FREFATAELR gL HF LV E S 54842

3R BN ARENE BRI L RRER GRS L
17 (11D
Fia%Ed:Fgw)

ol B E
3 F % 5 ¢ NSC 97-2221-E-216-018-
#oFHRF 97T#E#087 01 px98EOT? 3P
#HoFH =P EAETa Y

T AL AR

FE e AR plrEy 4 HiEpE s g o
LTIy 4 -HEesE s | o ‘}l:é‘éé‘
Asipmy 4 -fizpm s g o

For o B MAREERFL LR E A

PooE R K 98 #1070 31 p

Summary

This report describes the results achieved in the third year of three-year research proposal. As
mentioned in the proposal, an important issue in the design of high reliable system-on-chip (SoC) is
how to identify the system failure behaviors, verify the robustness of the system, the safety-critical
components and the feasibility of the fault-robust design as early in the development phase to
reduce the re-design cost. Therefore, a system-level fault-tolerant verification platform is required
to assist the designers in assessing the dependability of a system with an efficient manner. The study
is to propose a system-level fault injection framework and risk model in SystemC design platform to
assist the dependability assessment. The proposed fault injection framework consists of two kinds
of fault injection techniques: simulation-based and software-implemented fault injection schemes.
In this year, we propose a risk model to facilitate the measure of the robustness and scales of
failure-induced risks in a system, which can be used to identify the critical components and major failure
modes for protection so as to effectively reduce the impact of failures to the system. Next, we complete the
development of the simulation-based and software-implemented fault injection, robustness
verification and risk assessment tool based on the devising SystemC and IP-based fault injection
methodologies and failure mode and effects analysis (FMEA) process under the environment of
CoWare Platform Architect. The proposed tool can significantly reduce the effort and time for
validating the robustness and safety of SoC. Our tool can perform automatically the fault injection
campaigns, and classify the failure modes of the system failure behaviors. In addition to that, the
tool dramatically increases the efficiency of carrying out the FMEA and system robustness
validation. We demonstrate the feasibility of the proposed verification framework with an
experimental ARM-based system that is modeled at different levels of abstraction.

Abstract: As system-on-chip (SoC) becomes prevalent in the intelligent system applications,
the reliability issue of SoC is getting more attention in the design industry due to the rapid
increasing rate of radiation-induced soft errors while the SoC fabrication enters the very deep
submicron technology. Therefore, the SoC dependability becomes a critical issue in safety-critical
applications. Validating such systems is imperative to guarantee the dependability of the systems
before they are being put to use. Moreover, it is beneficial to assess the SoC robustness in early
design phase in order to significantly reduce the cost and time of re-design. To fulfill such needs, in
this study, we propose a useful IP-based SoC-level risk model using failure mode and effects
analysis (FMEA) method to assess the robustness of a SoC in SystemC transaction-level modeling
(TLM) design level. The proposed risk model is able to facilitate the measure of the robustness and
scales of failure-induced risks in a system, which can be used to identify the critical components
and major failure modes for protection so as to effectively reduce the impact of failures to the
system. A case study is used to demonstrate our risk model under CoWare Platform Architect
environment. A system verification tool was created to assist us in measuring the robustness of the
system, in locating the weaknesses of the system, and in understanding the effect of faults on
system failure behavior during the SoC design phase. The contribution of this work is to promote
the dependability verification to TLM abstraction level that can significantly enhance the simulation
performance, and provide the comprehensive results to validate the system dependability in early
design phase for safety-critical applications.

Keywords: FMEA, risk assessment, SystemC, safety-critical application, system-on-chip.

designers in assessing the robustness of a SoC with
an efficient manner. Normally, the FMEA method

1. Introduction

As system-on-chip (SoC) becomes more and more
complicated, the SoC could encounter the reliability
problem due to the increased likelihood of faults or
radiation-induced soft errors especially when the
chip fabrication enters the very deep submicron
technology [1-3]. Since SoC becomes prevalent in
the intelligent system applications, such as
intelligent automotive systems or intelligent robots,
which require a stringent dependability while the
systems are in operation. Thus, it is essential to
perform the failure mode and effects analysis
(FMEA) method to locate the vulnerability of the
SoC and provide the practical fault-tolerant
strategies to improve its reliability and safety [4].
However, due to the high complexity of the SoC, the
incorporation of the FMEA and fault-tolerant
demand into the SoC will further raise the design
complexity. Therefore, we need to adopt the
behavioral level or higher level of abstraction to
describe/model the SoC, such as using SystemC, to
tackle the complexity of the SoC design and
verification. An important issue in the design of SoC
is how to validate the system dependability as early
in the development phase to reduce the re-design
cost. As a result, a SoC-level dependability
verification platform is required to facilitate the

and fault injection approach are employed to analyze
the impact of failures to the system and measure the
risks of the system.

Previously, the issue of SoC-level risk
assessment is seldom addressed especially in
SystemC transaction-level modeling (TLM) design
level. In paper [4], the authors presented a FMEA
method at SoC-level design in RTL description to
design in compliance with IEC61508. A memory
sub-system embedded in fault-robust
microcontrollers for automotive applications was
used to demonstrate the feasibility of their FMEA
method. However, the scheme presented in [4] can
only apply to RTL and gate level, which limits the
scope of its application. Furthermore, the
complexity of oncoming SoC increases rapidly, so it
may still require considerable time and efforts to
implement a SoC using RTL description. In paper
[5], the authors proposed a dependability benchmark
for automotive engine control applications. They
showed the feasibility of the proposed dependability
benchmark using a prototype of diesel electronic
control unit (ECU) control engine system. The fault
injection campaigns were conducted to measure the
dependability of benchmark prototype. The domain

of application for dependability benchmark
specification presented in paper [5] confines to the
automotive engine control systems which are built
by commercial off-the-shelf (COTS) components.
While dependability evaluation is performed after
physical systems have been built, the costs of
re-designing systems due to inadequate
dependability can be prohibitively expensive.

To cope with the above problems, we raise the
modeling level of SoC design to SystemC TLM
level. At TLM design level, we can more effectively
deal with the issues of design complexity, simulation
performance, development cost and dependability
for safety-critical SoC applications. In this study, an
IP-based SoC-level risk model combining FMEA
with fault injection method is proposed to identify
and assess the potential failure modes in a SoC
modeled at SystemC TLM design level, and
measure the risk scales of consequences resulting
from various failure modes. Since the modeling of
SoCs is raised to the level of TLM abstraction, the
performance of fault injection and simulation is
enhanced significantly. As a result, the risk
assessment can be carried out efficiently in early
design phase to validate the robustness of the SoC
and identify the critical components and failure
modes to be protected if necessary. Our risk model
is valuable in that it provides the capability to
quickly assess the SoC dependability, and if the
measured dependability cannot meet the system
requirement, the results of FMEA will be used to
help us develop a feasible and cost-effective
risk-reduction process.

The remaining report is organized as follows. In
Section 2, the SystemC untimed/timed functional
TLM and the concept of Transactor are presented. A
SoC-level risk model is proposed in the following
section. We briefly describe a system verification
platform in Section 4. A case study with the
experimental results and a thorough vulnerability
and risk analysis are given in Section 5. The
conclusions appear in Section 6.

2 SystemC Functional TLM

SystemC [6], a system-level modeling language,
provides a wide variety of modeling levels of
abstraction and allows us to model a system utilizing
one or a mixture of various abstraction levels. It is
quite common that the modules within a SoC are
modeled at different levels of abstraction using
SystemC design language. The primary goal of TLM

is to reduce the modeling complexity and increase
the simulation speeds, while offering enough
accuracy for the design task. The Open SystemC
Initiative (OSCI) [7] categorizes the TLM in
SystemC into the following levels: Programmers
View (PV), Programmers View with Timing (PV+T)
and Cycle Callable (CC), where the modeling level
of abstraction and simulation speed is from high to
low among these three levels. The PV level is
equivalent to untimed functional TLM and PV+T
level is the level of timed functional TLM.

We adopt the CoWare Platform Architect [11]
for system design platform. The Platform Architect
provides the modeling levels of PV and PV+T and
allows the mixture of these two levels in the
IP-based SoC design. Fig. 1 shows the ARM-based
systems modeled with the mixed abstraction levels
of PV and PV+T, where the ‘Transactor’ likes bridge
to connect the PV and PV+T levels and its function
is to convert the bus protocols between PV and
PV+T levels. In Fig. 1, the AHB and APB
components are modeled at PV+T abstraction level
with AMBA protocol; whereas the ‘IP’ slave
modules are modeled at PV level with PV protocol.
The PV bus can be utilized to connect the slave
modules as shown in Fig. 1(a) and (c). Then, the
“Transactor’ behaves like bridge between PV bus
and AHB or APB. Fig. 1(b) and (d) do not use the
PV bus for slave modules. Instead, each slave
module connects to the AHB or APB through the
‘Transactor’. The reason of employing the PV
modeling level is to speed up both the modeling
process itself as well as the simulation of the
resulting specification.

AHB

Fig. 1: ARM-based system modeled with mixed

levels of PV and PV+T, where IP represents the
slave module.

3 SoC-Level Risk Assessment
When SoCs are applied to safety-critical
applications, fault-robust designs with the
dependability validation are required to guarantee
that the developed SoCs are able to comply with the
dependability or safety requirements defined by the
international norms, such as IEC61508 [8, 9]. For
the complicated IP-based SoCs or embedded
systems, it is unpractical and not cost-effective to
protect the entire SoC or system. Analyzing the
vulnerability of SoCs or systems can help designers
not only invest limited resources on the most crucial
region but also understand the gain derived from the
investment.

In this section, we propose a SoC-level risk
model to quickly assess the SoC’ vulnerability at
SystemC TLM level. Conceptually, our risk model is

based on the FMEA method with the
simulation-based fault injection approach to
measure the robustness of SoCs. From the
assessment results, the rank of component

vulnerability related to the risk scale of causing the
system failure can be acquired. The notations used
in the risk model are developed below.

® n: number of components to be investigated in

the SoC;

z: number of possible failure modes of the SoC;

C(i): the i"" component, where 1 <i <n;

FR_C(i): failure rate of the i"" component;

SFR_C(i): the part of SoC failure rate

contributed from the failure rate of the i"

component;

SFR: SoC failure rate;

R(t): SoC reliability;

® FM(K): the k" failure mode of the SoC, where 1
<k <z

® NE: no effect which means that a fault/error
happening in a component has no impact on
the SoC operation at all;

® P (i, FM(K)): probability of FM(K) if a failure

occurs in the i component;

P (i, NE): probability of no effect for a failure

occurring in the i component;

P(i, SF): probability of SoC failure for a failure

occurring in the i™ component;

S_FM(K): severity rate of the k™ failure mode,

where 1 <k <z;

® RPN_C(i): risk priority number of the i"
component;

® RPN_FM(K): risk priority number of the k™"
failure mode.

The potential SoC failure modes can be
identified from the fault injection campaigns. We
can inject the faults into a specific component so as
to result in the failures of that component, and then
investigate the effect of component’s failures on the
SoC behaviors. Throughout the injection campaigns
for each component, we can identify the failure
modes of the SoC, which are caused by the failures
of components in the SoC. The parameters of z and
P(i, FM(k)) can be derived from the fault injection
campaigns. The derivation process by fault injection
experiments is described as follows:

Several notations are developed first:

® S FM: aset of SoC failure modes used to record
the possible SoC failure modes happened in the
fault injection campaigns.

® counter(i, k): a counter array for the i
component used to count the number of the k™
SoC failure mode occurred in the fault injection
experiment of the i component, where 1 <i <n,
and k represents the k™ SoC failure mode in the
set S_FM.

® no_fi(i): the number of fault injection campaigns
performed in the i" component, wherel <i <n.

th

Fault injection process:
z2=0;S_ FM = @,
fori=1ton /[fault injection experiment for
the i™ component;/

for j = 1to no_fi(i)

{injecting a fault into the i component, and
investigating the effect of component’s failure on
the SoC behavior; then, identifying which failure
mode of the SoC encountered due to this fault
injection.
if (the SoC failure mode caused by this injection
campaign is new, and therefore, it cannot be
found in the set S_FM; in other words, this
type of failure mode does not occur in the
previous injection campaigns)
then {z = z + 1; adding this SoC failure mode to
the set S_FM; k = z; counter(i, k) = counter(i,
k) + 1}
else {find the value of k by locating the position
of current SoC failure mode in the set S_FM;

then counter(i, k) = counter(i, k) + 1}

} 0

After carrying out the above injection
experiments, the set S_FM is obtained. Next, the
parameter of P(i, FM(K)) can be computed by

counter (i, k)

P@i,FM(K)) =

0 FM KD == i)
Where 1 <i <nand 1 <k <z The following
expressions are exploited to evaluate the terms of
P(i, SF) and P(i, NE).

P(i,SF) = iP(i,FM (k)
k=1

P(i,NE) =1- P(i, SF)

The derivation of the component’s failure rate is out
of the scope of this study, so we here assume the
data of FR_C(i), for 1 <'i <'n, are given. The part of
SoC failure rate contributed from failure rate of the
i™ component can be calculated by

SFR_C(i) = FR_C(i)x P(i,SF)

It is evident that the SoC failure rate and SoC
reliability can be written as

n
SFR=>SFR_C(i)
i=1

—SFRxt

Rt)=¢

The meaning of the parameter S_FM(k) and the
role it playing can be explained from the aspect of
FMEA process [10]. The method of FMEA is to
identify all possible failure modes of a SoC and
analyze the effects or consequences of the identified
failure modes. In general, an FMEA records each
potential failure mode, its effect in the next level,
and the cause of failure. We note that the faults
occurring in different components could cause the
same SoC failure mode, whereas the severity degree
of the consequences resulting from various SoC
failure modes could not be identical. The parameter
S_FM(K) is exploited to express the severity rate of
the consequence resulting from the k™ failure mode,
where 1 <k <z.

We illustrate the risk evaluation with FMEA

idea using the following example. An ECU running
engine control software is employed for automotive
engine control. Its outputs are used to control the
engine operation. The ECU could encounter several
types of output failures due to hardware or software
faults in ECU. The various types of failure mode of
ECU outputs would result in different levels of
risk/criticality on the controlled engine. A risk
assessment is performed to identify the potential
failure modes of ECU outputs as well as the
likelihood of failure occurrence, and estimate the
resulting risks of the ECU-controlled engine.

In the following, we propose an effective
SoC-level FMEA method to assess the risk-priority
number (RPN) for the components inside the SoC
and for the potential SoC failure modes. A
component’s RPN aims to rate the risk of the
consequences caused by component’s failures. In
other words, a component’s RPN represents how
serious is the impact of component’s failures on the
system safety. A risk assessment should be carried
out to identify the critical components within a SoC
and try to mitigate the risks caused by those critical
components. Once the critical components and their
risk scales have been identified, the risk-reduction
process, for example fault-tolerant design, should be
activated to improve the system dependability. RPN
can also give the protection priority among the
analyzed components. As a result, a feasible
risk-reduction approach can be developed to
effectively protect the critical components and
enhance the system robustness and safety.

The parameter RPN_C(i), i.e. risk scale of
failures occurring in the i™ component, can be
computed by

RPN _C(i)= FR_C(i)x ip(i, FM(K))xS _FM (k)
k=1

where 1 < i < n. The expression of RPN_C(i)
contains three terms which are, from left to right,
failure rate of the i™ component, probability of
FM(K) if a failure occurs in the i component, and
severity rate of the k™ failure mode. As stated
previously, a component’s failure could result in
several different failure modes, and each identified
failure mode has its potential impact on the system
safety. So, RPN_C(i) is the summation of the
following expression FR_C(i) x P (i, FM(K)) x
S_FM(K), for k from one to z. The term of FR_C(i) x
P (i, FM(K)) represents the occurrence rate of the k™

failure mode, which is caused by the i component
failing to perform its intended function.

The RPN_FM(K) represents the risk scale of the
k™ failure mode, which can be calculated by

RPN _FM(K)=S_FM (k) i FR_C(i)x P(i, FM (k))
i=1

where 1 <k <z. %FR_C(i)x P(i,FM (k)) expresses
i=1

the occurrence rate of the k™ failure mode in a SoC.

This sort of assessment can reveal the risk levels of

the failure modes to its system and identify the

major failure modes for protection so as to reduce

the impact of failures to the system.

4 System Verification Platform

We have created an effective robustness verification
tool under the environment of CoWare Platform
Architect [11] for dependability validation of system
design with SystemC. Figure 2 shows the
operational flow of the verification tool. The tool
platform provides the capability to quickly handle
the operation of fault injection campaigns and
dependability analysis for the systems modeled by
one or a mixture of the following levels of
abstraction [12, 13]: bus-cycle accurate level,
untimed functional TLM with primitive channel
sc_fifo, and timed functional TLM with hierarchical
channel. So, the tool is able to deal with the fault
injection at different modeling levels of abstraction
and offers the time-triggered or event-triggered
methodologies to decide when to inject a fault. This
injection tool can significantly reduce the effort and
time for performing the fault injection campaigns.
Besides that, the verification platform dramatically
increases the efficiency of carrying out the system
robustness validation and risk assessment.

5 Case Study

An ARM-based SoC platform provided by CoWare
Platform Architect [11] was used to demonstrate the
feasibility of our risk model. The illustrated SoC
platform was modeled at the timed functional TLM
abstraction level. This case study is to investigate
two components, AMBA AHB and the memory
sub-system, to assess their risk scales to the
SoC-controlled system. We exploited the system
verification platform to perform the fault injection
process associated with the risk model presented in

Section 3 to identify the potential failure modes and
obtain the values of z and P(i, FM(k)) for the
components of AMBA AHB and memory
sub-system. The possible SoC failure modes
classified from the fault injection process could be
fatal failure (FF), such as system crash or process
hang, silent data corruption (SDC), correct
data/incorrect time (CD/IT), and deadlock (DL)
(note that we declare the failure mode as DL if the
execution of benchmark exceeds the 1.5 times of
normal execution time). In the following, we
summarize the data used in this case study.

® n =2 {C(), C(2)} = {AMBA AHB, memory
sub-system}.

® z =4, {FM(1), FM(2), FM(3), FM(4)} = {FF,
SDC, CD/IT, DL}.

® The benchmarks employed in the fault injection
process are: JPEG (pixels: 255 x 154), matrix
multiplication (M-M: 50 x 50), quicksort (QS:
3000 elements) and FFT (256 points).

5.1 AMBA AHB Vulnerability Assessment
The system bus, such as AMBA AHB, provides an
interconnected platform for IP-based SoC.
Apparently, the robustness of system bus plays an
important role in the SoC reliability.

The results of fault injection process for AHB
system bus under various benchmarks are shown in
Table 1, which has been published in our previous
paper [14]. The results of a particular benchmark in
Table 1 were derived from the six thousand fault
injection campaigns, where each injection campaign
injected 1-bit flip fault to bus signals. The fault
duration lasts for the length of one-time data
transaction. The statistics derived from six thousand
times of fault injection campaigns have been
verified to guarantee the validity of the analysis. We
also found that the rank of vulnerability of bus
signals is ‘HADDR’ > ‘HSIZE’ > “HDATA’ for all
benchmarks, if the fault targets are restricted to
those three categories of bus signals.

From Table 1, it is evident that the susceptibility
of the SoC to bus faults is benchmark-dependent and
the rank of system bus vulnerability over different
benchmarks is JPEG > M-M > FFT > QS. However,
all benchmarks exhibit the same trend in that the
probabilities of FF show no substantial difference,
and while a fault arises in the bus signals, the
occurring probabilities of SDC and FF occupy the
top two ranks. The results of the last row offer the

average statistics over four benchmarks employed in
the validation process. Since the probabilities of SoC
failure modes are benchmark-variant, the average
results illustrated in Table 1 give us the expected
probabilities for the system bus vulnerability of the
developing SoC, which are very valuable for us to
gain the robustness of the bus system and the critical
bus signals to be protected. From the experimental
results, we see that the ‘HADDR’ is the top priority
to protect. The robustness measure of the bus system
is only 0.2678, which means that a fault occurring in
the bus system, the SoC has the probability of
0.2678 to be survived for that fault. Last but not
least, we note that the SDC is the most popular
failure mode for the demonstrated SoC responding
to the bus faults or errors.

Table 1: P (1, FM(K)), P (1, SF) and P (1, NE) for
the used benchmarks.

FF | SDC | CDNT | DL | SF | NE

%) | (%) | (%) | (%) | (%) | (%)
JPEG | 1857 | 45.90 | 0.16 | 15.88 | 80.51 | 19.49
M-M | 18.95 | 55.06 | 2.15 | 357 | 79.73 | 20.27
FFT |20.18 | 21.09 | 15.74 | 6.38 | 63.39 | 36.61
QS | 2006 | 1752 | 12.24 | 5.67 | 55.50 | 44.50
Avg. | 19.41| 38.16 | 759 | 8.06 | 73.22 | 26.78

52 Memory Sub-System Vulnerability
Assessment

The memory sub-system could be affected by the

radiation articles, which may cause the bit-flipped

soft errors. However, the bit errors won’t cause

damage to the system if one of the following

situations occurs:

® Situation 1. The benchmark never reads the
affected words after the bit errors happen.

® Situation 2: The first access to the affected
words after the occurrence of bit errors is the
‘write’ action.

Otherwise, the bit errors could cause damage to the
system. Clearly, if the first access to the affected
words after the occurrence of bit errors is the ‘read’
action, the bit errors will be propagated and could
finally lead to the failures of SoC operation. So,
whether the bit errors will become fatal or not, it all
depends on the occurring time of bit errors, the

locations of affected words, and the benchmark’s
memory access patterns after the occurrence of bit
errors.

According to the above discussion, two
interesting issues arise; one is the propagation
probability of bit errors and another is the failure
probability of propagated bit errors. We define the
propagation probability of bit errors as the
probability of bit errors which will be read out and
propagated to influence the execution of the
benchmarks. The failure probability of propagated
bit errors represents the probability of propagated bit
errors which will finally result in the failures of SoC
operation. We then performed two types of
experiments to assess the propagation probability
and failure probability of bit errors.

Type 1 experiment: we develop the experimental
process as described below to measure the
propagation probability of bit errors. The following
notations are used in the experimental process.

® Npencn: the number of benchmarks used in the
experiments.

® Niy(j): the number of fault injection campaigns

performed in the j" benchmark’s experiment.

Cp-v-err: coOunter of propagated bit errors.

Np-b-err: the number of propagated bit errors.

Si: address space of memory sub-system.

Ngt. the number of read/write data transactions

occurring in the bus system during the

benchmark execution.

Terror: the occurring time of bit error.

Aerror: the address of affected memory word.

Spv-err(J): set of propagated bit errors conducted

in the j™ benchmark’s experiment.

® P,y propagation probability of bit errors.

Experimental Process: We injected a bit-flipped
error into a randomly chosen memory address at
random read/write transaction time for each
injection campaign. As stated earlier, this bit error
could either be propagated to the system outside the
memory sub-system or not. If yes, then we add one
to the parameter Cp.per. The parameter Npperr IS Set
by users and employed as the terminated condition
for the current benchmark’s experiment. When the
value of Cpperr reaches to Npper, the process of
current benchmark’s experiment is terminated. The
Pp-b-err Can then be derived from Nyp.er divided by
Ninj. The values of Npench, Sm and Ny.perr are given
before performing the experimental process.

for j = 1 to Npench

{

Step 1: Run the " benchmark in the experimental
SoC platform under CoWare Platform
Architect to collect the desired bus
read/write transaction information that
include address, data and control signals of
each data transaction into an operational
profile during the program execution. The
value of Ng can be obtained from this step.

Step 2: Cpperr = 0; Ninj(j) = 0;

While Cp-b-err < Np-b-err do
{Teror Can be decided by randomly choosing
a number x between one and Ny It means
that Terror is equivalent to the time of the Xt
data transaction occurring in the bus system.
Similarly, Aeror is determined by randomly
choosing an address between one and Sy. A
bit is randomly picked up from the word
pointed by Aeror, and the bit selected is
flipped.
If ((Situation 1 occurs) or (Situation 2
occurs))
then {the injected bit error won’t cause
damage to the system;}
else {Cp—b—err = Cp—b—err + 1;
record this propagated bit error to
Sp-b-er(]) INClUAING Terror, Aerror and bit
location.}
//Situation 1 and 2 are described in the
beginning of Section 5.2. The operational
profile generated in Step 1 is exploited to
help us investigate the resulting situation
caused by the current bit error. From the
operational profile, we check the memory
access patterns beginning from the time of
occurrence of bit error to identify which
situation the injected bit error will lead to. //
Nini(0) = Nij() + 1}
} 0

The Type 1 experimental process was carried
out to estimate Pp.p.err, Where Npench, Sm and Nppeerr
were set as the values of 4, 524288, and 500
respectively. Table 2 shows the propagation
probability of bit errors for four benchmarks. It is
evident that the propagation probability is
benchmark-variant and a bit error in memory would
have the probability between 0.866% and 3.551% to
propagate the bit error from memory to system. The
results imply that most of the bit errors won’t cause

damage to the system.

Table 2: Propagation probability of bit errors.

Benchmark Ninj Np-b-err Po-p-err
M-M 14079 500 3.551%
QS 23309 500 2.145%
JPEG 27410 500 1.824%
FFT 57716 500 0.866%

Type 2 experiment: From Type 1 experimental
process, we collect Npper bit errors for each
benchmark to the set Sy..er(j). Those propagated bit
errors are used to assess the failure probability of
propagated bit errors. Therefore, Np-b-err
simulation-based fault injection campaigns are
conducted under CoWare Platform Architect, and
each injection campaign injects a bit error into the
memory according to the error scenarios recorded in
the set Sp.p-err(j). Therefore, we can examine the SoC
behavior for each injected bit error. 0

We should point out that the function of Type 1
experiment can be accomplished by Type 2
experiment. However, Type 2 experiment is based
on the simulation-based fault injection approach,
which requires higher simulation time than Type 1
experiment. As can be seen from Table 2 and 4, if
we use only Type 2 experiment to assess the
propagation probability and failure probability of bit
errors as illustrated in Table 2, 4, and 5, a huge
number of simulation-based fault injection
campaigns should be conducted. As a result, an
enormous amount of simulation time is required to
complete the injection campaigns. Instead, we
developed a software tool used in Type 1 experiment
to quickly identify which situation the injected bit
error will lead to. Using this approach, the number
of simulation-based fault injection campaigns
performed in Type 2 experiment decreases
dramatically. Since the performance of software tool
adopted in Type 1 experiment is higher than that of
simulation-based fault injection campaign employed
in Type 2 experiment. Therefore, we can save a
considerable simulation time. The data of Table 2
indicate that without the help of Type 1 experiment,
we need to carry out a few ten thousand
simulation-based fault injection campaigns in Type 2
experiment. As opposite to that, with the assistance

of Type 1 experiment, only five hundred injection
campaigns are required in Type 2 experiment. Table
3 gives the experimental time of our approach and
pure simulation-based fault injection approach,
where the data in the column of ratio are calculated
by the experimental time of our approach divided by
the experimental time of pure simulation-based
approach. It is evident that the performance of our
experimental approach is quite effective compared
to the pure simulation-based approach.

Given Npper and Sppen(j), the Type 2
experimental results are illustrated in Table 4. From
Table 4, we can identify the potential failure modes
and the distribution of failure modes for each
benchmark. It is clear that the susceptibility of a
system to the memory bit errors is
benchmark-variant, and the M-M is the most critical
benchmark among the four adopted benchmarks,
according to the results of Table 4.

We then manipulated the data of Table 2 and 4
to acquire the results of Table 5. Table 5 shows the
probability distribution of failure modes if a bit error
occurs in the memory sub-system. Each datum in
the row of ‘Avg.” was obtained by mathematical
average of the benchmarks’ data in the
corresponding column. This table offers the
following valuable information: the robustness of
memory sub-system, the probability distribution of
failure modes and the impact of benchmark on the
SoC dependability. Probability of SoC failure for a
bit error occurring in the memory is between
0.738% and 3.438%. We also found that the SoC has
the highest probability to encounter the SDC failure
mode for a memory bit error. In addition, the
vulnerability rank of benchmarks for memory bit
errors is M-M > QS > JPEG > FFT.

Table 6 illustrates the statistics of memory
read/write for the adopted benchmarks. The results
of Table 6 confirm the wvulnerability rank of
benchmarks as observed in Table 5. Situation 2 as
mentioned in the beginning of Section 5.2 indicates
that the occurring probability of Situation 2
increases as the probability of performing the
memory write operation increases. Consequently,
the robustness of a benchmark rises with an increase
in the probability of Situation 2.

Table 3: Comparison of experimental time between
ours & pure simulation-based approach.

Bench |Type 1 + 2 (min.)| Type 2 (min.) Ratio
M-M 3123 15252 20.476%
QS 8353 27194 30.716%
JPEG 75968 157608 48.201%
FFT 32577 96193 33.866%
Total 120021 296247 40.514%

Table 4: Type 2 experimental results.

Benchmark FF | SDC | CD/IT | DL NE

M-M 484 0 0 16

QS 138 103 99 160

0

0
JPEG 0 241 1 126 132
FFT 0 177 93 156 74

Table 5: P (2, FM(K)), P (2, SF) and P (2, NE) for
the used benchmarks.

FF (%)|SDC (%)|CD/IT (%)|DL (%)|SF (%)|NE (%)
M-M| 00 | 3.438 0.0 0.0 |3.43896.562
QS| 00 | 0592 | 0442 |0.425 |1.459 |98.541
JPEG| 0.0 | 0.879 | 0.004 | 0.460 | 1.343 |98.657
FFT| 0.0 | 0307 | 0161 |0.270 |0.738 |99.262
Avg.| 00 | 1.304 | 0.52 |0.289 | 1.745 |98.255

Table 6: The statistics of memory read/write for the
used benchmarks.

#RIW | #R R(%) | #W | W(%)
M-M| 265135 | 255026 | 96.187% | 10110 | 3.813%
QS | 226580 | 196554 | 86.748% | 30027 |13.252%
JPEG| 1862291 |1436535| 77.138% |425758(22.862%
FFT | 467582 | 240752 | 50.495% |236030|49.505%

5.3 SoC-Level Risk Assessment

For simplicity of presentation, two components,
AMBA AHB system bus and memory, are utilized to
demonstrate the proposed risk model to assess the
scales of failure-induced risks in a system. The

following data were used to show the risk
assessment for the selected components: {FR_C(1),
FR_C(2)} = {0.001/hour, 0.005/hour} {S_FM(1),
S_FM(2), S_FM(3), S_FM(4)} = {10, 8, 4, 6}.
According to the expressions presented in Section 3,
the SoC failure rate, reliability and RPN are obtained
below:

SFR_C(1) = 0.001/h x 0.7322 = 7.322 x 10*/h
SFR_C(2) = 0.005/h x 0.01745 = 8.725 x 10°/h
SFR = SFR_C(1) + SFR_C(2) = 8.1945 x 10*/h

R(t) _ e—SFth

RPN_C(1) = 0.001/h x ((19.41 x 10 + 38.16 x 8 +
7.59 x 4 + 8.06 x 6) x 10?) =5.781 x 10°¥/h

RPN_C(2) = 0.005/h x ((0.0 x 10 + 1.304 x 8 +
0.152 x 4 + 0.289 x 6) x 10) = 6.387 x 10*/h

RPN_FM(1) = 10 x ((0.001/h x 19.41 + 0.005/h x
0.0) x 10%) = 1.941 x 10%/h

RPN_FM(2) = 8 x ((0.001/h x 38.16 + 0.005/h x
1.304) x 10) = 3.5744 x 10%/h

RPN_FM(3) = 4 x ((0.001/hx 7.59 + 0.005/h x
0.152) x 10%) = 3.34 x 10™/h

RPN_FM(4) = 6 x ((0.001/h x 8.06 + 0.005/h x
0.289) x 10%) = 5.703 x 10™/h

Compared RPN_C(1) with RPN_C(2), it is
evident that the failure of AMBA AHB is more
critical than the failure of memory sub-system. So,
the result suggests that the AHB system bus is more
urgent to be protected than the memory. Moreover,
the data of RPN_FM(k), k from one to four, infer
that SDC is the most crucial failure mode in this
illustrated example. Throughout the above
vulnerability and risk analyses, we can identify the
critical components and failure modes, which are the
major targets for design enhancement. In this case
study, the top priority of the design enhancement is
to raise the robustness of the AHB ‘HADDR’ bus
signals to significantly reduce the rate of SDC
occurrence and the scales of system risks if the
system reliability/safety is not adequate.

We should notice that the case study presented
here uses only two components for easy

10

demonstration of our idea. In the future, for
completeness, the work will include more
components, such as ARM CPU, in the vulnerability
and risk analyses.

6 Conclusions

In this work, we have presented a valuable
SoC-level risk model, and exploited an ARM-based
SoC platform to demonstrate its feasibility and
usefulness. The main contributions of this study are
first to raise the level of dependability validation to
the untimed/timed functional TLM, and therefore,
the efficiency of the validation process is
dramatically increased; second to develop a useful
risk model to assess the scales of failure-induced
risks in a system; third to conduct a thorough
vulnerability analysis of the AMBA bus and
memory sub-systems based on a real ARM-based
system platform modeled in SystemC TLM
abstraction level. The analyses help us measure the
robustness of the bus and memory sub-systems and
locate the critical bus signals to be guarded.

Acknowledgments: The authors acknowledge the
support of the National Science Council, R.O.C.,
under Contract No. NSC 97-2221-E-216-018.
Thanks are also due to the WNational Chip
Implementation Center, R.O.C., for their support of
SystemC design tool — CoWare Platform Architect.

References:

[1] C. Constantinescu, “Impact of deep submicron

technology on dependability of VVLSI circuits,”

in 2002 Proc. IEEE Int. Conf. on Dependable

Systems and Networks, pp. 205-209.

R. Baumann, “Soft errors in advanced

computer systems,” IEEE Design & Test of

Computers, vol. 22, issue 3, pp. 258 — 266,

May-June 2005.

Y. Zorian et al, “Impact of soft error

challenge on SoC design,” in 2005 Proc. 11th

IEEE Int. On-Line Testing Symposium, pp.

63 — 68.

R. Mariani, G. Boschi, and F. Colucci, “Using

an innovative SoC-level FMEA methodology

to design in compliance with IEC61508,” in

2007 Proc. Design, Automation & Test in

Europe Conf. & Exhibition, pp. 492-497.

[5] J-C. Ruiz et al., “On Benchmarking the
Dependability of Automotive Engine Control
Applications,” in 2004 Proc. IEEE Int. Conf. on

2]

[3]

[4]

Dependable Systems and Networks, pp. 857 —
866.

[6] G. Thorsten et al.,, “System Design with
SystemC,” Kluwer Academic Publishers, 2002.

[7] Open SystemC Initiative (OSCI), “SystemC 2.0
Language Reference Manual,” Revision 1.0,
www.systemc.org, 2003.

[8] CEl International Standard
1998-2000.

[9] S. Brown, “Overview of IEC 61508 design of
electrical/electronic/programmable electronic
safety-related systems,” Computing & Control
Engineering Journal, pp. 6-12, February 2000.

[10] A. H. Mollah, “Application of Failure Mode
and Effect Analysis (FMEA) for Process Risk
Assessment,” BioProcess International, pp.
12-20, November 2005.

IEC 61508,

11

[11] CoWare Model Library, “Platform Creator
User’s Guide,” Product Version VV2006.1.2.

[12] Y. Y. Chen, Y. C. Wang & J. M. Peng,
“SoC-Level Fault Injection Methodology in
SystemC Design Platform,” in 2008 7" Int. Conf.
on System Simulation & Scientific Computing,
pp. 680-687.

[13] K. J. Chang, and Y. Y. Chen, “System-level
fault injection in SystemC design platform,” in
2007 Proc. 8th Int. Symposium on Advanced
Intelligent Systems, pp. 354-359.

[14] Y. Y. Chen, C. H. Hsu, and K. L. Leu,
“Analysis of System Bus Transaction
Vulnerability in SystemC TLM Design
Platform,” 3rd WSEAS International Conference
on Computer Engineering and Applications, pp.
284-289, January 2009.

http://www.systemc.org/

MEMORY

Select output device

START

<

Timed level

CPU

BCA level l
Untimed level

P

Number of faults for
each Testbench

}

FIM generation

Not CPU Process

BCA or Untimed
level Process

Y

BUS

Get memory address

— Filter of fault targets
range
Show valid
targets
Events:

Single Read, Write
Burst Read, Write
Destination:

Select fault target

Address
Size

)

data

Events choice and
fault destination
decision

Load
CoWare
Architect

Platform file

Y

Execute Scripts To
Collect Target and
Relative Data

A
Relative data:
1. connect port

2. port type
3. protocol

Show all device

OPM generation

Execute scripts to

Insert OPM
automatically

Load Testbench
files

Simulation

NO

OPM profile

Execute scripts to
insert FIM
automatically

Simulation

nfinite loop or
dead lock

NO

Operational
porfile &
output

Simulation
done?

YES

Compare ths
resulting data with
fault free data

Use risk model for
the assessment of
system robustness

Show
assessment
result table

g

End

Fig. 2. The operational flow of robustness verification tool.

12

Different fault inject type
makes different FIM

Same testbench with OPM

Terminate this
simulation
do next simulation

YESH

1. Output
2. Simulation time
..ete

Self-Evaluation of Research Results:

® The above report summarizes the third-year

results accomplished from this three-year
research project. The research results have
been published in one journal and three
conferences. The extended version of the
results will be submitted to be considered for
journal publication. We definitely achieve the
main goals set in the proposal.

We propose a risk model at SoC level to
facilitate the measure of the robustness and
scales of failure-induced risks in a system,
which can be used to identify the critical
components and major failure modes for
protection so as to effectively reduce the
impact of failures to the system. We develop
system-level robustness verification and risk
assessment tool under the environment of
CoWare Platform Architect. The tool platform
takes the fault scenario description from the
user and then automatically generates the
system platform supplemented with the fault
injection capability. Our tool can not only
facilitate the failure mode and effect analysis
(FMEA) and the fault-tolerant validation
process, but raise the validation efficiency.
The embedded fault-tolerant systems have
found fertile ground in intelligent system
applications, such as intelligent driver
assistance vehicle system or intelligent robot
system, which require a stringent
dependability while the systems are in
operation. Since more works depend on the
intelligent machines, the reliability issue
becomes more important than ever. The
robustness and safety verification platform
developed from this research can be applied to
the design and analysis of the fault-tolerant
systems modeled at high level of abstraction to
enhance the overall system dependability. The
previous study for the robustness verification
approach mainly focuses on the VHDL
modeling level and rarely discusses the
verification in SystemC-level design. Our
study fulfills this lack.

Publications associated with this research:

® Yung-Yuan Chen, Chung-Hsien Hsu, and

Kuen-Long Leu, “Analysis of System Bus
Transaction Vulnerability in SystemC
TLM Design Platform,” 3rd WSEAS
International Conference on Computer
Engineering and Applications, pp.
284-289, January 2009, China. (EI) NSC

97-2221-E-216-018

Yung-Yuan Chen, Chung-Hsien Hsu, and
Kuen-Long Leu, “Analysis of System Bus
Transaction Vulnerability based on FMEA
Methodology in SystemC TLM Design
Platform,” WSEAS Transactions on
Computers, Issue 2, Vol. 8, pp. 406-416,
Feb. 2009. (EI) (NSC 97-2221-E-216-018)

Yung-Yuan Chen, Chung-Hsien Hsu, and
Kuen-Long Leu, “SoC-Level Risk
Assessment Using FMEA Approach in
System Design with SystemC,” IEEE
Symposium on Industrial Embedded
Systems, pp. 82-89, July 2009, Switzerland.
(El) (NSC 97-2221-E-216-018)

This paper is prepared to submit the
journal with an extended version.

MG S BHUKR g Y R R
o4l LT ST 2009 MY

€ k(T #3 4) F 8 12 T o Nov. 27-28,
2009 -

14

FRERATHELREHPRP EFEFNRRFEIERFS

98 & 7 * 21p
L AT : PRAZ 151 . ,
- i i R lﬁ%ﬁj PELAE TS L
] Foas
P R 7 * 8-10, 2009 * g
£ & PR oo NSC 97-2221-E-216-018
g -
' ECED
- (® ~) |IEEE Symposium on Industrial Embedded Systems (SIES 2009)
w4 (¢ =)
w2 (# =) 1. SoC-Level Risk Assessment Using FMEA Approach in System
AL F Design with SystemC

2. Robustness Investigation of the FlexRay System

% Y04

FLEPNFReFETILEIE
-0 FA gvi

PERAAR L s B X LR AT RS A o]
ﬁ%}”%ﬁ"’""iﬁ«&éﬂ & # %4 % 45 [EEE Industrial Embedded Systems ¢
g LR A ORI T R kS R g
254 é‘imz‘?ﬁ PERY o ¥ ¢b 5 = B ¥k chwork-in-progress# # 0 * - B
~F310AsETFE L R FL AR TR AR B¢ 'ﬁ? B el
Fetw AT RAL o 2§ ReP AL B ¢ 45 0 Network Analysis and
Modellng, SoC Platforms, Design Methods and Real Time, Wireless
Health, Networking and communications, Embedded Software, Network
Design and Optimization, Reconfigurable Platforms and Industrial
Control, Control and Designs % ¢ ﬁﬂ?* KpER> 2B 2R P~
R R IR o ?’F-ﬁ”‘ BB - ;g;,work In-progress# < % %
ERh eI LY - R T X é’ﬁ? # 47 % “SoC-Level Risk Assessment
Using FMEA Approach in System Design with SystemC” o # it f 3% ~ 35 2
is ’-ﬁ?gé‘f‘ﬁ#«’tﬂﬂ BBERAEE - LR R > GEEFREF AT E ¥
- B work-in-progress# < A% # 4% = X T T 3R 2 > A8 §_ “Robustness
Investigation of the FlexRay System” - Aizh #2418 > FFF H 2 A3
ERE o B BT AR BT] ARAL - (T H S I 2 g ket
g ek AR P AR MR RENE F uﬂru ﬁ%‘ﬂi s 8 o s Bk o
RO ERAVEE H AR - FHE o BRI AR L e T
MAPLEBEWRT L E A LR E'Jﬁ%‘;”’%—' wm* g o

-~ BexniE

$ ¢ E- #- & IEEE Industrial Electronics Society %78 7%i
Industrial Embedded Systems » & ch €&k > 5 £ &% 4 5 o ¥ 1FHiES" €
ﬁﬁﬂ%‘?mﬁidmim’ifiﬁ&%ﬁpiﬁﬁﬁpié%°?
v wfgﬁbm—g Pand ARGPFT > e B al B8 &M F3rui
TP AR ?T“‘ P g LR ROE F o MR T
g vi%\m»& EL}‘ F] EAR I «'/ﬁgl’ 'Fjﬁ" W F R e 2 ﬁ el /B_/F ’
AL T g 7 AR % hFlEs o T’ﬁ Tos A R SAUR T R
Mot WAz g %‘f' 3"‘” 4\1{1 i A HTER AR SRS S AR AR o
A H-¢ B B %2 G F T ARG S BRALE - E
(- HFE = @lﬁmﬂ Sde) FMEA A 47indesE = > 5 48 Bjtreny
sl JBAE R BRI E R B uE S > ARBRELATT SEEE .

S LN o
g; '/\VE%J&P,"TL
P

04

K

% Y04

