the processors communicate
over an underlying network. Many researches have been proposed in the literature.
The scheduling problem has been shown to be NP-complete [3] in general cases as
well as in several restricted cases; so the desire of optimal scheduling shall lead to
higher scheduling overhead. The negative result motivates the requirement for
heuristic approaches to solve the scheduling problem. A comprehensive survey about
static scheduling algorithms is given in [9]. The authors of have shown that the
heuristic-based algorithms can be classified into a variety of categories, such as
clustering algorithms, duplication-based algorithms, and list-scheduling algorithms.
Due to page limitation, we omit the description for related works.

In this paper, we present a Generalized Critical task Anticipation (GCA) algorithm,
which is an approach of list scheduling for DAG task scheduling problem. The main
contribution of this paper is proposing a novel heuristic for DAG scheduling on
heterogeneous machines and networks. A significant improvement is that
inter-processor communication costs are considered into processor selection phase
such that tasks can be mapped to more suitable processors. The GCA heuristic is
compared favorable with previous CA [5] and HEFT heuristics in terms of schedule
length and speedup under different parameters.

The rest of this paper is organized as follows: Section 2 provides some
background, describes preliminaries regarding heterogeneous scheduling system in
DAG model and formalizes the research problem. Section 3 defines notations and
terminologies used in this paper. Section 4 forms the main body of the paper,
presents the Generalized Critical task Anticipation (GCA) scheduling algorithm and
illustrating it with an example. Section 5 discusses performance of the proposed
heuristic and its simulation results.  Finally, Section 6 briefly concludes this paper.

2. DAG Scheduling on Heterogeneous Systems

The DAG scheduling problem studied in this paper is formalized as follows. Given a
parallel application represented by a DAG, in which nodes represent tasks and edges
represent dependence between these tasks. The target computing architecture of DAG
scheduling problem is a set of heterogeneous processors, M = {P,: k = 1: P} and P = |M|,
communicate over an underlying network which is assumed fully connected. We have

the following assumptions:

® Inter-processor communications are performed without network contention between
arbitrary processors.

® Computation of tasks is in non-preemptive style. Namely, once a task is assigned to
a processor and starts its execution, it will not be interrupted until its completion.

® Computation and communication can be worked simultaneously because of the
separated 1/0.

® If two tasks are assigned to the same processor, the communication cost between the
two tasks can be discarded.

® A processor is assumed to send the computational results of tasks to their immediate
successor as soon as it completes the computation.

Given a DAG scheduling system, W is an n x P matrix in which w;; indicates
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estimated computation time of processor P; to execute task n;.  The mean execution time

of task n; can be calculated by the following equation:
J— P W .
_ 1)
W; = z “p 1)

Example of the mean execution time can be referred to Figure 1(b).

For communication part, a P x P matrix T is structured to represent different
data transfer rate among processors (Figure 1(d) demonstrates the example). The
communication cost of transferring data from task n; (execute on processor p,) to task
n; (execute on processor py) is denoted by c;; and can be calculated by the following
equation,

Ci,j :Vm+MSgi,j XtX,y’ (2)

Where:

V,, is the communication latency of processor P,,,

Msg;; is the size of message from task n; to task n;,

t.y is data transfer rate from processor p, to processor p,, 1< x, y <P.

In static DAG scheduling problem, it was usually to consider processors’
latency together with its data transfer rate. Therefore, equation (2) can be
simplified as follows,

Ci,j = Msgj j <ty y, (3)

Given an application represented by Directed Acyclic Graph (DAG), G = (V, E),
where V = {n;: j = 1: v} is the set of nodes and v = |V|; E = {e;; = <n;, nj>} is the set
of communication edges and e =|E|. In this model, each node indicates least
indivisible task. Namely, each node must be executed on a processor from the start
to its completion. Edge <n;, n;> denotes precedence of tasks n; and n;. In other
words, task n; is the immediate predecessor of task n; and task n; is the immediate
successor of task n;. Such precedence represents that task n; can be start for
execution only upon the completion of task ni. Meanwhile, task n; should receive
essential message from n; for its execution. Weight of edge <n;, n; > indicates the
average communication cost between n; and n;.

Node without any inward edge is called entry node, denoted by Nenry; While node
without any outward edge is called exit node, denoted by n. In general, it is supposed
that the application has only one entry node and one exit node. If the actual application
claims more than one entry (exit) node, we can insert a dummy entry (exit) node with
zero-cost edge.

3. Preliminaries

This study concentrates on list scheduling approaches in DAG model.  List
scheduling was usually distinguished into list phase and processor selection phase.
Therefore, priori to discuss the main content, we first define some notations and
terminologies used in both phases in this section.

3.1 Parameters for List Phase
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Definition 1: Given a DAG scheduling system on G = (V, E), the Critical Score of task
n; denoted by CS(n;) is an accumulative value that are computed recursively traverses
along the graph upward, starting from the exit node. CS(n;) is computed by the
following equations,

Wit if n; is the exit ndoe (i.e. n; =n.;) (4)
CS(m) = w, + Ma)(( )(; +CS(n;)) otherwise
njesuc (n
where w,,;, is the average computation cost of task ne, w, is the average computation

cost of task n;, suc(n;) is the set of immediate successors of task n;,
C;; Isthe average communication cost of edge <n;, n;> which is defined as follows,
Msg jx Dt

[ (PZ ig;:()y;gp , (5)

o
|

3.2 Parameters for Processor Selection Phase

Most algorithms in processor selection phase employ a partial schedule scheme to
minimize overall schedule length of an application. To achieve the partial
optimization, an intuitional method is to evaluate the finish time (FT) of task n;
executed on different processors. According to the calculated results, one can select
the processor who has minimum finish time as target processor to execute the task n;.
In such approach, each processor P, will maintain a list of tasks, task-list(P,), keeps
the latest status of tasks correspond to the EFT(n;, Py), the earliest finish time of task n;
that is assigned on processor P,.

Recall having been mentioned above that the application represented by DAG
must satisfy the precedence relationship. Taking into account the precedence of tasks
in DAG, a task n; can start to execute on a processor P, only if its all immediate
predecessors send the essential messages to n; and n; successful receives all these
messages. Thus, the latest message arrive time of node n; on processor Py, denoted
by LMAT(n;, Py), is calculated by the following equation,

LMAT(nj,Pk): Ma (EFT(ni)+ C,, . for task n; executed on processor P,) (6)

njepred nj)
where pred(n;) is the set of immediate predecessors of task n;. Note that if tasks n;
and n; are assigned to the same processor, ¢, , is assumed to be zero because it is

negligible.
Because the entry task nenyy has no inward edge, thus we have
LMAT (. P )= 0 )

entry !
forallk=1to P

Definition 2: Given a DAG scheduling system on G = (V, E), the Start Time of task n;
executed on processor Py is denoted as ST(n;, Py).

Estimating task’s start time (for example, task n;) will facilitate search of available
time slot on target processors that is large enough to execute that task (i.e., length of
time slot > w;j,). Note that the search of available time slot is started from
LMAT (n;,P, )-

Definition 3: Given a DAG scheduling system on G = (V, E), the finish time of task n;
denoted by FT(n;,R), represents the completion time of task n; executed on processor
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Pe.  FT(n;,R,) isdefined as follows,
FT(n,,R)=ST(n,,P)+Ww,, (®)

Definition 4: Given a DAG scheduling system on G = (V, E), the earliest finish time of
task n; denoted by EFT(n,) is formulated as follows,

EFT(n,) = Min{FT(n,R)} ©)
Py €
Definition 5: Based on the determination of EFT(n;) in equation (9), if the earliest finish

time of task n; is obtained upon task n; executed on processor p;, then the target processor of
task n; is denoted by TP(n;), and TP(n;) = p..

4. The Generalized Critical-task Anticipation Scheduling Algorithm

Our approach takes advantages of list scheduling in lower algorithmic complexity and
superior scheduling performance and furthermore came up with a novel heuristic
algorithm, the generalized critical task anticipation (GCA) scheduling algorithm to
improve the schedule length as well as speedup of applications. The proposed
scheduling algorithm will be verified beneficial for the readers while we delineate a
sequence of the algorithm and show some example scenarios in three phases,
prioritizing phase, listing phase and processor selection phase.

In prioritizing phase, the CS(n;) is known as the maximal summation of scores
including the average computation cost and communication cost from task n; to the
exit task. Therefore, the magnitude of the task’s critical score is regarded as the
decisive factor when determining the priority of a task. In listing phase, an ordered
list of tasks should be determined for the subsequent phase of processor selection. The
proposed GCA scheduling technique arranges tasks into a list L, not only according to
critical scores but also considers tasks’ importance.

Several observations bring the idea of GCA scheduling method. Because of
processor heterogeneity, there exist variations in execution cost from processor to
processor for same task. In such circumstance, tasks with larger computational cost
should be assigned higher priority. This observation aids some critical tasks to be
executed earlier and enhances probability of tasks reduce its finish time. Furthermore,
each task has to receive the essential messages from its immediate predecessors. In
other words, a task will be in waiting state when it does not collect complete message
yet. For this reason, we emphasize the importance of the last arrival message such
that the succeeding task can start its execution earlier. Therefore, it is imperative to
give the predecessor who sends the last arrival message higher priority. This can aid
the succeeding task to get chance to advance the start time. On the other hand, if a
task n; is inserted into the front of a scheduling list, it occupies vantage position.
Namely, n; has higher probability to accelerate its execution and consequently the start
time of suc(n;) can be advanced as well.

In most list scheduling approaches, it was usually to demonstrate the algorithms
in two phases, the list phase and the processor selection phase. The list phase of
proposed GCA scheduling algorithm consists of two steps, the CS (critical score)
calculation step and task prioritization step.

Let’s take examples for the demonstration of CS calculation, which is performed
in level order and started from the deepest level, i.e., the level of exit task. For

example, according to equation (4), we have CS(nj)= Wy = 16. For the upper
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level tasks, n;, ng and ng, CS(n;) = W_7+(C7'10 +CS(Mg)) = 47.12, CS(ng) =

W_8+(C8,10 +CS(n10)) =37.83, CS(ng) = W_9+(C9,10 +CS(n10)) =49.23. The other

tasks can be calculated by the same methods. Table 1 shows complete calculated
critical scores of all tasks for DAG-1.

Table 1: Critical Scores of tasks in DAG-1 using GCA algorithm
Critical Scores of tasks in GCA algorithm

M 1”) N3 Ny Ns Ng nz Ng Ng Nio
12013 | 8483| 8867| 8945| 7628| 7025| 4712| 37.83| 4923| 16.00

Follows the critical score calculation, the GCA scheduling method considers both
tasks’ importance (i.e., critical score) and its relative urgency for prioritizing tasks.
Based on the results obtained previously, we use the same example to demonstrate task
prioritization in GCA. Let’s start at the exit task n;o, which has the lowest critical
score. Assume that tasks will be arranged into an ordered list L, therefore, we have L
= {nyo} initially. Because task nj, has three immediate predecessors, with the order
CS(ng) > CS(n;) > CS(ng), the list L will be updated to L={ng, n;, ng, nyg}. Applying
the same prioritizing method by taking the front element of L, task ng; because task ng
has three immediate predecessors, with the order CS(ng) > CS(n,) > CS(ns), we have
the updated list L = { n4, Ny, ns, Ny, N7, Ng, Nyg}. Taking the same operations, insert
task n; in front of task n,, insert task n; in front of task n;, insert tasks ns Ny, ng
(because CS(ng) > CS(ny) > CS(ng)) in front of task ng; we have the list L = { ny, ny, n,,
Ns, Ng, N3, N7, Ng, N4, Ny, Ng, Ng, Nyo}.  The final list L = {ny, ny4, ny, N5, Ng, N3, N7, Ng, Ng,
nio} can be derived by removing duplicated tasks.

In listing phases, the GCA scheduling algorithm proposes two enhancements from
the majority of literatures. First, GCA scheduling technique considers various
transmission costs of messages among processors into the calculation of critical scores.
Second, the GCA algorithm prioritizes tasks according to the influence on its
successors and devotes to lead an accelerated chain while other techniques simply
schedule high critical score tasks with higher priority. In other words, the GCA
algorithm is not only prioritizing tasks by its importance but also by the urgency
among task. The prioritizing scheme of GCA scheduling technique can be
accomplished by using simple stack operations, push and pop, which are outlined in
GCA_List_Phase procedure as follows.

Begin_GCA_List_Phase
. Initially, construct an array of Boolean QV and a stack S.
QV[n;] = false, V nje V.
Push neit on top of S.
While S is not empty do
Peek task n;on the top of S;
If( all QV[n;] are true, for all n; € pred(n;) or task nj is Nentry)  {
Pop task n; from top of S and put n; into scheduling list L;
QV[ nj] =true; }
Else  /* search the CT(n;) */
0. For each task n;j, where n; € pred(n;) do
1 1f(QV[ni] = false)

HBoOo~NooG~wWN =
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12. Put CS(n;) into container C;

13. Endif

14. Push tasks pred(n;) from C into S by non-decreasing order according to their
critical scores;

15. Reset C to empty;

16. /* if there are 2+ tasks with same CS(n;), task n; is randomly pushed into S.

17.  EndWhile
End GCA List Phase

In processor-selection phase, tasks will be deployed from list L that obtained in
listing phase to suitable processor in FIFO manner. According to the ordered list L =
{n1, ng, Nz, Ns, Ng, N3, N7, Ng, Ng, N1}, We have the complete calculated EFTs of tasks in
DAG-1 and the schedule results of GCA algorithm are listed in Table 2 and Figure 2(a),
respectively.

Table 2: Earliest Finish Time of tasks in DAG-1 using GCA algorithm

Earliest Finish Time of tasks in GCA algorithm

ny n, ns Ny ns Ng ny Ng Ng N1o
9 27 42 19.7 32.7 47.6 53 65.7 54.7 84.7
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Figure 2: Schedule results of three algorithms on DAG-1 (a) GCA (makespan = 84.7) (b) CA
(makespan = 92.4) (c) HEFT (makespan = 108.2).

In order to profile significance of the GCA scheduling technique, the schedule
results of other algorithms, CA and HEFT are depicted in Figure 2(b) and 2(c),
respectively. The GCA scheduling techniques incorporates the consideration of
heterogeneous communication costs among processors in processor selection phase.
Such enhancement facilitates the selection of best candidate of processors to execute
specific tasks.

5. Performance Evaluation
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5.1 Random Graph Generator

We implemented a Random Graph Generator (RGG) to simulate application graphs

with various characteristics. RGG uses the following input parameters to produce

diverse graphs.

®  Weight of graph (weight), which is a constant = {32, 128, 512, 1024}.

® Number of tasks in the graph (n), where n = {20, 40, 60, 80, 100}.

®  Graph parallelism (p), the graph parallelism determines shape of a graph. p is
assigned for 0.5, 1.0 and 2.0. The level of graph is defined as |_W/ pJ. For

example, graph with p = 2.0 has higher parallelism than graph with p = 1.0.
® Out degree of a task (d), where d = {1, 2, 3, 4, 5}. The out degree of a task
indicates relationship with other tasks, the larger degree of a task the higher task
dependence.
® Heterogeneity (h), determines computational cost of task n; executed on processor
Pk i.e., w;y, which is randomly generated by the following formula.

WiX[l—%jswi‘k SWiX(1+%j. (10)

RGG randomizes w; from the interval [1, weight]. Note that larger value of
weight represents the estimation is with higher precision. In our simulation, h was
assigned by 0.1, 0.25, 0.5, 0.75 and 1.0.
® Communication to Computation Ratio (CCR), where CCR = {0.1, 0.5, 1, 2, 10}.

5.2 Comparison Metrics

As mentioned earlier, the objective of DAG scheduling problem is to minimize the
completion time of an application. To verify the performance of a scheduling
algorithm, several comparative metrics are given below for comparison:
® Makespan, also known as schedule length, which is defined as follows,

Makespan = max(EFT (Ngyit)) (11)
® Speedup, defined as following equation,

mine .y {ane\/ W}

makespan
The numerator is the minimal accumulated sum of computation cost of tasks
which are assigned on one processor. Equation (12) represents the ratio of sequential
execution time to parallel execution time.
® Percentage of Quality of Schedules (PQS)
The percentage of the GCA algorithm produces better, equal and worse quality of
schedules compared to other algorithms.

Speedup = , Where M is the set of processors (12)

5.3 Simulation Results
The first evaluation aims to demonstrate the merit of the GCA algorithm by showing
quality of schedules using RGG. Simulation results were obtained upon different
parameters with totally 1875 DAGs. Figure 3 reports the comparison by setting
different weight = {32, 128, 512, 1024}. The term “Better” represents percentage of
testing samples the GCA algorithm outperforms the CA algorithm. The term “Equal”
represents both algorithm have same makespan in a given DAG. The tem “Worse”
represents opposite results to the “Better” cases. Figure 4 gives the PQS results by
setting different number of processors. Overall, the GCA scheduling algorithm
presents superior performance for 65% test samples.

Speedup of the GCA, CA and HEFT algorithms to execute 1875 DAGs with fix
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processor number (P=16) under different number of task (n) are shown in Figure 5.
The speedup of these algorithms show placid when number of task is small and
increased significantly when number of tasks becomes large.

algorithm has better speedup than the other two algorithms.

In general, the GCA
Improvement rate of the

GCA algorithm in terms of average speedup is about 7% to the CA algorithm and 34%
to the HEFT algorithm. The improvement rate (IRgca) is estimated by the following

equation:
IRgca = > Speedup(GCA) — > Speedup(HEFT or CA)
Y Speedup(HEFT or CA)
gight | 33 128 512 1024
Better | 65.33% | 61.13% | 67.07% | 67.47%
Equal | 34.40% | 38.87% | 32.93% | 32.53%

Worse 0.27%

0%

0% 0%

Figure 3: PQS: GCA compared with CA (3 processors)
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5 [ 7 3
Eetter 61.13% T2.33% 63.27% f6 60%
Equal 38.87T% AT.6T% 36.73% 33.40%
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0%
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Figure 4: PQS: GCA compared with CA (weight = 128)
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Figure 5: Speedup of GCA, CA and HEFT with different number of tasks (n).
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Speedup of the GCA, CA and HEFT algorithms to execute different DAGs with fix processor number (P=16) and
task number (n=60) under different out-degree of tasks (d) are shown in Figure 6. The results of Figure 6 demonstrate
the speedup influence by task dependence. We observe that speedups of scheduling algorithms are less dependent on
tasks’ dependence. Although the speedups of three algorithms are stable, the GCA algorithm outperforms the other two
algorithms in most cases. Improvement rate of the GCA algorithm in terms of average speedup is about 5% to the CA
algorithm and 80% to the HEFT algorithm.

Figure 7 shows simulation results of three algorithms upon different processor number and degree of parallelization.
It is noticed that, graphs with larger value of p tends to with higher parallelism. As shown in Figures 7(a) and (b), the
GCA algorithm performs well in linear graphs (p=0.5) and general graphs (p=1.0). On the contrary, Figure 7(c) shows
that the HEFT scheduling algorithm has superior performance when degree of parallelism is high. In general, for
graphs with low parallelism (e.g., p = 0.5), the GCA algorithm has 33% improvement rate in terms of average speedup
compare to the HEFT algorithm; for graphs with normal parallelism (e.g., p = 1), the GCA algorithm has 20%
improvement rate.  For graphs with high parallelism (e.g., p = 2), the GCA algorithm performs worse than the HEFT by
3% performance.

Speedup of the GCA, CA and HEFT algorithms to execute different DAGs with fix processor number (P=16) and
task number (n=60) under different out-degree of tasks (d) are shown in Figure 6. The results of Figure 6 demonstrate
the speedup influence by task dependence. We observe that speedups of scheduling algorithms are less dependent on
tasks’ dependence. Although the speedups of three algorithms are stable, the GCA algorithm outperforms the other two
algorithms in most cases. Improvement rate of the GCA algorithm in terms of average speedup is about 5% to the CA
algorithm and 80% to the HEFT algorithm.

]

(@) (b) (©
Figure 7: Speedup with different degree of parallelism (p) (@) p=05(()p=1(c)p=2.

The impact of communication overheads on speedup are plotted in Figure 8 by setting different value of CCR. It is
noticed that increase of CCR will downgrade the speedup we can obtained. For example, speedup offered by CCR =
0.1 has maximal value 8.3 in GCA with 12 processors; for CCR = 1.0, the GCA algorithm has maximal speedup 6.1
when processor number is 12; and the same algorithm, GCA, has maximal speedup 3.1 for CCR = 5 with 12 processors.
This is due to the fact that when communication overheads higher than computational overheads, costs for tasks
migration will offset the benefit of moving tasks to faster processors.

(@) (b) (©
Figure 8: Speedup results with different CCR (a) CCR=0.5 (b)) CCR =1 (c) CCR =5.

6. Conclusions

The problem of scheduling a weighted directed acyclic graph (DAG) to a set of heterogeneous processors to
minimize the completion time has been recently studied. Several techniques have been presented in the literature to
improve performance. This paper presented a general Critical-task Anticipation (GCA) algorithm for DAG scheduling
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system. The GCA scheduling algorithm employs task prioritizing technique based on CA algorithm and introduces a
new processor selection scheme by considering heterogeneous communication costs among processors. GCA
scheduling algorithm is a list scheduling approach with simple data structure and profitable for grid and scalable
computing. Experimental results show that GCA has superior performance compare to the well known HEFT
scheduling heuristic algorithm and our previous proposed CA algorithm which did not incorporate the consideration of
heterogeneous communication costs into processor selection phase. Experimental results show that GCA is equal or
superior to HEFT and CA scheduling algorithms in most cases and it enhances to fit more real grid system.

Acknowledgements

This paper is based upon work supported by National Science Council (NSC), Taiwan, under grants no.
NSC95-2213-E-216-006. Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the NSC.

References

[1] R. Bajaj and D. P. Agrawal, “Improving Scheduling of Tasks in a Heterogeneous Environment,” IEEE Trans. on PDS, vol. 15,
no. 2, pp. 107-118, 2004.

[2] S. Behrooz, M. Wang, and G. Pathak, “Analysis and Evaluation of Heuristic Methods for Static Task Scheduling,” Jounal of
Parallel and Distributed Computing, vol. 10, pp. 222-232, 1990.

[3] M.R Gary and D.S. Johnson, “Computers and Interactability: A guide to the Theory of NP-Completeness”, W.H. Freeman and
Co., 1979.

[4] T. Hagras and J. Janecek,” A High Performance, Low Complexity Algorithm for Compile-Time Task Scheduling in
Heterogeneous Systems,” Parallel Computing, vol. 31, Issue 7, pp. 653-670, 2005.

[5] Ching-Hsieh Hsu and Ming-Yuan Weng, “An Improving Critical-Task Anticipation Scheduling Algorithm for Heterogeneous
Computing Systems”, Proceedings of the Eleventh Asia-Pacific Computer Systems Architecture Conference, LNCS 4186, pp.
97-110, 2006.

[6] E. llavarasan P. Thambidurai and R. Mahilmannan, “Performance Effective Task Scheduling Algorithm for Heterogeneous
Computing System,” IEEE Proceedings of IPDPS, pp. 28-38, 2005.

[7]1 S. Ranaweera and D. P. Agrawal, “A Task Duplication Based Scheduling Algorithm for Heterogeneous Systems,” IEEE
Proceedings of IPDPS, pp. 445-450, 2000.

[8] Rizos Sakellariou and Henan Zhao, “A Hybrid Heuristic for DAG Scheduling on Heterogeneous Systems”, Proc. of the IEEE
IPDPS Workshop 1, pp. 111b, 2004.

[91 H. Topcuoglu, S. Hariri and W. Min-You, “Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous
Computing,” IEEE Transactions on PDS, vol.13, no. 3, pp. 260-274, 2002.

25



\

i

R T T R R

EREE : 97 & 4 5] 20 |
. tFRT O Rar s M op A0 E2 8 (%2 | 03-5186410

Faik |TFE4 chh@chu.edu.tw
o4 p ] 62 F 2 7 23 P B e EAE
R R g # [The 22nd International Conference on Advanced Information Networking and
z, i Applications (AINA-08), March 25 -28 2008.
I & K FOkinawa, Japan ul Bl p 97 & 03 * 25 p
3 2 2 2y Bl iz 97 & 03 * 28 P
nERE

AR ERER (T EFUN)
AINA-08 & 4§ #EW’MAE&%— B2 AR g o iE- S 2 AINAO8S T3 4
ML A& L A G FRF AT L A EE S D oo gth sy Bir ) B
B ARG W e

CHPE2RE (FFUR)

- :zf‘w"iAlNAO8f P A A R - P RIERATE L F R S A
o S RN F RS g0 F o R L EE e e RN B R
fof AR L S ﬁ$%’nwkvu%?wk R AL B e B
T fAAPDFALFE o

| iE

i— = & OKinawa #7# {7 hp"% § fier7 5 § sk £ 352 % » % - % 4_ Workshop
Programe % = % »d Dr. Michel Raynal % {2 % :#> “Synchronization is Coming Back,
But is it the Same?” T 5 F73t g e dp - RRF AT BT Fendh=x > £ 5 P T =&
7o h A XAEFBATIFE ARAL o B P X B BER TR E c ) AL R
“ﬁﬁ’ifﬁﬁﬁﬁﬂﬁﬁiﬂﬁ‘é%%ﬁiﬁ%%’@%?ﬁo%i%’%
2w # 4 _d Dr. Shigeki Yamada 4% “Cyber Science Infrastructure (CSI) for
Promoting Research Activities of Academia and Industries in Japan™# # if#.o & £ 5 %

26




(%]

BOFZ X 2NN gAML BT > A EXPIE DTN BEFEREG o &
%—%’%&*kﬁi%pm%f’lfﬁalé—iﬁﬁé°%Af$%%GMD
wwpf R r%ﬁ&inﬁ’jﬁzpfmﬂ%iﬁﬁilzmp
ERC RN G ﬁf’sw" X s g 'VE’W’P zEeie - C R I SR TE ST 'Fué‘flr’ﬂ'r/?
Fzmwaom%Ti AAF SRS AR %aoébpx Tl E P AL
gﬁ.ﬁﬁ& ﬁm-%w*\(mm\?ﬁ&uaga S S G S
B =X %‘flﬁfjp‘}gpi}’v ﬁfrﬁ'g—%}zﬁj&‘h’ig_'ﬂé& —~E"[§g\=§:mk"1jﬁn
it 59 ff»’i'JJ?ﬂ FBRATORGESE T o A - 2Ly A F g e

w8

bk X REERFHER R L LS MR A RWIF L W LT g
S RS SRR SEE S RE LN IR TR L L Lt

RALo 57 RS & %02 fT 3K BAwHE B0 ARG §RITERD
EH UG R E  PRE A & RFREFRIRAS  EEAPEY .

N 3R
ZRE B

IR B G P FARKAET (AINAOB §5 §A) 0 £ ERLLIRF A
LA gkl R TR f&{%’ ‘@% P ERAMAT K o FMPE FEREDER
= g*#kmgb@—u % B ﬁl_)ﬁ % > ‘F’K#B’é‘ A s FF g ;i;%ff#c,« RE-VS

s
B

ks
=
=

3/25
3/26
3/27
3/28

CRE RN
1B 7 A

% Okinawa = #%34 € 47 7| » %22 AINA-08 Workshop Progra,
2P EEEE

>PSEFEEE

2P RBEE R BBEY 5

27



Towards Improving QoS-Guided Scheduling in Grids

Ching-Hsien Hsu®, Justin Zhan? Wai-Chi Fang®and Jianhua Ma*

'Department of Computer Science and Information Engineering, Chung Hua University, Taiwan
chh@chu.edu.tw

Heinz School, Carnegie Mellon University, USA
justinzh@andrew.cmu.edu

*Department of Electronics Engineering, National Chiao Tung University, Taiwan
wfang@mail.nctu.edu.tw

“Digital Media Department, Hosei University, Japan
jianhua@hosei.ac.jp

Abstract

With the emergence of grid technologies, the
problem of scheduling tasks in heterogeneous systems has
been arousing attention. In this paper, we present two
optimization schemes, Makespan Optimization
Rescheduling (MOR) and Resource Optimization
Rescheduling (ROR), which are based on the QoS
Min-Min scheduling technique, for reducing the
makespan of a schedule and the need of total resource
amount. The main idea of the proposed techniques is to
reduce overall execution time without increasing resource
need; or reduce resource need without increasing overall
execution time. To evaluate the effectiveness of the
proposed techniques, we have implemented both
techniques along with the QoS Min-Min scheduling
algorithm. The experimental results show that the MOR
and ROR optimization schemes provide noticeable
improvements.

1. Introduction

With the emergence of IT technologies,
the need of computing and storage are rapidly
increased. To invest more and more
equipments is not an economic method for an
organization to satisfy the even growing
computational and storage need. As a result,
grid has become a widely accepted paradigm
for high performance computing.

To realize the concept virtual organization,
in [13], the grid is also defined as “A type of
parallel and distributed system that enables the
sharing, selection, and aggregation of
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geographically distributed autonomous and
heterogeneous  resources dynamically at
runtime depending on their availability,
capability, performance, cost, and users'
quality-of-service requirements”. As the grid
system aims to satisfy users’ requirements with
limit resources, scheduling grid resources plays
an important factor to improve the overall
performance of a grid.

In general, grid scheduling can be
classified in two categories: the performance
guided schedulers and the economy guided
schedulers [16]. Objective of the performance
guided scheduling is to minimize turnaround
time (or makespan) of grid applications. On the
other hand, in economy guided scheduling, to
minimize the cost of resource is the main
objective. However, both of the scheduling
problems are NP-complete, which has also
instigated many heuristic solutions [1, 6, 10, 14]
to resolve. As mentioned in [23], a complete
grid  scheduling  framework  comprises
application model, resource model,
performance model, and scheduling policy. The
scheduling policy can further decomposed into
three phases, the resource discovery and
selection phase, the job scheduling phase and
the job monitoring and migration phase, where
the second phase is the focus of this study.

Although many research works have been
devoted in scheduling grid applications on



heterogeneous system, to deal with QOS
scheduling in grid is quite complicated due to
more constrain factors in job scheduling, such
as the need of large storage, big size memory,
specific 1/0 devices or real-time services,
requested by the tasks to be completed. In this
paper, we present two QoS based rescheduling
schemes aim to improve the makespan of
scheduling batch jobs in grid. In addition,
based on the QoS guided scheduling scheme,
the proposed rescheduling technique can also
reduce the amount of resource need without
increasing the makespan of grid jobs. The
main contribution of this work are twofold, one
can shorten the turnaround time of grid
applications without increasing the need of grid
resources; the other one can minimize the need
of grid resources without increasing the
turnaround time of grid applications, compared
with the traditional QoS guided scheduling
method. To evaluate the performance of the
proposed techniques, we have implemented our
rescheduling approaches along with the QoS
Min-Min scheduling algorithm [9] and the
non-QoS based Min-Min scheduling algorithm.
The experimental results show that the
proposed techniques are effective in
heterogeneous  systems  under  different
circumstances. The improvement is also
significant in economic grid model [3].

The rest of this paper is organized as
follows. Section 2 briefly describes related
research in grid computing and job scheduling.
Section 3 clarifies our research model by
illustrating the traditional Min-min model and
the QoS guided Min-min model. In Section 4,
two optimization schemes for reducing the total
execution time of an application and reducing
resource need are presented, where two

rescheduling approaches are illustrated in detail.

We conduct performance evaluation and
discuss experiment results in Section 5. Finally,
concluding remarks and future work are given
in Section 6.

2. Related Work

Grid scheduling can be classified into traditional
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grid scheduling and QoS guided scheduling or economic
based grid scheduling. The former emphasizes the
performance of systems of applications, such as system
throughput, jobs’ completion time or response time.
Swany et al. provides an approach to improving
throughput for grid applications with network logistics by
building a tree of “best” paths through the graph and has
running time of O(NlogN) for implementations that keep
the edges sorted [15]. Such approach is referred as the
Minimax Path (MMP) and employs a greedy,
tree-building algorithm that produces optimal results [20].
Besides data-parallel applications requiring high
performance in grid systems, there is a Dynamic Service
Architecture (DSA) based on static compositions and
optimizations, but also allows for high performance and
flexibility, by use of a lookahead scheduling mechanism
[4]. To minimizing the processing time of extensive
processing loads originating from various sources, the
approaches divisible load model [5] and single level tree
network with two root processors with divisible load are
proposed [12]. In addition to the job matching algorithm,
the resource selection algorithm is at the core of the job
scheduling decision module and must have the ability to
integrate multi-site computation power. The CGRS
algorithm based on the distributed computing grid model
and the grid scheduling model integrates a new
density-based internet clustering algorithm into the
decoupled scheduling approach of the GrADS and
decreases its time complexity [24]. The scheduling of
parallel jobs in a heterogeneous multi-site environment,
where each site has a homogeneous cluster of processors,
but processors at different sites has different speeds, is
presented in [18]. Scheduling strategy is not only in batch
but also can be in real-time. The SAREG approach
paves the way to the design of security-aware real-time
scheduling algorithms for Grid computing environments
[21].

For QoS guided grid scheduling,
apparently, applications in grids need various
resources to run its completion. In [17], an
architecture named public computing utility
(PCU) is proposed uses virtual machine (VMs)
to implement “time-sharing” over the resources
and augments finite number of private resources
to public resources to obtain higher level of
quality of services. However, the QoS
demands maybe include various packet-type
and class in executing job. As a result, a
scheduling algorithm that can support multiple
QoS classes is needed. Based on this demand,
a multi-QoS scheduling algorithm is proposed
to improve the scheduling fairness and users’
demand [11]. He et al. [7] also presented a
hybrid approach for scheduling moldable jobs
with QoS demands. In [9], a novel framework
for policy based scheduling in resource



allocation of grid computing is also presented.
The scheduling strategy can control the request
assignment to grid resources by adjusting usage
accounts or request priorities. Resource
management is achieved by assigning usage
quotas to intended users. The scheduling
method also supports reservation based grid
resource allocation and quality of service
feature. Sometimes the scheduler is not only
to match the job to which resource, but also
needs to find the optimized transfer path based
on the cost in network. In [19], a distributed
QoS network scheduler (DQNS) is presented to
adapt to the ever-changing network conditions
and aims to serve the path requests based on a
cost function.

3. Research Architecture

Our research model considers the static
scheduling of batch jobs in grids. As this
work is an extension and optimization of the
QoS guided scheduling that is based on
Min-Min scheduling algorithm [9], we briefly
describe the Min-Min scheduling model and the
QoS guided Min-Min algorithm. To simplify
the presentation, we first clarify the following
terminologies and assumptions.

® QoS Machine (Mg) — machines can provide
special services.

® QoS Task (Tg) — tasks can be run
completion only on QoS machine.

® Normal Machine (My) — machines can only
run normal tasks.

® Normal Task (Tn) — tasks can be run
completion on both QoS machine and
normal machine.

® A chunk of tasks will be scheduled to run
completion based on all available machines
in a batch system.

® A task will be executed from the beginning
to completion without interrupt.

® The completion time of task t; to be

executed on machine m; is defined as

CTy = dtij + efjj @
Where et;; denotes the estimated execution time
of task t; executed on machine m;; dt; is the
delay time of task t; on machine m;.
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The Min-Min algorithm is shown in Figure

Algorithm_Min-Min()

while there are jobs to schedule
for all job i to schedule
for all machine j
Compute CT;; = CT(job i, machine j)
end for
Compute minimum CT; ;
end for
Select best metric match m
Compute minimum CTpp,
Schedule job m on machine n
end while
} End_of _Min-Min

Figure 1. The Min-Min Algorithm

Analysis: If there are m jobs to be scheduled in
n machines, the tlme complexity of Min-Min
algorithm is O(m?n). The Min-Min algorithm
does not take into account the QoS issue in the
scheduling. In some situation, it is possible
that normal tasks occupied machine that has
special services (referred as QoS machine).
This may increase the delay of QoS tasks or
result idle of normal machines.

The QoS guided scheduling is proposed to resolve
the above defect in the Min-Min algorithm. In QoS
guided model, the scheduling is divided into two classes,
the QoS class and the non-QoS class. In each class, the
Min-Min algorithm is employed. As the QoS tasks have
higher priority than normal tasks in QoS guided
scheduling, the QoS tasks are prior to be allocated on
QoS machines. The normal tasks are then scheduled to
all machines in Min-Min manner. Figure 2 outlines the
method of QoS guided scheduling model with the
Min-Min scheme.

Analysis: If there are m jobs to be scheduled in
n machines, the time compIeX|ty of QoS guided
scheduling algorlthm is O(m*n).

Figure 3 shows an example demonstrating
the Min-Min and QoS Min-Min scheduling
schemes. The asterisk * means that
tasks/machines with QoS demand/ability, and
the X means that QoS tasks couldn’t be
executed on that machine. Obviously, the
QoS guided scheduling algorithm gets the
better performance than the Min-Min algorithm
in term of makespan. Nevertheless, the QoS
guided model is not optimal in both makespan
and resource cost. We will describe the



rescheduling optimization in next section.

Algorithm_QOS-Min-Min()

for all tasks ti in meta-task Mv (in an arbitrary order)
for all hosts m; (in a fixed arbitrary order)
CTij =et; +df
end for
end for
do until all tasks with QoS request in Mv are mapped
for each task with high QoS in Mv,
find a host in the QoS qualified host set that obtains
the earliest completion time
end for
find task t, with the minimum earliest completion time
assign task t; to host m, that gives the earliest completion
time
delete task t, from Mv
update dy
update CT; for all i
end do
do until all tasks with non-QoS request in Mv are mapped
for each task in Mv
find the earliest
corresponding host
end for
find the task t, with the minimum earliest completion time
assign task t; to host m, that gives the earliest completion
time
delete task t, from Mv
update dy
update CT; for all i
end do
} End_of _ QOS-Min-Min

completion time and the

Figure 2. The QoS Guided Algorithm

4. Rescheduling Optimization

Grid scheduling works as the mapping of individual
tasks to computer resources, with respecting service level
agreements (SLAs) [2]. In order to achieve the
optimized performance, how to mapping heterogeneous
tasks to the best fit resource is an important factor. The
Min-Min algorithm and the QoS guided method aims at
scheduling jobs to achieve better makespan. However,
there are still having rooms to make improvements. In
this section, we present two optimization schemes based
on the QoS guided Min-Min approach.
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*M1 M2 M3
T1 7 4 7
T2 3 3 5
T3 9 5 7
*T4 5 X X
T5 9 8 6
*T6 5 X X

Makespan Makespan

12 |—

Machine M1 M2 M3 Machine

B. The QOS guided scheduling algorithm

A. The Min-Min algorithm

Figure 3. Min-Min and QoS Guided Min-Min

4.1 Makespan Optimization Rescheduling (MOR)

The first one is Makespan Optimization Rescheduling
(MOR), which focuses on improving the makespan to
achieve better performance than the QoS guided
scheduling algorithm. Assume the makespan achieved by
the QoS guided approach in different machines are CT;,
CT,, ..., CTp, with CTy = max { CTy, CT,, ..., CTy },
where m is the number of machinesand 1 <k <m. By
subtracting CT, — CT;, where 1 <i <mand i #k, we can
have m-1 available time fragments. According to the
size of these available time fragments and the size of tasks
in machine My, the MOR dispatches suitable tasks from
machine My to any other machine that has available and
large enough time fragments. Such optimization is
repeated until there is no task can be moved.
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A. The QOS guided scheduling B. The Makespan Optimization

algorithm Rescheduling (MOR) algorithm

Figure 4. Example of MOR

Recall the example given in Figure 3,
Figure 4 shows the optimization of the MOR
approach. The left side of Figure 4
demonstrates that the QoS guided scheme gives
a schedule with makespan = 12, wheremachine
M2 presents maximum CT (completion time),
which is assembled by tasks T2, T1 and T3.
Since the CT of machine ‘M3’ is 6, so ‘M3’ has
an available time fragment (6). Checking all
tasks in machine M2, only T2 is small enough
to be allocated in the available time fragment in
M3. Therefore, task M2 is moved to M3,
resulting machine ‘M3’ has completion time
CT=11, which is better than the QoS guided
scheme.

As mentioned above, the MOR is based on the QoS
guided scheduling algorithm. If there are m tasks to be
scheduled in n machines, the time complexity of MOR is
O(m?n).  Figure 5 outlines a pseudo of the MOR scheme.
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Algorithm_MOR()

for CT; in all machines
find out the machine with maximum makespan CT,x and
set it to be the standard
end for
do until no job can be rescheduled
for job i in the found machine with CT s
for all machine j
according to the job’s QOS demand, find the
adaptive machine j
if (the execute time of job i in machine j + the
CT; < makespan)
rescheduling the job i to machine j
update the CT; and CTpax
exit for
end if
next for
if the job i can be reschedule
find out the new machine with maximum CTpax
exit for
end if
next for
end do
} End_of _ MOR

Figure 5. The MOR Algorithm

4.2 Resource Optimization Rescheduling (ROR)

Following the assumptions described in MOR, the main
idea of the ROR scheme is to re-dispatch tasks from the
machine with minimum number of tasks to other
machines, expecting a decrease of resource need.
Consequently, if we can dispatch all tasks from machine
M, to other machines, the total amount of resource need
will be decreased.

Figure 6 gives another example of QoS scheduling,
where the QoS guided scheduling presents makespan = 13.
According to the clarification of ROR, machine ‘M1’ has
the fewest amount of tasks. We can dispatch the task
“T4’ to machine ‘M3’ with the following constraint

CTij + CTJ' <= CTmax (2)
The above constraint means that the rescheduling can be
performed only if the movement of tasks does not
increase the overall makespan. In this example, CT43= 2,
CTs=7 and CT»=CT,=13. Because the makespan of
M3 (CTs) will be increased from 7 to 9, which is smaller
than the CTna therefore, the task migration can be
performed. As the only task in M1 is moved to M3, the
amount of resource need is also decreased comparing
with the QoS guided scheduling.



To evaluate the performance of the proposed

- ZM AMZ ZM techniques, we have implemented the Min-Min

scheduling algorithm and the QoS guided Min-Min

el ¢ : scheme. The experiment model consists of heterogeneous

X 7 X machines and tasks. Both of the Machines and tasks are

T |4 6 2 classified into QoS type and non-QoS type. Table 1

™| 7 2 summarizes six parameters and two comparison metrics

e |x e x used in the experiments. The number of tasks is ranged

from 200 to 600. The number of machines is ranged from

Makespan Makespan 50 to 130. The percentage of QoS machines and tasks are

set between 15% and 75%. Heterogeneity of tasks are

13 = 3 13 = — defined as H; (for non-QoS task) and Hq (for QoS task),

which is used in generating random tasks. For example,

8 |- 8 |- the execution time of a non-QoS task is randomly

o s generated from the interval [10, Hx10?] and execution

‘r m ‘r time of a QoS task is randomly generated from the

. i . ], interval [10°, Hox10°] to reflect the real application world.
M1 *M2 M3 Machine ML *M2 Mg Machine

All of the parameters used in the experiments are
A. The QOS guided scheduling B The Resource Optimization Rescheduling generated randomly with a uniform distribution. The

(ROR) Algorithm
results demonstrated in this section are the average values
of running 100 random test samples.
Figure 6. Example of ROR Table 1: Parameters and Comparison Metrics
The ROR is an optimization scheme which aims to Task number (Nr) {200, 300, 400, 500, 600}
minimize resource cost. If there are m tasks to be Resource number (Ng) {50, 70, 90, 110, 130}
scheduled in n machines, the time complexity of ROR is Percentage of QOS resources (Qz %) | {15%, 30%, 45%, 60%, 75%}
also O(m?n).  Figure 7 depicts a high level description of Percentage of QOS tasks (Qr %) {15%, 30%, 45%, 60%, 75%}
the ROR optimization scheme. Heterogeneity of non-QOS tasks (Hy) | {1, 3,5,7,9}
Heterogeneity of QOS tasks (Hg) {3,5,7,9,11}
Algorithm_MOR() ¥ The completion time of a set of
akespan tasks
for m in all machines o . Number of machines used for
find out the machine m with minimum count of jobs Resource Used (Ry) executing a set of tasks

end for
do until no job can be rescheduled
for job i in the found machine with minimum count of jobs
for all machine j
according to the job’s QOS demand, find the 52 Experimental Results of MOR
adaptive machine j
if (the execute time of job i in machine j + the

CT; <= makespan CTyay) Table_ 2 compares the perfqrmance_ of the MOR, M_in-Min
rescheduling the job i to machine algorithm and the QoS guided Min-Min scheme in term
Upga:e ttT]e CT;  of obs i . d of makespan. There are six tests that are conducted with
e je gount ot Jobs in machine m an different parameters.  In each test, the configurations are
exit for outlined beside the table caption from (a) to (f). Table (a)
end if changes the number of tasks to analyze the performance
next for results. Increasing the number of tasks, improvement of
next for L . .
end do MOR is limited. An average improvement ratio is from
} End_of MOR 6% to 14%. Table (b) changes the number of machines.

It is obvious that the MOR has significant improvement in
larger grid systems, i.e., large amount of machines. The
average improvement rate is 7% to 15%. Table (c)
discusses the influence of changing percentages of QoS
machines. Intuitionally, the MOR performs best with
45% QoS machines. However, this observation is not
always true. By analyzing the four best ones in (a) to (d),
we observe that the four tests (a) Nt=200 (Nz=50, Qz=30%,
Qr=20%) (b) Ng=130 (N;=500, Qr=30%, Q=20%) (c)

Figure 7. The ROR Algorithm

5. Performance Evaluation

5.1 Parameters and Metrics
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Qr=45% (N;=300, Ng=50, Q;=20%) and (d) Q=15%
(Ny=300, Ng=50, Qzr=40%) have best improvements. All of
the four configurations conform to the following relation,

0.4 x (Nrx Qr) = Nrx Qg @)
This observation indicates that the improvement of MOR
is significant when the number of QoS tasks is 2.5 times
to the number of QoS machines. Tables (e) and (f)
change heterogeneity of tasks. We observed that
heterogeneity of tasks is not critical to the improvement

rate of the MOR technique, which achieves 7%
improvements under different heterogeneity of tasks.
Table 2: Comparison of Makespan

(@) (Nr=50, Qr=30%, Qr=20%, H=1, Ho=1)

Task Number (N7) 200 300 400 500 600
Min-Min 9782 1299.7| 1631.8| 1954.6] 2287.8
QOS Guided Min-Min 6946 917.8| 1119.4[ 1359.9| 1560.1
MOR 507.3 8155 1017.7| 1254.8| 14583
Improved Ratio 14.01%| 11.15% 9.08% 7.73% 6.53%)
(b) (N7=500, Qr=30%, Qr=20%, H=1, Ho=1)

Resource Number (Ng)| 50 70 90 110 130
Min-Min 19315 | 1432.2 | 11021 | 9853 | 874.2
QOS Guided Min-Min | 13557 | 938.6 | 724.4 | 590.6 | 508.7
MOR 1252.6 840.8 633.7 506.2 429.4
Improved Ratio 7.60% | 10.42% | 12.52% | 14.30% | 15.58%

(c) (Ny=300, Ng=50, Qr=20%, H=1, Ho=1)

Qe% 15% | 30% 45% | 60% 75%
Min-Min 2470.8 1319.4 888.2 777.6 650.1
QOS Guided Min-Min | 18759 | 913.6 | 596.1 | 4638 | 376.4
MOR 1767.3 810.4 503.5 394.3 339.0
Improved Ratio 5.79% | 11.30% | 15.54% | 14.99% | 9.94%

(d) (Nt=300, Nr=50, Qr=40%, H=1, Hy=1)

Q% 15% 30% 45% 60% 75%
Min-Min 879.9 | 1380.2 | 1801.8 | 2217.0 | 2610.1
QOS Guided Min-Min 558.4 915.9 1245.2 1580.3 1900.6
MOR 474.2 817.1 1145.1 1478.5 1800.1
Improved Ratio 15.07% | 10.79% | 8.04% 6.44% 5.29%

(e) (N+=500, Ng=50, Qr=30%, Q:=20%, Ho=1)
Hr 1 3 5 7 9
Min-Min 1891.9 1945.1 1944.6 1926.1 1940.1
QOS Guided Min-Min 1356.0 1346.4 1346.4 1354.9 1357.3
MOR 1251.7 1241.4 1244.3 1252.0 1254.2
Improved Ratio 7.69% 7.80% 7.58% 7.59% 7.59%
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(f) (N1=500, Ng=50, Qz=30%, Q;=20%, H,=1)

Ho 3 5 7 9 1
Min-Min 1392.4)  1553.9 1724.9 1871.7 2037.8
QOS Guided Min-Min 867.5| 1007.8 1148.2 1273.2 1423.1
MOR 822.4 936.2, 1056.7 1174.3 1316.7
Improved Ratio 5.20% 7.11% 7.97% 7.77% 7.48%

5.3 Experimental Results of ROR

Table 3 analyzes the effectiveness of the ROR technique
under different circumstances.

Table 3: Comparison of Resource Used

(@) (Ng=100, Qz=30%, Q;=20%, H,=1, Ho=1)

Task Number (Nr) 200 300 400 500 600
QOS Guided Min-Min 100 100 100 100 100
ROR 39.81 44.18 46.97 49.59 51.17
Improved Ratio 60.19% | 55.82% | 53.03% | 50.41% | 48.83%
(b) (NTZSOO, QR:30%1 QTZZO%, HT:]., HQ:].)

Resource Number (Ng) 50 70 90 110 130
QOS Guided Min-Min 50 70 90 110 130
ROR 26.04 35.21 43.65 50.79 58.15
Improved Ratio 47.92% | 49.70% | 51.50% | 53.83% | 55.27%

(C) (NT:5001 NR:50, QTZZO%, HT:]., HQ:l)

Qr% 15% 30% 45% 60% 75%
QOS Guided Min-Min 50 50 50 50 50
ROR 14.61 25.94 35.12 40.18 46.5
Improved Ratio 70.78% | 48.12% | 29.76% | 19.64% | 7.00%

(d) (N;=500, Ng=100, Qx=40%, Hr=1, Ho=1)

Q1% 15% 30% 45% 60% 75%
QOS Guided Min-Min 100 100 100 100 100
ROR 57.74 52.9 48.54 44.71 41.49
Improved Ratio 42.26% | 47.10% | 51.46% | 55.29% | 58.51%

(6) (N+=500, Ng=100, Q¢=30%, Q;=20%, Hq=1)
Hr 1 3 5 7 9
QOS Guided Min-Min 100 100 100 100 100
ROR 47.86 47.51 47.62 47.61 47.28
Improved Ratio 52.14% | 52.49% | 52.38% | 52.39% | 52.72%
(f) (N7=500, Ng=100, Qu=30%, Qr=20%, H,=1)

Hq 3 5 7 9 11
QOS Guided Min-Min 100] 100 100] 100 100)
ROR 54.61] 52.01 50.64] 48.18 46.53]
Improved Ratio 45.39%| 47.99%| 49.36%| 51.82%| 53.47%)




Similar to those of Table 2, Table (a) changes the
number of tasks to verify the reduction of resource that
needs to be achieved by the ROR technique. We noticed
that the ROR has significant improvement in minimizing
grid resources.  Comparing with the QoS guided
Min-Min scheduling algorithm, the ROR achieves 50% ~
60% improvements without increasing overall makespan
of a chunk of grid tasks. Table (b) changes the number
of machines. The ROR retains 50% improvement ratio.
Table (c) adjusts percentages of QoS machine. Because
this test has 20% QoS tasks, the ROR performs best at
15% QoS machines. This observation implies that the
ROR has significant improvement when QoS tasks and
QoS machines are with the same percentage. Table (d)
sets 40% QoS machine and changes the percentages of
QoS tasks. Following the above analysis, the ROR
technique achieves more than 50% improvements when
QoS tasks are with 45%, 60% and 75%. Tables (e) and
(f) change the heterogeneity of tasks. Similar to the
results of section 5.2, the heterogeneity of tasks is not
critical to the improvement rate of the ROR technique.
Overall speaking, the ROR technique presents 50%
improvements in minimizing total resource need compare
with the QoS guided Min-Min scheduling algorithm.

6. Conclusions

In this paper we have presented two optimization
schemes aiming to reduce the overall completion time
(makespan) of a chunk of grid tasks and minimize the
total resource cost. The proposed techniques are based
on the QoS guided Min-Min scheduling algorithm. The
optimization achieved by this work is twofold; firstly,
without increasing resource costs, the overall task
execution time could be reduced by the MOR scheme
with 7%~15% improvements. Second, without increasing
task completion time, the overall resource cost could be
reduced by the ROR scheme with 50% reduction on
average, which is a significant improvement to the state of
the art scheduling technique. The proposed MOR and
ROR techniques have characteristics of low complexity,
high effectiveness in large-scale grid systems with QoS
Services.
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