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Abstract

Random geometric graphs (RGG) contain vertices whose points are uniformly distributed in a given
plane and an edge between two distinct nodes exists when their distance is less than a given positive value.
RGGs are appropriate for modeling multi-hop wireless networks consisting of n mobile devices with
transmission radius r unit length that are independently and uniformly distributed randomly in an area.
This work presents a novel paradigm to compute the subgraph probability in RGGs. In contrast to
previous asymptotic bounds or approximation, the closed-form formulas we derived herein are fairly
accurate and of practical value. In this report, we aim to develop a paradigm which can be used to make
quantitative analyzes on the fundamental properties of multi-hop wireless networks.

Keywords: Random geometric graphs, subgraph counting, subgraph probability
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i G UHEUR F 5 P(G) » BT © PG) = p A-p) 3 [T 1) P R
Hd (random graph process) FfH o — ﬁfjtzﬁéj nofiE 7 [ﬁjp’m vertex » [[I12 % (=
edge {2 o ™ o fEF BLp Tt py edge (1> uniformly [ERS By 5 E - p 7
i B |p q%)' 1 &L random graphs’ [N EG 7 random graphs (1> (= — edge

I;Tlﬁj}g&} ﬁl[ ]E[j , ﬁ ['i_}f%u-f L['IF'FILJ o BE /H{ET?}P{“‘%{ IF [ﬁl I—F[LJ node i_;fgjﬁ‘ =
unlformly [Srafﬁ{ﬁ;i*h &FIHJ o PR 2 [ [ﬁ[ I—EJ edge il > — Jﬂ’s}“?t P RLES S
FEI [H Y ) 5 RLAF A (dependent) i ZH Y

4, T E
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Table 1. Probabilities of subgraphs with three vertices or less in a RGG.
Notation| p; E Cs D2 El+l, l5
o
G /7/&\ éﬁg /A\ //
_____ o <] o
3\/§ s 3J§ , 2 2 3[ 2 . 3.3
Pr(G) |nr?/|A| |(nr’/|A])? [n—}w“w [}zr“/A A1) LA W
( ) L | |(Tc | |) 4 4 ‘4 ‘& 1 ‘A‘ ‘A‘z

5 LI ST - R TR (Y-graph o 25 LY £ R PGS o Fr AL
Y-graphfiv< 2% - — [ class graph G=(V, Es, Eg) fL— fl# Y-graph J[i{l I'—Qﬁi "*f[ﬁl 1]J:



R1: All base subgraphs are Y-graphs.

R2: G1+G; and G1-G; are also Y-graphs if G; and G, are two distinct Y-graphs.

R3: Gis a Y-graph if a(4(G))is a tree and S(#G)) is a complete graph, where ¢(G) is obtained from G
by the contractions of all the edges of each disjointed Y-subgraphs G into a single vertex w
adjacent to exactly those vertices that were previously not in G, and adjacent to at least one vertex
in Ge.

The following figure shows a Y—graph with its contraction of a base graph.

Figure 3. A'Y-graph G (left) and ¢(G) (rlght) where a(#G)) is a tree and A(#(G)) is a complete graph.

S Y-graph £ STATE IR RO 0 1) O R I B

Theorem 5 [3]: A tree with two or more vertices has at least two leaves.

Given any Y-subgraph (if recognizable), its probability formula can be obtained (shown in the next

theorem).

Theorem 6: The probability of a Y-subgraph ina ¥(X;, r, A) is computable.

Proof: The probabilities of all base graphs are all computable as shown in Section 4.1. If Pr(G;) and
Pr(G,) are given, we have Pr(G1+G2)=Pr(G1)+Pr(G2) and Pr(G;-G2)=Pr(G;)-Pr(G,). The rest is the case
for those Y-subgraphs constructed by applying R3.

Suppose that G is constructed by applying R3. Let S be the size of vertex set of ¢(G) We will prove
that Pr(G) is computable by induction on S. When S=1, then G is computable since it is either a single
vertex (Pr(G)=1) or a base graph.

Since a(#(G)) is a tree, a(@(G)) must contain a leave w by Theorem 5. The removal of w together
with the edges incident with it from G results in G*, which is with S-1 vertices and then computable
according to the induction hypothesis. If w is a vertex of G, we have only one solid line and S-1 broken
lines incident to w due to the facts that a(#(G)) is a tree and S(¢#(G)) is a complete graph; the existence
of the unique solid line ej=(w, v), where v is a vertex in G*, only depends on whether the distance
between w and v is less than r; therefore we have Pr(G)=Pr(G*)xPr(E;). We conclude that G is
computable.

Otherwise, w represents a Y-graph Gy with size less than S. Since every vertex in G* connects to
every vertex in Gy with broken lines except one solid line e=(x, y), where x(y) is a vertex in G*(Gy).
Similarly, we have Pr(G)=Pr(G*)xPr(E;)xPr(Gy); this also implies that G is computable. [l

A (R o A [ O IR e B 20 BRI - i E R AR
SENES FA (linear combination) - 7 qﬁa’ﬂ [4ET =
VAR
-3\ [N
A LA R
A —\’—ksﬁxm + &
&?MD“‘. }{ﬁ’ﬁ%ﬂ [“RYEl ['}BH%)[EU,?&L‘[‘QEE\E’F&[
BT T - B F R R A(Imear combination) » [l fi* F|| B~ £ =5

\
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Theorem 8: For arbitrary four distinct nodes u, v, w, and x in a X, r, A), we have

Pr(Gs=0=cy) (3\/_J |’”| , where S={u, v, w, x}.
A

Proof: Consider the geometric graph c4 and its circle model (See Figure 5(a) and Figure 5(b)). These

four nodes need to be placed properly near to each other in order to form the cycle of length four. Since

the longest distance between every two neighboring centers is r, the four centers in the circle model

must be placed in a convex quadrilateral with the same size length r (See Figure 5(c)).

v

Figure 5. (a) A cycle of length four. (b) Its circle model. (c) The convex quadrilateral in the circle model.

Since the subgraph c4 consists of a induced path p, and another nearby vertex, we have
Pr(Gs=C4)<Pr(Gs.x3=p2)xPr(the remaining vertex x is near p, properly). Because Pr(x is near p, properly)
is the probability of putting the center of x in the convex quadrilateral, we have Pr(x is near p;

2 4 6
properly)<(r’/| Al). In a sequel, we have Pr(Gs=c,) Sﬁ{&EJ& :(3\@} T by Table 1. W

A

Theorem 9 For arbitrary four distinct nodes u, v, w, and x in a (X, r, A), we have Pr(Gs=D=k,)<

7' T3 2 2 \where S={u, v, w, x}.
2 8 8 W3

Proof: The four nodes {u, v, w, x} need to be placed sufficiently near to each other in order to form a k4

(See Figure 6(a)). First, the three nodes {u, v, w} must be a triangle cs. The circle model for c; can be

presented by intersections of three equal circles (See Figure6 (b)).

X @) o

Figure 6. (a) K. (b) Its circle model. (c) Reuleaux triangle.

Since the subgraph k, consists of a triangle c; and another nearby vertex x, we have
Pr(Gs=ka)<Pr(Gs.;x3=C3)xPr(x is near cz sufficiently). Note that Pr(x is near cs sufficiently) is the
probability of putting the center of x in the common intersection of three equal circles; and the largest

area of the common intersection, called Reuleaux triangle [30], is (ﬂ)rz (it is easily obtained by
2

summing up the area of a equilateral triangle and three areas of a circular segment with opening angle

n/3). Therefore, we have Pr(x is near c;sufficiently) <(” \/_)r2/|A| In a sequel, we have Pr(Gs=kq)
2

< ﬂ—— e (A7 (Y 2/|A|= 7 13 9 by Table 1. Il
2 8 8 W‘
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In [12], Khurana et al. have shown that if the number of hidden terminal pairs is small and when
collisions are unlikely, the RTS/CTS exchange is a waste of bandwidth. On the other hand, if the number
of hidden terminal pairs is large, RTS/CTS mechanism helps avoid collision. Moreover, the optimal
value for the RTS_Threshold in IEEE 802.11 [12] depends on the number of hidden terminals. Counting
the occurrences of p, (i.e. C(pz)) helps counting the number of hidden-terminal pairs in the network. We
evaluate C(p,) in the next theorem.

Theorem 10: Ina ¥(X;, r, A), we have C(pg):3@J [3\@’]”4/%2.
4
Proof: Since each hidden-terminal pair consists of three distinct labeled vertices, we set S to be the

selected three-vertex set. There are(gjdiﬁerent combinations for selecting three from n vertices, and

three different settings for labeling one from three as the center of the hidden-terminal pair (i.e. the
internal node of the induced path with length 2). Therefore, we have the number of hidden-terminal pairs

@ x3xPr(Gs=p2) :3(9 [’o’ﬁjﬂﬁmf by Table 1.
4

Note that the hidden terminal pairs grow as like O(n®r*), where n is the number of mobile nodes and r
is the range of power.

PO A AP 3Tp R RSoE » F T AR AR B R cluster heads [y
E[ °

The concept of dominating set in graph theory has been used for hierarchical routing and reducing
broadcasting packets [4] in ad hoc networks. Finding the minimum size of dominating set confronts two
huge obstacles. First, it is an NP-complete problem, which seems difficult to solve efficiently. Second, it
needs overheads to gather global knowledge of the network topology. Therefore, many approaches are
proposed to find a dominating set with acceptable size. A simple algorithm for selecting a dominating set
has been proposed Wu and Li [23]. Their algorithm selects the center of an induced path with length 2
(that is p) as a member of the desired dominating set. We estimate the number of dominating set
produced in their algorithm by using the next theorem.

Theorem 11: Given a ¥ X,, r, A), the expected dominating set y(G)<nx(1-(1- (3(3}{4/|A| ( ])

n-1)
Proof: For each node (as a center), there are ( 2) possible combinations for other two vertices to form a

p2. The node is not a member of the selected dominating set when every one pair of its neighbors with it

does not form any p,. Therefore, the probability of a node being a member of the selected dominating set
)

-1
is 1-(1- Pr(pz))(z/— (1-(1- (3‘@’}{4/|A| )( j) (See Table 1). For we have n possible centers, the expected

number of dominating set is nx (1-(1 (3‘@} 4/|A|)[ j)

PPN purt FL*I [ 3 A M B FoRG e et BT AL R AR 5 (112 exposed-terminal i
Hetl e

To derive a tight bound of the number of exposed-terminal sets in a given RGG, we need to compute
first the subgraph probability of c4 (a cycle of length four). The paradigm proposed in Section 4 can be




applied to tackle a great deal of subgraphs, but not some types of subgraphs such as cycles. We try to
obtain tight bounds for Pr(c,) in a different way.

4 n 6
Theorem 12: Ina ¥ X;, r, A), we have C(M)z(3 27\@}(4)&3 .

Proof: Counting the number of exposed-terminal sets is equivalent to counting the number of labeled
subgraph M (See Figure 2). There are [Zj ways to select four from n elements. Each has (4JX2:12
2

ways in forming the subgraph M (Figure 7).
X X X X
LN LN LN L
UW __Xv VIZ__\V\fx le__\Yx uv __XW

Figure 7. Twelve different ways of labeling M graph.
Note that every graph in the same row contains the same subgraph (cycle of length four). To be accurate,

we should avoid such duplicated counting. Therefore the number of exposed-terminal sets is equal to the
number of labeled M graphs minus the number of the duplicated cycles (=3(duplicated

counting)x3(rows)): @Xg X @ xPr(Gs=M)-3x3x @ xPr(Gs=c4)= (njpj -9x @ xPr(Gs=c)

2&[”) ”rz -gx(njx(?"/_J [34 27[31 J (by Table 2 and Theorem 8).
MRSl S AL A

;_‘\ %‘Ejd [_{—L%[%“HJN T’TC3 trlangle H‘?ﬂ[ Ilﬁ&*} _1\ E-fgr :I'QE\I;TEJ =0 "Wﬁ?ﬁ IfF | xm? lﬁ{fLL[[rI,E]E[LJ
%ﬁb[r?fiﬁuf[ H ko =t YR E rrjjﬁ/\ " SRS ;l’ﬁ?g&l s E['ﬂai‘ﬁi' L fFV}uﬁlﬁf&
%‘H:F:’II'FLI HES ilﬁ[ﬁtrlangle routej,}ﬁ uﬁg\r

Theorem 13: Ina ¥( X, r, A), the expected number of triangle route@jx(ﬁi‘?}rwﬁf.
Proof: The expected number of triangle routes C(c3) can be obtained easily since we have computed

j ways to select three from n elements. Thus, we

Pr(%)z[x#}f“MZ(See table 1); and there are (n

3

conclude that C(c3)= @xPr(cg) @ ( 3‘5’}(4442 |

E1 0 RL ff o AR R A B ) D32 e R

: o . 3
Lemma 14 [28]: The expected overlapped area of two properly intersecting circles |s[7r—7jr2.

Theorem 15: In a ¥(X,, r, A), the expected number of common neighboring nodes of an arbitrary

communication link is (n)x(;z 3‘f3}2/|A|.

Proof: Given two circles with the same radius r in a ¥(X;, r, A), the expected overlapped area of two

33

properly intersecting circles is [ —4}2 by Lemma 14. Subsequently the probability of a node located




in the overlapped area of these two properly intersecting circles is [ _3‘f3jr2/A|. Finally, the expected

4
number of common neighboring nodes of an arbitrary communication link is (n)x(ﬂ_s‘f’jﬁlAL where

n is the number of randomly deployed nodes and A is the deployed area. i

Job ERL fif T AR A B O D35 S TRy

Suppose that each communication link has equal probability of independent failure event, denoted by
Pe. Also, let P denote the probability of that a link successfully recovers from its failure. The following
theorem tries to estimate Pg.

Theorem 16: We have Pr>1-(Pex(2-Pg))? ina ¥(X;, r, A), where (p:(n)x(ﬂif}zHAL

Proof: Suppose that there are ¢ common neighboring nodes of both a and b where (a, b) is a
communication link. When link (a, b) fails ina ¥ X, r, A), any of common neighboring nodes of both a
and b, say c, can be used to recover from the failure (See Figure 11). In other words, the induced
subgraph of nodes a, b, and ¢ form a cycle with length 3 (i.e. c3); these nodes with node a and b form ¢

disjoint paths (with length) 2 as backup routes. By Theorem 15, we have go:(n)x(zz—s\f}zlm. The

probability of failure recovery of each path is thus Pex(1-Pg)+(1-Pg) xPe+(Pg)x(Pr)=Pr(2-P) because
the breakage of any link of the path results its failure recovery. Since there are at least ¢ disjoint paths,
the link recovery fails if all ¢ disjoint paths fail. Therefore, we have the desired result Pg>1-(Pg(2-Pg))”.

Figure 8. A link (a, b) with common neighboring nodes.
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