FHRERTPELE CLET TS AR

FU% P2P e ot PRI e ZEHE(S0A) 3 A#2 4= 1
Je i B—33H 2 o P2P 2 Web $i5 B 1 SOA 3 A #
el eV A RS AR 3 &)

F i SR (RER)

B S I

2 & % % ¢ NSC 97-2628-E-216-006-MY3

o B R 99#08% 01 p 2 100 07 31 p
R OE oY EAEFNLES

S TERECENE & o

RSB AR AT A -{EME AR 2
FALFm s 4 - HEnm AR F e
AFEmy 4 -JEet@ A B o pER

F Ao B NARRERFLEFREF LG

o o330 D AP FEHEEAACFEMAR 2 ALY 2R A

o= A R O 100# 10 7 29 p

FRARKPEL R AR R

% fl % P2P v v Rar F v % (S0A) 5 A Az ¥
% R LR R — 3 E o S
P &t P2P & Web #Hiwg B v SOA 5 A#H o P
S g d A EHE gAaCAl (% 2 &) S

FEaae OewArd M EeAPE
3 %5 ¢ NSC 97-2628-E-216-006-MY3

S FH A 199 08 7 01 p 2 100 % 07 * 31 p
HEHE e EL T AL RS

PRI CHFAY P EAETRIES LRI
LR aFFA
FELEAR D mE®E - A (F EAF1pgmgerl)

FEE oM E 2R MF LR LR

(F ELFFRIRE FT L)

R AREEELYE BRI AFHE A ARTELYE
Sk ;,J,rg-q;.%z o BT OR B
(2 28w rEpaE - eM- 247 2B 43

-~ N 100 = 10 3 28 P

SV 2
FREATPELR fH ey WY R S
[1gF ¢ +
et P2P 2 Web #iie3 B 12 SOA 5 A A chit e/ fobd s gdgrd
(%= &)
U e 2l 4

4 Y% ¢ NSC 97-2628-E-216-006-MY3
NEHEF 99087 01 p 2 100#077 31FP

PRAFA CHFRAY Y EETRIEY R

L A
2Lk g AR L R g dc (P EFapgEyrgLll)
FEF ompF - oZIBH LA FER

S EFLEA(RETPHLFEIRLTH) [(FEHFE Mg
3 F

A RARL 2RI R 2 R
EENCRGEIE S ol I

A A e LAY ST L -

MR REENRERETRLEFL2H2 -
(IR E&EF L FRRMETHRLE ST - 7

AOLS AR LR R AEWNE A ABTEL S
B EE TN E Y BT AR A

(2 {2 wrEpaf [(J- eM- a7 2B 43

T 2
— s BRI E T aes 3
s BB T VR BIR oo eb e a bbb 4
s B R T BR . oot b e 16
B BRI RE. oo 18
TN Y BB TR vttt bbb bbbt bbbt 19
HEREEMEHROEERE MTPP 2010).. e, 21
HFE BIEERAT & B OB (CSE 2009)...iiuiiiereeeeeererevereeeeerevereeeseveserees s, 32
HEEEEMTE R OEHE (nforScale 2009)......civiiviieieeeiieeeeereeee e 47
H R B BB AT & VS B (ChinaGrid 2008)......veveevvecveeveesscveniaessesssseessessssensens 77

FRERNFFFLREIUALTESIRHEL
&* P2P & Web :}iﬁf’:ﬁ" B 14 SOA B R A
BoA 22 g A

2+ 4 %% NSC 97-2628-E-216-006-MY3
#HFPHrT:99£87% 193 10077 31p
AN EAT Y EAFTRIES R

FRFEAR D mEE s pgE (L lﬁﬁ??*%ﬁii)
FEE MBE-2aH-EIaFAE
(ﬂ%*ﬁﬁﬂlﬁﬁﬁpii)

SREAE 1

A HFE PP Hgk it e ki PHRAZRES E AN EET L@
fﬁ%l cd WP2PEG AARNGE FBEFEEIEY A RREFENETRE D
L BT RSP I e PP BNGEEL C g L e kLB 2 4
FoogRhG TS EH M Fh o pADYE -~ G chipeT oot
%ﬁﬂ PRI+ 7% 12(SOA, Service-oriented Archltecture) Bt AR Tk e
oy ’Qbk’mp B el (EPRFRT 0 @ F ATy ¢ KRR IR F T
Q@Jfﬂ—g‘mjﬁ‘vi‘ﬁf’wi ToREE o Tl A5 0 P2P PR Ew 4 5 A
Je 1 S L o) - S B

APFEREZE S - EO APFERESY AT BTG B
aa VI B “"i‘qu?ﬁk# | ~P2P &3l ~ % 22 ﬁgﬂﬂ TEY RHEETERE
TF L iammBAhk Rl g~ S SRB BT 2niy &k AF R BliE e % - £
24 i 2 MapReduce & B ok a2 #5073 0 3 2 f5°€b’%¥ﬂ\mﬁ. FL¥e e % SR B

S0 FRNAABAELT RGO 545 0 1 E R HSHPUIR REFET

HAILAAE B EF T F TR LAT SRR FZ 2 APJrBHFZ2F
EREHgRE o471 BT U E TR L T R K 5% ek iy o
TOEIR T Y T SE T A l?%IW%mk R EEALF
L3 FREESY S OEE o E SRS BEAF R0 R TR G
%*°ﬁ%%€’%&% PREGETAE e GR AR X atp Yy
it g & oo

Hﬁ **m}

e

[v

M 43R D P2P ~ fh g3t B Web i~ @ 4 gidl ~ AR R E S HH S FORE L
TR RS o

0Ot AEEL s RGE B A Fend 2 0 28 R alE X 40§ 0y Peta Bytes chig B
FE o EHEBRAPTAR - T TR M MEREG - T % AV N A
54 R iR B GV H - Rl ks dord g 58 (Hierarchical) &2 75 0 # & 54 (Cluster)
BE 1 o B3N & (Network Attached Storage, NAS) 5 2b 18 sienil 5 = N 4o TR & 58
BB fhk e XTI EAR AREE - B A AR TR EERELT
BRSO EFR TRERESY - BIR O TEARAEL LSRN SR
BMEFZF 3aSeRr A 38T RB r@ﬁﬁl BR o ¥ d N F Ayt s TR

ﬂ

AR B LK FS o XA RGO 2 B A TR A TR D e AP

F3 e SHTROMER S 51D > RL R FTHRPR CHRRT F R
e R SRS AP E LY TR PR ki TR DT
o BBIRG ha Alehfh R kA § - BALIE Superblock s % 3R AT A
kP AFH o F FREFRKEWEF OG> FEIIWEFY AFTH L wRL L
Sl BT OEE o V- Bo|F AL AR5 2 WHF DT RER Y > bldo- B

P2P ekt » 4 il F 4T RS BHE R LA RHOR AR c LR B R kY S 5 Bin L

AR R A 7 REFHEE o FlEpanE 2 A A0 SRR RI YR B4 44T

B E e B B Al B R TR AT 17 TR N IR A
S BEr b AcEr o mdrk BiE oz 5l 4 ,\{,;F{%‘?’g\lﬂ\)ﬂaj_%?} 1z 51 % B o F s 1Y

Bt AR B RS AR - BN ALY P el 5L R L R RG

doo w

A
w

7A@ AT E F o FRGHY S 2 LF E R PR AL

BEBETFEY o APt hio R WBC 6 Web Hjie > 2 P2P ek ik
LEERM P RA ALY Ao BUTHELI P CRESR 0w L1 R i

iz
o

BwEE L o MABGERFEFRFTHRER DGR - F7 2 ML DIFE
- BV NEF &_Iﬁ,f‘?ﬁffﬁ“}» = Wxﬁ}&-ﬁ%.i%iﬁ“‘ mP—} ‘h_i.ﬁ}&-t‘ /\ﬁA’g_%Z % RoIel)%fg Pﬁ#_l
m

pPARPIAAEBEME FET UG EC TR AP E T TS BAE

SR] AT

I

#E L P2P 2 W3C & 48 Web 3w i froo e Agial - SR - 3
@E P A RAIEY 4TRSS S R E OB RS APl 52§ %

EEONEEREER 2 O RE XL RBRT AFE TR ORERE

F1* MapReduce iz B FHIZHA > #F B+ £ FAE T 2kt 1255 1 5
(Application Programming Interface) » 14 2 it 43 i@ 7 AL 048 38 4 235 7 (Domain
Specific Language) » & 7 gt TRl e F BB B it~ 5 - EHE DE o

FI* HT A% RE TR AR RN i B R FBHE R T e

BELEMER G APRATEATHRES DA S RARRG S
PRSI PR RRERR Y ERT S

BB UORFS S e enf e AL 0 B AT - 1 FHAE - 22 558 Web

Rk A B R F kg Ry

4

BPrizassk

F- & AP W3C e Web dp b oibr > 2 33 chP2P g 802 L A#H O A1 7
AR ged? AT T S ENRFERERCHIDRF o H BRG DFH
e @ /) gkl -Storage Resource Broker(SRB) » & 7 iy eravt i o b b AR F B i

Be b iB(T AT Sk EF O QI RFIP A FTH AT F > S F R < qlaE R

SECAPEFTHEBRFLF T R E LA oS ERY > X A R
%

(e
fmf
%
\4
=
i@
19
(=1
56
T\
=
frt.
"
ﬂ
:)
;
|
p=n)
+ﬂ'\
v
A
o3
)
W

BUEREFRHOELE > TLEFFFwG DB L -

B & AP FE A B TR 4 S0k APl 12 P2P A N R AR
PR TR AR RIS BRI > B BE R DR K G o 1R
BFEAZT AT BHATPG o F b R L e i e 0 AT 0 R
L5 Web PR - sE7 % XA i Feng fo RPN T HER AN F T
BRSH @ 2B F A b g R(QS) HE- EART E N f

1.

AR * 2 5 Web o @ gt e s L F d W3C #rdfimene pteb > R

e BB G PP AZ L8 > REHLIE FH AR LR - 5 P2P

A o AP B Data Grid == f &2+ = Storage Peer(SP), Metadata Peer(MP), %

Cluster Peer(CP) ° izt = f 4efl— 9 P2P TR e E R #7om o 14T dhgaidt 24 i -
#* SP>MP 2 CP %k it o

W g @
N

Bl- P2P FR e e 3 W

FARREE - #F - R HEHE

F - MP 4 * Chord fefeif % e — 42 > 3 & e p 98 J|* Distributed Hash

Table s s > — & 4o 2 R fl o LA RPBE P P PF T S8 TP BT EH T

“t3 i0 MP 38 — B Ak A it 4 %ﬁ.{? ropeig F & (aggregate) poe T - K e
PAFTH O RHAp T Y ATHBEER D NEA L P REFR 2R -
Ra & i Data Grid %3t > & 7 2 - 1 Overlay &t 53 f#/4- > 2 3¢ #) 1343 Data Grid
e fdaE > 3 ek =0 e Overlay & $ & -

ARl= 24 - % 1 & & Network Overlay » Network » i&:{SRB A AT F_R
Zone - ig— K ehi & P chX 3 B R &2 - K ORI Overlay - #818 #pt

=B~ *?‘fé(f&%ﬁ’%é‘i?{? YLEhs e e h) e @ A& — i Peer 34 JEF G
T - & Overlay > » i&»*«?\ Domain Overlay 7 Chord % 4 4~i& » 8 - — £ Domain
Overlay & 2h3 4c > Network Overlay =7 i)’I-%g eV - BAG o

APy - BRI BMAE K’Z?mﬂﬂj&ﬁ_‘?_}\t?m%? ’*Kgﬁ_,;y i

¥ - iz~ 2L o — & Network MP)*I.%—EL’* k& - BB DataGrid > $>04258 91 F & ep

TR B T g g e L3t Domain MP sk f > 3 F 3% 3 Grid Information System
LR PRARH TR A T R Fendna o RLEAR % g ¥ Web Portal =1
TgEe r ghe 5 @A 2 KA Network MP enp emjed 2% ARG & Ll A
T8 B e R £ g < Domain Overlay - ~ %*u{;fu Network MP
hrt % g BERE_Web f T FA 482 Proxy o RS DA R ,T}qjgﬁfkf’“}é-t

Portal # it 7 MP -

Network Overlay.

B = P2P 4 5 % 4)

dod kY 3 H - i~ gk i ¥4 € i3 = H 2E453E(Single Point Failure) ik ko S
7 % Network MP 23+ = % ff B ergs 254 34541 > — B Network MP i 433 — B &
B BEH @ R il B Ae Mail & ff R e I 0 3 SRR B0 E

& Ar Rl = Ao o

Network Overlay

Service,
ntry poin

Master Network MP Backup Network MP

Bl = Network overlay # # 4|7 % B

R Y % 2 KA AP AR R E vah Overlay » L Domain
Overlay - Domain MP & = 5 — = G f 435 i * —‘,{{msﬁ FemiEz o BB AREE
—‘gﬁ #ren Domain > # & ¢0 Domain MP » € AL & fofe# 2 K %5 ¥ - iﬂsi&{ﬁfﬁ%
EIF A B0 g4I B - B SP gt g4k~ T B 4 L Domain - g ¥
AL R S ELRVCE SN Less SERE LS EE R R ER AT
S TR R E SRR P RN BRI T e Peer A0 90 4 TR A 5
S TLE K AP ¥t - 1995 SP bl 0 & SP 4 i B k= & Backup MP(4 3 LR
Fed AR s i) R IF L H s MP el 50 fe MP 2 [538 iF 5 24 & Master /
Slave 3 4 > @ &_Peer-to-Peere fy* 3 5 3 MP- 4 ¢ 3 4p3 = 2 2 Domain
e A A o 2 MP 2 B it S3 i H 6 Domain 0 SP 97 & feend 4 FAL A A
FIRE P § B A DNS - {84 & it e 47§ cnSP A AMEF B AT F MP i
AT ERGE Y OMPgampE > R LR - Bt ﬁvMP’%ﬁﬁz)}éﬁé% st thy gl
Frig —*Ff%}'g‘_ T MP i RHEL oA F 7 P MP 3R > AP iR 2% Network MP
BRI > R BEE @ R TIL R F 2 0 1) MP ST R

% 3 % A_Storage Overlay » % 273 7 SP » ¥ 5 § F 455 > @ 124510 6 & 5| 0?

PP« G R ET A G MARR Y AR o R 4R “THhin MP A i
RBEHY AFR HERHAR S SP & MP Eg2eFY AFH A2 BikioSP
2B - BEE G IES TI&EL&EF—T = @ﬁi%] o 45 Replica {v& > FllacfadE s » &
SP 2 B#d » MEREAHR - R HE R AR NG FREHE [§ o0 Domain MP
FEdr o AAE - R P AP REE REFEAERFE AR 0 K s
FRF > F2 FF i o d Cluster Overlay 2 CP ki (7> -t fom £ S

P A FHETARNE > - B g & L é_;{glfw#_p:g?;fuﬂ 5

2.

FORY 2 g o B AR ER R A TR R IS RN s 0 2w Sy
Bl - AR E AL o o FORE k5o DBMS BB EF M A S TR LR E R
??‘g‘?ﬁ:ijé - T HPLEF » F {%%?Qﬁir‘sﬁ]ﬂzﬁvﬂ AFH > 2 A EELF T o FlUt A

BAT A PR B AF Lk S 5N B 3k i DBMS Abstraction Layer > k & 327 F 7 DBMS i
f»ﬂ’;‘gtbéﬁ PEREL T - 2 g AP Rl DBMS ki 4 FALR 5 E A3t ands (T o
“ﬁ%?b{i}ﬁ Bde it FRIFMEARETF R A FoRleng gL B P 4 T e XML
WHPwd o Ra f1F HTTP eng i » 2L A @ Boenph iz ¥ 1246 & ¥ ETag Header » % 31
FoRLG FE o T E BN A B

#EH ~ Cluster Peer ~ EHERIEEE

HTTP &— B2id 2 3 X2 cph %l s %0 @ 58— & 4§ 2 40 WebDAV » #
#HTTP» FTPREE i 533 ke A T2 7T LI ﬁz;—]:rﬁﬁ‘;” o fg# HTTP 1
7 §_Stateful » e 2% i & 2R 5t 49 40 + Cookie %2 Session %k = = — & F & Mk g5 eds (7 >
PlAe PR T R A AR AR o gt v HTTP % 3 frw e A 3R = A H Server 42 »
B.j tenb|+ 5 Apache HTTP Server » i€ 4%k cnits @i g » 8 » 5l T i
@O ALE Fl- X o T - BEAL ok F R RN ©F &4 URL A http
$T % https ¥ o

B T AL HE 5% 2 ut (Data Format Addressing) e i F > 37 ke 5 - B4 HTTP i
WE Web Jg* 4p g £ 24 REST - REST & & % Representational State
Transfer » # 57 I+ #% 73 URL(Resource) » 41 * HTTP Accept Header » it %3 #2338 Server
Bw 72 A B enT AL o b 4e http://www.someone.com/login » ¥+t HTML & & > if &
oA FERE R oA SN O XML & fo i v XML % o SR i
Pl #— kA URL K5 8 % o Web APl > @ B R BAZN =28 { % 5 F o 97
" PR R URL #Puf’rigfﬁ;éﬂ)’ér\ PRI ERLAFTRREN S

PP ME LT hon e AR RG] PR R P2P
BHEF 8 Chord 2B A3t st 2 k22 - FHTWHH > 270 e TR DOIR

FH G T I8 HTTP f s il > 27 2 7 1t e’v’@ﬁﬁl i i

(7@ o § £ B checksum » F iR TR @ L R AT
et E0F 2 F 2 mﬁ%’?ﬂﬁlwﬁﬂﬁﬁ%/ﬂﬂﬁ PR R
ZEIENY SR PREETEPBEIRE - &L Iﬁ‘;ﬁiﬁﬂﬁﬂ’pﬂ%{{’ -

miER R IR R
c A CPU S s fp > A Z R enE i E & o & B FIEpgL 55 o

CIRMPBET L@ ERE G 2R AT S TR AR S ek

Ei?##&éiﬂ:f ‘.}HJK/fET:,&Z."‘E)‘?Tmﬁga'%‘ ‘T‘F‘L
pail

—

- REH20 SEEHFAE AT Eéfjftfiﬂiﬁ °
» 0 R B R AL B LY e p & K Cluster Peer(CP)~ i - CP 1 %+ - fd 5
TOE L@ 3 feih Peer o @ 4 < i Cluster Overlay T #3 MP 975 740 100 0 JF
B F LR - B AT RETER FUAFE LB LR
BRGNS om X FHESF A B> CP enSP» € #4R 1F— i Storage Pool » @ 7 §_
Hipehig w88 3T EREBF R APy §ERPEFRS PEDTE S kb
PR (TpE R o
FHECP % F¥7 Ui SSH(w F# 8 F root %75) > & L F L% K4 SP
PR RES LB 2 p BN o 3NF RSP Mg B0 4o r CPoCP Y
fedg g (Fie— BESP e MP b s 4 R 49iE ﬁ;%#ﬁ = B SP SR TR {7 p T o
I%Iw:};égiﬁCP#tf%;ﬁﬁ%%"%ﬁﬁ#'lv PRI 4ok T RATHE G &8 ik X K
GRPFIE - R 0 Pl SSH BAB o S A AATA S F X K SP o 3R 533K CP #-H p ok
)x%‘;ﬁl_o
¥obo EEdp s 2 L B4p 4 A 5 (Clustered Shell) 2 CP 3% i endd skt it > jogr g
TERG - Fdp 4 T dg fedp T A7 hd B RT o ALK SP R R
ToORKEFEREIPOroot g B ESSHER - A Ffp LR FAEp R
T AL Bldo- RN AR TRAPP PR B G BFRE
Iﬁ!’:‘ﬁi»"’a%%dﬁifﬁ A0S, Rt TR o R SR T UL RFE R
REZ 3 OS & L B3nw g bl - B CP L -

Cluster Peer

S

Clustered Command™~Clustered Command

— T~

Storage Pool 1 Storage Pool 2

| EDED)

Bl w Cluster Peer 3% & p # 38 % 44

et B SP AR (T 5 AL BecniTiE > MR TR R AT AL
Bhoipt @A - FIAFHELZFAEF R
EEAREFORE 2 e o APERE DL R OS Native 10 API i % ¢ 2% &

FERAAET SRS N o Fptp @ B A3 Linux 22 Windows o iR iRg 7w U

i{ #£ 8 Extension =2 » # F { H i 49 FLIEF o
SEDE RSN E e AT AR b k¢ B ¥ SEE (Logical
Location) % PR5% » ~ fj-%{it/i%‘i?ﬁf FRIAEE on BT 2l > e

E R kRIS 0 A R i N Rk Sy P B o iR P e
FERAR- B SphE B U ALK TR KRR DT o

AP PR e %k Sthe NTFS 2 EXT3 > 48 Windows ¢ £ Unix 48 ¢ § ¢
RA N0 4p 4 did ® o 27 R REG B SN A6 o RIE P A IT LS EEG P

7% 580 RERE P L TR R DR A o Ao BRI R SRR ks e gt B

|1

Lk T AR 0 R TR S e USB B ka0 4 g0 4 - st

=
A

SRR A G F kPR I AR R kR ARy BT o
i d € 5 #& 31 * Cluster Peer(CP)2 SP fif = e feiz = + § gk -P~(Disk Pool)

iT% > BT for om ¥ b - BLA AR R AT R 0 3 e Domain snE R & E 7

&

R FPeG o A2 R E R g R
R A

L SRR R BHAFZRE - A ERF R R
BeF PR o KA Pari}f’ SHSE R T gk (TR o @ % 2 CPU enFiRs A
B3t d e %

Wy EE o Bihlde

FAAAETRRIETH A EFEL A

BB B30 g BAF -E30FBAFT wwEL A RHEEL AFTHRE L1
H o r I RERE 2 250 87439 ¥ U EAPE Sl Gp TR

P AFRE G BN RBITAK S B SRR o

IOManager
Native 10 .
Disk Pools
Module
RemovablelO | Non-Conventional Storage
Module Module
Disks
Tapes, CDROMs Network Filesystems,
Databases

BT TR BREGES 46
3. EEREH

Mg A F 0 A TR s g 0 2 & £538 Google # Ui
MapReduce 7 #-T {7 &2 =% - 2 2 2z MapReduce % # > k £ * &3t m?‘ LA e
Jost oo {5 MapReduce 2 H e FALE LG TR fe Ak B SP Y o &R
MREER AT RERT mé%%ﬁ°ﬁ%%*ﬁMﬁﬁ%ﬂﬁﬁﬁ§%
Mapping > 12 2 Reducing 42 R > @ &2 % 23 e r i3 A L P THER
Reducing cr42 5% 7% » @ 2bd k3L F A&JZ - @ §F % <7 Mapping % Reducing 42 5 i& {7 =
oo FHREIREME S CP AT mLeany AR EiRPREA HFLFLIT 4T
FREE I AT HMP S o Bl B i MapReduce TR T (7 AJZARE o

%22 Globus GSI # & eaRi> » & * CPm?I“'F] y B4 ?ﬁ’x‘ﬁﬁiﬂ;;*g_i % g

21 Globus # & > & %6 Globus kA & k58 H o AP enFohlfige ki, » &
AR f o wH P Globus ehid 2 > £ 3% i GSI (Globus Security Infrastructure) »

BB R @A AL FEE GSI SSL 4 o 4 Flpt E iR & BEARE A G
B REFEROEY FL R R HBR) AR FRE G E - RE B

BREYREFHRY F o ATUR PR BEP R T CP Y oo

11

¥ Globus B & 16 » #73 & B il U3t Jp gl GSI SSL> 4.7 7 4 €7 CPU
fAE - Flit it CP 2 SPapal MR fghdp § €& « XA B il T AR R T

BT UG LB ERERBOPE TR RDOT RS F17 EE R A Globus £ 3%
% Nk B i% o plde a2 F Globus R T o AP R A4 R HTTP 5%
@i * 37 Globus z t& » i{fﬁ;}%ﬁs@ijfiﬁf’%r}l i#* GridFTP - @ %?p#ﬂ La g
globus-job-run == ;% B2 o ¥t R A & Globus e 3 58 0 Blded 7T T AR 2

T R SRER T GHAFTP & B & 8 K 4ci - AR P AR BT o 4 7 sl o

o APl & B K B £ RGE TR e o

Buidden

Bulonpay

Metadata
Bl MapReduce 7 #1-T 7 ¥ 4= %

f*““-}ﬁ&ﬁwgﬁ"ﬂ TOTHRRELAFEL - BER DAL nRAF
g g i ipRAR ER R FVULERE o TR RAGEL R PR TRRRE
TAfh R o LS HEFAG R D FIR S N - E A AR F LA A PR G
A A RGP AR F A6 sl A kkr ey SRB &3 R F F

i
L Web A5 > BT A5 0 FF RSk o B R FELIITA

4

<
g ™

?']?g_y‘ _E:*%gs—/ o P9 7?}\,!, ﬂ’\l——‘r&'f# ‘E‘Jllgléj%}i y Il & ,4 Juf_l-«l»i-ﬂ /‘ ’}"l{t“

f‘m

T4
AL o B A Y A FAREB 0 R 1S ENE R PR AT F B S Aok %
BELELHFAATH HE - AL F ﬂ%w’%ﬁ@’ié’ﬁ@’giﬁ
BT TR D AP &1L foAg fechds 17 > A SRR R g

FEFORAL L it o @ ¥ - BRI FHEIRL o de ¥ o 2 ARE R A ok

xR g A o i@ .5'?;9_1%? PR R LA T T ePL T o

12

YW PR RERFE YA S TR OFH - BEHREE AP H
FhEEF G xE o CRUDFTH » Bow > 1322 > Mﬂf) on FIM At FHPIOEF
fEiEd o A pE g ELp @ % ActiveRecord T B AL R Bo RS > KA P enFoR
¥ 4 APloActiveRecord iz B3 R\ L & . R-E PR A N T RBEFHCF L

& 4_Directory Service) » 42 g 18 — FR > JI* $ 2 Eo L 0 BHF RS
fes A Bt e 2 AT R RS BlAcE év’ﬂfl-i?‘ﬁ%’rj&v Pew Hod A
MR kP Eia URLe ety 0§ E R BB reehm iz BB IR S R S0y
"j‘*'“"’j ME G MPo

- AR F A T o d PP R R WS E TR RS A
FAST R AP RXFIRT FRF AP LE NG FER Y F A ETHR
PpEiE L TOUERE ATEIE OB AEE c APPAEY L kT
g R A A TR PR T BT TR DRI e R F D
Wrgld o pbob 5 T B R EALF Y il 1240 BAhPR A > A P2P AR aiF 5 4=
/G A RnitE o @ AP LA FRERO AFHE B OR Y R R Y FH
HETHERORMAE > BEF P AT r%;ﬁ b oo 3 4% A% g B (Social Network) e
BLE ERY F A iRREORRAFE L X IR RIFEHIEIE M-

Y 25N Bk ML TR R > E BT A2 ok B TR R
FEAMPF* 2RI ERER AL ¥ 3T HE T Y RN Ay

Bk CEFERIFET - THAE L I RFEIRT AR RATUEERT D
- 4a TB"ﬁ‘])i%ﬁ%%,fﬁfvi@_ﬁd?ﬂ:i’ikffu’i EEALE AR
BP0 ip T D WG E K598 7 & Linux 2 Windows » £7F 123E 5 Hic

G AR S T LR L TR AR OB o @R DB T 250 4o FTP Server - & HTTP

RSB 2 %

AR RDR Y FFRAR - HFR DL R DB IREFFL - UL
FT R R B AR AL A s £ TG R S ACL B B 0 blded B £
Bro N AP RE R AR A B REERORG L B2 EFEE AR

b i p e R NFE

BRI F F E a4 ¢ (ACL Policy) » 4o % & g Ak ar - & 5L f gr\)];g

13

AL o fedrk BER VMEFHEIR D i o R PR (X S BRTE IR oA A
et e kb A& AR UniX aoph R R RS R i TR K0 THE
FPH @ | BofErlss aEsn > " #P Metadata, > "z 2>, » T8 »
Metadata ; » T2 2B » | S d A paHEes gt EIHE 4 F2 227
K- BARE AR AR FLGRDH N o BIKPFRT R R ARG 4
L ripdl A HEE R 2P A ARSI AR HR A B

EX MG T AR R LA 4o SRB @ A (TR AL kAo
G e 8- § r e (PR EBES Y L o MCAT RIRE » 27 B & B
R R R BTt RRead (T & 50 §o8 - 2 5 oSRB+ & 2 Globus

§ 0 GSIen U BT L AR e P AP Y FREFHE - & GSl o
W AL E Y GFREORASFTLEEL L oAk R R E R DR E
By 4 0 AP - FIEL -

BRI e e SR B b BN A F) 5 HTTP 2 20 A s fa e o
—HAFRT o ERBREEFTIRED 0 5P SSL BT 0 Y N EZ S8
XA A2 A BRE . H FEERF SSLi R > ¥ E 3% SP ¥ v
G P> g2 THREHRE -SSL AR 2> {9 3% SP BFIEELHAE » A SP
ERLEEMPEFERE - LERLEL > ¢ 3w d MP A 4 ¢ Session Key o 4opt 72 &
BiEAF- B MP TSPy 2 3 & € 4riui o % Client 7z T 350 14 > Session Key
EAGE o Bl BT b R

TR OERE S - R f{tﬁﬁf sl S IR
BEFINEDE VA MP PR R Y ARSI A O MP sk
F) 4 3 session key chE = 5 { K o Fp H - E»ﬁv%@,ﬁ}g?ﬂ&%‘#é MP.o ¥ —
BEE BB Rl S R g 4 R TR SRR iR TS S it
HH R 2 AP KT SR SICPU f

14

Other SP/Client SP1 MP

Authentication (No Certificate Validation)y——

Authentication (No Certificate Validationy——|

47
A

Session Key- -t Session Key-

SP2

Request data with session key—————»
NO SSL

- Data

Disconnect »

[<¢———Reset Key Status———

\

Bl- HTTP 2 %0z 1541

R B R

APEEHTHERREDRY /DT UEY A FE L DR RESRRT] - AN g
T AR oG - B SR & g ATeh Replica & 2H(1 T FEH]LCIlent)Q JEF AL e ¥

¢ i hffReplica & BhFe P T 4% % pF > Client § i 0“7 & oenif i 36 Broker » if i
TE SR EER ,;\,—rg\.mqg E VA ABMene s s 5 UM R ;%%\‘—ff‘i“ PO B
SE& {08 A kT 4 Broker £ 4 % RLS(Replica Location Server)# # 34 4p B
Replica & gLchF 30 - @ 4% Replica chiz § ~ = T ¢ IMB 8 i~ & & {v Replica & client
2 R erdf B o Broker B8 4p B 318 > § i client #T& foenif 2 k3B MR R &
LEET S5 MB bk o £ 4 client 4 % & Replica ™ $* 4L - Bl N 4
FAAPASBRAE TREY DAL @R EE - A AT ET A

e
POl TRANEIR LG A SHMIFREERA AL R L H TR

B R

F}-

\

S PR AT O R T AL AR o T AT g0k o A0 B PR s
EEA

15

Replica 3

Replica 2

0.065T/M

Replica 1

0.025t/M Client

Broker

B~ R R AR R R
AN B R A EE] ARG 2 FHEPRFHEIT A F 2 F L P
R RS fhd T S A AR T NP R T 5k o
PR N & RS AHE T - L H 05 B Replica AP & 57 T
g %~] Capability;» £ RS & k5 > d &) & &~ B 425 H Replica> & 3| &
BAH% A) ¥ &o7E 0 Replica ™ § = & » p|#7iE ¢ Replica T &7 = & 4| pF ¥
NE] RRT AT iu*%;%ﬁvReplica B L o
U F AR ARE TP AP TR R R 2 e A 2 R YR
PeipER i fg s T g*é,it o B2 e & H_3K Client €& B Replica ™ FA
Al ERT R R S TR T e AR £ 204 ehd & > F]E B Replica T ft e
AR < P8 - fk > & B replica 8¢ - BRE o SO HEBAFRR > AP
#5 B Replica 2 - BAS A S AGMABE R > HTUFEZEARA R
kg chReplica B g B o e A p L S B RE R - BRE AP
BELFEFFETT RS AL U A > LR & P o
Lty RA T OLE T Rt AR c APER N EF BEE L auE
ﬁ%’ﬁ§Wﬁ§?ﬂﬁﬁmolf*?ﬁﬁ—ﬁﬂﬁyﬁﬁ¥ﬁﬁﬁ’ﬁ#$@

WEAR Y K G R Web PR7E -

Btk
A qm s W3C e Web 4p B 4kiie s 2 3 PP R B 2 5 AH T TR e
PAFH O AEEG A ENMF RS PO HMOB R o a BTG TR

16

% -Storage Resource Broker(SRB) » i& {7 sip et e o pb b A W5 Fipe s b i (7
A leﬂ*%%’ﬂyﬁﬁﬁﬁgﬁﬁﬁi@’&ﬁéﬁ%ﬂﬁ%ﬁ;$3
Beo W APEEFRAMBBUET ORGE LET SN AR B2 B
FELEFERRIG L L héﬁ«%kouvhﬁwﬁtumrT@wﬁé’iﬁ;
aﬁaﬁﬂ;ﬁ°ﬂ”3”ﬁwﬁ ‘ﬂF1+é#ﬂfﬁwﬁAm’ualnpaﬂa##

oo PR R AT AR B T o T fﬂ?ﬁ””iﬁwﬂﬁﬁnﬁé#”‘ A
et 3t L 48 Web JR7% > i@ % &7 e ig * _%zm%? foo g S AV E B G
kﬁ{i%ﬁﬁﬁ: FALBY FF DA FAR(QOS) HE- A KT N

B E R RS
A fpic . MapReduce @B FRASEIH Y » ¥ 2 e & AT kS
A CFERAARARTRARTY BN A5 0 R S HBE IS REFTR
BT GET AT S SRR 1Y TR RO RO 5
Tl 2 i EE FRAGRE > FEAFHOL GRS c BT AL HE H
BRSO TR L TR GREEEY S EE ESERS B RS
oo gt h s AL R G P2P 2 Web i s KA

B w R TR !
A AR SR A TR B R R BUR R p S SRy g
$ % 4 4 iL o IRODS i 320 3§ 4
Meitd GEIEF TR o R RRAIFTHREGIGH F TRE-

Bx
*’§@7“GV¢§§@°¢%”W“WBON‘ﬁﬁﬁﬁ%wﬁmﬁwﬁﬂ°§%a
* &

4
4
=1
F_‘-
%ﬂ;
fa)
|l
et
I
G
|l
a4
A
k-

T APRFRAFELL S5

AN S S % R

A B A FAAIE R BB

2o A & 2 A

= P2P % 314541

AARBMEGIRES BT L AN LR
&%t SRB if (7 pTan et g & Burt i Rl

%% CP e 305 454

B R L bR T TR e et

ZREBRPERHFE A5 7 WEB s ER* 42554 g (APIS)

f
R Al R LR R ;ﬂ & (TR

17

® A AR R A BB R i
%#ﬁwﬂﬁﬁ CE BT K A5 & Web IRiE
® & 4 SClIE=H

v Ching-Hsien Hsu, Hai Jin and Franck Cappello, “Peer-to-Peer Grid Technologies™ ,Future
Generation Computer Systems(FGCS), Vol. 26, No. 5, pp. 701-703, 2010.

v" Ching-Hsien Hsu, Yun-Chiu Ching, Laurence T. Yang and Frode Eika Sandnes, “An Efficient Peer
Collaboration Strategy for Optimizing P2P Services in BitTorrent-Like File Sharing Networks”
Journal of Internet Technology (JIT), Vol. 11, Issue 1, January 2010, pp. 79-88. (SCIE, EI)

v Ching-Hsien Hsu and Shih Chang Chen, “A Two-Level Scheduling Strategy for Optimizing
Communications of Data Parallel Programs in Clusters” , Accepted, /lnternational Journal of
Ad-Hoc and Ubiquitous Computing (IJAHUC), 2010. (SCIE, EI, IF=0.66)

v' Ching-Hsien Hsu and Bing-Ru Tsai, “Scheduling for Atomic Broadcast Operation in
Heterogeneous Networks with One Port Model,” The Journal of Supercomputing (TJS), Springer,
Vol. 50, Issue 3, pp. 269-288, December 2009. (SCIL, EI, IF=0.615)

® %6k REFHEH

v' Ching-Hsien Hsu, Alfredo Cuzzocreaand Shih-Chang Chen, "CAD: Efficient Transmission
Schemes across Clouds for Data-Intensive Scientific Applications”, Proceedings of the 4th
International Conference on Data Management in Grid and P2P Systems, LNCS, Toulouse,
France,August 29-September 2, 2011.

v Tai-Lung Chen, Ching-Hsien Hsu and Shih-Chang Chen, “Scheduling of Job Combination and
Dispatching Strategy for Grid and Cloud System,” Proceedings of the 5th International Grid and
Pervasive Computing (GPC 2010), LNCS 6104, pp. 612-621, 2010.

v Shih-Chang Chen, Tai-Lung Chen and Ching-Hsien Hsu, “Message Clustering Techniques
towards Efficient Communication Scheduling in Clusters and Grids,” Proceedings of the 10th
International Conference on Algorithms and Architectures for Parallel Processing ICA3PP 2010),
LNCS 6081, pp. 283-291, 2010.

v Shih-Chang Chen, Ching-Hsien Hsu, Tai-Lung Chen, Kun-Ming Yu, Hsi-Ya Chang and Chih-Hsun
Chou, “A Compound Scheduling Strategy for Irregular Array Redistribution in Cluster Based
Parallel System,” Proceedings of the 2nd Russia-Taiwan Symposium on Methods and Tools for
Parallel Programming (MTPP 2010), LNCS 6083, 2010.

v Ching-Hsien Hsuand Tai-Lung Chen, “Adaptive Scheduling based on Quality of Services in
Heterogeneous Environments” , IEEE Proceedings of the 4"International Conference on
Multimedia and Ubiquitous Engineering (MUE), Cebu, Philippines, Aug. 2010._

v' Ching-Hsien Hsu, Yen-Jun Chen, Kuan-Ching Li, Hsi-Ya Chang and Shuen-Tai Wang, "Power
Consumption Optimization of MPI Programs on Multi-Core Clusters" Proceedings of the 4th ICST
International Conference on Scalable Information Systems (InfoScale 2009), Hong Kong, June,
2009, Lecture Notes of the Institute for Computer Science, Social Informatics and
Telecommunications Engineering, (ISBN: 978-3-642-10484-8) Vol. 18, pp. 108-120, (DOI:
10.1007/978-3-642-10485-5_8) (EI)

N

ﬁﬁﬁ@%w,uaCPaﬁﬁéﬁaﬁkﬁﬂ%%
AFREIE AR R TR E2 TR
ﬂ#%%wmﬁﬂﬂmvﬁfﬁpﬁéﬁv°#N%¢%

18

=
7N

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

Ao H [21)4 210 P2P ek P B ISP i 3B iE L ehBr o v [22]8 A Rt TR
et foed s A andiFo 32 [23]3 07 B F e LR #ehipr o d
BRAENEHIPAF A E AT M F TS % FHAR P52 20865
Bz P

AFEF PR A ORHRFE LS B BT AT R kR
FER A OER R ERBBEOEE Vb o f AR
FEaRLE > AR EF BB

\g;—‘g’é)FJe

W3C Standards http://www.w3.org/

[2] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, Steven Tuecke “The Data
Grid: Towards an Architecture for the Distributed Management and Analysis of Large Scientic
Datasets,” Journal of Network and Computer Applications, 2000

[3] Arcot Rajasekar, Michael Wan, Reagan Moore, George Kremenek, Tom Guptil “Data
Grids, Collections, and Grid Bricks,” Proceedings. 20th IEEE/11th NASA Goddard Conference
on Mass Storage Systems and Technologies, 2003. (MSST 2003).

[4] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, Christos Kozyrakis
“Evaluating MapReduce for Multi-core and Multiprocessor Systems,” Proceedings of the 2007
IEEE 13th International Symposium on High Performance Computer Architecture

[5] Ching-Hsien Hsu and Chih-Chun Chang, “QoS and Economic Adaptation Scheduling for
Bag-of-Task Applications in Service Oriented Grids”, Accepted, Journal of Internet
Technology (SCI), 2009

[6] Ching-Hsien Hsu, Chi-Guey Hsu and Shih-Chang Chen,“Efficient Message Traversal
Techniques towards Low Traffic P2P Services”, Accepted,International Journal of
Communication Systems (SCI), 2009

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach Mike
Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber “Bigtable: A Distributed Storage
System for Structured Data,” 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2006, pp. 205-218

[8] Gurmeet Singh, Shishir Bharathi, Ann Chervenak, Ewa Deelman, Carl Kesselman,Mary
Manohar, Sonal Patil, Laura Pearlman “A Metadata Catalog Service for Data Intensive
Applications,” Proceedings of the 2003 ACM/IEEE conference on Supercomputing.

[9] Ton Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishna “Chord: A
Scalable Peertopeer Lookup Service for Internet Applications,” Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer
communications.

[10] [10] Jeffrey Dean and Sanjay Ghemawat ‘“MapReduce: Simplied Data Processing on Large

Clusters,” OSDI'04: Sixth Symposium on Operating System Design and Implementation, 2004,
pp. 137-150.

[11] [11] Jeffrey Dean “Experiences with MapReduce, an abstraction for large-scale computation,”

Proc. 15th International Conference on Parallel Architectures and Compilation Techniques,
2006, pp. 1.

[12] [12] Jiannong Cao and Fred B. Liu “P2PGrid: Integrating P2P Networks into the Grid

Environment,” Concurrency and Computation: Practice and Experience, 2007

[13] [13] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic, Manfred

Hauswirth, Magdalena Punceva, Roman Schmidt “P-Grid: A Self-organizing Structured P2P
System,” SIGMOD Record, 32(2), September 2003.

[14] [14] Karl Aberer, Anwitaman Datta, Manfred Hauswirth “P-Grid: Dynamics of

self-organization processes in structured P2P systems,” Peer-to-Peer Systems and Applications,
Lecture Notes in Computer Science, LNCS 3845, Springer Verlag, 2005.

[15] [15] Michael Wan, Arcot Rajasekar, Reagan Moore, Phil Andrews “A Simple Mass Storage

19

http://www.w3.org/

[16]
[17]
(18]
[19]
[20]

[21]

[22]

(23]

[24]

[25]

(26]

System for the SRB Data Grid,” Proceedings. 20th IEEE/11th NASA Goddard Conference on
Mass Storage Systems and Technologies, (MSST 2003), 2003.

[16] Mike Burrows “The Chubby lock service for loosely-coupled distributed systems,” 7th
USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2006.

[17] N. Santos and B. Koblitz “Distributed Metadata with the AMGA Metadata Catalog”
Workshop on Next-Generation Distributed Data Management

[18] N. Santos and B. Koblitz ‘“Metadata Services on the Grid,” Proceedings of the X
International Workshop on Advanced Computing and Analysis Techniques in Physics Research.
[19] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung “The Google File System,”
Proceedings of the 19th ACM Symposium on Operating Systems Principles, 2003, pp. 20-43.
[20] Tim Oreilly “What is Web 2.0: Design Patterns and Business Models for the Next
Generation of Software,” Communications & Strategies, No. 1, p. 17, First Quarter 2007

[21] Ching-Hsien Hsu, Yun-Chiu Ching, Laurence T. Yang and Frode Eika Sandnes, “An Efficient Peer
Collaboration Strategy for Optimizing P2P Services in BitTorrent-Like File Sharing Networks”, Journal of
Internet Technology (JIT), Vol. 11, Issue 1, January 2010, pp. 79-88.

[22] Ching-Hsien Hsu and Shih Chang Chen, “A Two-Level Scheduling Strategy for Optimizing
Communications of Data Parallel Programs in Clusters”, Accepted, International Journal of Ad-Hoc and
Ubiquitous Computing (1JAHUC), 2010.

[23] Ching-Hsien Hsu and Bing-Ru Tsai, “Scheduling for Atomic Broadcast Operation in Heterogeneous
Networks with One Port Model,” The Journal of Supercomputing (TJS), Springer, Vol. 50, Issue 3, pp.
269-288, December 2009.

[24] Tai-Lung Chen,_Ching-Hsien Hsu and Shih-Chang Chen, “Scheduling of Job Combination and
Dispatching Strategy for Grid and Cloud System,” Proceedings of the 5th International Grid and Pervasive
Computing (GPC 2010), LNCS 6104, pp. 612-621, 2010.

[25] shih-Chang Chen, Tai-Lung Chen and Ching-Hsien Hsu, “Message Clustering Techniques towards
Efficient Communication Scheduling in Clusters and Grids,” Proceedings of the 10th International
Conference on Algorithms and Architectures for Parallel Processing (ICA3PP 2010), LNCS 6081, pp.
283-291, 2010.

[26] Shih-Chang Chen, Ching-Hsien Hsu, Tai-Lung Chen, Kun-Ming Yu, Hsi-Ya Chang and Chih-Hsun Chou,
“A Compound Scheduling Strategy for Irregular Array Redistribution in Cluster Based Parallel System,”
Proceedings of the 2nd Russia-Taiwan Symposium on Methods and Tools for Parallel Programming (MTPP
2010), LNCS 6083, 2010.

20

HFERENE RO FRE

2+ A z F| e P2P 22 Web i B 2 SOA & A crfe e @ A o 88 & (g AR
B £ % 5L | NSC 97-2628-E-216-006-MY3
N A
BB B | PRSI TR AT
N N
¢ % , _ | The 2nd Russia-Taiwan Symposium on Methods and Tools of Parallel
' : (s Programming Multicomputers (MTPP 2010)
€ R/ PER 8L | A S, B Rt / 2010.05. 16-19
. o A Compound Scheduling Strategy for Irregular Array
* A o< P .
Redistribution in Cluster Based Parallel System

foe § R

R TR
2010/05/16 (£5)
10:00 &I3FHF)
11:00 2aiHzEsdl CEH)
(F)
6:00 committee meeting
(1)
7:00 2fECIZ S
2010/05/17 (£F)

9:00 FEFEGH
9:10 ¥EHY Parallel Algorithm fHEAERSC2E S
11:00 #2HY Models and Tools #[E#&m 8855

(F4)
2:00 §%Hy Parallel Programming FH8 5 383

21

2010/05/18 (L)
9:00 =&Fim
11:00 §2HY System Algorithm HHREE RS 357

(F4)

2:00 §%5Hy Numerical simulation fH[Ezm 285
4:00 £ Far East National University
(%% F)

7:00 e

2010/05/19 (%)
9:00 §5HY Simulation FHEEZR 25

MTPP-10 E 5 Mg & T A B 7 4R A & a3t § o i2— = 2 MIPP-10 » & 4
T g RRAZLA ,%7 FRAMAL SRt A EHE S R RS
TP AR A E 0T
e ¥ MTPP-10 *% 5 % FAPEFTAET XS L A EHY o RPN
RS POELR G RE IEE L@ % RSB A P S e S
o A ,a;:g B AT S S X NFEFANE R B BB TR R
m%iﬂ ’ é’mfﬁ]%* #ar 2 E (2010 #)8 P BerE B L E T B F L R nE T

iz— & & Vladivostok, Russia *7# {7 s £ iF 3t € mAxA L e X c B EF X
d B .?a}%”r"v w 77 General Co-Chair » RSA i Victor E. Malyshkin #t#% » £ x4 & W[50
Frens 3G Avigs % - B MIPP 2010 R3¢ c #F 2B 58 B ¢ Roiniz > » K
A wme g A RLRFR AR Y RRAB L LT A F LI LGRS
= ® kA4 B = L &~ 3 4 (A Compound Scheduling Strategy for Irregular Array
Redistribution in Cluster Based Parallel System) - & % i & ZE P~ Parallel and
Distributed -~ Grid ~ Cloud ¥ Multicore #pMF % > FRE L % 37842097 7 1 48 »
FOfER N E ARG e o B - X 0 A RS § B R DRI F A
FERE P FE S ,-’f—‘-/pﬂ HEP G o ipH - AW A hF SF g o

AP - B CHRERETEE CRE S cHRY REAF - B30 EIY B

150 o » BMAARKIIEBANEiEH A Lo 23 Fhm 2 LE 15 BEFAE -
P S \;Fg ERR SN =8 =S M SN Y FERN: - R s IO ’ﬁﬁi}”ﬁlofﬁgﬁﬂﬁfiﬁ‘!é}ﬁ? °
B - #end > 5- X ahe FAPE BT Springer LNCS ehdiax > # 2 4 EI 2351 - i5-
BRI EEF2anhc o ARPS ¢ EIREaRE o

22

=)
1=
=
~
o
=23
=
=

23

A Compound Scheduling Strategy for Irregular Array Redistribution in Cluster
Based Parallel System

Shih-Chang Chen®, Ching-Hsien Hsu?, Tai-Lung Chen®, Kun-Ming Yu?,
Hsi-Ya Chang® and Chih-Hsun Chou®*

! College of Engineering
2 Department of Computer Science and Information Engineering
Chung Hua University, Hsinchu, Taiwan 300, R.O.C.

3 National Center for High-Performance Computing, Hsinchu 30076, Taiwan
{scc, robert, tai}@grid.chu.edu.tw, yu@chu.edu.tw, jerry@nchc.org.tw, chc@chu.edu.tw

Abstract. With the advancement of network and techniques of clusters, joining clusters to
construct a wide parallel system becomes a trend. Irregular array redistribution employs
generalized blocks to help utilize the resource while executing scientific application on such
platforms. Research for irregular array redistribution is focused on scheduling heuristics
because communication cost could be saved if this operation follows an efficient schedule. In
this paper, a two-step communication cost modification (T2CM) and a synchronization
delay-aware scheduling heuristic (SDSH) are proposed to normalize the communication cost and
reduce transmission delay in algorithm level. The performance evaluations show the
contributions of proposed method for irregular array redistribution.

1 Introduction

Scientific application executing on parallel systems with multiple phases requires appropriate data
distribution schemes. Each scheme describes the data quantity for every node in each phase. Therefore,
performing data redistribution operations among nodes help enhance the data locality.

Generally, data redistribution is classified into regular and irregular redistributions. BLOCK, CYCLIC
and BLOCK-CYCLIC(c) are used to specify array decomposition for the former while user-defined function,
such as GEN_BLOCK, is used to specify array decomposition for the latter. High Performance Fortran
version 2 provides GEN_BLOCK directive to facilitate the data redistribution for user-defined function. To
perform array redistribution efficiently, it is important to follow a schedule with low communication cost.

With the advancement of network and the popularizing of cluster computing research in campus, it is a
trend to join clusters in different regions to construct a complex parallel system. To performing array
redistribution on this platform, new techniques are required instead of existing methods.

Schedules illustrate time steps for data segments (messages) to be transmitted in appropriate time. The
cost of schedules given by scheduling heuristics is the summation of cost of every time steps while cost of
each time step is dominated by the message with largest cost. A phenomenon is observed that most local
transmissions, which are happened in a node, do not dominate the cost of each step although they are in
algorithm level for existing methods. In other words, they are overestimated. Since a node can send and
receive only one message in the same time step [5], the arranged position of each message becomes
important. Therefore, a two-step communication cost modification (T2CM) and a synchronization
delay-aware scheduling heuristic (SDSH) are proposed to deal with the overestimate problems, reduce
overall communication cost and avoid synchronization of schedules in algorithm level.

24

The rest of this paper is organized as follows: Section 2 gives a survey of existing works related to array
redistribution. Section 3 gives notations, terminology and examples to explain each parts of scheduling
heuristics. The proposed techniques are described in section 4. Section 5 presents the results of the
comparative evaluation, while section 6 concludes the paper.

2 Related Work

Array redistribution techniques have been developed for regular array redistribution and GEN BLOCK
redistribution in many papers. Both kinds of redistribution issues require at least two sorts of techniques.
One is communication sets identification which decomposes array for nodes; the other one is communication
scheduling method which derives schedules to shorten the overall transmission cost for redistributions.
ScaLAPACK [9] was proposed to identify communication sets for regular array redistribution. Guo et al.
[2] proposed a symbolic analysis method to help generate messages for GEN BLOCK redistribution. Hsu et
al. [3] proposed the Generalized Basic-Cycle Calculation method to shorten the communication for
generalized cases. The research on prototype framework for distributed memory platforms is proposed by
Sundarsan et al. [11] who developed a method to distribute multidimensional block-cyclic arrays on
processor grids. Karwande et al. [8] presented CC-MPI with the compiled communication technique to
optimize collective communication routines. Huang et al. [6] proposed a flexible processor mapping
technique to reduce the number of data element exchanging among processors and enhance the data locality.
To reduce indexing cost, a processor replacement scheme was proposed [4]. With local matrix and
compressed CRS vectors transposition schemes the communication cost can be reduced significantly.
Combining the advantages of relocation scheduling algorithm and divide-and-conquer scheduling algorithm,
Wang et al. [12] proposed a method with two phases for GEN BLOCK redistribution. The first phase acts
like relocation algorithm, but the contentions avoidance mechanism of second phase will not be proceeded
immediately while contentions happened. To minimize the total communication time, Cohen et al. [1]
supposed that at most k communication can be performed at the same time and proposed two algorithms
with low complexity and fast heuristics. A study [7] focusing on the cases of local redistributions and
inter-cluster redistribution was given by Jeannot and Wagner. It compared existing scheduling methods and
described the difference among them. Rauber and Runger [10] presented a data-re-distribution library to
deal with composed data structures which are distributed to one or more processor groups for executing
multiprocessor task on distributed memory machines or cluster platforms. Hsu et al. [5] proposed a
two-phase degree-reduction scheduling heuristic to minimize the overall communication cost. The
proposed method derives each time step of a complete schedule by performing degree reduction technique
while the number of messages of each node representing the degree of each vertex in algorithm level.

3 Preliminary

Following are notations, terminology and examples to explain each parts of scheduling heuristics for
GEN_BLOCK redistribution. To improve data locality, multi-phase scientific problems require appropriate
data distribution schemes for specific phases. For example, to distribute array for two different phases on
six nodes, which are indexed from 0 to 5, two strings, {13, 20, 17, 17, 12, 21} and {16, 18, 13, 16, 29, 8},

25

are given, where the array size is 100 units. These two strings provide necessary information for nodes to
generate messages to be transmitted among them. Fig. 1 shows these messages marked from m; to my; and
are with information such as data size, source node and destination node in the relative rows.

Scheduling heuristics are developed for providing solutions of time steps to reduce total communication cost
for a GEN BLOCK redistribution operation. In each step, there are several messages which are suggested to
be transmitted in the same time step. To help perform an efficient redistribution, scheduling methods
should avoid node contention, synchronization delay and redundant transmission cost. It is also important
to follow policies of messages arrangement, i.e. with the same source nodes, messages should not be in the
same step; with the same destination nodes, messages should be in different step; a node can only deal with
one message while playing whether source node or destination node. These messages that cannot be
scheduled together called conflict tuples, for example, a conflict tuple is formed with messages m; and m,.
Note that if a node can only deal with a message while it is a source/destination node, the number of steps for
a schedule must be the equal to or more than the number of messages from/to these nodes. In other words,
the minimal number of time steps is equal to the maximal number of messages in a conflict tuple, CTax.

Information of messages ‘

No. of Data Source Destination
message size node node
my 13 0 0
m, 3 1 0
ms 17 1 1
my 1 2 1
ms 13 2 2
mg 3 2 3
m; 13 3 3
Mg 4 3 4
Mg 12 4 4
Mo 13 5 4
my; 8 5 5

Fig. 1. Information of messages generated from given schemes to be transmitted on six nodes which are indexed from 0 to 5

Fig. 2 gives a schedule with low communication cost and arranges messages in the number of minimal steps.
In this result, there are three time steps with messages sent/received to/from different nodes. The values
beside m;-;; are data size, the cost of each step is dominated by the largest one. Thus, ms, m; and mg
dominate step 1, 2 and 3, and the estimated cost are 17, 13 and 4, respectively. To avoid node contentions,
messages m; and m; are in separate steps due to destination nodes of both messages are the same. Based on
same argument, m, and mg are in separate steps due to both messages are members of a conflict tuple. The
total cost which represents the performance of a schedule is the summation of all cost of steps. In other
words, a schedule with lower cost is better than another one with higher cost in terms of performance.

26

Avresult of scheduling heuristics ‘

No. of step No. of message Cost of step
Step 1 m3(17), ms(13), m7(13) , my(13) 17
Step 2 my(13), me(3), me(12), my;(8) 13
Step 3 my(3), my(1), mg(4) 4

Total cost 34

Fig. 2. A result of scheduling messages with low communication cost and minimal steps

The result in Fig. 2 schedules messages in three steps, which is the number of minimal steps or CTyax. The
total cost is small which representing low communication cost due to messages with larger cost and
messages with smaller cost are in separate steps. However, the schedule can still be better by providing a
cost normalization method and a new scheduling technique to avoid synchronization delay among nodes
during message transmissions in next section.

4 The Proposed Method

In this paper, a two-step communication cost modification (T2CM) and a synchronization delay-aware
scheduling heuristic (SDSH) are proposed to normalize the communication cost of messages and reduce
transmission delay in algorithm level. The first step of T2CM is a local reduction operation, which deal
with the message happened in local memory. In other words, candidates are transmissions whose source
node and destination node are the same node. For example, m;, mz, ms, mz, mg and my; are such kind of
transmissions which happened inside nodes. The second step is a inter amplification method, which is
responsible for transmissions happened across clusters. Assumed there are two clusters, and node 0~2 are
in cluster 1, other nodes are in cluster 2. Then mg is such message which is transmitted from cluster 1 to
cluster 2. Both operations are responsible for different kind of transmissions due to the heterogeneity of
network bandwidth. The local reduction operation reduces simulated cost of messages to 1/8 which is
evaluated from PC clusters that connected with 100Mbps layer-2 switch. On same argument, inter
amplification operation increases cost of messages five times. The cost then becomes more practical for
real machines when scheduling heuristics try to give a perfect schedule with low communication cost. For
previous research, the difference does not exist in algorithm level of scheduling heuristics in and could result
in erroneous judgments and high communication cost.

Fig. 3 gives the results of local reduction and inter amplification operations modifying data size for
messages mi-11. The given schedule in Fig. 2 becomes the results in Fig. 4. Difference of Fig. 2 and Fig.
4 shows the schedule could be improved and explains the explain the erroneous judgments. First, the
dominators in step 1 and 2 are changed to others whose estimated cost is larger in Fig. 4. For example, the
m3 and m; are replaced by my, and mg for both steps, respectively. Second, the cost of step 1 and step 2 are
changed due to new dominators are chosen in both steps. Furthermore, the synchronization delay is small
in algorithm level but results in more node idle time in practical. For instance, the cost of ms, ms, m; and
myo are 17, 13, 13 and 13 are close to each other in step 1 in Fig. 2. But it is quite different in practical in

27

Fig. 4, they should be 2.125, 1.625, 1.625 and 13, respectively. Node 1, 2 and 3 must wait for node 4 and 5
to proceed next step because when the transmissions of ms, ms and m; are finished, the transmission of myg is
still on the way.

Information of messages

No. of Data Source Destination
message size node node
m; 1.625 0 0
m, 3 1 0
ms 2.125 1 1
my 1 2 1
ms 1.625 2 2
me 15 2 3
m; 1.625 3 3
mg 4 3 4
mg 15 4 4
My 13 5 4
my; 1 5 5

Fig. 3. The local reduction and inter amplification operations derive new data size for messages m;_;;

Aresult of scheduling heuristics

No. of No. of Cost of
step message step
Step 1 m3(2.125), ms(1.625), m7(1.625), mo(13) 13
Step 2 m;(1.625), mg(15), mg(1.5), my;(1) 15
Step 3 my(3), My(1), mg(4) 4
Total cost 32

Fig. 4. The results with new dominators and cost

The proposed synchronization delay-aware scheduling heuristic is a novel and efficient method to avoid
delay among clusters and shorten communication cost while performing GEN BLOCK redistribution. To
avoid synchronization delay, the transmissions happened in local memory are scheduled together in one
single step instead of separating them among time steps like the results in Fig. 4. Other messages are
pre-proceeded by inter amplification and then scheduled by a low cost scheduling method which selects
messages with smaller cost to shorten the cost of a step and avoid the node contentions. Fig. 5 shows the
results of SDSH which is with low synchronization delay and is contention free. There are two reasons
making the results in Fig. 5 better than the results in Fig. 4. First, SDSH successfully avoids
synchronization delay by congregating m;, ms, ms, mz, mg and my; in step 3. It also helps reduce the cost of
a step. Second, messages mg and mjo are the most important transmissions in the schedule due to their
communication cost can dominate any steps. It is a pity that they are separated in two steps in Fig. 4 due to
the node contentions. For example, it is impossible to move mg to step 1 to shorten the cost of step 2 due to

28

ms and my;. The message ms owns node 2 as source node and so does mg. Both messages cannot be
scheduled in the same step. Similarly, mg and m; cannot be scheduled together due to destination node.
On same argument, it is impossible to move my to step 2 due to mg and my;. If ms, m7, mg and m;; can be
placed in other step, it would be possible to place mg and myo together to minimize the communication cost
of the results. SDSH successfully places them in step 3 and then schedules mg and myg in step 1 to shorten
the cost of other steps. This operation also successfully avoids node contentions that happened in Fig. 4.

Aresult of the proposed method

No. of No. of Cost of
step message step
Step 1 | my(3), mg(15), Myo(13) 15
Step 2 | my(1), mg(4) 4
Step 3 | my(1.625), m3(2.125), ms(1.625), 2.125
m;(1.625), mg(1.5), M (1)
Total cost 21.125

Fig. 5. A result of proposed method with low synchronization delay and contention free

5 Performance Evaluation

To evaluate the proposed method, it is compared with a scheduling method, TPDR [5]. The simulator
generates schemes (strings) for 8, 16, 32, 64 and 128 nodes, and there are three nodes in a cluster. To
constrain the data size of each node, the lower bound and upper bound of each value in the strings are 1 and
the value that array size divided by the number of nodes, where the array size is 10,000. If the array is
distributed on eight nodes, the lower bound and the upper bound of data size are 1 and 1250 for each node,
respectively.

Fig. 6 shows the results of comparisons between SDSH and TPDR. For each set of node, the number on
the right side represents the cases that SDSH performs better, TPDR performs better or tie cases. In the
simulation results for 8 nodes, the proposed method wins 813 cases which is less than 90% because it is easy
for both methods to find the same results when performing GEN BLOCK redistribution on few number of
nodes. Therefore, the number of tie cases is over than 10%, and is much more than the results of other sets.
When performing GEN BLOCK redistribution with more nodes, SDSH outperforms TPDR, and TPDR loses
over 92% cases in the rest of the comparisons. Note that the proposed method always find the best results
in over 93% cases including the tie cases in all comparisons. It also shows the contribution of SDSH for
shortening transmission cost and avoiding synchronization delay.

29

Results of evaluations

Num. of nodes SDSH TPDR Same
8 813 76 111
16 946 43 11
32 950 48 2
64 914 79 7
128 903 96 1
Percentage 90.52% 6.84% 2.64%
Total 4526 342 132

Fig. 6. The results of both methods on five sets of nodes with 5,000 cases in total

The attributes of generated cases dependents on the number of nodes, for example, higher CTyax and lower
communication cost are with higher number of nodes. It is hard to find the same schedules for two
scheduling heuristics with larger number of nodes. Fig. 7 shows the information of cases which are used to
evaluate the SDSH and TPDR.

Attributes of given cases

Num. of CTan Average Cost of 1,000 cases
nodes CTnax SDSH | TPDR

8 6 3.271 6733580 | 7953932

16 8 3.762 5733523 | 6983753

32 10 4.246 3564076 | 4354899

64 10 4.661 2412444 | 2781670

128 1 5.009 1282008 | 1520884

Fig. 7. Attributes of given cases for five set of nodes

CTmax Of results with 128 nodes is 11 which is almost two times larger than the CTax Of results with 8 nodes.
The average CTmax also grows with higher number of nodes. The total cost of schedules given by both
methods for 1000 cases with different number of nodes explains the contribution of SDSH in Fig. 6. The
proposed method provides better schedules and the improves the communication cost about 15% while
comparing to TPDR. It also explains how SDSH outperforms its competitor. Overall speaking, SDSH is a
novel, efficient and simple method to provide solutions for scheduling communications of GEN BLOCK
redistribution.

6 Conclusions

To perform GEN BLOCK redistribution efficiently, research focused on developing scheduling heuristic to
shorten communication cost in algorithm level. In this paper, a two-step communication cost modification
(T2CM) and a synchronization delay-aware scheduling heuristic (SDSH) are proposed to normalize the
transmission cost and reduce synchronization delay. The two-step communication cost modification

30

provides local reduction and inter amplification operations to enhance the importance of messages. The

SDHC deal with messages separately to avoid synchronization delay and reduce the cost. The performance

evaluation shows that the proposed methods outperforms its competitor in 92% cases and improves about

15% on overall communication cost.

References

(1]
(2]
(3]
[4]

(5]
(6]
[7]
(8]
(9]
[10]

[11]

[12]

Cohen, J., Jeannot, E., Padoy, N., Wagner, F.: Messages Scheduling for Parallel Data Redistribution
between Clusters. IEEE Transactions on Parallel and Distributed Systems 17(10), 1163-1175 (2006)
Guo, M., Pan, Y., Liu, Z.: Symbolic Communication Set Generation for Irregular Parallel Applications.
The Journal of Supercomputing 25(3), 199-214 (2003)

Hsu, C.-H., Bai, S.-W., Chung, Y.-C., Yang, C.-S.: A Generalized Basic-Cycle Calculation Method for Efficient
Array Redistribution. IEEE Transactions on Parallel and Distributed Systems 11(12), 1201-1216 (2000)
Hsu, C.-H., Chen, M.-H., Yang, C.-T., Li, K.-C.: Optimizing Communications of Dynamic Data
Redistribution on Symmetrical Matrices in Parallelizing Compilers. IEEE Transactions on Parallel and
Distributed Systems 17(11), (2006)

Hsu, C.-H., Chen, S.-C., Lan, C.-Y.: Scheduling Contention-Free Irregular Redistribution in
Parallelizing Compilers. The Journal of Supercomputing 40(3), 229-247 (2007)

Huang, J.-W., Chu, C.-P.. A flexible processor mapping technique toward data localization for
block-cyclic data redistribution. The Journal of Supercomputing 45(2), 151-172 (2008)

Jeannot, E., Wagner, F.: Scheduling Messages For Data Redistribution: An Experimental Study. The International Journal of
High Performance Computing Applications 20(4), 443-454 (2006)

Karwande, A., Yuan, X., Lowenthal, D. K.: An MPI prototype for compiled communication on ethernet
switched clusters. Journal of Parallel and Distributed Computing 65(10), 1123-1133 (2005)

Prylli, L., Touranchean, B.: Fast runtime block cyclic data redistribution on multiprocessors. Journal of
Parallel and Distributed Computing, 45(1), 63-72 (1997)

Rauber, T., Rlnger G.: A Data Re-Distribution Library for Multi-Processor Task Programming. International Journal of
Foundations of Computer Science 17(2), 251-270 (2006)

Sudarsan, R., Ribbens, C. J.: Efficient Multidimensional Data Redistribution for Resizable Parallel
Computations. In: Fifth International Symposium on Parallel and Distributed Processing and
Applications, 182-194 (2007)

Wang, H., Guo, M., Wei, D.: Message Scheduling for Irregular Data Redistribution in Parallelizing
Compilers. IEICE Transactions on Information and Sysmtes E89-D(2), 418-424 (2006)

31

HEERENEROERS

L L | s P2P ¥ Web Bt B 2 SOA 5 B Afena e 4 Sod e i)
¥ F % 5| NSC 97-2628-E-216-006-MY3

w2 A WL | HER

m

KB B | PEAREA TR AN

N S
¢ =% . " The 12" IEEE International Conference on Computational Science and
' i v Engineering (CSE-09)

€ &/ B pF R B | Vancouver, Canada / 2009. 08. 29-31

Data Distribution Methods for Communication Localization in Multi-Clusters with

B oA ko ov AP

Heterogeneous Network

foe § R

R] TRSuR
2009/08/29 (L5)

8:00 &iF#;%| - FREE Keynote Speech
Privacy, Security, Risk and Trust in Service-Oriented
Environments by Stephen S. Yau

9:00 #sm L

10:30 §=HY Parallel Algorithm 18z 02835

(F4)

1:00 BREE Keynote Speech
Elections with Practical Privacy and Transparent Integrity by David
Chaum

2:00 ZEHY Grid ComputingMHHEm S 3%

3:30 FFF Session

(e _£)
7:30 SRR

32

2009/08/30

(L£F)
9:00 E3HE Keynote Speech

Cache-Aware Scheduling and Analysis for Multicores by Wang Yi
10:30 F=HY P2P tHEA R SR

(F%)

1:00 BREE Keynote Speech
Network Analysis and Visualization for Understanding Social
Computing by Ben Shneiderman

2:15 £:fjiPanel discussion

3:45 TFf Session

(i)
7:30 MG

2009/08/31

(L£F)

8:00 E3HE Keynote Speech
White Space Networking - Is it Wi-Fi on Steroids? by Prof. Victor
Bahl

10:30 f=Hy Network Management FH 8 & S 253=

(F%)

1:30 BAEE Keynote Speech
Computational Science and Engineering in Emerging
Cyber-Ecosystems by Prof. Manish Parashar

2:00 T:FF Session

i#- =% % Vancouver, Canada *7# 7R A g R1 PP =2 X c = XA X 1T X
ETF FREBAGE > L8 - B RAEDE i%‘f%“ff BALHA ¥ - 2 #0 Dr

Stephen S. Yau (Arizona State University, USA)#2 David Chaum 4 %] 44+ Privacy, Security,
Risk and Trust in Service-Oriented Environments f= Elections with Practical Privacy and
Transparent Integrity &+ & 3870 B 73t ¢ 0/ % > &7 %5 X 4 & %5 Wang Yi (North
Eastern University, China) ~ Ben Shneiderman ~ Dr. Fei-Yue Wang ~ Prof. Victor Bahl §= Prof.

Manish Parashar (Rutgers University)7 = & 7% ﬁ 4+4F Cache-Aware Scheduling and Analysis

for Multicores -~ Network Analysis and Visualization for Understanding Social Computing ~ Social

33

Computing Applications and Trends ~ White Space Networking - Is it Wi-Fi on Steroids? -
Computational Science and Engineering in Emerging Cyber-Ecosystems 7 # % I e3Z p 45 #F
Berfid e A LA EHES BHh Chair #4717 - Kk > %3P 5 Data
Distribution Methods for Communication Localization in Multi-Clusters with Heterogeneous
Network - # = Chair 4 %] % CSE-09 (Session A16) {- SEC-09(Session A27)» & % %-£ 7 =
A 2AREKR A EH - BEAMABZF X R RHTFE o

34

Data Distribution Methods for Communication Localization in Multi-Clusters with
Heterogeneous Network

Shih-Chang Chen*, Ching-Hsien Hsu? and Chun-Te Chiu?
! Institute of Engineering and Science
? Department of Computer Science and Information Engineering

Chung Hua University, Hsinchu, Taiwan 300, R.O.C.
chh@chu.edu.tw

Abstract

Grid computing integrates scattered clusters, servers, storages and networks in different geographic
locations to form a virtual super-computer. Along with the development of grid computing, dealing with
the data distribution requires a method which is faster and more effective for parallel applications in order
to reduce data exchange between clusters. In this paper, we present two methods to reduce inter-cluster
communication cost based on the consideration to different kinds of communication cost and a simple logic
mapping technology. Our theoretical analyses and simulation results show the proposed methods are
better than the methods without reordering processor and considering the communication cost. The
performance evaluation shows that the proposed methods not only reduce communication cost successfully
but also achieve a great improvement.

1. Introduction

Computing grid system [5] integrates geographically distributed computing resources to establish a
virtual and high expandable parallel environment. Cluster grid is a typical paradigm which is connected by
software of computational grids through the Internet. In cluster grid, computers might exchange data
through network to other computers to run job completion. This consequently incurs two kinds of
communication between grid nodes. If the two grid nodes are geographically belong to different clusters,
the messaging should be accomplished through the Internet. We refer this kind of data transmission as
external communication. If the two grid nodes are geographically in the same space domain, the
communications take place within a cluster; we refer this kind of data transmission as interior
communication. Intuitionally, the external communication is usually with higher communication latency
than that of the interior communication. Therefore, to efficiently execute parallel programs on cluster grid,
it is extremely critical to avoid large amount of external communications.

Array redistribution is usually required for efficiently redistributing method to execute a data-parallel
program on distributed memory multi-computers. Some efficient communication scheduling methods for
the Block-Cyclic redistribution had been proposed which can help reduce the data transmission cost. The
previous work [9, 10] presents a generalized processor reordering technique for minimizing external

35

communications of data parallel program on cluster grid. The key idea is that of distributing data to
grid/cluster nodes according to a mapping function at data distribution phase initially instead of in
numerical-ascending order.

In this paper, we consider the issue of real communication cost among a number of geographically grid
nodes which belong to different clusters. Method proposed previously has less communication cost by
reordering logic id of processors. Base on this idea, two new processor reorder techniques are proposed to
adapt the heterogeneous network environment.

This paper is organized as follows. Section 2 presents related work. In section 3, we provide
background and review previously proposed processor reorder techniques. In section 4, the Global
Reordering technique is proposed for processor reordering in section 4.1. The Divide and Conquer
Reordering technique is proposed in section 4.2. In section 5, we present the results of the evaluation of the
new schemes. Finally we have the conclusions and future work in section 6.

2. Related Work

Research work on computing grid have been broadly discussed on different aspects, such as security, fault
tolerance, resource management [4, 6], job scheduling [1, 20, 21, 22], and communication optimizations [2].
Commutating grid is characterized by a large number of interactive data exchanges among multiple
distributed clusters over a network. Thus, providing a reliable response in reasonable time with limited
communication and computation resources for reducing the interactive data exchanges is required. Jong
Sik Lee [16] presented a design and development of a data distribution management modeling in
computational grid.

For the issue of communication optimizations, Dawson et al. [2] addressed the problems of optimizations
of user-level communication patterns in the local space domain for cluster-based parallel computing. Plaat
et al. analyzed the behavior of different applications on wide-area multi-clusters [3, 19]. Similar research
works were studied in the past years over traditional supercomputing architectures [11, 14]. Guo et al. [7]
eliminated node contention in communication step and reduced communication steps with the schedule table.
Y. W. Lim et al. [18] presented an efficient algorithm for Block-Cyclic data realignments. Jih-Woei Huang
and Chih-Ping Chu [8] presented a unified approach to construct optimal communication schedules for the
processor mapping technique applying Block-Cyclic redistribution. The proposed method is founded on
the processor mapping technique and can more efficiently construct the required communication schedules
than other optimal scheduling methods. A processor mapping technique presented by Kalns and Ni [15]
can minimize the total amount of communicating data. Namely, the mapping technique minimizes the size
of data that need to be transmitted between two algorithm phases. Lee et al. [17] proposed similar method
to reduce data communication cost by reordering the logical processors’ id. They proposed four algorithms
for logical processor reordering. They also compared the four reordering algorithms under various
conditions of communication patterns. There is significant improvement of the above research for parallel
applications on distributed memory multi-computers. However, most techniques are applicable for
applications running on local space domain, like single cluster or parallel machine. Ching-Hsien Hsu et al.

36

[9] presented an efficient method for optimizing localities of data distribution when executing data parallel
applications. The data to logical grid nodes mapping technique is employed to enhance the performance of
parallel programs on cluster grid.

For a global grid of clusters, these techniques become inapplicable due to various factors of Internet
hierarchical and its communication latency. More and more multi-clusters under heterogeneous network
environment in which the performance issue was of primary importance on. Bahman Javadi et al. [12, 13]
proposed an analytical model for studying the capabilities and potential performance of interconnection
networks for multi-cluster systems. In this following discussion, our emphasis is on minimizing the
communication costs for data parallel programs on cluster grid and on enhancing data distribution of
communication localities with heterogeneous network.

3. Research Model

3.1 Identical Cluster Grid
To explicitly define the problem, upon the number of clusters (C), number of computing nodes in each

cluster (n;), 1=<i=C, the number of sub-blocks (K) and <G(C):{ny, n,, ns, ..., nc}> presents the cluster grid
model with n; computing nodes in each cluster. The definition of symbols is shown in Table 1.

Table 1 The definition of symbols.

C The number of
clusters.

K The degree of
refinement

Ni The number of

computing nodes in

each cluster.
G(C):{ny, nz, n3, ..., | The cluster grid model

nc}

We consider two models of cluster grid when performing data reallocation. Figure 1 shows an example
of localization technique for explanation. The degree of data refinement is set to three (K = 3). This
example also assumes an identical cluster grid that consists of three clusters and each cluster provides three
nodes to join the computation. In algorithm phase, in order to accomplish the fine-grained data distribution,
processors partition its own block into K sub-blocks and distribute them to corresponding destination
processors in ascending order of processors’ id that specified in most data parallel programming languages.
For example, processor Py divides its data block A into a;, a,, and as; it then distributes these three
sub-blocks to processors Py, P; and P», respectively. Because processors Py, P; and P, belong to the same
cluster with Py; therefore, these three communications are interior. However, the same situation on
processor P; generates three external communications. Because processor Py divides its local data block B
into by, by, and bs. It then distributes these three sub-blocks to processors Ps, P4 and Ps, respectively. As
processor P, belongs to Cluster-1 and processors P3, P4 and Ps belong to Cluster-2, there are three external
communications. Figure 1(a) summarizes all messaging patterns of this example into the communication

37

table. Messages {ai, az, as}, {e1, ez, es} and {i, iy, i3} are presented interior communications (|I| = 9); all
the others are external communications (|E| = 18).

SP)PPU PW Pl P3 P4 P5 P6 P7 PB

Poldai] a;| a3

P 1 h 1 b 2 b 3

P, Cp | €2 | €3
Pyld, [dy| d;s

Py t e oy

Ps Hlfa | /s
Polgi | g2 &

Py by | hy | hs

Py b h

Cluster-1 Cluster-2 Cluster-3
(@)

ek p, P, P, Py, P, Py Py P, Py

Pola|ay| a;

Pyldy | dy]ds

P, b
P, Bi| gi{&s
P Ay | s | B
Py by | iy
Cluster-1 Cluster-2 Cluster-3

(b)

Figure 1. Communication tables of data reallocation over the cluster grid. (a) Without data mapping. (b) With data mapping.

The idea of changing logical processor mapping [15, 16] is employed to minimize data transmission time
of runtime array redistribution in the previous research works. In the cluster grid, we can derive a mapping
function to produce a realigned sequence of logical processors’ id for grouping communications into the
local cluster. Given an identical cluster grid with C clusters, a new logical id for replacing processor P;can
be determined by New(P;) = (i mod C) * K + (i / C), where K is the degree of data refinement. Figure 1(b)
shows the communication table of the same example after applying the above reordering scheme. The
source data is distributed according to the reordered sequence of processors’ id, i.e., <Pg, Ps, Ps, P1, P4, P7,
P2, Ps, Pg> which is computed by mapping function. Therefore, we have |I| = 27 and |E| = 0.

For the case of K (degree of refinement) is not equal to n (the number of grid nodes in each cluster), the
mapping function becomes impracticable. In this subsection, the previous work proposes a grid node
replacement algorithm for optimizing distribution localities of data reallocation. According to the relative
position of the first of consecutive sub-blocks that produced by each processor, we can determine the best
target cluster as candidate for node replacement. Combining with a load balance policy among clusters,
this algorithm can effectively improve data localities. Figure 2 gives an example of data reallocation on the
cluster grid, which has four clusters. Each cluster provides three processors. The degree of data
refinement is set to four (K =4). Figure 2(a) demonstrates an original reallocation communication patterns.
We observe that |I| = 12 and |E| = 36.

38

DP Py P, r, Py Py P P P Py Py Py Py

P, by | Ba | Bs | bs

Ps N e | Fs | fs

Polgi [&] & | g

P, hy | hy | ha | hy

Py i i i3 iy

Po | Ju 2 J3 | Ja

P ky | ko | k3 | ks

Py 3 /5 /5 1y
Cluster -1 Cluster -2 Cluster -3 Cluster -4

(a)

‘,-;,')P Py Py Py, Py Py Ps Pg Py Py Py Py Py

Polayfa;|a;| as

Py by | by | by | by

Py ey | €2] ¢y | €y
Poldy | dy | ds | dy

Py €1 €y [e3 | ey

P Sl LGS
Prlgi |8 | 8] &

Py By | hy | hy | By

Py i B i
Ps | v [Ja | Js | Ja

P, ky | ko | ks | ks

Py £ L | 1] 1

Cluster -1 Chister-2 Cluster -3 Cluster -4
(b)

Figure 2. Communication tables of data reallocation on the identical cluster grid. (C = 4, n = 3, K = 4) (a) Without data mapping.
(b) With data mapping.

If we change the distribution of block B to processors reside in cluster-2 (Ps, P4 or Ps) or cluster-3 (Ps, P7
or Pg) in the source distribution, we find that the communications could be centralized in the local cluster for
some parts of sub-blocks. Because cluster-2 and cluster-3 will be allocated the same number of sub-blocks
in the target distribution, therefore processors belong to these two clusters have the same priority for node
replacement. In this way, Ps is first assigned to replace P;. For block C, most sub-blocks will be
reallocated to processors in cluster-4, therefore the first available node Pq is assigned to replace P,. Similar
determination is made to block D and results P, replace P3. For block E, cluster-2 and cluster-3 have the
same amount of sub-blocks. Processors belong to these two clusters are candidates for node replacement.
However, according to the load balance policy among clusters, cluster-2 remains two available processors
for the node replacement while cluster-3 has three; our algorithm will select P to replace P4. Figure 2(b)
gives the communication tables when applying data to logical grid nodes mapping technique. We obtain |I| =
28 and |E| = 20.

3.2 Non-identical Cluster Grid

Let’s consider a more complex example in non-identical cluster grid, the number of nodes in each
cluster is different. It needs to add global information of cluster grid into algorithm for estimating the best
target cluster as candidate for node replacement. Figure 3 shows a non-identical cluster grid composed by
four clusters. The number of processors provided by these clusters is 2, 3, 4 and 5, respectively. We also
set the degree of refinement as K=5. Figure 3(a) presents the table of original communication patterns that
consists of 19 interior communications and 51 external communications. Applying our node replacement

39

algorithm, the derived sequence of logical grid nodes is <P, Ps, Py, P3, Ps, P10, P4, P11, Po, P7, P12, P1, Ps,
P13>. Figure 3(b) gives the communication tables when applying data to logical grid nodes mapping
technique. This data to grid nodes mapping produces 46 interior communications and 24 external
communications. This result reflects the effectiveness of the node replacement algorithm in term of
minimizing inter-cluster communication overheads.

‘w.il‘ Py Py Py Py Py Ps Py Py Py Py Py Py Py Py

Pola, | a;|as|ay]| as
P, by by | by | byl bs
Py cs ciles|es| ey
P, dy | dy| dy| dy| ds
P, ey | ey |es|ey|es
e i | 7 |
P 1| 82| 83| 84| &5
Py by | hy | hs | hy| hs
Pl is | ig | is i i
Py o | Ja [Ja | Ja | s
Py ky | ky | kg | Ky | ks
Pl L] 1s 5
Py my | my | may | my| oms
P ny | nylns|ng|ns
Cluster -1 Cluster -2 Cluster -3 Cluster -4
(a)
S Py Py Py Py Py Py Pg Py Py Py Py Py Py Pi
Pyla,|ay|as|ay] as
Py byl byl byl by b,
Pyl es cplies | es ey
P, diy | dy | ds | dy| ds
Py €1 | €21 €3] €4 | €s
PulSfa | s i s
£y Bi | 82| 83| &q] 85
Py hy| hy| hy | hy | hs
Polds | dg | iy | i
P JolJa | Ja | Ja | s
P ky | ko [ks | ko] ks
Pyl | | iy 1s I
Py my | my | my | myfoms
P ny |l ng | ns|nglon;
Clusfer -1 Cluster -2 Cluster -3 Cluster -4

(b)

Figure 3. Communication tables of data reallocation on non-identical cluster grid. (a) Without data mapping.
(b) With data mapping.

3.3 Communication Cost of Multi-Clusters with Heterogeneous Network

Examples in the above section do not consider the real communication status for multi-clusters over
heterogeneous network communication. Figure 4(a) shows an example of four clusters with various
inter-cluster communication costs. Each unit’s block data must spend 20 units time from the cluster-1
transmission to cluster-2, but each unit’s block data must spend 30 units time from the cluster-1 transmission
to cluster-3. Figure 4(b) shows the table of inter-cluster communication costs. Therefore, we can
calculate communication cost of data distribution for each processor over inter-cluster by this
communication matrix. After calculating, the communication cost are 1865 and 885 according to

40

distribution scheme in Figure 3(a) and 3(b), respectively. But the proposed processor mapping methods
provide new sequences of logical grid node which are <Py, Ps, P11, P2, Py, Po, Ps, P10, P1, P7, P12, P3, Ps,
P13> and < P3, Ps, Pg, P, P10, P1, Ps, P11, Po, P7 P12, P4, Pg, P13 > in next section. Consequently, the
necessary costs of both sequences are 740 units. The result reflects the effectiveness of this sequence which
has the less communications cost. In next section, we will to explain the research model and calculation of
communication cost.

oy d

. 2 \
')
Cluster-1 | / 0\ ' Cluster2 A

ST T
2 e /) | \
257 %0, L] \
; /‘(. l \
s %> X // \\ 2(\) l“‘
: Sok; § j
= 5 e A 3
- o 100 ~\i\//
" Cluster-3 3 é Cluster-4
¥ O~ AR .
N et ~. .0~ &S
(a)
Cl Cz C3 C4

C,[20] 0 |50](20
C;|25(25] 0 [100
C,[30[15]20]| 0

(b)

Figure 4. Communication model of Multi-Clusters with Heterogeneous Network. (a) Example of four clusters
with various inter-cluster communication costs. (b) The communication matrix table.

3.4 Communication Model of Data Distribution in Multi-Clusters

To set the communication cost of inter-cluster as Vj. The communication cost of distribute data block
from C; to Cs is denoted V(1,3. Assume there is block A (B=A) from node P of C;, total cost formula
denoted W(B)i. W(B)i = (B1*Vi1 + B2*Vit...+ Bj*v(i,j))- 1=1,)=C). PPz ..., Bj-1 andp; represent
number of sub-blocks that P; has to send from C;to Cy, C,, ..., Cj.1, C;. Figure 5 shows the communication
cost of data distribution from each node according to distribution scheme in Figure 4(b). There is the data
block A on logic nodes Py within a grid model C =4, K =5, <G(4):{2, 3, 4, 5}>. Assume the sub-blocks a,
a, of block A on Py needs to be redistributed from C;to C4, the as, as, asneeds to be redistributed from C;
to C,, no data is redistributed from C;yto C3, C4,, The communication cost of redistributing block A from Pg
and P, are W(A); = (2*0 + 3*20 + 0*30 + 0*30) = 60 and W(A), = (2*20 + 3*0 + 0*50 + 0*20) = 40,
respectively. Accordingly, W(A)s = 125, W(A), = 105.

41

cluster

Trad. proc Co | C, | C3 | Cy

140(200| 25| 95
150(100|500| 0

P, | 4 [60]40][125]105
P, | B [150]220]100] 80
P, | ¢ |120]100]425] 30
P, p [90]70][100] 95
P, | E |150[190]200] 60
Ps| F [90[100[350] 60
P, | G [120]100] 75| 85
P, | H |150]160]300] 40
Py | 1 |80]s0][275] 75
P, | 7 [130]150] 50 | 90
P, | K |150]130]400] 20
Pl L]70]60]200] 90

M

N

Figure 5. The total communication cost of grid model (C=4,K=5,<G (4): {2, 3,4, 5}>)

4. Processor Mapping Methods

According to communication cost, a candidate processor’s id can be chosen according to minimum
distribution cost. Therefore, the first processor mapping method is proposed called Processor Mapping
using Global Reordering (GR). Another method rests on the cluster base, after all data redistribution costs
of one cluster are arranged in an order, choosing a candidate processor’s id according to the number of
processor of its cluster This method is called Processor Mapping using Divide and Conquer Reordering
(DCR).

4.1 Global Reordering Algorithm

We propose a processor mapping scheme which requires the communication information of inter-cluster.
First, the minimum cost is selected using Greedy algorithm. This algorithm, Processor Mapping using
Global Reordering (GR), is without the complex logic procedures of operation. To achieve the result of
processor mapping that has the least communication cost, the key idea is to choose the minimum
communication cost from global candidates. The transmission rate between each site over the internet is
different because of the various network devices. The cluster can easily measure the transmission rate by
the present technology and keep it in each cluster. The system can obtain transmission rates and produce an
n*n cost matrix. The combination of communication costs can be calculated using the cost matrix and data
redistribution pattern. According to the costs, the data block with minimum cost can be chosen to be
assigned a processor id first. In the choice process, two kinds of situations occur possibly. To assign a
processor id to a data block for distributing: (1) the data block with the chosen minimum cost would be
ignored if this data block has already been assigned to another candidate (processor id) previously. (2) if no
more processor id can be offered from the selected cluster, the selecting process will continue to find the

42

next global minimum cost.

To a select processor id for redistributing a data blocks according to the communication cost in Figure 5,
GR will first select P13 for N_Pjo for K, P13 for N, Pg for M,..., Py for F and Ps for B. A new sequence of
logical grid node is provided which is <P4, Ps, P11, P2, Py, Po, Ps, P19, P1, P7, P12, P3, Ps, P13> and the
necessary communication cost is 740 units, accordingly.

According to the method described above, the code of algorithm is shown as follows:

For P=0to n-1
Determine how many cost matrix t in
every cluster
EndFor
Order by t
While (Replacement s not complete)
If (cluster have processor)
select target cluster processor id P
that has minimum cost from t
EndIf
EndWhile

Figure 6. Processor Mapping using Global Reordering Algorithm.

4.2 Divide and Conquer Reordering Algorithm

The proposed method is introduced in this section called Processor Mapping using Divide and Conquer
Reordering Algorithm (DCR). The GR method employs the greedy algorithm to choose the minimum cost
for processor mapping. The DCR method uses the Greedy algorithm to choose processor id for data block
with minimum cost for each cluster first. The number of selected data block is equal to the number of
processors provide in each cluster. Due to select several data blocks for each cluster with minimum cost
and a processor id, cross match is not under consideration. Certainly, the results of processor mapping will
not be perfect. Namely, conflict selections will possibly happen. To resolve the conflict situations, the
conflict part can be regarded as a sub-grid model of the original grid model. Data blocks without conflict
situation and selected processor id are excluded. DCR employs GR method to select processor id for rest of
data blocks for a complete result.

To select data blocks with minimum cost for each cluster according to the communication cost in Figure 5,
DCR will select A and L for C, A, D and L for C,, B, G, Jand M for C3, and C, E, H, Kand N for C,. After
select processor id for B, C, D, E, G, H, J, K, M and N, DCR employs GR to select processor id for A, F, |
and L again. Then, a new sequence of logical grid node is provided which is < P3, Ps, Pg, P2, P1o, P31, Pe,

43

P11, Po, P7 P12, P4, Pg, P13>. Accordingly, the necessary communication cost is 740 units.

According to the method described above, the code of algorithm is shown as follows:

For P=0to n-1
Determine how many cost matrix t on every cluster
EndFor
Fort=1to C
Order by cost from t
EndFor
While (Replacement s not complete)
For P=0to n-1
If not (two or more cluster have the candidate)
select the target cluster processor id P that has the minimum
cost
EndIf
EndFor
reorder the remaining cost list from t
select the target cluster processor id P by GR Algorithm
EndWhile

Figure 7. Processor Mapping using Divide and Conquer Reordering Algorithm.
5. Performance Evaluation

In this section, proposed techniques and methods without considering actual communication cost are
implemented to simulate with different communication cost matrixes. The network bandwidth is different
from 10Mb to 1Gb for heterogeneous network environment. Since 10Mb network equipments are almost
eliminated, the value of transmission ratio is set from 10 to 30. The value is randomly produced to simulate
patterns of communication cost matrix. The variance is set from 150 to 450 in simulations representing of
network heterogeneity. The larger number of variance represents the larger network heterogeneity.
Besides, C is set from 8 to 16, K is set from 16 to 64 for simulations. 100 difference communication cost
matrix patterns are used to calculate communication costs for each variance case and average of the costs is
the results of the theoretical value. The following figures show the results of each method.

Figure 8 shows the results on a grid consisted of 8 cluster, <G(8):{4, 4, 4, 6, 6, 6, 8, 8}> and K is equal to
16. Figure 8 illustrates the comparing results of four different methods. Original one does not consider
the actual cost of reordering communications technology, GR is Processor Mapping using Global Reordering
technology, DCR for the Processor Mapping using Divide and Conquer Reordering technology. Obviously,
GR and DCR have less communication cost compared with the other two models. When the difference in
the number of 150, GR and DCR can reduce about 33% cost compared with the traditional one which is
without processor reordering. Both of them also reduce 6% communications cost while comparing with the
Original one. While the variance is 450, the improvement slightly increases about 33% ~ 36%.

44

Figure 9 shows the results of the grid model with C =16, K = 64 and <G(16):{5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20}> while comparing four different methods. Obviously, GR and DCR have less
communication cost comparing with the other two models. GR and DCR can reduce about 26% to 29%
cost while comparing with the traditional one which is without processor reordering. Both of them also
reduce 11% communications cost while comparing with the Original one. Above simulation results show
the proposed reordering technologies not only outperform previous processor reordering method but also
successfully reduce communication cost on the heterogeneous network and improve the communication cost

6. Conclusions

In this paper, we have presented a generalized processor reordering method for communication localization
with heterogeneous network. The methods of processor mapping technique are employed to enhance the
performance of parallel programs on a cluster grid. Contribution of the proposed technique is to reduce
inter-cluster communication overheads and to speed up the execution of data parallel programs in the
underlying distributed cluster grid. The theoretical analysis and results show improvement of
communication costs and scalable of the proposed techniques on multi-clusters with heterogeneous network
environment.

K=16

600
500
400]

= O Tradition
@ Original

oot o AL ==

150 180 210 240 270 300 330 360 390 420 450

Variance

Comm. Cost (1000)

<

Figure 8. Communication costs comparison with C = 8, K = 16, <G(8):{4, 4, 4, 6, 6, 6, 8, 8}>.

K=64

10000
8000 M

O Tradition

6000 M @ Original

4000 — B B GR
2000 ﬂ]-r ODCR
0 1 1 1 L 1 1 1 1

150 180 210 240 2700 300 330 360 390 420 450

Comm. Cost (1000)
]

Variance

Figure 9. Communication costs comparison with C = 16, K = 64 and <G(16):{5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20}>

45

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

[32]
[33]

[34]

REFERENCES

O. Beaumont, A. Legrand and Y. Robert, ”Optimal algorithms for scheduling divisible workloads on heterogeneous

th
systems,” Proceedings of the 12 IEEE Heterogeneous Computing Workshop, 2003.

J. Dawson and P. Strazdins, “Optimizing User-Level Communication Patterns on the Fujitsu AP3000,” Proceedings of the
1st IEEE International Workshop on Cluster Computing, pp. 105-111, 1999.

Henri E. Bal, Aske Plaat, Mirjam G. Bakker, Peter Dozy, and Rutger F.H. Hofman, “Optimizing Parallel Applications for
Wide-Area Clusters,” Proceedings of the 12th International Parallel Processing Symposium IPPS'98, pp 784-790, 1998.

M. Faerman, A. Birnbaum, H. Casanova and F. Berman, “Resource Allocation for Steerable Parallel Parameter Searches,”
Proceedings of GRID 02, 2002.

I. Foster and C. Kessclman, “The Grid: Blueprint for a New Computing Infrastructure,” Morgan Kaufmann, ISBN
1-55860-475-8, 1999.

James Frey, Todd Tannenbaum, M. Livny, I. Foster and S. Tuccke, “Condor-G: A Computation Management Agent for
Multi-Institutional Grids,” Journal of Cluster Computing, vol. 5, pp. 237 — 246, 2002.

M. Guo and I. Nakata, “A Framework for Efficient Data Redistribution on Distributed Memory Multicomputers,” The
Journal of Supercomputing, vol.20, no.3, pp. 243-265, 2001.

Jih-Woei Huang and Chih-Ping Chu, “An Efficient Communication Scheduling Method for the Processor Mapping
Technique Applied Data Redistribution,” The Journal of Supercomputing, vol. 37, no. 3, pp. 297-318, 2006

Ching-Hsien Hsu, Guan-Hao Lin, Kuan-Ching Li and Chao-Tung Yang, “Localization Techniques for Cluster-Based Data
Grid,” Proceedings of the 6" ICA3PP, Melbourne, Australia, 2005

Ching-Hsien Hsu, Tzu-Tai Lo and Kun-Ming Yu “Localized Communications of Data Parallel Programs on Multi-cluster
Grid Systems,” European Grid Conference, LNCS 3470, pp. 900 — 910, 2005.

Florin Isaila and Walter F. Tichy, “Mapping Functions and Data Redistribution for Parallel Files,” Proceedings of IPDPS
2002 Workshop on Parallel and Distributed Scientific and Engineering Computing with Applications, Fort Lauderdale,
April 2002.

Bahman Javadi, Mohammad K. Akbari and Jemal H. Abawajy, "Performance Analysis of Heterogeneous Multi-Cluster
Systems,” Proceedings of ICPP, 2005

Bahman Javadi, J.H. Abawajy and Mohammad K. Akbari ‘“Performance Analysis of Interconnection Networks for
Multi-cluster Systems” Proceedings of the 6" ICCS, LNCS 3516, pp. 205 — 212, 2005.

Jens Koonp and Eduard Mehofer, “Distribution assignment placement: Effective optimization of redistribution costs,” IEEE
TPDS, vol. 13, no. 6, June 2002.

E. T. Kalns and L. M. Ni, “Processor mapping techniques toward efficient data redistribution,” IEEE TPDS, vol. 6, no. 12,
pp. 1234-1247, 1995.

Jong Sik Lee, “Data Distribution Management Modeling and Implementation on Computational Grid,” Proceedings of the
4th GCC, Beijing, China, 2005.

Saeri Lee, Hyun-Gyoo Yook, Mi-Soon Koo and Myong-Soon Park, “Processor reordering algorithms toward efficient
GEN_BLOCK redistribution,” Proceedings of the 2001 ACM symposium on Applied computing, 2001.

Y. W. Lim, P. B. Bhat and V. K. Parsanna, “Efficient algorithm for block-cyclic redistribution of arrays,” Algorithmica, vol.
24, no. 3-4, pp. 298-330, 1999.

Aske Plaat, Henri E. Bal, and Rutger F.H. Hofman, “Sensitivity of Parallel Applications to Large Differences in Bandwidth
and Latency in Two-Layer Interconnects,” Proceedings of the 5th IEEE High Performance Computer Architecture HPCA'99,
pp. 244-253, 1999.

Xiao Qin and Hong Jiang, “Dynamic, Reliability-driven Scheduling of Parallel Real-time Jobs in Heterogeneous Systems,”
Proceedings of the 30th ICPP, Valencia, Spain, 2001.

S. Ranaweera and Dharma P. Agrawal, “Scheduling of Periodic Time Critical Applications for Pipelined Execution on
Heterogeneous Systems,” Proceedings of the 30th ICPP, Valencia, Spain, 2001.

D.P. Spooner, S.A. Jarvis, J. Caoy, S. Saini and G.R. Nudd, “Local Grid Scheduling Techniques using Performance
Prediction,” IEE Proc. Computers and Digital Techniques, 150(2): 87-96, 2003.

46

HEB RN SR SRS

R S 3 F& FIP2PEE WebHX il 2% /B LASOA R B R Ay A& 4 Hh /T Bk A B (R B AR Y
P OF % % NSC 97-2628-E-216-006-MY3
2 A Bt TR E
R B # KRR TEE AT
S N ;

. The 4th International ICST Conference on Scalable Information
I N

Systems (INFOSCALE 2009)

ERIPEERY B

%% /2009.06.09-11

#F & % ¥ P

Power Consumption Optimization of MPI Programs on Multi-Core

Clusters
SNEHREKBE
R TEMR
2009/06/10 ()

8:30 BB
9:00 EsEEKeynote Speech
Reevaluating Amdahl's Law in the Multicore Era
Xian-He Sun, lllinois Institute of Technology, Chicago, USA
10:30 #Raw3C ~ BEAUH BiRCER
(F4)
1:30 BaEEKeynote Speech
Metropolitan VANET: Services on the Road
Minglu Li, Shanghai Jiao Tong University, China
2:00 BHy Resource Allocation and ApplicationfHi s %
3:45 £ FF Session
(e E)
6:30 SNIRE

47

2009/06/11 (L%
9:00 EaBEKeynote Speech
Autonomic Cloud Systems Management: Challenge and
Opportunities
Cheng-Zhong Xu, Wayne State University, USA
10:3082HY Information SecurityfH B im X &%
(F4F)
1:30F2HY Parallel and Distributed ComputingfH & 3 %
3:308EHY RFID / Sensor Network #H@# R &F=

T KRR EATEFOREE A ERETS X o 5 - % P = d Dr. Xian-He Sun (lIllinois
Institute of Technology, China) 4-%+ The current Multi-core architecture and memory-wall
problem » % % gt = #2134 € epF 4> T = d Dr. Minglu Li (Shanghai Jiao Tong University,
China) 4%t The application of mobile communication technology %+ % 4g/%# - & =& ¥ §_
- BHFFTEFT o A A FP-session3 g h 2 F & 0 4 FEiT A% - X session 3 s 2 B
ZooBt AR g A BERAF LRI R ABR|IFOILL 0 F X BT
#.%_d Dr. Cheng-Zhong Xu (Central Michigan University, USA) 4% “Embedded Software
Development with MDA” % 4 i3 o & 4 & S 2 h % - X 230cht ¢33k A2 > &2 d

Cheng-Zhong Xu (Wayne State University, USA) ° iz— % » % F 4 7 ig— X dh~ o A 4

3 EFP Multi-Core 24p M7 > PRELFF I ATEATF T A4 £ 0 f2F w F* 5

BEEFLEF Y w0 T2 P FEES - X g § BRI IR B E A SRR e

FH LT g o 2 AT R AAFIFS RO F A o SR TR E DAL
FE G EMPRIHT EEE > Multi-Cores THE L Z 4 2 EE SR GHT] B o
PR NFRERRI R F I F g e FE - e B R LR R E

PR b AT TR 0 - 2 S e

48

http://www.cs.iit.edu/~sun/
http://grid.sjtu.edu.cn/teachers/li-ml.htm
http://www.ece.eng.wayne.edu/~czxu
http://www.ece.eng.wayne.edu/~czxu

Power Consumption Optimization of MPI Programs on
Multi-Core Clusters

Ching-Hsien Hsu and Yen-Jun Chen

Abstract

While the energy crisis and the environmental pollution become important global issues, the power
consumption researching brings to computer sciences world. In this generation, high speed CPU structures
include multi-core CPU have been provided to bring more computational cycles yet efficiently managing
power the system needs. Cluster of SMPs and Multi-core CPUs are designed to bring more computational
cycles in a sole computing platform, unavoidable extra energy consumption in loading jobs is incurred.

Data exchange among nodes is essential and needed during the execution of parallel applications in
cluster environments. Popular networking technologies used are Fast Ethernet or Gigabit Ethernet, which are
cheaper and much slower when compared to Infiniband or 10G Ethernet. Two questions on data exchange
among nodes arise in multi-core CPU cluster environments. The former one is, if data are sent between two
nodes, the network latency takes longer than system bus inside of a multi-core CPU, and thus,
wait-for-sending data are blocked in cache. And the latter is, if a core keeps in waiting state, the unpredicted
waiting time brings to cores higher load. These two situations consume extra power and no additional
contribution for increasing overall speed. In this paper, we present a novel approach to tackle the congestion
problem and taking into consideration energy in general network environments, by combining hardware
power saving function, maintaining the transmission unchanged while saving more energy than any general

and previous cases.

49

1. Introduction

Reduction on power consumption of computer systems is a hot issue recently, since many CPUs and
computer-related hardware has been produced and under operation everywhere. As the number of single-core
CPU has reached to physical limitation on current semi-conductor technology, the computing performance
has met the bottleneck. Multi-core CPUs become a simple yet efficient solution to increase performance and
speed since that concept SMP in a single chip, that is, making up a small cluster to be executed inside a host.
Additionally, it reduces the amount of context switching while in single-core CPUs, increases straight

forwardly the overall performance. Some CPU technologies and our target will be introduced in below.

'

Architectural State X Architectural State X Architectural State X Architectural State)

Execution Engine I Execution Engine Execution Engine X Execution Engine

Local APIC X Local APIC Local APIC X Local APIC

Second Level Cache

Bus Interface Bus Interface

! !

System Bus System Bus

e

7Y TNYTYOY

Second Level Cache)

Figure 1: Intel Quad-Core CPU system structure [11]

Figure 1 illustrates the architecture of Intel quad-core CPU, which looks like a combination of two
dual-core CPUs. It has four individual execution engines, where each two cores share one set of L2 cache
and system bus interface, and connect to the fixed system bus. The advantages of this architecture are
twofold. The former one is that each core can fully utilize L2 cache as each core needs larger memory, while
the latter is that each core accesses L2 cache through individual hub [7] simplifying system bus and cache
memory structures. Intel CPU provides “SpeedStep” [3] technology that helps to control CPU frequency and

voltage, and it needs to change all cores’ frequency at the same.

50

Core 1 X Core 2 X Core 3 X Core 4
512K L2 Cache IS]ZK L2 Cache)(:?]ll(L2 Caq:heXﬁ 12K L2 Cache

2MB L3 Cache

System Request Interface

Crossbar Switch

YN Y Y Y Y
A ANA A A

DDE2 X HyperTransport

Figure 2: AMD Quad-Core CPU system structure [12]

AMD quad-core CPU, as shown in Figure 2, has individual L2 cache in each core and share L3 cache, (a
special design), and then integrated to DDR2 memory controller into CPU, helping to increase memory
access speed. Each core has individual channel to access system bus, and L3 cache and peripheral chips from
crossbar switch. AMD provides ‘“PowerNow!” [4] technology to adjust each core’s working frequency /
voltage.

A cluster platform is built up by interconnecting a number of single-core CPU, and a message passing
library, such as MPI is needed for data exchange among computing nodes in this distribution computing
environment. In addition, high speed network as Infiniband is needed to interconnect the computing nodes.
As multi-core CPUs are introduced and built in cluster environments, the architecture of this newly proposed
cluster is as presented in Figure 3. The main advantages of data exchanges between cores inside of a CPU is

much faster than passing by a network and South / North bridge chip.

51

o D C

Dual Core Chip

Memory)

Dual Core Chip

(Core)(Core)(-)(Core)(Core)

t 1t

Intra-node
Communication

Figure 3: Multi-core based cluster structure [13]

Developed from 1999, InfiniBand [16] is a point-to-point structure, original design concept that focused
on high-performance computing support, so bidirectional serial fiber interface, failover mechanism and
scalable ability are the necessary functions. InfiniBand supports at least 2.5Gbit/s bandwidth in each
direction in single data rate (SDR) mode, the transmitted information includes 2 Gbit useful data and
500Mbit control commands. Besides, InfiniBand supports DDR (Double Data Rate) and QDR (Quad Data
Rate) transmission mode, and each mode supports 3 different speed (1x, 4x and 12x) configurations, so the

maximum bandwidth is 96Gbit/s. The detail specification is as Table 1.

Table 2: Infiniband transmission mode list

Single (SDR) Double (DDR) Quad (QDR)
1X 2 Gbit/s 4 Ghit/s 8 Gbit/s
4X 8 Ghit/s 16 Gbhit/s 32 Ghit/s
12X 24 Ghit/s 48 Gbit/s 96 Gbit/s

Infiniband networking technology is a good and fast enough solution to connect all computing nodes of a
cluster platform, but expensive. Gigabit Ethernet is cheaper solution and widely built in general network

environment, though slower in transmission speed and definitely drop down data exchange performance. To

52

send data to a core that is inside of a different host will be needed to consume extra energy when waiting for
data.

“SpeedStep” and “PowerNow!” technologies are good solutions to reduce power consumption, since they
adjust CPU’s frequency and voltage dynamically to save energy. The power consumption can be calculated

by the function:

P=IV=Vf=J/s. (1)

where P is Watt, V is voltage, | is current, f is working frequency of CPU, J is joule and s is time in
seconds. It means that lower voltage in the same current condition saves more energy. How and when to
reduce voltage and frequency become an important issue, since one of main targets of clustering computing
computers is to increase the performance, while slowing down CPU’s frequency is conflict with performance.
Considering data latency of network, and CPU load in current CPU technologies, we would like to create a
low energy cost cluster platform based on general network architecture, that keeps almost the same data
transmission time though lower in energy consumption when CPU in full speed.
To address the above questions, we use OpenMPI and multi-core CPU to build up a Linux based a low
energy cost cluster, and implement three solutions on this environment.
® CPU power consumption reduction
Drive CPU power saving technology to reduce working frequency when low working loading, the
method reduces unavailable power consumption.
® CPU internal bus congestion reduction
Add waiting time between each data frame before send out, the method slows down data
transmission speed and reduces core working loading.

® [_oading-Aware Dispatching (LAD) Algorithm

53

Lower loading core is indicated higher priority to receive data frame, the method increases core

working efficiency.

2. Related Work

Based on the concept about reducing computing time, the job scheduling methodology as introduced in [8]
and [21] was designed targeting for a faster complete data transmission; otherwise, adjust cache block size to
find the fastest speed that transmits data using MPI between MPI nodes in situations as listed in [13] was
studied, and similar implementation of the method using OpenMP was also observed in [14]. Another
investigation focused on compiler that analyze program’s semantics, and insert special hardware control
command that automatically adjusts simulation board’s working frequency and voltage, [10] research needs
to be combined both hardware and software resources.

Some kinds of paper designed their methodologies or solutions under simulation board, or called NoC

system, as shown in its structure is as below:

) Sl . Sl Si
CPU CPU CPU
\ J Ik J | \ J |
CPU CPU CPU
\ J N \ JSI . J I
s © 4
CPU CPU CPU

Figure 4: General NoC system structure

54

Base on a simulation board, researchers have designed routing path algorithm that tries to find a shortest
path to transmit data in Networks-on-Chip [15], in order to reduce data transmission time between CPUs, as
also to have opportunities to realistically port and implement it to a cluster environment.

Others, researches have applied Genetic Algorithms to make a dynamically and continuous improvement
on power saving methodology [9]. Through a software based methodology, routing paths are modified, link
speed and working voltage are monitored and modified at the same time to reduce power consumption of
whole simulation board, while the voltage detection information required hardware support.

Consider higher power density and thermal hotspots happened in NoC, the paper [18] provided a
compiler-based approach to balances the processor workload, these researchers partitions a NoC system to
several area and dispathes jobs to them by node remapping, the strategy reduces the chances of thermal
concentration at runtime situation, and brings benefit about a bit of performance increasing. The paper [20]
and [24] studied the same point about thermal control.

Modern Operating Systems as Linux and Windows provides hardware power saving function as
introduced in [1] and [2], where they can drive “SpeedStep” [3] and “PowerNow!” [4] utilizing special
driver to control CPU voltage and frequency. Of course hardware support is necessary, since depending on
the CPU loading, CPU is automatically selected with lower frequency and voltage automatically. Besides,
someone add management system into OS kernel to control energy consumption directly [22].

The peripheral devices of computer, as disk subsystem is a high energy consumption hardware, the paper
[17] studied how to implement disk energy optimization in compiler, these researcheers considered disk start
time, idle time, spindle speed, the disk accessing frequency of program and CPU / core number of each host,
made up a benchmark system and real test environment to verify physical result.

Some groups study the power saving strategy implementation in data center, as database or search engine
server. Huge energy is consumed by this kind of application when they have no work. The nearer research

[19] provides a hardware based solution to detect idle time power waste and designs a novel power supplier

55

operation method, the approach applied in enterprise-scale commercial deployments and saved 74% power
consumption.

Besides, some researchers studied OS resource management and power consumption evaluation and task
scheduling method as [23] and [25], this kind of study provides a direction to optimize computer operation

tuning and reduces system idle time that brings by resource waiting.

3. Challenges of Power Saving in Multi-Core Based Cluster

In the previous single-core CPU based cluster environment, data distribution with CPU energy control are
easier to implement by isolated CPU frequency control of each host. In multi-core based cluster, CPU
internal bus architecture, bandwidth and power control structure bring differnet challanges in this issue.
When we built a cluster platform that combines some key technologies as listed in Chapter 1 for experiment
purposes, their advantages bring higher speed for data transmission peformance, yet only between cores
inside a CPU, a CPU core is maintained with high load means the CPU speed cannot be decreased. Analysis
and reasoning on these situations are discussed next.

The “SpeedStep” and “PowerNow!” were not show in Figure 1 and 2. The “SpeedStep” provides solely
full CPU frequency and voltage adjustment. The design makes power control easier, though consumes extra
energy. If only one core works with high load, power control mechanism cannot reduce other cores’
frequency / voltage, nor dropping down the performance of a busy core. Inefficient energy consumption
brings temperature increasing, since low loading core generates the same heat as high load one, and brings
the CPU’s temperature up at the same time.

AMD “PowerNow!” shows advantage in this issue, since we can reduce frequency when core works in

lower loading without need to consider other cores’ situation, and heat reduction is also another benefit.

56

As description of Figure 1, Intel’s CPU architecture shares L2 cache to cores using individual hub, all
packets between core and cache needs to pass through by it. The architecture has 2 advantages and 2

problems:
Advantages

® Flexible cache allocation

Every core was allowed to use whole L2 cache from cache hub, the hub provides single memory access
channel for each core, and hub assigns cache memory space to requested core. The method simplifies
internal cache access structure.
® Decrease cache missing rate

When each core has massive cache request all of a sudden, flexible cache memory allocation provides

larger space to save data frame, and also decreases page swapping from main memory at the same time.
Problems

® Cache Hub Congestion

If huge amount of data request or sending commands happen suddenly, individual cache hub blocks data
frames in cache memory or stops commands in queue. All cores and hub keep in busy state and thus
consume extra energy.
® Network Bandwidth Condition

Lower network bandwidth makes previous situation more seriously in many nodes' cluster, since network
speed cannot be as fast as internal CPU bus, if cross-node data frames appear, the delivering time is longer
than intra-node data switch.

Compared with Intel, while data frame flood sends to CPU, AMD structure has no enough cache to save

them, yet individual bus / memory access channel of each core provides isolated bandwidth, L2 cache built

57

in core reduces data flow interference. Different CPU structure provides their advantages, and weakness
appears while they are compared to each other.

In a general situation, each computing node executed under a given core / host randomly indicated by
cluster software, signifies that programmer cannot obtain additional core loading from node's code section.
Following our purpose, finding system information about thread / node location works, but it is a hard
method since the program would spend large amount of time in device I/O, includes open system state file,
analysis information and obtaining node’s location. Another alternative method is easier, where we make
cluster platform that fixes node location in indicated core or host, and the function helps to get core loading

from node’s code. OpenMPI is selected for this issue.

4. The Proposed Approach

Upon with CPU specification, CPU power control interface and network structure, we provide a novel
data dispatching strategy to solve the previous challanges in Chapter 3, it combines data flow limitation, core
frequency controlling, and accords core working load to transmit data frame, detail operation is as below.

It is not a good method to keep performance. In fact, we add 1us delay between two packets, in a real
environment, and the total transmission time is added as:

T=N X D ()

where T is total time, N is total number of packets and D is delay time between packets. We found that the
total time has just been added less than one to four seconds in average, when is transmitted 100K data frames
across two hosts that are connected via Gigabit Ethernet. Additionally, the advantage is that the loading of a
central node that sends data to other nodes is decreased by almost 50%. On the other hand, data receiving
core load is decreased by 15% in average when we added 10pus delay in these nodes, follow Function 2, the

amoung of increased delay time should be 1s, yet in experiment result, total transmission time is increased by

58

less than 0.5s. These experiment results means the core work loading brings up by massive data frame, not
by CPU bound process. This method reduces core work loading and helps below method to operate.

Although the challenge presented in section 3.1 exists, as for power saving issue, we use AMD system
and “PowerNow!” to slow down lowering loading core frequency. The given CPU supports two steps
frequency, and therefore they work in different voltage and current. Thus we focus on frequency adjustment,
and calculating power consumption of each core as below:

P=Viyax X Ipax X T 3)

where Viax and Inax are found from AMD CPU technology specification [6], and T is program execution
time. Since “Time” joins the function, the unit of P is Joule.

There is a CPU frequency controlling software: CPUFreq. It provides simple commands to change CPU
work state and 4 default operation modes:

® Performance mode: CPU works in highest frequency always

® Powersave mode: CPU works in lowest frequency always

® OnDemand mode: CPU frequency is adjusted following CPU work loading

® UserSpace mode: User is permitted to change CPU frequency manually follow CPU specification

We have used UserSpace mode and got the best CPU work loading threshold range to change CPU
frequency: 75%~80%, if CPU work loading lower than this, we reduce frequency; if higher, we increase
frequency. But actually, the default threshold of OnDemand mode is 80%, so we use OnDemand mode to
control CPU frequency when our data dispatching method is executed.

Following the previous results, working with OnDemand mode of CPUFreq, we provide a
Loading-Aware Dispatching method (LAD). Based on the AMD “PowerNow!” hardware structure, and
keeping the same load on all cores is necessary for efficient energy consumption, thus sending data from
central node to lowest loading node makes sense. If the load can be reduced on a core, then reducing CPU

frequency is permitted for saving energy.

59

Figure 5: LAD Algorithm structure diagram

Still in LAD algorithm, as indicated in Figure 4, data frames are sent sequentially from Host 1-Core 0 to
other cores. This method is often used to distribute wait-for-calculate data blocks in complex math parallel
calculations. MPI provides broadcast command to distribute data and reduce command to receive result. In
order to changing data frame transmission path dynamically, we use point-to-point command to switch data,
since this type of command can indicate sending and receiving node.

The detail of operation flow is as below:

® Step 1: Detect core loading

® Step 2: Find lowest loading core

® Step 3: Send several data frames to the lowest loading core

® Step 4: Repeat previous two step until all data frames are transmitted over

The data distribution algorithm is given as below.

Loading-Aware Dispatching (LAD)Algorithm

generating wait-for-send data frame
if (node 0)

1.
2.
3. {

4 //send data follow sorting result
5. while(!DataSendingFinish)

6 {

7 //detect nodes’ loading from system information and save in TargetNode
8 OpenCPUState;

9 CalculateCPULoading;

60

10. //sort TargetNode from low to high

11. CPULoadingSorting;

12. //send 1000 data frame

13. for(i=1; i<1000; i++)

14, SendData(TargetNode[i]);
15. if(whole data transmitted)

16. DataSendingFinish=true;
17. }

18. //send finish message to receiving nodes
19. for(i=1; i<NodeNumber; i++)

20. SendData(i);
21. }

22. if (other nodes)
23. {

24, /Ireceive data from node 0
25. ReceiveData(0);

26. usleep();

27. }

5. Performance Evaluation and Analysis

In this chapter, experimental environment and results of LAD algorithm is presented. The cluster platform
includes two computing nodes and connected via Gigabit Ethernet, and each node is installed with Ubuntu
Linux 8.10 / kernel 2.6.27-9, OpenMPI message passing library is selected for thread execution affinity

function, the hardware specification is listed as next.

Table 3: Host specification

CPU AMD Phenom X4 9650
Quad-Core 2.3GHz
Laver 1 Cache 64K Instruction Cache
Y and 64K Data Cache Per Core
Layer 2 Cache 512K Per Core
Layer 3 Cache Share 2M for 4 Cores
Main Memory DDR2-800 4GB

61

e

F,uﬂ"
Gigabit Switch \

Ubuntu 8.1 Ubuntu 8.1
OpenMPI 1.27 OpenMPT 1.27

Figure 6: Test environment

Data frame size

Three different sizes of data frames are transmitted between nodes: one byte, 1460 bytes and 8000 bytes.
One byte frame is not only the smallest one in MPI data frame, but also in network, for complete data
transmission in shortest time, source node generates huge amount of one byte frame, these packets congest

CPU internal bus and network.

1518 bytes frame is the largest one in network, but considering that network header should be inserted
into network packet, we select 1460 bytes frame for testing, and then, this size of packet brings largest
amount of data in a single network packet, and trigger fewest network driver interrupt to CPU. Finally 8000
bytes frame is set for large data frame testing, since it needs to be separated to several other packets by
network driver for transmission, but not necessary to be separated in intra-node, and thus need the longest

time for data transmission.

While the experiment is executed, we send 100K data frames between two nodes, and calculate the power

consumption.
CPU frequency and packet delay

Each experiment result figures and tables that follows next has four blocks. The first one is executed in

Performance Mode (PM, CPU works in 2.3GHz), the second one is PowerSave Mode (PS, 1.15GHz), the

62

third one is OnDemand Mode (OD, slows down frequency while CPU loading lower than 80%), and last one
is LAD algorithm that works with OnDemand Mode.

Besides, each block has four delay time configurations, the first one contains no delay between each data
frame, the second delays 5us, the third one delays 10us, and last one delay 20ys. Still in figures that follows

next, TD stands for Transmission Delay, Transmission Time as TT, and PC for Power Consumption.
Rank number

The “Rank Number” in each figures and tables mean the number of nodes / cores join data dispatching.
For example, rank 2 means rank O dispatchs data to rank one, and rank 4 means rank 0 dispatchs data to rank
one, 2, and 3. Since each host has four cores, the rank number 2~4 are internal node data transmission, and
rank 5~8 are cross node data transmission.

Although only four cores join work in rank number 2~4, other cores consume energy at the same time,

and we still need to add the energy consumed.
One byte frame

Table 3 and Figure 5 show the TT for one byte frame, and Figure 6 the PC. Comparing PM, PS and OD
mode, we find that TD increases the TT over 3 seconds in rank 2~4 in every frequency level, but increases
less than one second in 5~8. Table 4 and Figure 6 displayed one byte frame PC. Clearly, the PS mode spends
the longest time to transmit data, though consumes the lowest energy. OD mode has none remarkable
performance in power saving in rank 7~8, but it uses average 100J less than PM mode in rank 2~6, and
keeps TT increasing less than 0.4s in cross-node situation. LAD algorithm displays advantage in no delay
situation, less than 1s TT increasing yet consumes almost the same energy in rank 7~8. In other situations,

LAD spends maximum 4s longer than OD mode, and saves 400J.

Table 4: Detail results of time effect of TD on TT (Frame = 1 Byte)

63

Rank
Number
2 3 4 5 6 7 8
Mode & TD
0 0.160 0.333 0.501 6.262 10.646 15.072 18.630
PM 5 0.928 1.152 1.286 6.813 11.276 15.867 19.384
mode 10 2.292 2.271 1.775 6.655 11.076 15.419 19.238
20 3.251 3.229 3.216 6.924 11.083 15.603 19.032
0 0.285 0.576 0.909 9.984 16.537 23.151 28.976
PS 5 1.326 1.689 1.935 10.599 17.311 23.679 29.518
mode 10 2.637 2.174 2.429 10.580 17.848 24.157 29.598
20 3.612 6.651 3.850 10.767 17.470 24.165 29.651
0 0.216 0.372 0.531 6.625 11.388 16.025 18.664
oD 5 1.330 1.625 1.824 7.143 11.973 16.863 19.503
mode 10 2.630 2.126 2.256 6.898 11.693 16.456 19.456
20 3.489 3.683 3.756 7.343 11.723 16.615 19.161
0 0.288 0.577 0.918 7.182 12.018 16.699 19.524
LAD 5 1.367 1.423 1.623 8.716 14.587 20.181 20.704
10 2.659 1.960 2.028 8.718 14.508 20.221 21.355
20 3.598 3.813 3.716 9.254 15.129 20.253 22.943
?30
ézo

% 15 .2

,5! z

0 «JjJ' | “

1020 : J J R .j

Performance Betaisy T > mg

0

Figure 7: Time effect of TD on TT (Frame = 1 Byte)

PowerSave

OnDemand

Transmission Delay (us)

64

Table 5: Detail results of power effect of TD on PC (Frame = one Byte)

Rank
umber
2 3 4 5 6 7 8
Mode & TD
0| 25.400| 52864 | 79.535| 994.105 | 1690.074 | 2392.710 | 2957.550
PM 5| 147.322 | 182.882 | 204.155 | 1081.577 | 1790.088 | 2518.918 | 3077.249
mode 10 | 363.860 | 360.526 | 281.785 | 1056.495 | 1758.337 | 2447.797 | 3054.071
20 | 516.103 | 512.610 | 510.546 | 1099.199 | 1759.448 | 2477.007 | 3021.368
0| 20.349| 41.126 | 64.903 | 712.858 | 1180.742 | 1652.981 | 2068.886
PS 5| 94.676 | 120.595 | 138.159 | 756.769 | 1236.005 | 1690.681 | 2107.585
mode 10 | 188.282 | 155.224 | 173.431 | 755.412 | 1274.347 | 1724.810 | 2113.297
20 | 257.897 | 474.881 | 274.890 | 768.764 | 1247.358 | 1725.381 | 2117.081
0| 15422 | 26.561| 43.711| 807.412 | 1516.140 | 2220.892 | 2926.660
oD 5] 105.881 | 133.768 | 161.069 | 767.735| 1733.671 | 2433.350 | 3063.280
mode 10 | 216.499 | 175.010 | 182.916 | 869.106 | 1578.218 | 2407.817 | 3072.742
20 | 232.068 | 220.862 | 300.934 | 799.179 | 1557.660 | 2429.356 | 3029.503
0| 20563 | 41.198| 95.615| 776.907 | 1475.156 | 2291.333 | 2901.684
5| 112.530 | 106.221 | 126.801 | 957.703 | 1557.115 | 2203.301 | 2980.904
LAD 10 | 207.967 | 161.345 | 166.637 | 870.518 | 1631.205 | 2207.031 | 2976.349
20 | 213.865 | 302.963 | 294.978 | 676.686 | 1370.538 | 2073.595 | 2787.763

65

Performance

PowerSave

- o 3 5 of
OnDemand 05 10 "o 4 v\““\‘°
Transmission Delay (us) LAB 20 2 Q&&«

Figure 8: Power effect of TD on PC (Frame = one Byte)

1460 byte frame

Table 5 and Figure 7 show 1460 bytes frame TT. By comparing PM mode and OD mode, the completed
time is longer than one byte frame in all situations. In Figure 8, OD mode uses in average over 200J less than
PM mode. Our LAD algorithm made uses of 24~25s to complete data transmission as OD mode, yet
consumes less than OD mode 200~600J in 8 ranks. In other situations, LAD keeps nearly the same

performance, spending 3s longer than OD mode and consuming 200~600J less than OD mode.

66

Table 6: Detail results of time effect of TD on TT (Frame = 1460 Byte)

Rank
Number
2 3 4 5 6 7 8
Mode & TD
0 0.353 0.525 0.721 8.969 12.421 17.518 25.286
PM 5 0.996 1.188 1.321 11.687 13.115 18.323 24.394
mode 10 2.481 2.267 1.818 9.811 12.892 17.752 23.960
20 3.330 3.281 3.245 14.031 12.760 17.835 24511
0.621 0.913 1.254 11.391 18.925 25.933 31.738
PS 1.448 1.825 2.004 10.599 19.379 26.427 32.430
mode 10 2.947 2.252 2.442 12.100 19.803 26.545 32.802
20 3.708 3.749 3.941 11.890 19.405 26.641 32.827
0 0.408 0.548 0.738 7.769 13.033 18.427 24.356
oD 5 1.394 1.707 1.931 8.435 13.749 19.017 25.097
mode 10 2.818 2.221 2.285 8.329 13.512 18.971 24.542
20 3.723 3.720 3.874 8.352 13.584 18.841 24.547
0 0.630 0.940 1.271 10.855 16.063 21.985 24.732
5 1.403 1.500 1.646 10.192 16.104 21.200 24.741
LAD 10 2.861 1.993 2.080 9.852 16.307 21.228 25.182
20 3.742 3.871 3.611 10.482 17.143 21.356 25.566

w
53]

)

Transmission Time (s

Performance

5
1020

PowerSave

05

10 5q

OnDemand

Transmission Delay (us)

67

hl’l T

"JJJ

- w2
- 3

1 =5

ug

. W3

Figure 9: Time effect of TD on TT (Frame = 1460 Byte)

Table 7: Detail results of power effect of TD on PC (Frame = 1460 Byte)

Rank
umber
2 3 4 5 6 7 8
Mode & TD
0| 56.039 | 83.345| 114.460 | 1423.847 | 1971.859 | 2781.018 | 4014.203
PM 5| 158.117 | 188.597 | 209.711 | 1855.335 | 2082.032 | 2908.813 | 3872.596
mode 10 | 393.864 | 359.891 | 288.611 | 1557.516 | 2046.631 | 2818.166 | 3803.698
20 | 528.644 | 520.865 | 515.150 | 2227.449 | 2025.676 | 2831.342 | 3891.170
44339 | 65.188 | 89.536 | 813.317 | 1351.245 | 1851.616 | 2266.093
PS 103.387 | 130.305 | 143.086 | 756.769 | 1383.661 | 1886.888 | 2315.502
mode 10 | 210.416 | 160.793 | 174.359 | 863.940 | 1413.934 | 1895.313 | 2342.063
20| 264.751 | 267.679 | 281.387 | 848.946 | 1385.517 | 1902.167 | 2343.848
0| 33586 | 39.127 | 52.693 | 945.259 | 1645.667 | 2710.100 | 3839.306
oD 5| 110.451 | 132.799 | 158.958 | 1032.840 | 1849.698 | 2663.291 | 3900.304
mode 10 | 223.043 | 182.830 | 195.905 | 1049.544 | 1827.601 | 2729.659 | 3861.452
20 | 306.473 | 306.226 | 309.360 | 1022.164 | 1827.937 | 2739.376 | 3834.217
0| 44982 | 87.644 | 123.505 | 1028.737 | 1705.181 | 2431.432 | 3650.212
5| 104.575 | 118.019 | 124.578 | 1044.754 | 1715.120 | 2455.331 | 3608.556
LAD 10 | 235,515 | 153.219 | 171.224 | 976.402 | 1847.987 | 2431.883 | 3525.145
20 | 308.037 | 307.738 | 290.581 | 890.359 | 1654.873 | 2355.386 | 3209.088

68

8000 byte frame

Although 8000 byte frame is the longest one, PS mode TT keeps 6s longer than other frames’ size, as in
Figure 9. Comparing OD and PM Mode, OD mode spends less than 1s longer than PM Mode, yet saves
200~400J in other cases. Comparing LAD algorithm and OD mode, LAD algorithm still keeps its advantages

in the longest frame size, spends almost the same TT in 8 ranks and average 2~3s longer in other cross-node

Performance

PowerSave

5
10 59

OnDemand

Transmission Delay (us)

|2
a3

| %5
mg

mg

Figure 10: Power effect of TD on PC (Frame = 1460 Byte)

situations, consuming 100~ 400J less than OD mode.

Table 8: Detail results of time effect of TD on TT (Frame = 8000 Byte)

Rank
Number
2 3 4 5 6 7 8

Mode & TD
0 1.220 1.409 1.597 11.158 20.343 26.952 31.241
PM 5 1.484 1.710 1.783 13.364 21.986 27.664 34.053
mode 10 1.993 2171 2.260 11.857 21.455 27.397 33.398
20 3.824 3.753 3.732 11.247 21.604 27.513 33.178

69

0 2.333 2.619 2.812 16.480 27.429 34.139 38.755
PS 5 2.240 2.684 2.964 16.716 27.728 35.219 39.884
mode 10 2.774 3.088 3.245 17.336 19.803 35.387 41.127
20 4.685 4.678 4.244 16.700 27.613 35.219 39.930
0 1.274 1.464 1.610 10.648 22.022 27.752 31.210
oD 5 2.045 2.407 2.226 14.377 21.778 27.739 34.744
mode 10 2.546 2.810 2.769 13.856 22.079 27.932 34.379
20 4.338 4.380 4.448 14.037 21.957 27.603 34.878
0 1.917 2.125 2.200 12.242 23.169 28.553 33.991
5 2.234 2.399 2.579 13.487 22.152 29.627 34.864
LAD 10 2.672 2.779 2.740 13.018 24.838 30.845 34.518
20 4.456 4.663 4.163 12.754 22.897 29.118 36.666

g 10 4

k

0

+ \.'“" uJ

1020

Performance

>
J.‘!

5
0

OnDemand
Transmission Delay (us)

~ 59
10 20
PowerSave

| =5
LT

N T

Figure 11: Time effect of TD on TT (Frame = 8000 Byte)

70

Table 9: Detail results of power effect of TD on PC (Frame = 8000 Byte)

Rank
umber

Mode & TD

0| 193.677 | 223.682 | 253.527 | 1771.355 | 3229.492 | 4278.684 | 4959.571

PM 5| 235.588 | 271.466 | 283.055 | 2121.562 | 3490.321 | 4391.715 | 5405.982
mode 10 | 316.393 | 344.651 | 358.780 | 1882.322 | 3406.024 | 4349.329 | 5301.999
20 | 607.068 | 595.796 | 592.462 | 17/85.484 | 3429.678 | 4367.744 | 5267.074

166.576 | 186.997 | 200.777 | 1176.672 | 1958.431 | 2437.525 | 2767.107

PS 5| 159.936 | 191.638 | 211.630 | 1193.522 | 1979.779 | 2514.637 | 2847.718
mode 10 | 198.064 | 220.483 | 231.693 | 1237.790 | 1413.934 | 2526.632 | 2936.468
20 | 334.509 | 334.009 | 303.022 | 1192.380 | 1971.568 | 2514.637 | 2851.002

0| 107.866 | 147.418 | 185.271 | 1320.356 | 2877.695 | 4069.769 | 4903.488

oD 5| 156.932 | 193.698 | 202.611 | 1652.663 | 2925.864 | 4059.867 | 5447.829
mode 10 | 203.622 | 231.316 | 238.859 | 1706.812 | 2862.416 | 4076.114 | 5432.837
20 | 353.408 | 367.326 | 361.262 | 1664.418 | 3014.893 | 4030.163 | 5487.617

0| 167.818 | 201.826 | 224.777 | 1355.342 | 2522.337 | 3977.022 | 4695.212
5| 183.581 | 197.163 | 205.979 | 1436.942 | 2499.579 | 3962.008 | 4708.029
10 | 212.619 | 220.259 | 225.554 | 1301.254 | 2938.202 | 4316.622 | 5198.511
20 | 284.493 | 376.613 | 329.994 | 1265.924 | 2629.309 | 4060.896 | 5061.468

LAD

71

6000 T
5000 -
4000
000

2R
8 o
o ©O

Power Consumption (])
w

0 ~ o
OnDemand 5 R 4 "
10 0 3 \
Transmission Delay (us) LAB 20 2 o0

Figure 12: Power effect of TD on PC (Frame = 8000 Byte)

Remarks

In this proposed research, LAD algorithm keeps in average 4s TT increasing, yet saves 200~600J that
compares with OD mode in cross-node situation. Limited by only 2 steps experimental cases of CPU
frequencies (2.3GHz and 1.15GHz), we cannot keep CPU loading in a smooth curve. In desktop and server
CPU, they do not keep in high loading work longer time, while they complete a concurrent job and next one

does not be started. Power saving technology helps to decrease host energy consumption, and decreasing

energy cost and carbon dioxide emissions can be reduced.

6. Conclusions

One byte data frame is the smallest one, and it has 5 seconds transmission time shorter than 1460 bytes
frame and 14 seconds shorter than 8000 bytes frame in cross node situation. That means two kinds of

application which have no huge data need to be transmitted are suitable to use small data frame.

® Mathematical calculation

72

® Operation command sending in any application

Small data frame helps to reduce transmission time and energy consumption, more core calculation cycles
can be released to do CPU bound jobs.

Besides, there are two kinds of application suitable to use large data frame.

® Database server that is sending data back

® Distributed file transmission

Larger data frame reduces frame generated time and transmits more data in single frame because larger
content space.

There are many directions to continue this investigation, to develop methods to save energy. If hardware
and software provides functions about voltage or speed control, motherboard or any other type of peripheral
device, then a hardware driver, power-aware job scheduling and data distribution algorithms can be
combined and implemented, targeting in the construction of a low energy cost cluster computing platform in

future.

Reference

1. “Power Management Guide”, http://www.gentoo.com/doc/en/power-management-guide.xml

2. “Enabling CPU Frequency Scaling”, http://ubuntu.wordpress.com/2005/11/04/enabling-cpu-freq uency

-scaling/

3. “Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor”, ftp://download.intel.co
m/design/network/papers/30117401.pdf

4. “AMD PowerNow! Technology Platform Design Guide for Embedded Processors”, http://www.am
d.com/epd/processors/6.32bitproc/8.amdk6fami/x24267/24267a.pdf

5. “AMD / Intel CPU voltage control driver down load”, http://www.linux-phc.org/viewtopic.php? f=
13 &t= 2

73

10

11.

12.

13.

14.

15.

“AMD Family 10h Desktop Processor Power and Thermal Data Sheet”, http://www.amd.com/us-en
/assets/content_type/white_papers_and_tech_docs/GH_43375_10h_ DT _PTDS_PUB_3.14.pdf

. “AMD Opteron Processor with Direct Connect Architecture”, http://enterprise.amd.com/downloads/4

P_Power PID 4149 8.pdf

Chao-Yang Lan, Ching-Hsien Hsu and Shih-Chang Chen, “Scheduling Contention-Free Irregular R
edistributions in Parallelizing Compilers”, The Journal of Supercomputing, Volume 40, Issue 3, (J
une 2007), Pages: 229-247

. Dongkun Shin and Jihong Kim, “Power-Aware Communication Optimization for Networks-on-Chi

ps with Voltage Scalable Links”, Proceeding of the International Conference on Hardware/Softwar

e Codesign and System Synthesis, 2004, Pages: 170-175

. Guangyu Chen, Feihui Li and Mahmut Kandemir, “Reducing Energy Consumption of On-Chip

Networks Through a Hybrid Compiler-Runtime Approach”, 16th International Conference on Par
allel Architecture and Compilation Techniques (PA CT 2007), Pages: 163-174

“Intel 64 And IA-32 Architectures Software Developers Manual, Volume 17, http://download.in t

el.com/design/processor/manuals/253665.pdf

“Key Architectural Features of AMD Phenom X4 Quad-Core Processors”, http://www.amd.com/u
s-en/Processors/Productinformation/0,,30 118 15331 15332%5E15334,00.html

Lei Chia, Albert Hartono, Dhabaleswar K. Panda, “Designing High Performance and Scalable M
Pl Inter-node Communication Support for Clusters”, 2006 IEEE International Conference on Clu
ster Computing, 25-28 Sept. 2006, Pages: 1-10

Ranjit Noronha and D.K. Panda, “Improving Scalability of OpenMP Applications on Multi-core
Systems Using Large Page Support”, 2007 IEEE International Parallel and Distributed Processin
g Symposium, 26-30 March 2007, Pages: 1-8

Umit Y. Ogras, Radu Marculescu, Hyung Gyu Lee and Na Ehyuck Chang, “Communication Ar
chitecture Optimization: Making the Shortest Path Shorter in Regular Networks-on-Chip”, 2006
Proceedings of the conference on Design, Automation and Test in Europe, Munich, Germany,
March 2006, Volume 1, Pages: 712-717

74

16.

17.

18.

19.

20.

21.

22.

23.

24.

“InfiniBand Introduction”, http://en.wikipedia.org/wiki/InfiniBand

Seung Woo Son, Guangyu Chen, Ozcan Ozturk Mahmut Kandemir and Alok Choudhary, “Com
piler-Directed Energy Optimization for Parallel-Disk-Based Systems” IEEE Transactions on Parall
el and Distributed Systems, September 2007, Volume. 18, No. 9, Pages: 1241-1257

Sri Hari Krishna Narayanan, Mahmut Kandemir and Ozcan Ozturk, “Compiler-Directed Power D
ensity Reduction in NoC-Based Multi-Core Designs”, Proceedings of the 7th International Synpo

sium on Quality Electronic Desing, 2006, Pages: 570-575

David Meisner, Brian T. Gold and Thomas F. Wenisch, “PowerNap: eliminating server idle po
wer”, Proceeding of the 14th International Conference on Architectural Support for Programming

Languages and Operation Systems, 2009, Pages: 205-216

Michael B. Healy, Hsien-Hsin S. Lee, Gabriel H. Loh and Sung Kyu Lim, “Thermal Optimizati
on in Multi-Granularity Multi-core Floorplanning” Proceedings of the 2009 Conference on Asia

and South Pacific Design Automation, 2009, Pages: 43-48

M. Aater Suleman, Onur Mutlu, moinuddin K. Qureshi and Yale N. Patt, “Accelerating Critical
Section Execution with Asymmetric Multi-core Architecture”, Proceeding of the 14th Inteernati
onal Conferenceon Architectural Support for Programming Languages and Operating Systems, 20
09, Pages: 253-264

David C. Snowdon, Etienne Le Sueur, Stefan M. Petters and Gemot Heiser, “Koala: A Platform
for OS-Level Power Management”, Proceedings of the Fourth ACM European Conference on
Computer Systems, 2009, Pages: 289-302

Alexander S. van Amesfoort, Ana lucia Varbanescu, Henk J. Sips and Rob V. van Nieuwpoort,
“Evaluating Multi-core Platforms for HPC Data-Intensive kernels”, Proceedings of the 6th AC

M Conference on Computing Frontiers, 2009, Pages: 207-216

XianGrong Zhou, Chenlie Yu and Peter Petrov, “Temperature-Aware Register Reallocation for
Register File Power-Density Minimization”, ACM Transactions on Design Automation of Electro
nic Systems, March 2009, Volume 14, Issue 2, No. 26.

75

25. Radha Guha, Nader Bagherzadeh and Pai Chou, “Resource Management and Task Partitioning a
nd Scheduling on a Run-Time Reconfigurable Embedded System”, Computers and Electrical En
gineering, March 2009, Volume 35, Issue 2, Pages: 258-285

76

7 pT R i g
5H 30 H

¥

03-5186410
chh@chu.edu.tw

FAEY PR M LA

T

)

62 & 2 23 P Bl

I

e

The 3rd ChinaGrid Annual Conference (ChinaGrid)

)

W

al | p 98 & 05 % 24 p

Kunming, China -
Hp Bl iz 98 & 05 * 29 p

Y}

PP ETRR TR AT R A X o R - X b A A g
7 A #F - F-invited session s F & o BPEF o R
A B R A o B X 0 BB Prof. Kai
Hwang 3 & ** Massively Distributed Systems From Grids and P2P to Clouds #f
Begie 5 - A F S ER 7 FTH e F 4 o & L 4 2 Architecture and
Infrastructure ~ Grid computing ~ 2 2 P2P computing 4p & 3=x P-3F 2 - B
PAAT R F ISR E R B AR REIRLL B
TLE %=X A4 4 2KPT Data and Information Management #p ki 2
T REELE S ATEAST Y AN B R R E A SR Y A&
?Z Do 3P e JEAS & BRI RRCIRILE) B A SRR P RER BT
FE g oo Hw X o A AR EE# Service Oriented Computing 14 % Network
Storage tp A T R M F A o A T RO AAFTF L RA TR B AL o
LRy Rl SUCE W s R 77 - ek SLHE s 1 (TR s R E S M»‘;
FTAREMZ @ Rpp S SR 8 7 34 2 = hBE S T3 € R

A r?'ﬁ BT s E - (i B g Hensd 'FKBI: 79 7 R%E &%‘?mﬂ;ﬁ:

PEEE I o &

e

T"“'

° ax_— ,J\ ,t—# 1:,-\' Ié m§4h‘lﬂ;‘} g 7‘2-\4‘1 Y,

Z
4

oA A BERF|2F

]EIK?‘ 4’["

:Tuﬁf"g§~i AR

&ﬂ 9,5']}!'}3

N =y

= R B 6

7

o

e R A B H W o e Bk g AT A §~p;
BRI R BT B S0 AAGRE 0 §RITREDE F U Fran
A x *Kﬂjg 7 4 gvi%ﬁl*iv’v\'ﬁ EEAPEEY o

i

oy | o 8

77

Towards Improving QoS-Guided Scheduling in Grids

Ching-Hsien Hsu', Justin Zhan?, Wai-Chi Fang® and Jianhua Ma*

'Department of Computer Science and Information Engineering, Chung Hua University, Taiwan
chh@chu.edu.tw

2Heinz School, Carnegie Mellon University, USA
justinzh@andrew.cmu.edu

*Department of Electronics Engineering, National Chiao Tung University, Taiwan
wfang@mail.nctu.edu.tw

*Digital Media Department, Hosei University, Japan
jianhua@hosei.ac.jp

Abstract

With the emergence of grid technologies, the
problem of scheduling tasks in heterogeneous systems has
been arousing attention. In this paper, we present two
optimization schemes, Makespan Optimization
Rescheduling (MOR) and Resource Optimization
Rescheduling (ROR), which are based on the QoS
Min-Min scheduling technique, for reducing the
makespan of a schedule and the need of total resource
amount. The main idea of the proposed techniques is to
reduce overall execution time without increasing
resource need; or reduce resource need without
increasing overall execution time. To evaluate the
effectiveness of the proposed techniques, we have
implemented both techniques along with the QoS
Min-Min scheduling algorithm. The experimental results
show that the MOR and ROR optimization schemes
provide noticeable improvements.

1. Introduction

With the emergence of IT technologies, the need of
computing and storage are rapidly increased. To invest
more and more equipments is not an economic method for
an organization to satisfy the even growing computational
and storage need. As a result, grid has become a widely
accepted paradigm for high performance computing.

To realize the concept virtual organization, in [13],
the grid is also defined as “A type of parallel and
distributed system that enables the sharing, selection, and
aggregation of geographically distributed autonomous and
heterogeneous resources dynamically at runtime
depending on their availability, capability, performance,
cost, and users' quality-of-service requirements”. As the
grid system aims to satisfy users’ requirements with limit

78

resources, scheduling grid resources plays an important
factor to improve the overall performance of a grid.

In general, grid scheduling can be classified in two
categories: the performance guided schedulers and the
economy guided schedulers [16]. Objective of the
performance guided scheduling is to minimize turnaround
time (or makespan) of grid applications. On the other
hand, in economy guided scheduling, to minimize the cost
of resource is the main objective. However, both of the
scheduling problems are NP-complete, which has also
instigated many heuristic solutions [1, 6, 10, 14] to
resolve. As mentioned in [23], a complete grid scheduling
framework comprises application model, resource model,
performance model, and scheduling policy. The
scheduling policy can further decomposed into three
phases, the resource discovery and selection phase, the
job scheduling phase and the job monitoring and
migration phase, where the second phase is the focus of
this study.

Although many research works have been devoted
in scheduling grid applications on heterogeneous system,
to deal with QOS scheduling in grid is quite complicated
due to more constrain factors in job scheduling, such as
the need of large storage, big size memory, specific 1/0
devices or real-time services, requested by the tasks to be
completed. In this paper, we present two QoS based
rescheduling schemes aim to improve the makespan of
scheduling batch jobs in grid. In addition, based on the
QoS guided scheduling scheme, the proposed
rescheduling technique can also reduce the amount of
resource need without increasing the makespan of grid
jobs. The main contribution of this work are twofold,
one can shorten the turnaround time of grid applications
without increasing the need of grid resources; the other
one can minimize the need of grid resources without
increasing the turnaround time of grid applications,

mailto:chh@chu.edu.tw

compared with the traditional QoS guided scheduling
method. To evaluate the performance of the proposed
techniques, we have implemented our rescheduling
approaches along with the QoS Min-Min scheduling
algorithm [9] and the non-QoS based Min-Min scheduling
algorithm. The experimental results show that the
proposed techniques are effective in heterogeneous
systems under different circumstances. The improvement
is also significant in economic grid model [3].

The rest of this paper is organized as follows.
Section 2 briefly describes related research in grid
computing and job scheduling. Section 3 clarifies our
research model by illustrating the traditional Min-min
model and the QoS guided Min-min model. In Section 4,
two optimization schemes for reducing the total execution
time of an application and reducing resource need are
presented, where two rescheduling approaches are
illustrated in detail. We conduct performance evaluation
and discuss experiment results in Section 5. Finally,
concluding remarks and future work are given in Section
6.

2. Related Work

Grid scheduling can be classified into traditional grid
scheduling and QoS guided scheduling or economic based
grid scheduling. The former emphasizes the
performance of systems of applications, such as system
throughput, jobs’ completion time or response time.
Swany et al. provides an approach to improving
throughput for grid applications with network logistics by
building a tree of “best” paths through the graph and has
running time of O(NlogN) for implementations that keep
the edges sorted [15]. Such approach is referred as the
Minimax Path (MMP) and employs a greedy,
tree-building algorithm that produces optimal results [20].
Besides data-parallel applications requiring high
performance in grid systems, there is a Dynamic Service
Architecture (DSA) based on static compositions and
optimizations, but also allows for high performance and
flexibility, by use of a lookahead scheduling mechanism
[4]. To minimizing the processing time of extensive
processing loads originating from various sources, the
approaches divisible load model [5] and single level tree
network with two root processors with divisible load are
proposed [12]. In addition to the job matching algorithm,
the resource selection algorithm is at the core of the job
scheduling decision module and must have the ability to
integrate multi-site computation power. The CGRS
algorithm based on the distributed computing grid model
and the grid scheduling model integrates a new
density-based internet clustering algorithm into the
decoupled scheduling approach of the GrADS and
decreases its time complexity [24]. The scheduling of
parallel jobs in a heterogeneous multi-site environment,

79

where each site has a homogeneous cluster of processors,
but processors at different sites has different speeds, is
presented in [18]. Scheduling strategy is not only in batch
but also can be in real-time. The SAREG approach
paves the way to the design of security-aware real-time
scheduling algorithms for Grid computing environments
[21].

For QoS guided grid scheduling, apparently,
applications in grids need various resources to run its
completion. In [17], an architecture named public
computing utility (PCU) is proposed uses virtual machine
(VMs) to implement “time-sharing” over the resources
and augments finite number of private resources to public
resources to obtain higher level of quality of services.
However, the QoS demands maybe include various
packet-type and class in executing job. As a result, a
scheduling algorithm that can support multiple QoS
classes is needed. Based on this demand, a multi-QoS
scheduling algorithm is proposed to improve the
scheduling fairness and users’ demand [11]. He et al. [7]
also presented a hybrid approach for scheduling moldable
jobs with QoS demands. In [9], a novel framework for
policy based scheduling in resource allocation of grid
computing is also presented. The scheduling strategy
can control the request assignment to grid resources by
adjusting usage accounts or request priorities. Resource
management is achieved by assigning usage quotas to
intended users. The scheduling method also supports
reservation based grid resource allocation and quality of
service feature. Sometimes the scheduler is not only to
match the job to which resource, but also needs to find the
optimized transfer path based on the cost in network. In
[19], a distributed QoS network scheduler (DQNS) is
presented to adapt to the ever-changing network
conditions and aims to serve the path requests based on a
cost function.

3. Research Architecture

Our research model considers the static scheduling
of batch jobs in grids. As this work is an extension and
optimization of the QoS guided scheduling that is based
on Min-Min scheduling algorithm [9], we briefly describe
the Min-Min scheduling model and the QoS guided
Min-Min algorithm. To simplify the presentation, we
first clarify the following terminologies and assumptions.

® QoS Machine (Mg) — machines can provide special
services.

® QoS Task (Tg) — tasks can be run completion only on
QoS machine.

® Normal Machine (My) — machines can only run
normal tasks.

® Normal Task (Ty) — tasks can be run completion on

both QoS machine and normal machine.

® A chunk of tasks will be scheduled to run completion
based on all available machines in a batch system.

® A task will be executed from the beginning to
completion without interrupt.
® The completion time of task t; to be executed on

machine m; is defined as

CTij = dtij + etij (1)

Where et;; denotes the estimated execution time of task t;
executed on machine myj; dt; is the delay time of task t; on

machine m;.

The Min-Min algorithm is shown in Figure 1.

Algorithm_Min-Min()

while there are jobs to schedule
for all job i to schedule
for all machine j
Compute CT;; = CT(job i, machine j)
end for
Compute minimum CT;;
end for
Select best metric match m
Compute minimum CT,
Schedule job m on machine n
end while
} End_of _ Min-Min

Figure 1. The Min-Min Algorithm

Analysis: If there are m jobs to be scheduled in n
machines, the time complexity of Min-Min algorithm is
O(m?n). The Min-Min algorithm does not take into
account the QoS issue in the scheduling. In some
situation, it is possible that normal tasks occupied
machine that has special services (referred as QoS
machine). This may increase the delay of QoS tasks or
result idle of normal machines.

The QoS guided scheduling is proposed to resolve
the above defect in the Min-Min algorithm. In QoS
guided model, the scheduling is divided into two classes,
the QoS class and the non-QoS class. In each class, the
Min-Min algorithm is employed. As the QoS tasks have
higher priority than normal tasks in QoS guided
scheduling, the QoS tasks are prior to be allocated on
QoS machines. The normal tasks are then scheduled to
all machines in Min-Min manner. Figure 2 outlines the
method of QoS guided scheduling model with the
Min-Min scheme.

80

Analysis: If there are m jobs to be scheduled in n
machines, the time complexity of QoS guided scheduling
algorithm is O(m?n).

Figure 3 shows an example demonstrating the
Min-Min and QoS Min-Min scheduling schemes. The
asterisk * means that tasks/machines with QoS
demand/ability, and the X means that QoS tasks couldn’t
be executed on that machine. Obviously, the QoS
guided scheduling algorithm gets the better performance
than the Min-Min algorithm in term of makespan.
Nevertheless, the QoS guided model is not optimal in
both makespan and resource cost. We will describe the
rescheduling optimization in next section.

Algorithm_QOS-Min-Min()
{

for all tasks ti in meta-task Mv (in an arbitrary order)
for all hosts m; (in a fixed arbitrary order)
CTij =et; +dt
end for
end for
do until all tasks with QoS request in Mv are mapped
for each task with high QoS in My,
find a host in the QoS qualified host set that obtains
the earliest completion time
end for
find task t, with the minimum earliest completion time
assign task t, to host m, that gives the earliest completion
time
delete task t, from Mv
update dy
update CT; for all i
end do
do until all tasks with non-QoS request in Mv are mapped
for each task in Mv
find the earliest
corresponding host
end for
find the task t, with the minimum earliest completion time
assign task t, to host m, that gives the earliest completion
time
delete task t, from Mv
update dy
update CT, for all i
end do
} End_of _ QOS-Min-Min

completion time and the

Figure 2. The QoS Guided Algorithm

4. Rescheduling Optimization

Grid scheduling works as the mapping of individual
tasks to computer resources, with respecting service level
agreements (SLAs) [2]. In order to achieve the
optimized performance, how to mapping heterogeneous
tasks to the best fit resource is an important factor. The
Min-Min algorithm and the QoS guided method aims at
scheduling jobs to achieve better makespan. However,
there are still having rooms to make improvements. In
this section, we present two optimization schemes based
on the QoS guided Min-Min approach.

4.1 Makespan Optimization Rescheduling (MOR)

The first one is Makespan Optimization Rescheduling
(MOR), which focuses on improving the makespan to
achieve better performance than the QoS guided
scheduling algorithm. Assume the makespan achieved by
the QoS guided approach in different machines are CTy,
CT,, ..., CTy, with CTy = max { CTy, CTy, ..., CTy },
where m is the number of machines and 1 <k <m. By
subtracting CT, — CT;, where 1 <i <mand i =k, we can
have m-1 available time fragments. According to the
size of these available time fragments and the size of tasks
in machine My, the MOR dispatches suitable tasks from
machine My to any other machine that has available and
large enough time fragments. Such optimization is
repeated until there is no task can be moved.

*M1 M2 M3
T1 7 4 7
T2 3 3 5
T3 9 5 7
*T4 5 X X
T5 9 8 6
*T6 5 X X

Makespan Makespan

12 |—

)
I
+
X
S
-
3

w
I

Machine M1 M2 M3 Machine

B. The QOS guided scheduling algorithm

A. The Min-Min algorithm

Figure 3. Min-Min and QoS Guided Min-Min

81

*M1 M2 M3
T1 7 4 7
T2 3 3 5
T3 9 5 7
*T4 5 X X
T5 9 8 6
*T6 5 X X
Makespan
Makespan
4 s
12 +— —
T3 u T2
*T6 *T6
s - 8 [— T3
T1
5 T
3 - *T4 3 |— | *T4 T1
T2

*M1 M2 M3 Machine *M1L M2 M3 Machine

A. The QOS guided scheduling B. The Makespan
algorithm Rescheduling (MOR) algorithm

Optimization

Figure 4. Example of MOR

Recall the example given in Figure 3, Figure 4
shows the optimization of the MOR approach. The left
side of Figure 4 demonstrates that the QoS guided scheme
gives a schedule with makespan = 12, wheremachine M2
presents maximum CT (completion time), which is
assembled by tasks T2, T1 and T3. Since the CT of
machine ‘M3’ is 6, so ‘M3’ has an available time
fragment (6). Checking all tasks in machine M2, only
T2 is small enough to be allocated in the available time
fragment in M3. Therefore, task M2 is moved to M3,
resulting machine ‘M3’ has completion time CT=11,
which is better than the QoS guided scheme.

As mentioned above, the MOR is based on the QoS
guided scheduling algorithm. If there are m tasks to be
scheduled in n machines, the time complexity of MOR is
O(m?n). Figure 5 outlines a pseudo of the MOR scheme.

Algorithm_MOR()

for CT; in all machines
find out the machine with maximum makespan CTpax and
set it to be the standard
end for
do until no job can be rescheduled
for job i in the found machine with CTyax
for all machine j
according to the job’s QOS demand, find the
adaptive machine j
if (the execute time of job i in machine j + the
CT; < makespan)
rescheduling the job i to machine j
update the CT; and CTpax
exit for
end if
next for
if the job i can be reschedule
find out the new machine with maximum CT,ax
exit for
end if
next for
end do
} End_of MOR

Figure 5. The MOR Algorithm

4.2 Resource Optimization Rescheduling (ROR)

Following the assumptions described in MOR, the main
idea of the ROR scheme is to re-dispatch tasks from the
machine with minimum number of tasks to other machines,
expecting a decrease of resource need. Consequently, if
we can dispatch all tasks from machine M, to other
machines, the total amount of resource need will be
decreased.

Figure 6 gives another example of QoS scheduling,
where the QoS guided scheduling presents makespan = 13.
According to the clarification of ROR, machine ‘M1’ has
the fewest amount of tasks. We can dispatch the task
‘T4’ to machine ‘M3’ with the following constraint

CTij + CTJ <= CTmax (2)

The above constraint means that the rescheduling can be
performed only if the movement of tasks does not
increase the overall makespan. In this example, CT43= 2,
CTs=7 and CT.,»=CT,=13. Because the makespan of
M3 (CTj;) will be increased from 7 to 9, which is smaller
than the CT,., therefore, the task migration can be
performed. As the only task in M1 is moved to M3, the
amount of resource need is also decreased comparing with
the QoS guided scheduling.

82

M1 *M2 M3
T1 3 4 2
T2 6 6 3
*T3 X 7 X
T4 4 6 2
T5 5 7 2
*T6 X 6 X
Makespan Makespan
13 — 13 —

*T3

e e
B
T1 T1
0 1
M1 *M2 M3 Machine M1 *M2 M3 Machine

B. The Resource Optimization Rescheduling

A. The QOS guided scheduling (ROR) Algorithm

Figure 6. Example of ROR

The ROR is an optimization scheme which aims to
minimize resource cost. If there are m tasks to be
scheduled in n machines, the time complexity of ROR is
also O(m?n). Figure 7 depicts a high level description of
the ROR optimization scheme.

Algorithm_MOR()

for m in all machines
find out the machine m with minimum count of jobs
end for
do until no job can be rescheduled
for job i in the found machine with minimum count of jobs
for all machine j
according to the job’s QOS demand, find the
adaptive machine j
if (the execute time of job i in machine j + the
CT; <= makespan CTay)
rescheduling the job i to machine j
update the CT;
update the count of jobs in machine m and
machine j
exit for
end if
next for
next for
end do
} End_of_ MOR

Figure 7. The ROR Algorithm
5. Performance Evaluation
5.1 Parameters and Metrics
To evaluate the performance of the proposed

techniques, we have implemented the Min-Min
scheduling algorithm and the QoS guided Min-Min

scheme. The experiment model consists of heterogeneous
machines and tasks. Both of the Machines and tasks are
classified into QoS type and non-QoS type. Table 1
summarizes six parameters and two comparison metrics
used in the experiments. The number of tasks is ranged
from 200 to 600. The number of machines is ranged from
50 to 130. The percentage of QoS machines and tasks are
set between 15% and 75%. Heterogeneity of tasks are
defined as H; (for non-QoS task) and Hq (for QoS task),
which is used in generating random tasks. For example,
the execution time of a non-QoS task is randomly
generated from the interval [10, Hx10?] and execution
time of a QoS task is randomly generated from the
interval [10%, Hox10%] to reflect the real application world.
All of the parameters used in the experiments are
generated randomly with a uniform distribution. The
results demonstrated in this section are the average values
of running 100 random test samples.

Table 1: Parameters and Comparison Metrics

Task number (Ny) {200, 300, 400, 500, 600}

Resource number (Ng) {50, 70, 90, 110, 130}

Percentage of QOS resources (Qr %) | {15%, 30%, 45%, 60%, 75%}

Percentage of QOS tasks (Qr %) {15%, 30%, 45%, 60%, 75%}

Heterogeneity of non-QOS tasks (H7) | {1, 3,5, 7,9}
Heterogeneity of QOS tasks (Hg) {3,5,7,9,11}
Makespan ;I;giscompletlon time of a set of

Number of machines used for
executing a set of tasks

Resource Used (Ry)

5.2 Experimental Results of MOR

Table 2 compares the performance of the MOR, Min-Min
algorithm and the QoS guided Min-Min scheme in term of
makespan. There are six tests that are conducted with
different parameters. In each test, the configurations are
outlined beside the table caption from (a) to (f). Table (a)
changes the number of tasks to analyze the performance
results. Increasing the number of tasks, improvement of
MOR is limited. An average improvement ratio is from
6% to 14%. Table (b) changes the number of machines.
It is obvious that the MOR has significant improvement in
larger grid systems, i.e., large amount of machines. The
average improvement rate is 7% to 15%. Table (c)
discusses the influence of changing percentages of QoS

machines. Intuitionally, the MOR performs best with
45% QoS machines. However, this observation is not
always true. By analyzing the four best ones in (a) to (d),

we observe that the four tests (a) N;=200 (Ng=50, Qz=30%,
Q1=20%) (b) Ng=130 (N;=500, Qr=30%, Q=20%) (c)
Qr=45% (N;=300, Nz=50, Q;=20%) and (d) Q=15%
(Nt=300, Ng=50, Qr=40%) have best improvements. All of
the four configurations conform to the following relation,

83

0.4 x (Nrx Qr) = Ng x Qg 3
This observation indicates that the improvement of MOR
is significant when the number of QoS tasks is 2.5 times
to the number of QoS machines. Tables () and (f)
change heterogeneity of tasks. We observed that
heterogeneity of tasks is not critical to the improvement
rate of the MOR technique, which achieves 7%
improvements under different heterogeneity of tasks.

Table 2: Comparison of Makespan

(a) (Ng=50, Qr=30%, Q;=20%, H=1, Ho=1)

Task Number (Ny) 200 300 400 500 600
Min-Min 978.2| 1299.7| 1631.8| 1954.6| 2287.8
QOS Guided Min-Min 694.6 917.8| 1119.4| 1359.9| 1560.1
MOR 597.3 815.5 1017.7 1254.8 1458.3
Improved Ratio 14.01%| 11.15%| 9.08%| 7.73%| 6.53%
(b) (Nt=500, Qz=30%, Qr=20%, H:=1, Ho=1)

Resource Number (Ng) 50 70 90 110 130
Min-Min 19315 | 14322 | 1102.1 | 985.3 874.2
QOS Guided Min-Min | 1355.7 | 938.6 724.4 590.6 508.7
MOR 1252.6 | 8408 633.7 506.2 429.4
Improved Ratio 7.60% | 10.42% | 12.52% | 14.30% | 15.58%

(¢) (Ny=300, Ng=50, Qr=20%, Hr=1, Ho=1)

Qr% 15% 30% 45% 60% 75%
Min-Min 2470.8 | 1319.4 888.2 777.6 650.1
QOS Guided Min-Min | 1875.9 | 913.6 596.1 463.8 376.4
MOR 1767.3 | 810.4 503.5 394.3 339.0
Improved Ratio 5.79% | 11.30% | 15.54% | 14.99% | 9.94%

(d) (Ny=300, Ng=50, Qz=40%, H:=1, Ho=1)

Q% 15% 30% 45% 60% 75%
Min-Min 879.9 1380.2 | 1801.8 | 2217.0 | 2610.1
QOS Guided Min-Min 558.4 915.9 12452 | 1580.3 | 1900.6
MOR 474.2 817.1 1145.1 | 14785 | 1800.1
Improved Ratio 15.07% | 10.79% | 8.04% | 6.44% 5.29%

(€) (Ny=500, Ng=50, Qz=30%, Qr=20%, Hg=1)
Hr 1 3 5 7 9
Min-Min 1891.9 | 19451 | 1944.6 | 1926.1 | 1940.1
QOS Guided Min-Min | 1356.0 | 1346.4 | 1346.4 | 1354.9 | 1357.3
MOR 1251.7 1241.4 1244.3 1252.0 1254.2
Improved Ratio 7.69% | 7.80% | 7.58% | 7.59% | 7.59%

(f) (Ny=500, Nx=50, Qx=30%, Q;=20%, H=1)

Ho 3 5 7 9 11
Min-Min 1392.4| 1553.9| 1724.9| 1871.7| 2037.8
QOS Guided Min-Min 867.5| 1007.8| 11482 1273.2| 1423.1
MOR 822.4 936.2| 1056.7] 1174.3] 1316.7
Improved Ratio 5.20% 7.11% 7.97% 7.77% 7.48%

5.3 Experimental Results of ROR

Table 3 analyzes the effectiveness of the ROR technique
under different circumstances.

Table 3: Comparison of Resource Used

(a) (Nz=100, Qz=30%, Q;=20%, H=1, Hy=1)

Task Number (Nr) 200 300 400 500 600
QOS Guided Min-Min 100 100 100 100 100
ROR 39.81 44.18 46.97 49.59 51.17
Improved Ratio 60.19% | 55.82% | 53.03% | 50.41% | 48.83%
(b) (N;=500, Qz=30%, Q1=20%, H:=1, Ho=1)

Resource Number (Ng) 50 70 90 110 130
QOS Guided Min-Min 50 70 90 110 130
ROR 26.04 35.21 43.65 50.79 58.15
Improved Ratio 47.92% | 49.70% | 51.50% | 53.83% | 55.27%

(€) (N7=500, Ng=50, Q;=20%, H=1, Ho=1)

Qr% 15% 30% 45% 60% 75%
QOS Guided Min-Min 50 50 50 50 50
ROR 14.61 25.94 35.12 40.18 46.5
Improved Ratio 70.78% | 48.12% | 29.76% | 19.64% | 7.00%

(d) (Ny=500, Ng=100, Qz=40%, H.=1, Hy=1)

Q1% 15% 30% 45% 60% 75%
QOS Guided Min-Min 100 100 100 100 100
ROR 57.74 52.9 48.54 44.71 41.49
Improved Ratio 42.26% | 47.10% | 51.46% | 55.29% | 58.51%

(e) (N7=500, Ng=100, Qr=30%, Qr=20%, Ho=1)
Hy 1 3 5 7 9

QOS Guided Min-Min 100 100 100 100 100
ROR 47.86 4751 47.62 47.61 47.28
Improved Ratio 52.14% | 52.49% | 52.38% | 52.39% | 52.72%

(f) (Ny=500, Ng=100, Qz=30%, Q;=20%, H,=1)

Ho 3 5 7 9

QOS Guided Min-Min 100 100 100
ROR 54.61 52.01 50.64

11
100
46.53

100
48.18

Improved Ratio 45.39%| 47.99%| 49.36%| 51.82%| 53.47%

84

Similar to those of Table 2, Table (a) changes the
number of tasks to verify the reduction of resource that
needs to be achieved by the ROR technique. We noticed
that the ROR has significant improvement in minimizing
grid resources. Comparing with the QoS guided
Min-Min scheduling algorithm, the ROR achieves 50% ~
60% improvements without increasing overall makespan
of a chunk of grid tasks. Table (b) changes the number
of machines. The ROR retains 50% improvement ratio.
Table (c) adjusts percentages of QoS machine. Because
this test has 20% QoS tasks, the ROR performs best at
15% QoS machines. This observation implies that the
ROR has significant improvement when QoS tasks and
QoS machines are with the same percentage. Table (d)
sets 40% QoS machine and changes the percentages of
QoS tasks. Following the above analysis, the ROR
technique achieves more than 50% improvements when
QoS tasks are with 45%, 60% and 75%. Tables (e) and
(f) change the heterogeneity of tasks. Similar to the
results of section 5.2, the heterogeneity of tasks is not
critical to the improvement rate of the ROR technique.
Overall speaking, the ROR technique presents 50%
improvements in minimizing total resource need compare
with the QoS guided Min-Min scheduling algorithm.

6. Conclusions

In this paper we have presented two optimization
schemes aiming to reduce the overall completion time
(makespan) of a chunk of grid tasks and minimize the
total resource cost. The proposed techniques are based
on the QoS guided Min-Min scheduling algorithm. The
optimization achieved by this work is twofold; firstly,
without increasing resource costs, the overall task
execution time could be reduced by the MOR scheme with
7%~15% improvements. Second, without increasing task
completion time, the overall resource cost could be
reduced by the ROR scheme with 50% reduction on
average, which is a significant improvement to the state of
the art scheduling technique. The proposed MOR and
ROR techniques have characteristics of low complexity,
high effectiveness in large-scale grid systems with QoS
services.

References

[1] A. Abraham, R. Buyya, and B. Nath, "Nature’s Heuristics for
Scheduling Jobs on Computational Grids", Proc. 8th IEEE
International Conference on Advanced Computing and
Communications (ADCOM-2000), pp.45-52, 2000.

[2] A. Andrieux, D. Berry, J. Garibaldi, S. Jarvis, J. MacLaren, D.
Ouelhadj, D. Snelling, "Open Issues in Grid Scheduling",
National e-Science Centre and the Inter-disciplinary Scheduling
Network Technical Paper, UKeS-2004-03.

[3] R. Buyya, D. Abramson, Jonathan Giddy, Heinz Stockinger,
“Economic Models for Resource Management and Scheduling

in Grid Computing”, Journal of Concurrency: Practice and
Experience, vol. 14, pp. 13-15, 2002.

[4] Jesper Andersson, Morgan Ericsson, Welf Léwe, and Wolf
Zimmermann, "Lookahead Scheduling for Reconfigurable
GRID Systems", 10th International Europar'04: Parallel
Processing, vol. 3149, pp. 263-270, 2004.

[5] D Yu, Th G Robertazzi, "Divisible Load Scheduling for Grid
Computing”, 15th TASTED Int’l. Conference on Parallel and
Distributed Computing and Systems, Vol. 1, pp. 1-6, 2003

[6] Fangpeng Dong and Selim G. Akl, "Scheduling Algorithms for
Grid Computing: State of the Art and Open Problems",
Technical Report No. 2006-504, 2006.

[7] Ligang He, Stephen A. Jarvis, Daniel P. Spooner, Xinuo Chen,
Graham R. Nudd, "Hybrid Performance-oriented Scheduling of
Moldable Jobs with QoS Demands in Multiclusters and Grids",
Grid and Cooperative Computing (GCC 2004), vol. 3251, pp.
217-224, 2004.

[8] Xiaoshan He, Xian-He Sun, Gregor Von Laszewski, "A QoS
Guided Scheduling Algorithm for Grid Computing"”, Journal of
Computer Science and Technology, vol.18, pp.442-451, 2003.

[9] Jang-uk In, Paul Avery, Richard Cavanaugh, Sanjay Ranka,
"Policy Based Scheduling for Simple Quality of Service in Grid
Computing", IPDPS 2004, pp. 23, 2004.

[10] J. Schopf. "Ten Actions when Superscheduling: A Grid
Scheduling Architecture”, Scheduling Architecture Workshop,
7th Global Grid Forum, 2003.

[21] Junsu Kim, Sung Ho Moon, and Dan Keun Sung, "Multi-QoS
Scheduling Algorithm for Class Fairness in High Speed
Downlink Packet Access", Proceedings of IEEE Personal,
Indoor and Mobile Radio Communications Conference (PIMRC
2005), vol. 3, pp. 1813-1817, 2005

[12] M.A. Moges and T.G. Robertazzi, "Grid Scheduling Divisible
Loads from Multiple Sources via Linear Programming", 16th
IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS), pp. 423-428, 2004.

[13] M. Baker, R. Buyya and D. Laforenza, "Grids and Grid
Technologies for Wide-area Distributed Computing", in Journal
of Software-Practice & Experience, Vol. 32, No.15, pp.
1437-1466, 2002.

[14] Jennifer M. Schopf, "A General Architecture for Scheduling on
the Grid", Technical Report ANL/MCS, pp. 1000-1002, 2002.
[15] M. Swany, "Improving Throughput for Grid Applications with
Network Logistics”, Proc. IEEE/ACM Conference on High

Performance Computing and Networking, 2004.

[16] R. Moreno and A.B. Alonso, "Job Scheduling and Resource
Management Techniques in Economic Grid Environments",
LNCS 2970, pp. 25-32, 2004.

[17] Shah Asaduzzaman and Muthucumaru Maheswaran,
"Heuristics for Scheduling Virtual Machines for Improving QoS
in Public Computing Utilities", Proc. 9th International
Conference on Computer and Information Technology
(ICCIT’06), 2006.

[18] Gerald Sabin, Rajkumar Kettimuthu, Arun Rajan and P
Sadayappan, "Scheduling of Parallel Jobs in a Heterogeneous
Multi-Site Environment", in the Proc. of the 9th International
Workshop on Job Scheduling Strategies for Parallel Processing,
LNCS 2862, pp. 87-104 , June 2003.

[19] Sriram Ramanujam, Mitchell D. Theys, "Adaptive Scheduling
based on Quality of Service in Distributed Environments",
PDPTA’05, pp. 671-677, 2005.

[20] T. H. Cormen, C. L. Leiserson, and R. L. Rivest, "Introduction
to Algorithms", First edition, MIT Press and McGraw-Hill,
ISBN 0-262-03141-8, 1990.

[21] Tao Xie and Xiao Qin, "Enhancing Security of Real-Time
Applications on Grids through Dynamic Scheduling”, Proc. the
11th Workshop on Job Scheduling Strategies for Parallel

85

Processing (JSSPP'05), pp. 146-158, 2005.

[22] Haobo Yu, Andreas Gerstlauer, Daniel Gajski, "RTOS
Scheduling in Transaction Level Models", in Proc. of the 1st
IEEE/ACM/IFIP international conference on Hardware/software
Codesign & System Synpaper, pp. 31-36, 2003.

[23] Y. Zhu, "A Survey on Grid Scheduling Systems", LNCS 4505,
pp. 419-427, 2007.

[24] Weizhe Zhang, Hongli Zhang, Hui He, Mingzeng Hu,
"Multisite Task Scheduling on Distributed Computing Grid",
LNCS 3033, pp. 57-64, 2004.

86

FRARKPEL R AR R

% fl % P2P v v Rar F v % (S0A) 5 A Az ¥
% R LR R — 3 E o S
P &t P2P & Web #Hiwg B v SOA 5 A#H o P
S g d A EHE gAaCAl (% 2 &) S

FEaae OewArd M EeAPE
3 %5 ¢ NSC 97-2628-E-216-006-MY3

S FH A 199 08 7 01 p 2 100 % 07 * 31 p
HEHE e EL T AL RS

PRI CHFAY P EAETRIES LRI
LR aFFA
FELEAR D mE®E - A (F EAF1pgmgerl)

FEE oM E 2R MF LR LR

(F ELFFRIRE FT L)

R AREEELYE BRI AFHE A ARTELYE
Sk ;,J,rg-q;.%z o BT OR B
(2 28w rEpaE - eM- 247 2B 43

-~ N 100 = 10 3 28 P

SV 2
FREATPELR fH ey WY R S
[1gF ¢ +
et P2P 2 Web #iie3 B 12 SOA 5 A A chit e/ fobd s gdgrd
(%= &)
U e 2l 4

4 Y% ¢ NSC 97-2628-E-216-006-MY3
NEHEF 99087 01 p 2 100#077 31FP

PRAFA CHFRAY Y EETRIEY R

L A
2Lk g AR L R g dc (P EFapgEyrgLll)
FEF ompF - oZIBH LA FER

S EFLEA(RETPHLFEIRLTH) [(FEHFE Mg
3 F

A RARL 2RI R 2 R
EENCRGEIE S ol I

A A e LAY ST L -

MR REENRERETRLEFL2H2 -
(IR E&EF L FRRMETHRLE ST - 7

AOLS AR LR R AEWNE A ABTEL S
B EE TN E Y BT AR A

(2 {2 wrEpaf [(J- eM- a7 2B 43

T 2
— s BRI E T aes 3
s BB T VR BIR oo eb e a bbb 4
s B R T BR . oot b e 16
B BRI RE. oo 18
TN Y BB TR vttt bbb bbbt bbbt 19
HEREEMEHROEERE MTPP 2010).. e, 21
HFE BIEERAT & B OB (CSE 2009)...iiuiiiereeeeeererevereeeeerevereeeseveserees s, 32
HEEEEMTE R OEHE (nforScale 2009)......civiiviieieeeiieeeeereeee e 47
H R B BB AT & VS B (ChinaGrid 2008)......veveevvecveeveesscveniaessesssseessessssensens 77

FRERNFFFLREIUALTESIRHEL
&* P2P & Web :}iﬁf’:ﬁ" B 14 SOA B R A
BoA 22 g A

2+ 4 %% NSC 97-2628-E-216-006-MY3
#HFPHrT:99£87% 193 10077 31p
AN EAT Y EAFTRIES R

FRFEAR D mEE s pgE (L lﬁﬁ??*%ﬁii)
FEE MBE-2aH-EIaFAE
(ﬂ%*ﬁﬁﬂlﬁﬁﬁpii)

SREAE 1

A HFE PP Hgk it e ki PHRAZRES E AN EET L@
fﬁ%l cd WP2PEG AARNGE FBEFEEIEY A RREFENETRE D
L BT RSP I e PP BNGEEL C g L e kLB 2 4
FoogRhG TS EH M Fh o pADYE -~ G chipeT oot
%ﬁﬂ PRI+ 7% 12(SOA, Service-oriented Archltecture) Bt AR Tk e
oy ’Qbk’mp B el (EPRFRT 0 @ F ATy ¢ KRR IR F T
Q@Jfﬂ—g‘mjﬁ‘vi‘ﬁf’wi ToREE o Tl A5 0 P2P PR Ew 4 5 A
Je 1 S L o) - S B

APFEREZE S - EO APFERESY AT BTG B
aa VI B “"i‘qu?ﬁk# | ~P2P &3l ~ % 22 ﬁgﬂﬂ TEY RHEETERE
TF L iammBAhk Rl g~ S SRB BT 2niy &k AF R BliE e % - £
24 i 2 MapReduce & B ok a2 #5073 0 3 2 f5°€b’%¥ﬂ\mﬁ. FL¥e e % SR B

S0 FRNAABAELT RGO 545 0 1 E R HSHPUIR REFET

HAILAAE B EF T F TR LAT SRR FZ 2 APJrBHFZ2F
EREHgRE o471 BT U E TR L T R K 5% ek iy o
TOEIR T Y T SE T A l?%IW%mk R EEALF
L3 FREESY S OEE o E SRS BEAF R0 R TR G
%*°ﬁ%%€’%&% PREGETAE e GR AR X atp Yy
it g & oo

Hﬁ **m}

e

[v

M 43R D P2P ~ fh g3t B Web i~ @ 4 gidl ~ AR R E S HH S FORE L
TR RS o

0Ot AEEL s RGE B A Fend 2 0 28 R alE X 40§ 0y Peta Bytes chig B
FE o EHEBRAPTAR - T TR M MEREG - T % AV N A
54 R iR B GV H - Rl ks dord g 58 (Hierarchical) &2 75 0 # & 54 (Cluster)
BE 1 o B3N & (Network Attached Storage, NAS) 5 2b 18 sienil 5 = N 4o TR & 58
BB fhk e XTI EAR AREE - B A AR TR EERELT
BRSO EFR TRERESY - BIR O TEARAEL LSRN SR
BMEFZF 3aSeRr A 38T RB r@ﬁﬁl BR o ¥ d N F Ayt s TR

ﬂ

AR B LK FS o XA RGO 2 B A TR A TR D e AP

F3 e SHTROMER S 51D > RL R FTHRPR CHRRT F R
e R SRS AP E LY TR PR ki TR DT
o BBIRG ha Alehfh R kA § - BALIE Superblock s % 3R AT A
kP AFH o F FREFRKEWEF OG> FEIIWEFY AFTH L wRL L
Sl BT OEE o V- Bo|F AL AR5 2 WHF DT RER Y > bldo- B

P2P ekt » 4 il F 4T RS BHE R LA RHOR AR c LR B R kY S 5 Bin L

AR R A 7 REFHEE o FlEpanE 2 A A0 SRR RI YR B4 44T

B E e B B Al B R TR AT 17 TR N IR A
S BEr b AcEr o mdrk BiE oz 5l 4 ,\{,;F{%‘?’g\lﬂ\)ﬂaj_%?} 1z 51 % B o F s 1Y

Bt AR B RS AR - BN ALY P el 5L R L R RG

doo w

A
w

7A@ AT E F o FRGHY S 2 LF E R PR AL

BEBETFEY o APt hio R WBC 6 Web Hjie > 2 P2P ek ik
LEERM P RA ALY Ao BUTHELI P CRESR 0w L1 R i

iz
o

BwEE L o MABGERFEFRFTHRER DGR - F7 2 ML DIFE
- BV NEF &_Iﬁ,f‘?ﬁffﬁ“}» = Wxﬁ}&-ﬁ%.i%iﬁ“‘ mP—} ‘h_i.ﬁ}&-t‘ /\ﬁA’g_%Z % RoIel)%fg Pﬁ#_l
m

pPARPIAAEBEME FET UG EC TR AP E T TS BAE

SR] AT

I

#E L P2P 2 W3C & 48 Web 3w i froo e Agial - SR - 3
@E P A RAIEY 4TRSS S R E OB RS APl 52§ %

EEONEEREER 2 O RE XL RBRT AFE TR ORERE

F1* MapReduce iz B FHIZHA > #F B+ £ FAE T 2kt 1255 1 5
(Application Programming Interface) » 14 2 it 43 i@ 7 AL 048 38 4 235 7 (Domain
Specific Language) » & 7 gt TRl e F BB B it~ 5 - EHE DE o

FI* HT A% RE TR AR RN i B R FBHE R T e

BELEMER G APRATEATHRES DA S RARRG S
PRSI PR RRERR Y ERT S

BB UORFS S e enf e AL 0 B AT - 1 FHAE - 22 558 Web

Rk A B R F kg Ry

4

BPrizassk

F- & AP W3C e Web dp b oibr > 2 33 chP2P g 802 L A#H O A1 7
AR ged? AT T S ENRFERERCHIDRF o H BRG DFH
e @ /) gkl -Storage Resource Broker(SRB) » & 7 iy eravt i o b b AR F B i

Be b iB(T AT Sk EF O QI RFIP A FTH AT F > S F R < qlaE R

SECAPEFTHEBRFLF T R E LA oS ERY > X A R
%

(e
fmf
%
\4
=
i@
19
(=1
56
T\
=
frt.
"
ﬂ
:)
;
|
p=n)
+ﬂ'\
v
A
o3
)
W

BUEREFRHOELE > TLEFFFwG DB L -

B & AP FE A B TR 4 S0k APl 12 P2P A N R AR
PR TR AR RIS BRI > B BE R DR K G o 1R
BFEAZT AT BHATPG o F b R L e i e 0 AT 0 R
L5 Web PR - sE7 % XA i Feng fo RPN T HER AN F T
BRSH @ 2B F A b g R(QS) HE- EART E N f

1.

AR * 2 5 Web o @ gt e s L F d W3C #rdfimene pteb > R

e BB G PP AZ L8 > REHLIE FH AR LR - 5 P2P

A o AP B Data Grid == f &2+ = Storage Peer(SP), Metadata Peer(MP), %

Cluster Peer(CP) ° izt = f 4efl— 9 P2P TR e E R #7om o 14T dhgaidt 24 i -
#* SP>MP 2 CP %k it o

W g @
N

Bl- P2P FR e e 3 W

FARREE - #F - R HEHE

F - MP 4 * Chord fefeif % e — 42 > 3 & e p 98 J|* Distributed Hash

Table s s > — & 4o 2 R fl o LA RPBE P P PF T S8 TP BT EH T

“t3 i0 MP 38 — B Ak A it 4 %ﬁ.{? ropeig F & (aggregate) poe T - K e
PAFTH O RHAp T Y ATHBEER D NEA L P REFR 2R -
Ra & i Data Grid %3t > & 7 2 - 1 Overlay &t 53 f#/4- > 2 3¢ #) 1343 Data Grid
e fdaE > 3 ek =0 e Overlay & $ & -

ARl= 24 - % 1 & & Network Overlay » Network » i&:{SRB A AT F_R
Zone - ig— K ehi & P chX 3 B R &2 - K ORI Overlay - #818 #pt

=B~ *?‘fé(f&%ﬁ’%é‘i?{? YLEhs e e h) e @ A& — i Peer 34 JEF G
T - & Overlay > » i&»*«?\ Domain Overlay 7 Chord % 4 4~i& » 8 - — £ Domain
Overlay & 2h3 4c > Network Overlay =7 i)’I-%g eV - BAG o

APy - BRI BMAE K’Z?mﬂﬂj&ﬁ_‘?_}\t?m%? ’*Kgﬁ_,;y i

¥ - iz~ 2L o — & Network MP)*I.%—EL’* k& - BB DataGrid > $>04258 91 F & ep

TR B T g g e L3t Domain MP sk f > 3 F 3% 3 Grid Information System
LR PRARH TR A T R Fendna o RLEAR % g ¥ Web Portal =1
TgEe r ghe 5 @A 2 KA Network MP enp emjed 2% ARG & Ll A
T8 B e R £ g < Domain Overlay - ~ %*u{;fu Network MP
hrt % g BERE_Web f T FA 482 Proxy o RS DA R ,T}qjgﬁfkf’“}é-t

Portal # it 7 MP -

Network Overlay.

B = P2P 4 5 % 4)

dod kY 3 H - i~ gk i ¥4 € i3 = H 2E453E(Single Point Failure) ik ko S
7 % Network MP 23+ = % ff B ergs 254 34541 > — B Network MP i 433 — B &
B BEH @ R il B Ae Mail & ff R e I 0 3 SRR B0 E

& Ar Rl = Ao o

Network Overlay

Service,
ntry poin

Master Network MP Backup Network MP

Bl = Network overlay # # 4|7 % B

R Y % 2 KA AP AR R E vah Overlay » L Domain
Overlay - Domain MP & = 5 — = G f 435 i * —‘,{{msﬁ FemiEz o BB AREE
—‘gﬁ #ren Domain > # & ¢0 Domain MP » € AL & fofe# 2 K %5 ¥ - iﬂsi&{ﬁfﬁ%
EIF A B0 g4I B - B SP gt g4k~ T B 4 L Domain - g ¥
AL R S ELRVCE SN Less SERE LS EE R R ER AT
S TR R E SRR P RN BRI T e Peer A0 90 4 TR A 5
S TLE K AP ¥t - 1995 SP bl 0 & SP 4 i B k= & Backup MP(4 3 LR
Fed AR s i) R IF L H s MP el 50 fe MP 2 [538 iF 5 24 & Master /
Slave 3 4 > @ &_Peer-to-Peere fy* 3 5 3 MP- 4 ¢ 3 4p3 = 2 2 Domain
e A A o 2 MP 2 B it S3 i H 6 Domain 0 SP 97 & feend 4 FAL A A
FIRE P § B A DNS - {84 & it e 47§ cnSP A AMEF B AT F MP i
AT ERGE Y OMPgampE > R LR - Bt ﬁvMP’%ﬁﬁz)}éﬁé% st thy gl
Frig —*Ff%}'g‘_ T MP i RHEL oA F 7 P MP 3R > AP iR 2% Network MP
BRI > R BEE @ R TIL R F 2 0 1) MP ST R

% 3 % A_Storage Overlay » % 273 7 SP » ¥ 5 § F 455 > @ 124510 6 & 5| 0?

PP« G R ET A G MARR Y AR o R 4R “THhin MP A i
RBEHY AFR HERHAR S SP & MP Eg2eFY AFH A2 BikioSP
2B - BEE G IES TI&EL&EF—T = @ﬁi%] o 45 Replica {v& > FllacfadE s » &
SP 2 B#d » MEREAHR - R HE R AR NG FREHE [§ o0 Domain MP
FEdr o AAE - R P AP REE REFEAERFE AR 0 K s
FRF > F2 FF i o d Cluster Overlay 2 CP ki (7> -t fom £ S

P A FHETARNE > - B g & L é_;{glfw#_p:g?;fuﬂ 5

2.

FORY 2 g o B AR ER R A TR R IS RN s 0 2w Sy
Bl - AR E AL o o FORE k5o DBMS BB EF M A S TR LR E R
??‘g‘?ﬁ:ijé - T HPLEF » F {%%?Qﬁir‘sﬁ]ﬂzﬁvﬂ AFH > 2 A EELF T o FlUt A

BAT A PR B AF Lk S 5N B 3k i DBMS Abstraction Layer > k & 327 F 7 DBMS i
f»ﬂ’;‘gtbéﬁ PEREL T - 2 g AP Rl DBMS ki 4 FALR 5 E A3t ands (T o
“ﬁ%?b{i}ﬁ Bde it FRIFMEARETF R A FoRleng gL B P 4 T e XML
WHPwd o Ra f1F HTTP eng i » 2L A @ Boenph iz ¥ 1246 & ¥ ETag Header » % 31
FoRLG FE o T E BN A B

#EH ~ Cluster Peer ~ EHERIEEE

HTTP &— B2id 2 3 X2 cph %l s %0 @ 58— & 4§ 2 40 WebDAV » #
#HTTP» FTPREE i 533 ke A T2 7T LI ﬁz;—]:rﬁﬁ‘;” o fg# HTTP 1
7 §_Stateful » e 2% i & 2R 5t 49 40 + Cookie %2 Session %k = = — & F & Mk g5 eds (7 >
PlAe PR T R A AR AR o gt v HTTP % 3 frw e A 3R = A H Server 42 »
B.j tenb|+ 5 Apache HTTP Server » i€ 4%k cnits @i g » 8 » 5l T i
@O ALE Fl- X o T - BEAL ok F R RN ©F &4 URL A http
$T % https ¥ o

B T AL HE 5% 2 ut (Data Format Addressing) e i F > 37 ke 5 - B4 HTTP i
WE Web Jg* 4p g £ 24 REST - REST & & % Representational State
Transfer » # 57 I+ #% 73 URL(Resource) » 41 * HTTP Accept Header » it %3 #2338 Server
Bw 72 A B enT AL o b 4e http://www.someone.com/login » ¥+t HTML & & > if &
oA FERE R oA SN O XML & fo i v XML % o SR i
Pl #— kA URL K5 8 % o Web APl > @ B R BAZN =28 { % 5 F o 97
" PR R URL #Puf’rigfﬁ;éﬂ)’ér\ PRI ERLAFTRREN S

PP ME LT hon e AR RG] PR R P2P
BHEF 8 Chord 2B A3t st 2 k22 - FHTWHH > 270 e TR DOIR

FH G T I8 HTTP f s il > 27 2 7 1t e’v’@ﬁﬁl i i

(7@ o § £ B checksum » F iR TR @ L R AT
et E0F 2 F 2 mﬁ%’?ﬂﬁlwﬁﬂﬁﬁ%/ﬂﬂﬁ PR R
ZEIENY SR PREETEPBEIRE - &L Iﬁ‘;ﬁiﬁﬂﬁﬂ’pﬂ%{{’ -

miER R IR R
c A CPU S s fp > A Z R enE i E & o & B FIEpgL 55 o

CIRMPBET L@ ERE G 2R AT S TR AR S ek

Ei?##&éiﬂ:f ‘.}HJK/fET:,&Z."‘E)‘?Tmﬁga'%‘ ‘T‘F‘L
pail

—

- REH20 SEEHFAE AT Eéfjftfiﬂiﬁ °
» 0 R B R AL B LY e p & K Cluster Peer(CP)~ i - CP 1 %+ - fd 5
TOE L@ 3 feih Peer o @ 4 < i Cluster Overlay T #3 MP 975 740 100 0 JF
B F LR - B AT RETER FUAFE LB LR
BRGNS om X FHESF A B> CP enSP» € #4R 1F— i Storage Pool » @ 7 §_
Hipehig w88 3T EREBF R APy §ERPEFRS PEDTE S kb
PR (TpE R o
FHECP % F¥7 Ui SSH(w F# 8 F root %75) > & L F L% K4 SP
PR RES LB 2 p BN o 3NF RSP Mg B0 4o r CPoCP Y
fedg g (Fie— BESP e MP b s 4 R 49iE ﬁ;%#ﬁ = B SP SR TR {7 p T o
I%Iw:};égiﬁCP#tf%;ﬁﬁ%%"%ﬁﬁ#'lv PRI 4ok T RATHE G &8 ik X K
GRPFIE - R 0 Pl SSH BAB o S A AATA S F X K SP o 3R 533K CP #-H p ok
)x%‘;ﬁl_o
¥obo EEdp s 2 L B4p 4 A 5 (Clustered Shell) 2 CP 3% i endd skt it > jogr g
TERG - Fdp 4 T dg fedp T A7 hd B RT o ALK SP R R
ToORKEFEREIPOroot g B ESSHER - A Ffp LR FAEp R
T AL Bldo- RN AR TRAPP PR B G BFRE
Iﬁ!’:‘ﬁi»"’a%%dﬁifﬁ A0S, Rt TR o R SR T UL RFE R
REZ 3 OS & L B3nw g bl - B CP L -

Cluster Peer

S

Clustered Command™~Clustered Command

— T~

Storage Pool 1 Storage Pool 2

| EDED)

Bl w Cluster Peer 3% & p # 38 % 44

et B SP AR (T 5 AL BecniTiE > MR TR R AT AL
Bhoipt @A - FIAFHELZFAEF R
EEAREFORE 2 e o APERE DL R OS Native 10 API i % ¢ 2% &

FERAAET SRS N o Fptp @ B A3 Linux 22 Windows o iR iRg 7w U

i{ #£ 8 Extension =2 » # F { H i 49 FLIEF o
SEDE RSN E e AT AR b k¢ B ¥ SEE (Logical
Location) % PR5% » ~ fj-%{it/i%‘i?ﬁf FRIAEE on BT 2l > e

E R kRIS 0 A R i N Rk Sy P B o iR P e
FERAR- B SphE B U ALK TR KRR DT o

AP PR e %k Sthe NTFS 2 EXT3 > 48 Windows ¢ £ Unix 48 ¢ § ¢
RA N0 4p 4 did ® o 27 R REG B SN A6 o RIE P A IT LS EEG P

7% 580 RERE P L TR R DR A o Ao BRI R SRR ks e gt B

|1

Lk T AR 0 R TR S e USB B ka0 4 g0 4 - st

=
A

SRR A G F kPR I AR R kR ARy BT o
i d € 5 #& 31 * Cluster Peer(CP)2 SP fif = e feiz = + § gk -P~(Disk Pool)

iT% > BT for om ¥ b - BLA AR R AT R 0 3 e Domain snE R & E 7

&

R FPeG o A2 R E R g R
R A

L SRR R BHAFZRE - A ERF R R
BeF PR o KA Pari}f’ SHSE R T gk (TR o @ % 2 CPU enFiRs A
B3t d e %

Wy EE o Bihlde

FAAAETRRIETH A EFEL A

BB B30 g BAF -E30FBAFT wwEL A RHEEL AFTHRE L1
H o r I RERE 2 250 87439 ¥ U EAPE Sl Gp TR

P AFRE G BN RBITAK S B SRR o

IOManager
Native 10 .
Disk Pools
Module
RemovablelO | Non-Conventional Storage
Module Module
Disks
Tapes, CDROMs Network Filesystems,
Databases

BT TR BREGES 46
3. EEREH

Mg A F 0 A TR s g 0 2 & £538 Google # Ui
MapReduce 7 #-T {7 &2 =% - 2 2 2z MapReduce % # > k £ * &3t m?‘ LA e
Jost oo {5 MapReduce 2 H e FALE LG TR fe Ak B SP Y o &R
MREER AT RERT mé%%ﬁ°ﬁ%%*ﬁMﬁﬁ%ﬂﬁﬁﬁ§%
Mapping > 12 2 Reducing 42 R > @ &2 % 23 e r i3 A L P THER
Reducing cr42 5% 7% » @ 2bd k3L F A&JZ - @ §F % <7 Mapping % Reducing 42 5 i& {7 =
oo FHREIREME S CP AT mLeany AR EiRPREA HFLFLIT 4T
FREE I AT HMP S o Bl B i MapReduce TR T (7 AJZARE o

%22 Globus GSI # & eaRi> » & * CPm?I“'F] y B4 ?ﬁ’x‘ﬁﬁiﬂ;;*g_i % g

21 Globus # & > & %6 Globus kA & k58 H o AP enFohlfige ki, » &
AR f o wH P Globus ehid 2 > £ 3% i GSI (Globus Security Infrastructure) »

BB R @A AL FEE GSI SSL 4 o 4 Flpt E iR & BEARE A G
B REFEROEY FL R R HBR) AR FRE G E - RE B

BREYREFHRY F o ATUR PR BEP R T CP Y oo

11

¥ Globus B & 16 » #73 & B il U3t Jp gl GSI SSL> 4.7 7 4 €7 CPU
fAE - Flit it CP 2 SPapal MR fghdp § €& « XA B il T AR R T

BT UG LB ERERBOPE TR RDOT RS F17 EE R A Globus £ 3%
% Nk B i% o plde a2 F Globus R T o AP R A4 R HTTP 5%
@i * 37 Globus z t& » i{fﬁ;}%ﬁs@ijfiﬁf’%r}l i#* GridFTP - @ %?p#ﬂ La g
globus-job-run == ;% B2 o ¥t R A & Globus e 3 58 0 Blded 7T T AR 2

T R SRER T GHAFTP & B & 8 K 4ci - AR P AR BT o 4 7 sl o

o APl & B K B £ RGE TR e o

Buidden

Bulonpay

Metadata
Bl MapReduce 7 #1-T 7 ¥ 4= %

f*““-}ﬁ&ﬁwgﬁ"ﬂ TOTHRRELAFEL - BER DAL nRAF
g g i ipRAR ER R FVULERE o TR RAGEL R PR TRRRE
TAfh R o LS HEFAG R D FIR S N - E A AR F LA A PR G
A A RGP AR F A6 sl A kkr ey SRB &3 R F F

i
L Web A5 > BT A5 0 FF RSk o B R FELIITA

4

<
g ™

?']?g_y‘ _E:*%gs—/ o P9 7?}\,!, ﬂ’\l——‘r&'f# ‘E‘Jllgléj%}i y Il & ,4 Juf_l-«l»i-ﬂ /‘ ’}"l{t“

f‘m

T4
AL o B A Y A FAREB 0 R 1S ENE R PR AT F B S Aok %
BELELHFAATH HE - AL F ﬂ%w’%ﬁ@’ié’ﬁ@’giﬁ
BT TR D AP &1L foAg fechds 17 > A SRR R g

FEFORAL L it o @ ¥ - BRI FHEIRL o de ¥ o 2 ARE R A ok

xR g A o i@ .5'?;9_1%? PR R LA T T ePL T o

12

YW PR RERFE YA S TR OFH - BEHREE AP H
FhEEF G xE o CRUDFTH » Bow > 1322 > Mﬂf) on FIM At FHPIOEF
fEiEd o A pE g ELp @ % ActiveRecord T B AL R Bo RS > KA P enFoR
¥ 4 APloActiveRecord iz B3 R\ L & . R-E PR A N T RBEFHCF L

& 4_Directory Service) » 42 g 18 — FR > JI* $ 2 Eo L 0 BHF RS
fes A Bt e 2 AT R RS BlAcE év’ﬂfl-i?‘ﬁ%’rj&v Pew Hod A
MR kP Eia URLe ety 0§ E R BB reehm iz BB IR S R S0y
"j‘*'“"’j ME G MPo

- AR F A T o d PP R R WS E TR RS A
FAST R AP RXFIRT FRF AP LE NG FER Y F A ETHR
PpEiE L TOUERE ATEIE OB AEE c APPAEY L kT
g R A A TR PR T BT TR DRI e R F D
Wrgld o pbob 5 T B R EALF Y il 1240 BAhPR A > A P2P AR aiF 5 4=
/G A RnitE o @ AP LA FRERO AFHE B OR Y R R Y FH
HETHERORMAE > BEF P AT r%;ﬁ b oo 3 4% A% g B (Social Network) e
BLE ERY F A iRREORRAFE L X IR RIFEHIEIE M-

Y 25N Bk ML TR R > E BT A2 ok B TR R
FEAMPF* 2RI ERER AL ¥ 3T HE T Y RN Ay

Bk CEFERIFET - THAE L I RFEIRT AR RATUEERT D
- 4a TB"ﬁ‘])i%ﬁ%%,fﬁfvi@_ﬁd?ﬂ:i’ikffu’i EEALE AR
BP0 ip T D WG E K598 7 & Linux 2 Windows » £7F 123E 5 Hic

G AR S T LR L TR AR OB o @R DB T 250 4o FTP Server - & HTTP

RSB 2 %

AR RDR Y FFRAR - HFR DL R DB IREFFL - UL
FT R R B AR AL A s £ TG R S ACL B B 0 blded B £
Bro N AP RE R AR A B REERORG L B2 EFEE AR

b i p e R NFE

BRI F F E a4 ¢ (ACL Policy) » 4o % & g Ak ar - & 5L f gr\)];g

13

AL o fedrk BER VMEFHEIR D i o R PR (X S BRTE IR oA A
et e kb A& AR UniX aoph R R RS R i TR K0 THE
FPH @ | BofErlss aEsn > " #P Metadata, > "z 2>, » T8 »
Metadata ; » T2 2B » | S d A paHEes gt EIHE 4 F2 227
K- BARE AR AR FLGRDH N o BIKPFRT R R ARG 4
L ripdl A HEE R 2P A ARSI AR HR A B

EX MG T AR R LA 4o SRB @ A (TR AL kAo
G e 8- § r e (PR EBES Y L o MCAT RIRE » 27 B & B
R R R BTt RRead (T & 50 §o8 - 2 5 oSRB+ & 2 Globus

§ 0 GSIen U BT L AR e P AP Y FREFHE - & GSl o
W AL E Y GFREORASFTLEEL L oAk R R E R DR E
By 4 0 AP - FIEL -

BRI e e SR B b BN A F) 5 HTTP 2 20 A s fa e o
—HAFRT o ERBREEFTIRED 0 5P SSL BT 0 Y N EZ S8
XA A2 A BRE . H FEERF SSLi R > ¥ E 3% SP ¥ v
G P> g2 THREHRE -SSL AR 2> {9 3% SP BFIEELHAE » A SP
ERLEEMPEFERE - LERLEL > ¢ 3w d MP A 4 ¢ Session Key o 4opt 72 &
BiEAF- B MP TSPy 2 3 & € 4riui o % Client 7z T 350 14 > Session Key
EAGE o Bl BT b R

TR OERE S - R f{tﬁﬁf sl S IR
BEFINEDE VA MP PR R Y ARSI A O MP sk
F) 4 3 session key chE = 5 { K o Fp H - E»ﬁv%@,ﬁ}g?ﬂ&%‘#é MP.o ¥ —
BEE BB Rl S R g 4 R TR SRR iR TS S it
HH R 2 AP KT SR SICPU f

14

Other SP/Client SP1 MP

Authentication (No Certificate Validation)y——

Authentication (No Certificate Validationy——|

47
A

Session Key- -t Session Key-

SP2

Request data with session key—————»
NO SSL

- Data

Disconnect »

[<¢———Reset Key Status———

\

Bl- HTTP 2 %0z 1541

R B R

APEEHTHERREDRY /DT UEY A FE L DR RESRRT] - AN g
T AR oG - B SR & g ATeh Replica & 2H(1 T FEH]LCIlent)Q JEF AL e ¥

¢ i hffReplica & BhFe P T 4% % pF > Client § i 0“7 & oenif i 36 Broker » if i
TE SR EER ,;\,—rg\.mqg E VA ABMene s s 5 UM R ;%%\‘—ff‘i“ PO B
SE& {08 A kT 4 Broker £ 4 % RLS(Replica Location Server)# # 34 4p B
Replica & gLchF 30 - @ 4% Replica chiz § ~ = T ¢ IMB 8 i~ & & {v Replica & client
2 R erdf B o Broker B8 4p B 318 > § i client #T& foenif 2 k3B MR R &
LEET S5 MB bk o £ 4 client 4 % & Replica ™ $* 4L - Bl N 4
FAAPASBRAE TREY DAL @R EE - A AT ET A

e
POl TRANEIR LG A SHMIFREERA AL R L H TR

B R

F}-

\

S PR AT O R T AL AR o T AT g0k o A0 B PR s
EEA

15

Replica 3

Replica 2

0.065T/M

Replica 1

0.025t/M Client

Broker

B~ R R AR R R
AN B R A EE] ARG 2 FHEPRFHEIT A F 2 F L P
R RS fhd T S A AR T NP R T 5k o
PR N & RS AHE T - L H 05 B Replica AP & 57 T
g %~] Capability;» £ RS & k5 > d &) & &~ B 425 H Replica> & 3| &
BAH% A) ¥ &o7E 0 Replica ™ § = & » p|#7iE ¢ Replica T &7 = & 4| pF ¥
NE] RRT AT iu*%;%ﬁvReplica B L o
U F AR ARE TP AP TR R R 2 e A 2 R YR
PeipER i fg s T g*é,it o B2 e & H_3K Client €& B Replica ™ FA
Al ERT R R S TR T e AR £ 204 ehd & > F]E B Replica T ft e
AR < P8 - fk > & B replica 8¢ - BRE o SO HEBAFRR > AP
#5 B Replica 2 - BAS A S AGMABE R > HTUFEZEARA R
kg chReplica B g B o e A p L S B RE R - BRE AP
BELFEFFETT RS AL U A > LR & P o
Lty RA T OLE T Rt AR c APER N EF BEE L auE
ﬁ%’ﬁ§Wﬁ§?ﬂﬁﬁmolf*?ﬁﬁ—ﬁﬂﬁyﬁﬁ¥ﬁﬁﬁ’ﬁ#$@

WEAR Y K G R Web PR7E -

Btk
A qm s W3C e Web 4p B 4kiie s 2 3 PP R B 2 5 AH T TR e
PAFH O AEEG A ENMF RS PO HMOB R o a BTG TR

16

% -Storage Resource Broker(SRB) » i& {7 sip et e o pb b A W5 Fipe s b i (7
A leﬂ*%%’ﬂyﬁﬁﬁﬁgﬁﬁﬁi@’&ﬁéﬁ%ﬂﬁ%ﬁ;$3
Beo W APEEFRAMBBUET ORGE LET SN AR B2 B
FELEFERRIG L L héﬁ«%kouvhﬁwﬁtumrT@wﬁé’iﬁ;
aﬁaﬁﬂ;ﬁ°ﬂ”3”ﬁwﬁ ‘ﬂF1+é#ﬂfﬁwﬁAm’ualnpaﬂa##

oo PR R AT AR B T o T fﬂ?ﬁ””iﬁwﬂﬁﬁnﬁé#”‘ A
et 3t L 48 Web JR7% > i@ % &7 e ig * _%zm%? foo g S AV E B G
kﬁ{i%ﬁﬁﬁ: FALBY FF DA FAR(QOS) HE- A KT N

B E R RS
A fpic . MapReduce @B FRASEIH Y » ¥ 2 e & AT kS
A CFERAARARTRARTY BN A5 0 R S HBE IS REFTR
BT GET AT S SRR 1Y TR RO RO 5
Tl 2 i EE FRAGRE > FEAFHOL GRS c BT AL HE H
BRSO TR L TR GREEEY S EE ESERS B RS
oo gt h s AL R G P2P 2 Web i s KA

B w R TR !
A AR SR A TR B R R BUR R p S SRy g
$ % 4 4 iL o IRODS i 320 3§ 4
Meitd GEIEF TR o R RRAIFTHREGIGH F TRE-

Bx
*’§@7“GV¢§§@°¢%”W“WBON‘ﬁﬁﬁﬁ%wﬁmﬁwﬁﬂ°§%a
* &

4
4
=1
F_‘-
%ﬂ;
fa)
|l
et
I
G
|l
a4
A
k-

T APRFRAFELL S5

AN S S % R

A B A FAAIE R BB

2o A & 2 A

= P2P % 314541

AARBMEGIRES BT L AN LR
&%t SRB if (7 pTan et g & Burt i Rl

%% CP e 305 454

B R L bR T TR e et

ZREBRPERHFE A5 7 WEB s ER* 42554 g (APIS)

f
R Al R LR R ;ﬂ & (TR

17

® A AR R A BB R i
%#ﬁwﬂﬁﬁ CE BT K A5 & Web IRiE
® & 4 SClIE=H

v Ching-Hsien Hsu, Hai Jin and Franck Cappello, “Peer-to-Peer Grid Technologies™ ,Future
Generation Computer Systems(FGCS), Vol. 26, No. 5, pp. 701-703, 2010.

v" Ching-Hsien Hsu, Yun-Chiu Ching, Laurence T. Yang and Frode Eika Sandnes, “An Efficient Peer
Collaboration Strategy for Optimizing P2P Services in BitTorrent-Like File Sharing Networks”
Journal of Internet Technology (JIT), Vol. 11, Issue 1, January 2010, pp. 79-88. (SCIE, EI)

v Ching-Hsien Hsu and Shih Chang Chen, “A Two-Level Scheduling Strategy for Optimizing
Communications of Data Parallel Programs in Clusters” , Accepted, /lnternational Journal of
Ad-Hoc and Ubiquitous Computing (IJAHUC), 2010. (SCIE, EI, IF=0.66)

v' Ching-Hsien Hsu and Bing-Ru Tsai, “Scheduling for Atomic Broadcast Operation in
Heterogeneous Networks with One Port Model,” The Journal of Supercomputing (TJS), Springer,
Vol. 50, Issue 3, pp. 269-288, December 2009. (SCIL, EI, IF=0.615)

® %6k REFHEH

v' Ching-Hsien Hsu, Alfredo Cuzzocreaand Shih-Chang Chen, "CAD: Efficient Transmission
Schemes across Clouds for Data-Intensive Scientific Applications”, Proceedings of the 4th
International Conference on Data Management in Grid and P2P Systems, LNCS, Toulouse,
France,August 29-September 2, 2011.

v Tai-Lung Chen, Ching-Hsien Hsu and Shih-Chang Chen, “Scheduling of Job Combination and
Dispatching Strategy for Grid and Cloud System,” Proceedings of the 5th International Grid and
Pervasive Computing (GPC 2010), LNCS 6104, pp. 612-621, 2010.

v Shih-Chang Chen, Tai-Lung Chen and Ching-Hsien Hsu, “Message Clustering Techniques
towards Efficient Communication Scheduling in Clusters and Grids,” Proceedings of the 10th
International Conference on Algorithms and Architectures for Parallel Processing ICA3PP 2010),
LNCS 6081, pp. 283-291, 2010.

v Shih-Chang Chen, Ching-Hsien Hsu, Tai-Lung Chen, Kun-Ming Yu, Hsi-Ya Chang and Chih-Hsun
Chou, “A Compound Scheduling Strategy for Irregular Array Redistribution in Cluster Based
Parallel System,” Proceedings of the 2nd Russia-Taiwan Symposium on Methods and Tools for
Parallel Programming (MTPP 2010), LNCS 6083, 2010.

v Ching-Hsien Hsuand Tai-Lung Chen, “Adaptive Scheduling based on Quality of Services in
Heterogeneous Environments” , IEEE Proceedings of the 4"International Conference on
Multimedia and Ubiquitous Engineering (MUE), Cebu, Philippines, Aug. 2010._

v' Ching-Hsien Hsu, Yen-Jun Chen, Kuan-Ching Li, Hsi-Ya Chang and Shuen-Tai Wang, "Power
Consumption Optimization of MPI Programs on Multi-Core Clusters" Proceedings of the 4th ICST
International Conference on Scalable Information Systems (InfoScale 2009), Hong Kong, June,
2009, Lecture Notes of the Institute for Computer Science, Social Informatics and
Telecommunications Engineering, (ISBN: 978-3-642-10484-8) Vol. 18, pp. 108-120, (DOI:
10.1007/978-3-642-10485-5_8) (EI)

N

ﬁﬁﬁ@%w,uaCPaﬁﬁéﬁaﬁkﬁﬂ%%
AFREIE AR R TR E2 TR
ﬂ#%%wmﬁﬂﬂmvﬁfﬁpﬁéﬁv°#N%¢%

18

=
7N

(1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

Ao H [21)4 210 P2P ek P B ISP i 3B iE L ehBr o v [22]8 A Rt TR
et foed s A andiFo 32 [23]3 07 B F e LR #ehipr o d
BRAENEHIPAF A E AT M F TS % FHAR P52 20865
Bz P

AFEF PR A ORHRFE LS B BT AT R kR
FER A OER R ERBBEOEE Vb o f AR
FEaRLE > AR EF BB

\g;—‘g’é)FJe

W3C Standards http://www.w3.org/

[2] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, Steven Tuecke “The Data
Grid: Towards an Architecture for the Distributed Management and Analysis of Large Scientic
Datasets,” Journal of Network and Computer Applications, 2000

[3] Arcot Rajasekar, Michael Wan, Reagan Moore, George Kremenek, Tom Guptil “Data
Grids, Collections, and Grid Bricks,” Proceedings. 20th IEEE/11th NASA Goddard Conference
on Mass Storage Systems and Technologies, 2003. (MSST 2003).

[4] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, Christos Kozyrakis
“Evaluating MapReduce for Multi-core and Multiprocessor Systems,” Proceedings of the 2007
IEEE 13th International Symposium on High Performance Computer Architecture

[5] Ching-Hsien Hsu and Chih-Chun Chang, “QoS and Economic Adaptation Scheduling for
Bag-of-Task Applications in Service Oriented Grids”, Accepted, Journal of Internet
Technology (SCI), 2009

[6] Ching-Hsien Hsu, Chi-Guey Hsu and Shih-Chang Chen,“Efficient Message Traversal
Techniques towards Low Traffic P2P Services”, Accepted,International Journal of
Communication Systems (SCI), 2009

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach Mike
Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber “Bigtable: A Distributed Storage
System for Structured Data,” 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2006, pp. 205-218

[8] Gurmeet Singh, Shishir Bharathi, Ann Chervenak, Ewa Deelman, Carl Kesselman,Mary
Manohar, Sonal Patil, Laura Pearlman “A Metadata Catalog Service for Data Intensive
Applications,” Proceedings of the 2003 ACM/IEEE conference on Supercomputing.

[9] Ton Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishna “Chord: A
Scalable Peertopeer Lookup Service for Internet Applications,” Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer
communications.

[10] [10] Jeffrey Dean and Sanjay Ghemawat ‘“MapReduce: Simplied Data Processing on Large

Clusters,” OSDI'04: Sixth Symposium on Operating System Design and Implementation, 2004,
pp. 137-150.

[11] [11] Jeffrey Dean “Experiences with MapReduce, an abstraction for large-scale computation,”

Proc. 15th International Conference on Parallel Architectures and Compilation Techniques,
2006, pp. 1.

[12] [12] Jiannong Cao and Fred B. Liu “P2PGrid: Integrating P2P Networks into the Grid

Environment,” Concurrency and Computation: Practice and Experience, 2007

[13] [13] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic, Manfred

Hauswirth, Magdalena Punceva, Roman Schmidt “P-Grid: A Self-organizing Structured P2P
System,” SIGMOD Record, 32(2), September 2003.

[14] [14] Karl Aberer, Anwitaman Datta, Manfred Hauswirth “P-Grid: Dynamics of

self-organization processes in structured P2P systems,” Peer-to-Peer Systems and Applications,
Lecture Notes in Computer Science, LNCS 3845, Springer Verlag, 2005.

[15] [15] Michael Wan, Arcot Rajasekar, Reagan Moore, Phil Andrews “A Simple Mass Storage

19

http://www.w3.org/

[16]
[17]
(18]
[19]
[20]

[21]

[22]

(23]

[24]

[25]

(26]

System for the SRB Data Grid,” Proceedings. 20th IEEE/11th NASA Goddard Conference on
Mass Storage Systems and Technologies, (MSST 2003), 2003.

[16] Mike Burrows “The Chubby lock service for loosely-coupled distributed systems,” 7th
USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2006.

[17] N. Santos and B. Koblitz “Distributed Metadata with the AMGA Metadata Catalog”
Workshop on Next-Generation Distributed Data Management

[18] N. Santos and B. Koblitz ‘“Metadata Services on the Grid,” Proceedings of the X
International Workshop on Advanced Computing and Analysis Techniques in Physics Research.
[19] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung “The Google File System,”
Proceedings of the 19th ACM Symposium on Operating Systems Principles, 2003, pp. 20-43.
[20] Tim Oreilly “What is Web 2.0: Design Patterns and Business Models for the Next
Generation of Software,” Communications & Strategies, No. 1, p. 17, First Quarter 2007

[21] Ching-Hsien Hsu, Yun-Chiu Ching, Laurence T. Yang and Frode Eika Sandnes, “An Efficient Peer
Collaboration Strategy for Optimizing P2P Services in BitTorrent-Like File Sharing Networks”, Journal of
Internet Technology (JIT), Vol. 11, Issue 1, January 2010, pp. 79-88.

[22] Ching-Hsien Hsu and Shih Chang Chen, “A Two-Level Scheduling Strategy for Optimizing
Communications of Data Parallel Programs in Clusters”, Accepted, International Journal of Ad-Hoc and
Ubiquitous Computing (1JAHUC), 2010.

[23] Ching-Hsien Hsu and Bing-Ru Tsai, “Scheduling for Atomic Broadcast Operation in Heterogeneous
Networks with One Port Model,” The Journal of Supercomputing (TJS), Springer, Vol. 50, Issue 3, pp.
269-288, December 2009.

[24] Tai-Lung Chen,_Ching-Hsien Hsu and Shih-Chang Chen, “Scheduling of Job Combination and
Dispatching Strategy for Grid and Cloud System,” Proceedings of the 5th International Grid and Pervasive
Computing (GPC 2010), LNCS 6104, pp. 612-621, 2010.

[25] shih-Chang Chen, Tai-Lung Chen and Ching-Hsien Hsu, “Message Clustering Techniques towards
Efficient Communication Scheduling in Clusters and Grids,” Proceedings of the 10th International
Conference on Algorithms and Architectures for Parallel Processing (ICA3PP 2010), LNCS 6081, pp.
283-291, 2010.

[26] Shih-Chang Chen, Ching-Hsien Hsu, Tai-Lung Chen, Kun-Ming Yu, Hsi-Ya Chang and Chih-Hsun Chou,
“A Compound Scheduling Strategy for Irregular Array Redistribution in Cluster Based Parallel System,”
Proceedings of the 2nd Russia-Taiwan Symposium on Methods and Tools for Parallel Programming (MTPP
2010), LNCS 6083, 2010.

20

HFERENE RO FRE

2+ A z F| e P2P 22 Web i B 2 SOA & A crfe e @ A o 88 & (g AR
B £ % 5L | NSC 97-2628-E-216-006-MY3
N A
BB B | PRSI TR AT
N N
¢ % , _ | The 2nd Russia-Taiwan Symposium on Methods and Tools of Parallel
' : (s Programming Multicomputers (MTPP 2010)
€ R/ PER 8L | A S, B Rt / 2010.05. 16-19
. o A Compound Scheduling Strategy for Irregular Array
* A o< P .
Redistribution in Cluster Based Parallel System

foe § R

R TR
2010/05/16 (£5)
10:00 &I3FHF)
11:00 2aiHzEsdl CEH)
(F)
6:00 committee meeting
(1)
7:00 2fECIZ S
2010/05/17 (£F)

9:00 FEFEGH
9:10 ¥EHY Parallel Algorithm fHEAERSC2E S
11:00 #2HY Models and Tools #[E#&m 8855

(F4)
2:00 §%Hy Parallel Programming FH8 5 383

21

2010/05/18 (L)
9:00 =&Fim
11:00 §2HY System Algorithm HHREE RS 357

(F4)

2:00 §%5Hy Numerical simulation fH[Ezm 285
4:00 £ Far East National University
(%% F)

7:00 e

2010/05/19 (%)
9:00 §5HY Simulation FHEEZR 25

MTPP-10 E 5 Mg & T A B 7 4R A & a3t § o i2— = 2 MIPP-10 » & 4
T g RRAZLA ,%7 FRAMAL SRt A EHE S R RS
TP AR A E 0T
e ¥ MTPP-10 *% 5 % FAPEFTAET XS L A EHY o RPN
RS POELR G RE IEE L@ % RSB A P S e S
o A ,a;:g B AT S S X NFEFANE R B BB TR R
m%iﬂ ’ é’mfﬁ]%* #ar 2 E (2010 #)8 P BerE B L E T B F L R nE T

iz— & & Vladivostok, Russia *7# {7 s £ iF 3t € mAxA L e X c B EF X
d B .?a}%”r"v w 77 General Co-Chair » RSA i Victor E. Malyshkin #t#% » £ x4 & W[50
Frens 3G Avigs % - B MIPP 2010 R3¢ c #F 2B 58 B ¢ Roiniz > » K
A wme g A RLRFR AR Y RRAB L LT A F LI LGRS
= ® kA4 B = L &~ 3 4 (A Compound Scheduling Strategy for Irregular Array
Redistribution in Cluster Based Parallel System) - & % i & ZE P~ Parallel and
Distributed -~ Grid ~ Cloud ¥ Multicore #pMF % > FRE L % 37842097 7 1 48 »
FOfER N E ARG e o B - X 0 A RS § B R DRI F A
FERE P FE S ,-’f—‘-/pﬂ HEP G o ipH - AW A hF SF g o

AP - B CHRERETEE CRE S cHRY REAF - B30 EIY B

150 o » BMAARKIIEBANEiEH A Lo 23 Fhm 2 LE 15 BEFAE -
P S \;Fg ERR SN =8 =S M SN Y FERN: - R s IO ’ﬁﬁi}”ﬁlofﬁgﬁﬂﬁfiﬁ‘!é}ﬁ? °
B - #end > 5- X ahe FAPE BT Springer LNCS ehdiax > # 2 4 EI 2351 - i5-
BRI EEF2anhc o ARPS ¢ EIREaRE o

22

=)
1=
=
~
o
=23
=
=

23

A Compound Scheduling Strategy for Irregular Array Redistribution in Cluster
Based Parallel System

Shih-Chang Chen®, Ching-Hsien Hsu?, Tai-Lung Chen®, Kun-Ming Yu?,
Hsi-Ya Chang® and Chih-Hsun Chou®*

! College of Engineering
2 Department of Computer Science and Information Engineering
Chung Hua University, Hsinchu, Taiwan 300, R.O.C.

3 National Center for High-Performance Computing, Hsinchu 30076, Taiwan
{scc, robert, tai}@grid.chu.edu.tw, yu@chu.edu.tw, jerry@nchc.org.tw, chc@chu.edu.tw

Abstract. With the advancement of network and techniques of clusters, joining clusters to
construct a wide parallel system becomes a trend. Irregular array redistribution employs
generalized blocks to help utilize the resource while executing scientific application on such
platforms. Research for irregular array redistribution is focused on scheduling heuristics
because communication cost could be saved if this operation follows an efficient schedule. In
this paper, a two-step communication cost modification (T2CM) and a synchronization
delay-aware scheduling heuristic (SDSH) are proposed to normalize the communication cost and
reduce transmission delay in algorithm level. The performance evaluations show the
contributions of proposed method for irregular array redistribution.

1 Introduction

Scientific application executing on parallel systems with multiple phases requires appropriate data
distribution schemes. Each scheme describes the data quantity for every node in each phase. Therefore,
performing data redistribution operations among nodes help enhance the data locality.

Generally, data redistribution is classified into regular and irregular redistributions. BLOCK, CYCLIC
and BLOCK-CYCLIC(c) are used to specify array decomposition for the former while user-defined function,
such as GEN_BLOCK, is used to specify array decomposition for the latter. High Performance Fortran
version 2 provides GEN_BLOCK directive to facilitate the data redistribution for user-defined function. To
perform array redistribution efficiently, it is important to follow a schedule with low communication cost.

With the advancement of network and the popularizing of cluster computing research in campus, it is a
trend to join clusters in different regions to construct a complex parallel system. To performing array
redistribution on this platform, new techniques are required instead of existing methods.

Schedules illustrate time steps for data segments (messages) to be transmitted in appropriate time. The
cost of schedules given by scheduling heuristics is the summation of cost of every time steps while cost of
each time step is dominated by the message with largest cost. A phenomenon is observed that most local
transmissions, which are happened in a node, do not dominate the cost of each step although they are in
algorithm level for existing methods. In other words, they are overestimated. Since a node can send and
receive only one message in the same time step [5], the arranged position of each message becomes
important. Therefore, a two-step communication cost modification (T2CM) and a synchronization
delay-aware scheduling heuristic (SDSH) are proposed to deal with the overestimate problems, reduce
overall communication cost and avoid synchronization of schedules in algorithm level.

24

The rest of this paper is organized as follows: Section 2 gives a survey of existing works related to array
redistribution. Section 3 gives notations, terminology and examples to explain each parts of scheduling
heuristics. The proposed techniques are described in section 4. Section 5 presents the results of the
comparative evaluation, while section 6 concludes the paper.

2 Related Work

Array redistribution techniques have been developed for regular array redistribution and GEN BLOCK
redistribution in many papers. Both kinds of redistribution issues require at least two sorts of techniques.
One is communication sets identification which decomposes array for nodes; the other one is communication
scheduling method which derives schedules to shorten the overall transmission cost for redistributions.
ScaLAPACK [9] was proposed to identify communication sets for regular array redistribution. Guo et al.
[2] proposed a symbolic analysis method to help generate messages for GEN BLOCK redistribution. Hsu et
al. [3] proposed the Generalized Basic-Cycle Calculation method to shorten the communication for
generalized cases. The research on prototype framework for distributed memory platforms is proposed by
Sundarsan et al. [11] who developed a method to distribute multidimensional block-cyclic arrays on
processor grids. Karwande et al. [8] presented CC-MPI with the compiled communication technique to
optimize collective communication routines. Huang et al. [6] proposed a flexible processor mapping
technique to reduce the number of data element exchanging among processors and enhance the data locality.
To reduce indexing cost, a processor replacement scheme was proposed [4]. With local matrix and
compressed CRS vectors transposition schemes the communication cost can be reduced significantly.
Combining the advantages of relocation scheduling algorithm and divide-and-conquer scheduling algorithm,
Wang et al. [12] proposed a method with two phases for GEN BLOCK redistribution. The first phase acts
like relocation algorithm, but the contentions avoidance mechanism of second phase will not be proceeded
immediately while contentions happened. To minimize the total communication time, Cohen et al. [1]
supposed that at most k communication can be performed at the same time and proposed two algorithms
with low complexity and fast heuristics. A study [7] focusing on the cases of local redistributions and
inter-cluster redistribution was given by Jeannot and Wagner. It compared existing scheduling methods and
described the difference among them. Rauber and Runger [10] presented a data-re-distribution library to
deal with composed data structures which are distributed to one or more processor groups for executing
multiprocessor task on distributed memory machines or cluster platforms. Hsu et al. [5] proposed a
two-phase degree-reduction scheduling heuristic to minimize the overall communication cost. The
proposed method derives each time step of a complete schedule by performing degree reduction technique
while the number of messages of each node representing the degree of each vertex in algorithm level.

3 Preliminary

Following are notations, terminology and examples to explain each parts of scheduling heuristics for
GEN_BLOCK redistribution. To improve data locality, multi-phase scientific problems require appropriate
data distribution schemes for specific phases. For example, to distribute array for two different phases on
six nodes, which are indexed from 0 to 5, two strings, {13, 20, 17, 17, 12, 21} and {16, 18, 13, 16, 29, 8},

25

are given, where the array size is 100 units. These two strings provide necessary information for nodes to
generate messages to be transmitted among them. Fig. 1 shows these messages marked from m; to my; and
are with information such as data size, source node and destination node in the relative rows.

Scheduling heuristics are developed for providing solutions of time steps to reduce total communication cost
for a GEN BLOCK redistribution operation. In each step, there are several messages which are suggested to
be transmitted in the same time step. To help perform an efficient redistribution, scheduling methods
should avoid node contention, synchronization delay and redundant transmission cost. It is also important
to follow policies of messages arrangement, i.e. with the same source nodes, messages should not be in the
same step; with the same destination nodes, messages should be in different step; a node can only deal with
one message while playing whether source node or destination node. These messages that cannot be
scheduled together called conflict tuples, for example, a conflict tuple is formed with messages m; and m,.
Note that if a node can only deal with a message while it is a source/destination node, the number of steps for
a schedule must be the equal to or more than the number of messages from/to these nodes. In other words,
the minimal number of time steps is equal to the maximal number of messages in a conflict tuple, CTax.

Information of messages ‘

No. of Data Source Destination
message size node node
my 13 0 0
m, 3 1 0
ms 17 1 1
my 1 2 1
ms 13 2 2
mg 3 2 3
m; 13 3 3
Mg 4 3 4
Mg 12 4 4
Mo 13 5 4
my; 8 5 5

Fig. 1. Information of messages generated from given schemes to be transmitted on six nodes which are indexed from 0 to 5

Fig. 2 gives a schedule with low communication cost and arranges messages in the number of minimal steps.
In this result, there are three time steps with messages sent/received to/from different nodes. The values
beside m;-;; are data size, the cost of each step is dominated by the largest one. Thus, ms, m; and mg
dominate step 1, 2 and 3, and the estimated cost are 17, 13 and 4, respectively. To avoid node contentions,
messages m; and m; are in separate steps due to destination nodes of both messages are the same. Based on
same argument, m, and mg are in separate steps due to both messages are members of a conflict tuple. The
total cost which represents the performance of a schedule is the summation of all cost of steps. In other
words, a schedule with lower cost is better than another one with higher cost in terms of performance.

26

Avresult of scheduling heuristics ‘

No. of step No. of message Cost of step
Step 1 m3(17), ms(13), m7(13) , my(13) 17
Step 2 my(13), me(3), me(12), my;(8) 13
Step 3 my(3), my(1), mg(4) 4

Total cost 34

Fig. 2. A result of scheduling messages with low communication cost and minimal steps

The result in Fig. 2 schedules messages in three steps, which is the number of minimal steps or CTyax. The
total cost is small which representing low communication cost due to messages with larger cost and
messages with smaller cost are in separate steps. However, the schedule can still be better by providing a
cost normalization method and a new scheduling technique to avoid synchronization delay among nodes
during message transmissions in next section.

4 The Proposed Method

In this paper, a two-step communication cost modification (T2CM) and a synchronization delay-aware
scheduling heuristic (SDSH) are proposed to normalize the communication cost of messages and reduce
transmission delay in algorithm level. The first step of T2CM is a local reduction operation, which deal
with the message happened in local memory. In other words, candidates are transmissions whose source
node and destination node are the same node. For example, m;, mz, ms, mz, mg and my; are such kind of
transmissions which happened inside nodes. The second step is a inter amplification method, which is
responsible for transmissions happened across clusters. Assumed there are two clusters, and node 0~2 are
in cluster 1, other nodes are in cluster 2. Then mg is such message which is transmitted from cluster 1 to
cluster 2. Both operations are responsible for different kind of transmissions due to the heterogeneity of
network bandwidth. The local reduction operation reduces simulated cost of messages to 1/8 which is
evaluated from PC clusters that connected with 100Mbps layer-2 switch. On same argument, inter
amplification operation increases cost of messages five times. The cost then becomes more practical for
real machines when scheduling heuristics try to give a perfect schedule with low communication cost. For
previous research, the difference does not exist in algorithm level of scheduling heuristics in and could result
in erroneous judgments and high communication cost.

Fig. 3 gives the results of local reduction and inter amplification operations modifying data size for
messages mi-11. The given schedule in Fig. 2 becomes the results in Fig. 4. Difference of Fig. 2 and Fig.
4 shows the schedule could be improved and explains the explain the erroneous judgments. First, the
dominators in step 1 and 2 are changed to others whose estimated cost is larger in Fig. 4. For example, the
m3 and m; are replaced by my, and mg for both steps, respectively. Second, the cost of step 1 and step 2 are
changed due to new dominators are chosen in both steps. Furthermore, the synchronization delay is small
in algorithm level but results in more node idle time in practical. For instance, the cost of ms, ms, m; and
myo are 17, 13, 13 and 13 are close to each other in step 1 in Fig. 2. But it is quite different in practical in

27

Fig. 4, they should be 2.125, 1.625, 1.625 and 13, respectively. Node 1, 2 and 3 must wait for node 4 and 5
to proceed next step because when the transmissions of ms, ms and m; are finished, the transmission of myg is
still on the way.

Information of messages

No. of Data Source Destination
message size node node
m; 1.625 0 0
m, 3 1 0
ms 2.125 1 1
my 1 2 1
ms 1.625 2 2
me 15 2 3
m; 1.625 3 3
mg 4 3 4
mg 15 4 4
My 13 5 4
my; 1 5 5

Fig. 3. The local reduction and inter amplification operations derive new data size for messages m;_;;

Aresult of scheduling heuristics

No. of No. of Cost of
step message step
Step 1 m3(2.125), ms(1.625), m7(1.625), mo(13) 13
Step 2 m;(1.625), mg(15), mg(1.5), my;(1) 15
Step 3 my(3), My(1), mg(4) 4
Total cost 32

Fig. 4. The results with new dominators and cost

The proposed synchronization delay-aware scheduling heuristic is a novel and efficient method to avoid
delay among clusters and shorten communication cost while performing GEN BLOCK redistribution. To
avoid synchronization delay, the transmissions happened in local memory are scheduled together in one
single step instead of separating them among time steps like the results in Fig. 4. Other messages are
pre-proceeded by inter amplification and then scheduled by a low cost scheduling method which selects
messages with smaller cost to shorten the cost of a step and avoid the node contentions. Fig. 5 shows the
results of SDSH which is with low synchronization delay and is contention free. There are two reasons
making the results in Fig. 5 better than the results in Fig. 4. First, SDSH successfully avoids
synchronization delay by congregating m;, ms, ms, mz, mg and my; in step 3. It also helps reduce the cost of
a step. Second, messages mg and mjo are the most important transmissions in the schedule due to their
communication cost can dominate any steps. It is a pity that they are separated in two steps in Fig. 4 due to
the node contentions. For example, it is impossible to move mg to step 1 to shorten the cost of step 2 due to

28

ms and my;. The message ms owns node 2 as source node and so does mg. Both messages cannot be
scheduled in the same step. Similarly, mg and m; cannot be scheduled together due to destination node.
On same argument, it is impossible to move my to step 2 due to mg and my;. If ms, m7, mg and m;; can be
placed in other step, it would be possible to place mg and myo together to minimize the communication cost
of the results. SDSH successfully places them in step 3 and then schedules mg and myg in step 1 to shorten
the cost of other steps. This operation also successfully avoids node contentions that happened in Fig. 4.

Aresult of the proposed method

No. of No. of Cost of
step message step
Step 1 | my(3), mg(15), Myo(13) 15
Step 2 | my(1), mg(4) 4
Step 3 | my(1.625), m3(2.125), ms(1.625), 2.125
m;(1.625), mg(1.5), M (1)
Total cost 21.125

Fig. 5. A result of proposed method with low synchronization delay and contention free

5 Performance Evaluation

To evaluate the proposed method, it is compared with a scheduling method, TPDR [5]. The simulator
generates schemes (strings) for 8, 16, 32, 64 and 128 nodes, and there are three nodes in a cluster. To
constrain the data size of each node, the lower bound and upper bound of each value in the strings are 1 and
the value that array size divided by the number of nodes, where the array size is 10,000. If the array is
distributed on eight nodes, the lower bound and the upper bound of data size are 1 and 1250 for each node,
respectively.

Fig. 6 shows the results of comparisons between SDSH and TPDR. For each set of node, the number on
the right side represents the cases that SDSH performs better, TPDR performs better or tie cases. In the
simulation results for 8 nodes, the proposed method wins 813 cases which is less than 90% because it is easy
for both methods to find the same results when performing GEN BLOCK redistribution on few number of
nodes. Therefore, the number of tie cases is over than 10%, and is much more than the results of other sets.
When performing GEN BLOCK redistribution with more nodes, SDSH outperforms TPDR, and TPDR loses
over 92% cases in the rest of the comparisons. Note that the proposed method always find the best results
in over 93% cases including the tie cases in all comparisons. It also shows the contribution of SDSH for
shortening transmission cost and avoiding synchronization delay.

29

Results of evaluations

Num. of nodes SDSH TPDR Same
8 813 76 111
16 946 43 11
32 950 48 2
64 914 79 7
128 903 96 1
Percentage 90.52% 6.84% 2.64%
Total 4526 342 132

Fig. 6. The results of both methods on five sets of nodes with 5,000 cases in total

The attributes of generated cases dependents on the number of nodes, for example, higher CTyax and lower
communication cost are with higher number of nodes. It is hard to find the same schedules for two
scheduling heuristics with larger number of nodes. Fig. 7 shows the information of cases which are used to
evaluate the SDSH and TPDR.

Attributes of given cases

Num. of CTan Average Cost of 1,000 cases
nodes CTnax SDSH | TPDR

8 6 3.271 6733580 | 7953932

16 8 3.762 5733523 | 6983753

32 10 4.246 3564076 | 4354899

64 10 4.661 2412444 | 2781670

128 1 5.009 1282008 | 1520884

Fig. 7. Attributes of given cases for five set of nodes

CTmax Of results with 128 nodes is 11 which is almost two times larger than the CTax Of results with 8 nodes.
The average CTmax also grows with higher number of nodes. The total cost of schedules given by both
methods for 1000 cases with different number of nodes explains the contribution of SDSH in Fig. 6. The
proposed method provides better schedules and the improves the communication cost about 15% while
comparing to TPDR. It also explains how SDSH outperforms its competitor. Overall speaking, SDSH is a
novel, efficient and simple method to provide solutions for scheduling communications of GEN BLOCK
redistribution.

6 Conclusions

To perform GEN BLOCK redistribution efficiently, research focused on developing scheduling heuristic to
shorten communication cost in algorithm level. In this paper, a two-step communication cost modification
(T2CM) and a synchronization delay-aware scheduling heuristic (SDSH) are proposed to normalize the
transmission cost and reduce synchronization delay. The two-step communication cost modification

30

provides local reduction and inter amplification operations to enhance the importance of messages. The

SDHC deal with messages separately to avoid synchronization delay and reduce the cost. The performance

evaluation shows that the proposed methods outperforms its competitor in 92% cases and improves about

15% on overall communication cost.

References

(1]
(2]
(3]
[4]

(5]
(6]
[7]
(8]
(9]
[10]

[11]

[12]

Cohen, J., Jeannot, E., Padoy, N., Wagner, F.: Messages Scheduling for Parallel Data Redistribution
between Clusters. IEEE Transactions on Parallel and Distributed Systems 17(10), 1163-1175 (2006)
Guo, M., Pan, Y., Liu, Z.: Symbolic Communication Set Generation for Irregular Parallel Applications.
The Journal of Supercomputing 25(3), 199-214 (2003)

Hsu, C.-H., Bai, S.-W., Chung, Y.-C., Yang, C.-S.: A Generalized Basic-Cycle Calculation Method for Efficient
Array Redistribution. IEEE Transactions on Parallel and Distributed Systems 11(12), 1201-1216 (2000)
Hsu, C.-H., Chen, M.-H., Yang, C.-T., Li, K.-C.: Optimizing Communications of Dynamic Data
Redistribution on Symmetrical Matrices in Parallelizing Compilers. IEEE Transactions on Parallel and
Distributed Systems 17(11), (2006)

Hsu, C.-H., Chen, S.-C., Lan, C.-Y.: Scheduling Contention-Free Irregular Redistribution in
Parallelizing Compilers. The Journal of Supercomputing 40(3), 229-247 (2007)

Huang, J.-W., Chu, C.-P.. A flexible processor mapping technique toward data localization for
block-cyclic data redistribution. The Journal of Supercomputing 45(2), 151-172 (2008)

Jeannot, E., Wagner, F.: Scheduling Messages For Data Redistribution: An Experimental Study. The International Journal of
High Performance Computing Applications 20(4), 443-454 (2006)

Karwande, A., Yuan, X., Lowenthal, D. K.: An MPI prototype for compiled communication on ethernet
switched clusters. Journal of Parallel and Distributed Computing 65(10), 1123-1133 (2005)

Prylli, L., Touranchean, B.: Fast runtime block cyclic data redistribution on multiprocessors. Journal of
Parallel and Distributed Computing, 45(1), 63-72 (1997)

Rauber, T., Rlnger G.: A Data Re-Distribution Library for Multi-Processor Task Programming. International Journal of
Foundations of Computer Science 17(2), 251-270 (2006)

Sudarsan, R., Ribbens, C. J.: Efficient Multidimensional Data Redistribution for Resizable Parallel
Computations. In: Fifth International Symposium on Parallel and Distributed Processing and
Applications, 182-194 (2007)

Wang, H., Guo, M., Wei, D.: Message Scheduling for Irregular Data Redistribution in Parallelizing
Compilers. IEICE Transactions on Information and Sysmtes E89-D(2), 418-424 (2006)

31

HEERENEROERS

L L | s P2P ¥ Web Bt B 2 SOA 5 B Afena e 4 Sod e i)
¥ F % 5| NSC 97-2628-E-216-006-MY3

w2 A WL | HER

m

KB B | PEAREA TR AN

N S
¢ =% . " The 12" IEEE International Conference on Computational Science and
' i v Engineering (CSE-09)

€ &/ B pF R B | Vancouver, Canada / 2009. 08. 29-31

Data Distribution Methods for Communication Localization in Multi-Clusters with

B oA ko ov AP

Heterogeneous Network

foe § R

R] TRSuR
2009/08/29 (L5)

8:00 &iF#;%| - FREE Keynote Speech
Privacy, Security, Risk and Trust in Service-Oriented
Environments by Stephen S. Yau

9:00 #sm L

10:30 §=HY Parallel Algorithm 18z 02835

(F4)

1:00 BREE Keynote Speech
Elections with Practical Privacy and Transparent Integrity by David
Chaum

2:00 ZEHY Grid ComputingMHHEm S 3%

3:30 FFF Session

(e _£)
7:30 SRR

32

2009/08/30

(L£F)
9:00 E3HE Keynote Speech

Cache-Aware Scheduling and Analysis for Multicores by Wang Yi
10:30 F=HY P2P tHEA R SR

(F%)

1:00 BREE Keynote Speech
Network Analysis and Visualization for Understanding Social
Computing by Ben Shneiderman

2:15 £:fjiPanel discussion

3:45 TFf Session

(i)
7:30 MG

2009/08/31

(L£F)

8:00 E3HE Keynote Speech
White Space Networking - Is it Wi-Fi on Steroids? by Prof. Victor
Bahl

10:30 f=Hy Network Management FH 8 & S 253=

(F%)

1:30 BAEE Keynote Speech
Computational Science and Engineering in Emerging
Cyber-Ecosystems by Prof. Manish Parashar

2:00 T:FF Session

i#- =% % Vancouver, Canada *7# 7R A g R1 PP =2 X c = XA X 1T X
ETF FREBAGE > L8 - B RAEDE i%‘f%“ff BALHA ¥ - 2 #0 Dr

Stephen S. Yau (Arizona State University, USA)#2 David Chaum 4 %] 44+ Privacy, Security,
Risk and Trust in Service-Oriented Environments f= Elections with Practical Privacy and
Transparent Integrity &+ & 3870 B 73t ¢ 0/ % > &7 %5 X 4 & %5 Wang Yi (North
Eastern University, China) ~ Ben Shneiderman ~ Dr. Fei-Yue Wang ~ Prof. Victor Bahl §= Prof.

Manish Parashar (Rutgers University)7 = & 7% ﬁ 4+4F Cache-Aware Scheduling and Analysis

for Multicores -~ Network Analysis and Visualization for Understanding Social Computing ~ Social

33

Computing Applications and Trends ~ White Space Networking - Is it Wi-Fi on Steroids? -
Computational Science and Engineering in Emerging Cyber-Ecosystems 7 # % I e3Z p 45 #F
Berfid e A LA EHES BHh Chair #4717 - Kk > %3P 5 Data
Distribution Methods for Communication Localization in Multi-Clusters with Heterogeneous
Network - # = Chair 4 %] % CSE-09 (Session A16) {- SEC-09(Session A27)» & % %-£ 7 =
A 2AREKR A EH - BEAMABZF X R RHTFE o

34

Data Distribution Methods for Communication Localization in Multi-Clusters with
Heterogeneous Network

Shih-Chang Chen*, Ching-Hsien Hsu? and Chun-Te Chiu?
! Institute of Engineering and Science
? Department of Computer Science and Information Engineering

Chung Hua University, Hsinchu, Taiwan 300, R.O.C.
chh@chu.edu.tw

Abstract

Grid computing integrates scattered clusters, servers, storages and networks in different geographic
locations to form a virtual super-computer. Along with the development of grid computing, dealing with
the data distribution requires a method which is faster and more effective for parallel applications in order
to reduce data exchange between clusters. In this paper, we present two methods to reduce inter-cluster
communication cost based on the consideration to different kinds of communication cost and a simple logic
mapping technology. Our theoretical analyses and simulation results show the proposed methods are
better than the methods without reordering processor and considering the communication cost. The
performance evaluation shows that the proposed methods not only reduce communication cost successfully
but also achieve a great improvement.

1. Introduction

Computing grid system [5] integrates geographically distributed computing resources to establish a
virtual and high expandable parallel environment. Cluster grid is a typical paradigm which is connected by
software of computational grids through the Internet. In cluster grid, computers might exchange data
through network to other computers to run job completion. This consequently incurs two kinds of
communication between grid nodes. If the two grid nodes are geographically belong to different clusters,
the messaging should be accomplished through the Internet. We refer this kind of data transmission as
external communication. If the two grid nodes are geographically in the same space domain, the
communications take place within a cluster; we refer this kind of data transmission as interior
communication. Intuitionally, the external communication is usually with higher communication latency
than that of the interior communication. Therefore, to efficiently execute parallel programs on cluster grid,
it is extremely critical to avoid large amount of external communications.

Array redistribution is usually required for efficiently redistributing method to execute a data-parallel
program on distributed memory multi-computers. Some efficient communication scheduling methods for
the Block-Cyclic redistribution had been proposed which can help reduce the data transmission cost. The
previous work [9, 10] presents a generalized processor reordering technique for minimizing external

35

communications of data parallel program on cluster grid. The key idea is that of distributing data to
grid/cluster nodes according to a mapping function at data distribution phase initially instead of in
numerical-ascending order.

In this paper, we consider the issue of real communication cost among a number of geographically grid
nodes which belong to different clusters. Method proposed previously has less communication cost by
reordering logic id of processors. Base on this idea, two new processor reorder techniques are proposed to
adapt the heterogeneous network environment.

This paper is organized as follows. Section 2 presents related work. In section 3, we provide
background and review previously proposed processor reorder techniques. In section 4, the Global
Reordering technique is proposed for processor reordering in section 4.1. The Divide and Conquer
Reordering technique is proposed in section 4.2. In section 5, we present the results of the evaluation of the
new schemes. Finally we have the conclusions and future work in section 6.

2. Related Work

Research work on computing grid have been broadly discussed on different aspects, such as security, fault
tolerance, resource management [4, 6], job scheduling [1, 20, 21, 22], and communication optimizations [2].
Commutating grid is characterized by a large number of interactive data exchanges among multiple
distributed clusters over a network. Thus, providing a reliable response in reasonable time with limited
communication and computation resources for reducing the interactive data exchanges is required. Jong
Sik Lee [16] presented a design and development of a data distribution management modeling in
computational grid.

For the issue of communication optimizations, Dawson et al. [2] addressed the problems of optimizations
of user-level communication patterns in the local space domain for cluster-based parallel computing. Plaat
et al. analyzed the behavior of different applications on wide-area multi-clusters [3, 19]. Similar research
works were studied in the past years over traditional supercomputing architectures [11, 14]. Guo et al. [7]
eliminated node contention in communication step and reduced communication steps with the schedule table.
Y. W. Lim et al. [18] presented an efficient algorithm for Block-Cyclic data realignments. Jih-Woei Huang
and Chih-Ping Chu [8] presented a unified approach to construct optimal communication schedules for the
processor mapping technique applying Block-Cyclic redistribution. The proposed method is founded on
the processor mapping technique and can more efficiently construct the required communication schedules
than other optimal scheduling methods. A processor mapping technique presented by Kalns and Ni [15]
can minimize the total amount of communicating data. Namely, the mapping technique minimizes the size
of data that need to be transmitted between two algorithm phases. Lee et al. [17] proposed similar method
to reduce data communication cost by reordering the logical processors’ id. They proposed four algorithms
for logical processor reordering. They also compared the four reordering algorithms under various
conditions of communication patterns. There is significant improvement of the above research for parallel
applications on distributed memory multi-computers. However, most techniques are applicable for
applications running on local space domain, like single cluster or parallel machine. Ching-Hsien Hsu et al.

36

[9] presented an efficient method for optimizing localities of data distribution when executing data parallel
applications. The data to logical grid nodes mapping technique is employed to enhance the performance of
parallel programs on cluster grid.

For a global grid of clusters, these techniques become inapplicable due to various factors of Internet
hierarchical and its communication latency. More and more multi-clusters under heterogeneous network
environment in which the performance issue was of primary importance on. Bahman Javadi et al. [12, 13]
proposed an analytical model for studying the capabilities and potential performance of interconnection
networks for multi-cluster systems. In this following discussion, our emphasis is on minimizing the
communication costs for data parallel programs on cluster grid and on enhancing data distribution of
communication localities with heterogeneous network.

3. Research Model

3.1 Identical Cluster Grid
To explicitly define the problem, upon the number of clusters (C), number of computing nodes in each

cluster (n;), 1=<i=C, the number of sub-blocks (K) and <G(C):{ny, n,, ns, ..., nc}> presents the cluster grid
model with n; computing nodes in each cluster. The definition of symbols is shown in Table 1.

Table 1 The definition of symbols.

C The number of
clusters.

K The degree of
refinement

Ni The number of

computing nodes in

each cluster.
G(C):{ny, nz, n3, ..., | The cluster grid model

nc}

We consider two models of cluster grid when performing data reallocation. Figure 1 shows an example
of localization technique for explanation. The degree of data refinement is set to three (K = 3). This
example also assumes an identical cluster grid that consists of three clusters and each cluster provides three
nodes to join the computation. In algorithm phase, in order to accomplish the fine-grained data distribution,
processors partition its own block into K sub-blocks and distribute them to corresponding destination
processors in ascending order of processors’ id that specified in most data parallel programming languages.
For example, processor Py divides its data block A into a;, a,, and as; it then distributes these three
sub-blocks to processors Py, P; and P», respectively. Because processors Py, P; and P, belong to the same
cluster with Py; therefore, these three communications are interior. However, the same situation on
processor P; generates three external communications. Because processor Py divides its local data block B
into by, by, and bs. It then distributes these three sub-blocks to processors Ps, P4 and Ps, respectively. As
processor P, belongs to Cluster-1 and processors P3, P4 and Ps belong to Cluster-2, there are three external
communications. Figure 1(a) summarizes all messaging patterns of this example into the communication

37

table. Messages {ai, az, as}, {e1, ez, es} and {i, iy, i3} are presented interior communications (|I| = 9); all
the others are external communications (|E| = 18).

SP)PPU PW Pl P3 P4 P5 P6 P7 PB

Poldai] a;| a3

P 1 h 1 b 2 b 3

P, Cp | €2 | €3
Pyld, [dy| d;s

Py t e oy

Ps Hlfa | /s
Polgi | g2 &

Py by | hy | hs

Py b h

Cluster-1 Cluster-2 Cluster-3
(@)

ek p, P, P, Py, P, Py Py P, Py

Pola|ay| a;

Pyldy | dy]ds

P, b
P, Bi| gi{&s
P Ay | s | B
Py by | iy
Cluster-1 Cluster-2 Cluster-3

(b)

Figure 1. Communication tables of data reallocation over the cluster grid. (a) Without data mapping. (b) With data mapping.

The idea of changing logical processor mapping [15, 16] is employed to minimize data transmission time
of runtime array redistribution in the previous research works. In the cluster grid, we can derive a mapping
function to produce a realigned sequence of logical processors’ id for grouping communications into the
local cluster. Given an identical cluster grid with C clusters, a new logical id for replacing processor P;can
be determined by New(P;) = (i mod C) * K + (i / C), where K is the degree of data refinement. Figure 1(b)
shows the communication table of the same example after applying the above reordering scheme. The
source data is distributed according to the reordered sequence of processors’ id, i.e., <Pg, Ps, Ps, P1, P4, P7,
P2, Ps, Pg> which is computed by mapping function. Therefore, we have |I| = 27 and |E| = 0.

For the case of K (degree of refinement) is not equal to n (the number of grid nodes in each cluster), the
mapping function becomes impracticable. In this subsection, the previous work proposes a grid node
replacement algorithm for optimizing distribution localities of data reallocation. According to the relative
position of the first of consecutive sub-blocks that produced by each processor, we can determine the best
target cluster as candidate for node replacement. Combining with a load balance policy among clusters,
this algorithm can effectively improve data localities. Figure 2 gives an example of data reallocation on the
cluster grid, which has four clusters. Each cluster provides three processors. The degree of data
refinement is set to four (K =4). Figure 2(a) demonstrates an original reallocation communication patterns.
We observe that |I| = 12 and |E| = 36.

38

DP Py P, r, Py Py P P P Py Py Py Py

P, by | Ba | Bs | bs

Ps N e | Fs | fs

Polgi [&] & | g

P, hy | hy | ha | hy

Py i i i3 iy

Po | Ju 2 J3 | Ja

P ky | ko | k3 | ks

Py 3 /5 /5 1y
Cluster -1 Cluster -2 Cluster -3 Cluster -4

(a)

‘,-;,')P Py Py Py, Py Py Ps Pg Py Py Py Py Py

Polayfa;|a;| as

Py by | by | by | by

Py ey | €2] ¢y | €y
Poldy | dy | ds | dy

Py €1 €y [e3 | ey

P Sl LGS
Prlgi |8 | 8] &

Py By | hy | hy | By

Py i B i
Ps | v [Ja | Js | Ja

P, ky | ko | ks | ks

Py £ L | 1] 1

Cluster -1 Chister-2 Cluster -3 Cluster -4
(b)

Figure 2. Communication tables of data reallocation on the identical cluster grid. (C = 4, n = 3, K = 4) (a) Without data mapping.
(b) With data mapping.

If we change the distribution of block B to processors reside in cluster-2 (Ps, P4 or Ps) or cluster-3 (Ps, P7
or Pg) in the source distribution, we find that the communications could be centralized in the local cluster for
some parts of sub-blocks. Because cluster-2 and cluster-3 will be allocated the same number of sub-blocks
in the target distribution, therefore processors belong to these two clusters have the same priority for node
replacement. In this way, Ps is first assigned to replace P;. For block C, most sub-blocks will be
reallocated to processors in cluster-4, therefore the first available node Pq is assigned to replace P,. Similar
determination is made to block D and results P, replace P3. For block E, cluster-2 and cluster-3 have the
same amount of sub-blocks. Processors belong to these two clusters are candidates for node replacement.
However, according to the load balance policy among clusters, cluster-2 remains two available processors
for the node replacement while cluster-3 has three; our algorithm will select P to replace P4. Figure 2(b)
gives the communication tables when applying data to logical grid nodes mapping technique. We obtain |I| =
28 and |E| = 20.

3.2 Non-identical Cluster Grid

Let’s consider a more complex example in non-identical cluster grid, the number of nodes in each
cluster is different. It needs to add global information of cluster grid into algorithm for estimating the best
target cluster as candidate for node replacement. Figure 3 shows a non-identical cluster grid composed by
four clusters. The number of processors provided by these clusters is 2, 3, 4 and 5, respectively. We also
set the degree of refinement as K=5. Figure 3(a) presents the table of original communication patterns that
consists of 19 interior communications and 51 external communications. Applying our node replacement

39

algorithm, the derived sequence of logical grid nodes is <P, Ps, Py, P3, Ps, P10, P4, P11, Po, P7, P12, P1, Ps,
P13>. Figure 3(b) gives the communication tables when applying data to logical grid nodes mapping
technique. This data to grid nodes mapping produces 46 interior communications and 24 external
communications. This result reflects the effectiveness of the node replacement algorithm in term of
minimizing inter-cluster communication overheads.

‘w.il‘ Py Py Py Py Py Ps Py Py Py Py Py Py Py Py

Pola, | a;|as|ay]| as
P, by by | by | byl bs
Py cs ciles|es| ey
P, dy | dy| dy| dy| ds
P, ey | ey |es|ey|es
e i | 7 |
P 1| 82| 83| 84| &5
Py by | hy | hs | hy| hs
Pl is | ig | is i i
Py o | Ja [Ja | Ja | s
Py ky | ky | kg | Ky | ks
Pl L] 1s 5
Py my | my | may | my| oms
P ny | nylns|ng|ns
Cluster -1 Cluster -2 Cluster -3 Cluster -4
(a)
S Py Py Py Py Py Py Pg Py Py Py Py Py Py Pi
Pyla,|ay|as|ay] as
Py byl byl byl by b,
Pyl es cplies | es ey
P, diy | dy | ds | dy| ds
Py €1 | €21 €3] €4 | €s
PulSfa | s i s
£y Bi | 82| 83| &q] 85
Py hy| hy| hy | hy | hs
Polds | dg | iy | i
P JolJa | Ja | Ja | s
P ky | ko [ks | ko] ks
Pyl | | iy 1s I
Py my | my | my | myfoms
P ny |l ng | ns|nglon;
Clusfer -1 Cluster -2 Cluster -3 Cluster -4

(b)

Figure 3. Communication tables of data reallocation on non-identical cluster grid. (a) Without data mapping.
(b) With data mapping.

3.3 Communication Cost of Multi-Clusters with Heterogeneous Network

Examples in the above section do not consider the real communication status for multi-clusters over
heterogeneous network communication. Figure 4(a) shows an example of four clusters with various
inter-cluster communication costs. Each unit’s block data must spend 20 units time from the cluster-1
transmission to cluster-2, but each unit’s block data must spend 30 units time from the cluster-1 transmission
to cluster-3. Figure 4(b) shows the table of inter-cluster communication costs. Therefore, we can
calculate communication cost of data distribution for each processor over inter-cluster by this
communication matrix. After calculating, the communication cost are 1865 and 885 according to

40

distribution scheme in Figure 3(a) and 3(b), respectively. But the proposed processor mapping methods
provide new sequences of logical grid node which are <Py, Ps, P11, P2, Py, Po, Ps, P10, P1, P7, P12, P3, Ps,
P13> and < P3, Ps, Pg, P, P10, P1, Ps, P11, Po, P7 P12, P4, Pg, P13 > in next section. Consequently, the
necessary costs of both sequences are 740 units. The result reflects the effectiveness of this sequence which
has the less communications cost. In next section, we will to explain the research model and calculation of
communication cost.

oy d

. 2 \
')
Cluster-1 | / 0\ ' Cluster2 A

ST T
2 e /) | \
257 %0, L] \
; /‘(. l \
s %> X // \\ 2(\) l“‘
: Sok; § j
= 5 e A 3
- o 100 ~\i\//
" Cluster-3 3 é Cluster-4
¥ O~ AR .
N et ~. .0~ &S
(a)
Cl Cz C3 C4

C,[20] 0 |50](20
C;|25(25] 0 [100
C,[30[15]20]| 0

(b)

Figure 4. Communication model of Multi-Clusters with Heterogeneous Network. (a) Example of four clusters
with various inter-cluster communication costs. (b) The communication matrix table.

3.4 Communication Model of Data Distribution in Multi-Clusters

To set the communication cost of inter-cluster as Vj. The communication cost of distribute data block
from C; to Cs is denoted V(1,3. Assume there is block A (B=A) from node P of C;, total cost formula
denoted W(B)i. W(B)i = (B1*Vi1 + B2*Vit...+ Bj*v(i,j))- 1=1,)=C). PPz ..., Bj-1 andp; represent
number of sub-blocks that P; has to send from C;to Cy, C,, ..., Cj.1, C;. Figure 5 shows the communication
cost of data distribution from each node according to distribution scheme in Figure 4(b). There is the data
block A on logic nodes Py within a grid model C =4, K =5, <G(4):{2, 3, 4, 5}>. Assume the sub-blocks a,
a, of block A on Py needs to be redistributed from C;to C4, the as, as, asneeds to be redistributed from C;
to C,, no data is redistributed from C;yto C3, C4,, The communication cost of redistributing block A from Pg
and P, are W(A); = (2*0 + 3*20 + 0*30 + 0*30) = 60 and W(A), = (2*20 + 3*0 + 0*50 + 0*20) = 40,
respectively. Accordingly, W(A)s = 125, W(A), = 105.

41

cluster

Trad. proc Co | C, | C3 | Cy

140(200| 25| 95
150(100|500| 0

P, | 4 [60]40][125]105
P, | B [150]220]100] 80
P, | ¢ |120]100]425] 30
P, p [90]70][100] 95
P, | E |150[190]200] 60
Ps| F [90[100[350] 60
P, | G [120]100] 75| 85
P, | H |150]160]300] 40
Py | 1 |80]s0][275] 75
P, | 7 [130]150] 50 | 90
P, | K |150]130]400] 20
Pl L]70]60]200] 90

M

N

Figure 5. The total communication cost of grid model (C=4,K=5,<G (4): {2, 3,4, 5}>)

4. Processor Mapping Methods

According to communication cost, a candidate processor’s id can be chosen according to minimum
distribution cost. Therefore, the first processor mapping method is proposed called Processor Mapping
using Global Reordering (GR). Another method rests on the cluster base, after all data redistribution costs
of one cluster are arranged in an order, choosing a candidate processor’s id according to the number of
processor of its cluster This method is called Processor Mapping using Divide and Conquer Reordering
(DCR).

4.1 Global Reordering Algorithm

We propose a processor mapping scheme which requires the communication information of inter-cluster.
First, the minimum cost is selected using Greedy algorithm. This algorithm, Processor Mapping using
Global Reordering (GR), is without the complex logic procedures of operation. To achieve the result of
processor mapping that has the least communication cost, the key idea is to choose the minimum
communication cost from global candidates. The transmission rate between each site over the internet is
different because of the various network devices. The cluster can easily measure the transmission rate by
the present technology and keep it in each cluster. The system can obtain transmission rates and produce an
n*n cost matrix. The combination of communication costs can be calculated using the cost matrix and data
redistribution pattern. According to the costs, the data block with minimum cost can be chosen to be
assigned a processor id first. In the choice process, two kinds of situations occur possibly. To assign a
processor id to a data block for distributing: (1) the data block with the chosen minimum cost would be
ignored if this data block has already been assigned to another candidate (processor id) previously. (2) if no
more processor id can be offered from the selected cluster, the selecting process will continue to find the

42

next global minimum cost.

To a select processor id for redistributing a data blocks according to the communication cost in Figure 5,
GR will first select P13 for N_Pjo for K, P13 for N, Pg for M,..., Py for F and Ps for B. A new sequence of
logical grid node is provided which is <P4, Ps, P11, P2, Py, Po, Ps, P19, P1, P7, P12, P3, Ps, P13> and the
necessary communication cost is 740 units, accordingly.

According to the method described above, the code of algorithm is shown as follows:

For P=0to n-1
Determine how many cost matrix t in
every cluster
EndFor
Order by t
While (Replacement s not complete)
If (cluster have processor)
select target cluster processor id P
that has minimum cost from t
EndIf
EndWhile

Figure 6. Processor Mapping using Global Reordering Algorithm.

4.2 Divide and Conquer Reordering Algorithm

The proposed method is introduced in this section called Processor Mapping using Divide and Conquer
Reordering Algorithm (DCR). The GR method employs the greedy algorithm to choose the minimum cost
for processor mapping. The DCR method uses the Greedy algorithm to choose processor id for data block
with minimum cost for each cluster first. The number of selected data block is equal to the number of
processors provide in each cluster. Due to select several data blocks for each cluster with minimum cost
and a processor id, cross match is not under consideration. Certainly, the results of processor mapping will
not be perfect. Namely, conflict selections will possibly happen. To resolve the conflict situations, the
conflict part can be regarded as a sub-grid model of the original grid model. Data blocks without conflict
situation and selected processor id are excluded. DCR employs GR method to select processor id for rest of
data blocks for a complete result.

To select data blocks with minimum cost for each cluster according to the communication cost in Figure 5,
DCR will select A and L for C, A, D and L for C,, B, G, Jand M for C3, and C, E, H, Kand N for C,. After
select processor id for B, C, D, E, G, H, J, K, M and N, DCR employs GR to select processor id for A, F, |
and L again. Then, a new sequence of logical grid node is provided which is < P3, Ps, Pg, P2, P1o, P31, Pe,

43

P11, Po, P7 P12, P4, Pg, P13>. Accordingly, the necessary communication cost is 740 units.

According to the method described above, the code of algorithm is shown as follows:

For P=0to n-1
Determine how many cost matrix t on every cluster
EndFor
Fort=1to C
Order by cost from t
EndFor
While (Replacement s not complete)
For P=0to n-1
If not (two or more cluster have the candidate)
select the target cluster processor id P that has the minimum
cost
EndIf
EndFor
reorder the remaining cost list from t
select the target cluster processor id P by GR Algorithm
EndWhile

Figure 7. Processor Mapping using Divide and Conquer Reordering Algorithm.
5. Performance Evaluation

In this section, proposed techniques and methods without considering actual communication cost are
implemented to simulate with different communication cost matrixes. The network bandwidth is different
from 10Mb to 1Gb for heterogeneous network environment. Since 10Mb network equipments are almost
eliminated, the value of transmission ratio is set from 10 to 30. The value is randomly produced to simulate
patterns of communication cost matrix. The variance is set from 150 to 450 in simulations representing of
network heterogeneity. The larger number of variance represents the larger network heterogeneity.
Besides, C is set from 8 to 16, K is set from 16 to 64 for simulations. 100 difference communication cost
matrix patterns are used to calculate communication costs for each variance case and average of the costs is
the results of the theoretical value. The following figures show the results of each method.

Figure 8 shows the results on a grid consisted of 8 cluster, <G(8):{4, 4, 4, 6, 6, 6, 8, 8}> and K is equal to
16. Figure 8 illustrates the comparing results of four different methods. Original one does not consider
the actual cost of reordering communications technology, GR is Processor Mapping using Global Reordering
technology, DCR for the Processor Mapping using Divide and Conquer Reordering technology. Obviously,
GR and DCR have less communication cost compared with the other two models. When the difference in
the number of 150, GR and DCR can reduce about 33% cost compared with the traditional one which is
without processor reordering. Both of them also reduce 6% communications cost while comparing with the
Original one. While the variance is 450, the improvement slightly increases about 33% ~ 36%.

44

Figure 9 shows the results of the grid model with C =16, K = 64 and <G(16):{5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20}> while comparing four different methods. Obviously, GR and DCR have less
communication cost comparing with the other two models. GR and DCR can reduce about 26% to 29%
cost while comparing with the traditional one which is without processor reordering. Both of them also
reduce 11% communications cost while comparing with the Original one. Above simulation results show
the proposed reordering technologies not only outperform previous processor reordering method but also
successfully reduce communication cost on the heterogeneous network and improve the communication cost

6. Conclusions

In this paper, we have presented a generalized processor reordering method for communication localization
with heterogeneous network. The methods of processor mapping technique are employed to enhance the
performance of parallel programs on a cluster grid. Contribution of the proposed technique is to reduce
inter-cluster communication overheads and to speed up the execution of data parallel programs in the
underlying distributed cluster grid. The theoretical analysis and results show improvement of
communication costs and scalable of the proposed techniques on multi-clusters with heterogeneous network
environment.

K=16

600
500
400]

= O Tradition
@ Original

oot o AL ==

150 180 210 240 270 300 330 360 390 420 450

Variance

Comm. Cost (1000)

<

Figure 8. Communication costs comparison with C = 8, K = 16, <G(8):{4, 4, 4, 6, 6, 6, 8, 8}>.

K=64

10000
8000 M

O Tradition

6000 M @ Original

4000 — B B GR
2000 ﬂ]-r ODCR
0 1 1 1 L 1 1 1 1

150 180 210 240 2700 300 330 360 390 420 450

Comm. Cost (1000)
]

Variance

Figure 9. Communication costs comparison with C = 16, K = 64 and <G(16):{5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20}>

45

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

[32]
[33]

[34]

REFERENCES

O. Beaumont, A. Legrand and Y. Robert, ”Optimal algorithms for scheduling divisible workloads on heterogeneous

th
systems,” Proceedings of the 12 IEEE Heterogeneous Computing Workshop, 2003.

J. Dawson and P. Strazdins, “Optimizing User-Level Communication Patterns on the Fujitsu AP3000,” Proceedings of the
1st IEEE International Workshop on Cluster Computing, pp. 105-111, 1999.

Henri E. Bal, Aske Plaat, Mirjam G. Bakker, Peter Dozy, and Rutger F.H. Hofman, “Optimizing Parallel Applications for
Wide-Area Clusters,” Proceedings of the 12th International Parallel Processing Symposium IPPS'98, pp 784-790, 1998.

M. Faerman, A. Birnbaum, H. Casanova and F. Berman, “Resource Allocation for Steerable Parallel Parameter Searches,”
Proceedings of GRID 02, 2002.

I. Foster and C. Kessclman, “The Grid: Blueprint for a New Computing Infrastructure,” Morgan Kaufmann, ISBN
1-55860-475-8, 1999.

James Frey, Todd Tannenbaum, M. Livny, I. Foster and S. Tuccke, “Condor-G: A Computation Management Agent for
Multi-Institutional Grids,” Journal of Cluster Computing, vol. 5, pp. 237 — 246, 2002.

M. Guo and I. Nakata, “A Framework for Efficient Data Redistribution on Distributed Memory Multicomputers,” The
Journal of Supercomputing, vol.20, no.3, pp. 243-265, 2001.

Jih-Woei Huang and Chih-Ping Chu, “An Efficient Communication Scheduling Method for the Processor Mapping
Technique Applied Data Redistribution,” The Journal of Supercomputing, vol. 37, no. 3, pp. 297-318, 2006

Ching-Hsien Hsu, Guan-Hao Lin, Kuan-Ching Li and Chao-Tung Yang, “Localization Techniques for Cluster-Based Data
Grid,” Proceedings of the 6" ICA3PP, Melbourne, Australia, 2005

Ching-Hsien Hsu, Tzu-Tai Lo and Kun-Ming Yu “Localized Communications of Data Parallel Programs on Multi-cluster
Grid Systems,” European Grid Conference, LNCS 3470, pp. 900 — 910, 2005.

Florin Isaila and Walter F. Tichy, “Mapping Functions and Data Redistribution for Parallel Files,” Proceedings of IPDPS
2002 Workshop on Parallel and Distributed Scientific and Engineering Computing with Applications, Fort Lauderdale,
April 2002.

Bahman Javadi, Mohammad K. Akbari and Jemal H. Abawajy, "Performance Analysis of Heterogeneous Multi-Cluster
Systems,” Proceedings of ICPP, 2005

Bahman Javadi, J.H. Abawajy and Mohammad K. Akbari ‘“Performance Analysis of Interconnection Networks for
Multi-cluster Systems” Proceedings of the 6" ICCS, LNCS 3516, pp. 205 — 212, 2005.

Jens Koonp and Eduard Mehofer, “Distribution assignment placement: Effective optimization of redistribution costs,” IEEE
TPDS, vol. 13, no. 6, June 2002.

E. T. Kalns and L. M. Ni, “Processor mapping techniques toward efficient data redistribution,” IEEE TPDS, vol. 6, no. 12,
pp. 1234-1247, 1995.

Jong Sik Lee, “Data Distribution Management Modeling and Implementation on Computational Grid,” Proceedings of the
4th GCC, Beijing, China, 2005.

Saeri Lee, Hyun-Gyoo Yook, Mi-Soon Koo and Myong-Soon Park, “Processor reordering algorithms toward efficient
GEN_BLOCK redistribution,” Proceedings of the 2001 ACM symposium on Applied computing, 2001.

Y. W. Lim, P. B. Bhat and V. K. Parsanna, “Efficient algorithm for block-cyclic redistribution of arrays,” Algorithmica, vol.
24, no. 3-4, pp. 298-330, 1999.

Aske Plaat, Henri E. Bal, and Rutger F.H. Hofman, “Sensitivity of Parallel Applications to Large Differences in Bandwidth
and Latency in Two-Layer Interconnects,” Proceedings of the 5th IEEE High Performance Computer Architecture HPCA'99,
pp. 244-253, 1999.

Xiao Qin and Hong Jiang, “Dynamic, Reliability-driven Scheduling of Parallel Real-time Jobs in Heterogeneous Systems,”
Proceedings of the 30th ICPP, Valencia, Spain, 2001.

S. Ranaweera and Dharma P. Agrawal, “Scheduling of Periodic Time Critical Applications for Pipelined Execution on
Heterogeneous Systems,” Proceedings of the 30th ICPP, Valencia, Spain, 2001.

D.P. Spooner, S.A. Jarvis, J. Caoy, S. Saini and G.R. Nudd, “Local Grid Scheduling Techniques using Performance
Prediction,” IEE Proc. Computers and Digital Techniques, 150(2): 87-96, 2003.

46

HEB RN SR SRS

R S 3 F& FIP2PEE WebHX il 2% /B LASOA R B R Ay A& 4 Hh /T Bk A B (R B AR Y
P OF % % NSC 97-2628-E-216-006-MY3
2 A Bt TR E
R B # KRR TEE AT
S N ;

. The 4th International ICST Conference on Scalable Information
I N

Systems (INFOSCALE 2009)

ERIPEERY B

%% /2009.06.09-11

#F & % ¥ P

Power Consumption Optimization of MPI Programs on Multi-Core

Clusters
SNEHREKBE
R TEMR
2009/06/10 ()

8:30 BB
9:00 EsEEKeynote Speech
Reevaluating Amdahl's Law in the Multicore Era
Xian-He Sun, lllinois Institute of Technology, Chicago, USA
10:30 #Raw3C ~ BEAUH BiRCER
(F4)
1:30 BaEEKeynote Speech
Metropolitan VANET: Services on the Road
Minglu Li, Shanghai Jiao Tong University, China
2:00 BHy Resource Allocation and ApplicationfHi s %
3:45 £ FF Session
(e E)
6:30 SNIRE

47

2009/06/11 (L%
9:00 EaBEKeynote Speech
Autonomic Cloud Systems Management: Challenge and
Opportunities
Cheng-Zhong Xu, Wayne State University, USA
10:3082HY Information SecurityfH B im X &%
(F4F)
1:30F2HY Parallel and Distributed ComputingfH & 3 %
3:308EHY RFID / Sensor Network #H@# R &F=

T KRR EATEFOREE A ERETS X o 5 - % P = d Dr. Xian-He Sun (lIllinois
Institute of Technology, China) 4-%+ The current Multi-core architecture and memory-wall
problem » % % gt = #2134 € epF 4> T = d Dr. Minglu Li (Shanghai Jiao Tong University,
China) 4%t The application of mobile communication technology %+ % 4g/%# - & =& ¥ §_
- BHFFTEFT o A A FP-session3 g h 2 F & 0 4 FEiT A% - X session 3 s 2 B
ZooBt AR g A BERAF LRI R ABR|IFOILL 0 F X BT
#.%_d Dr. Cheng-Zhong Xu (Central Michigan University, USA) 4% “Embedded Software
Development with MDA” % 4 i3 o & 4 & S 2 h % - X 230cht ¢33k A2 > &2 d

Cheng-Zhong Xu (Wayne State University, USA) ° iz— % » % F 4 7 ig— X dh~ o A 4

3 EFP Multi-Core 24p M7 > PRELFF I ATEATF T A4 £ 0 f2F w F* 5

BEEFLEF Y w0 T2 P FEES - X g § BRI IR B E A SRR e

FH LT g o 2 AT R AAFIFS RO F A o SR TR E DAL
FE G EMPRIHT EEE > Multi-Cores THE L Z 4 2 EE SR GHT] B o
PR NFRERRI R F I F g e FE - e B R LR R E

PR b AT TR 0 - 2 S e

48

http://www.cs.iit.edu/~sun/
http://grid.sjtu.edu.cn/teachers/li-ml.htm
http://www.ece.eng.wayne.edu/~czxu
http://www.ece.eng.wayne.edu/~czxu

Power Consumption Optimization of MPI Programs on
Multi-Core Clusters

Ching-Hsien Hsu and Yen-Jun Chen

Abstract

While the energy crisis and the environmental pollution become important global issues, the power
consumption researching brings to computer sciences world. In this generation, high speed CPU structures
include multi-core CPU have been provided to bring more computational cycles yet efficiently managing
power the system needs. Cluster of SMPs and Multi-core CPUs are designed to bring more computational
cycles in a sole computing platform, unavoidable extra energy consumption in loading jobs is incurred.

Data exchange among nodes is essential and needed during the execution of parallel applications in
cluster environments. Popular networking technologies used are Fast Ethernet or Gigabit Ethernet, which are
cheaper and much slower when compared to Infiniband or 10G Ethernet. Two questions on data exchange
among nodes arise in multi-core CPU cluster environments. The former one is, if data are sent between two
nodes, the network latency takes longer than system bus inside of a multi-core CPU, and thus,
wait-for-sending data are blocked in cache. And the latter is, if a core keeps in waiting state, the unpredicted
waiting time brings to cores higher load. These two situations consume extra power and no additional
contribution for increasing overall speed. In this paper, we present a novel approach to tackle the congestion
problem and taking into consideration energy in general network environments, by combining hardware
power saving function, maintaining the transmission unchanged while saving more energy than any general

and previous cases.

49

1. Introduction

Reduction on power consumption of computer systems is a hot issue recently, since many CPUs and
computer-related hardware has been produced and under operation everywhere. As the number of single-core
CPU has reached to physical limitation on current semi-conductor technology, the computing performance
has met the bottleneck. Multi-core CPUs become a simple yet efficient solution to increase performance and
speed since that concept SMP in a single chip, that is, making up a small cluster to be executed inside a host.
Additionally, it reduces the amount of context switching while in single-core CPUs, increases straight

forwardly the overall performance. Some CPU technologies and our target will be introduced in below.

'

Architectural State X Architectural State X Architectural State X Architectural State)

Execution Engine I Execution Engine Execution Engine X Execution Engine

Local APIC X Local APIC Local APIC X Local APIC

Second Level Cache

Bus Interface Bus Interface

! !

System Bus System Bus

e

7Y TNYTYOY

Second Level Cache)

Figure 1: Intel Quad-Core CPU system structure [11]

Figure 1 illustrates the architecture of Intel quad-core CPU, which looks like a combination of two
dual-core CPUs. It has four individual execution engines, where each two cores share one set of L2 cache
and system bus interface, and connect to the fixed system bus. The advantages of this architecture are
twofold. The former one is that each core can fully utilize L2 cache as each core needs larger memory, while
the latter is that each core accesses L2 cache through individual hub [7] simplifying system bus and cache
memory structures. Intel CPU provides “SpeedStep” [3] technology that helps to control CPU frequency and

voltage, and it needs to change all cores’ frequency at the same.

50

Core 1 X Core 2 X Core 3 X Core 4
512K L2 Cache IS]ZK L2 Cache)(:?]ll(L2 Caq:heXﬁ 12K L2 Cache

2MB L3 Cache

System Request Interface

Crossbar Switch

YN Y Y Y Y
A ANA A A

DDE2 X HyperTransport

Figure 2: AMD Quad-Core CPU system structure [12]

AMD quad-core CPU, as shown in Figure 2, has individual L2 cache in each core and share L3 cache, (a
special design), and then integrated to DDR2 memory controller into CPU, helping to increase memory
access speed. Each core has individual channel to access system bus, and L3 cache and peripheral chips from
crossbar switch. AMD provides ‘“PowerNow!” [4] technology to adjust each core’s working frequency /
voltage.

A cluster platform is built up by interconnecting a number of single-core CPU, and a message passing
library, such as MPI is needed for data exchange among computing nodes in this distribution computing
environment. In addition, high speed network as Infiniband is needed to interconnect the computing nodes.
As multi-core CPUs are introduced and built in cluster environments, the architecture of this newly proposed
cluster is as presented in Figure 3. The main advantages of data exchanges between cores inside of a CPU is

much faster than passing by a network and South / North bridge chip.

51

o D C

Dual Core Chip

Memory)

Dual Core Chip

(Core)(Core)(-)(Core)(Core)

t 1t

Intra-node
Communication

Figure 3: Multi-core based cluster structure [13]

Developed from 1999, InfiniBand [16] is a point-to-point structure, original design concept that focused
on high-performance computing support, so bidirectional serial fiber interface, failover mechanism and
scalable ability are the necessary functions. InfiniBand supports at least 2.5Gbit/s bandwidth in each
direction in single data rate (SDR) mode, the transmitted information includes 2 Gbit useful data and
500Mbit control commands. Besides, InfiniBand supports DDR (Double Data Rate) and QDR (Quad Data
Rate) transmission mode, and each mode supports 3 different speed (1x, 4x and 12x) configurations, so the

maximum bandwidth is 96Gbit/s. The detail specification is as Table 1.

Table 2: Infiniband transmission mode list

Single (SDR) Double (DDR) Quad (QDR)
1X 2 Gbit/s 4 Ghit/s 8 Gbit/s
4X 8 Ghit/s 16 Gbhit/s 32 Ghit/s
12X 24 Ghit/s 48 Gbit/s 96 Gbit/s

Infiniband networking technology is a good and fast enough solution to connect all computing nodes of a
cluster platform, but expensive. Gigabit Ethernet is cheaper solution and widely built in general network

environment, though slower in transmission speed and definitely drop down data exchange performance. To

52

send data to a core that is inside of a different host will be needed to consume extra energy when waiting for
data.

“SpeedStep” and “PowerNow!” technologies are good solutions to reduce power consumption, since they
adjust CPU’s frequency and voltage dynamically to save energy. The power consumption can be calculated

by the function:

P=IV=Vf=J/s. (1)

where P is Watt, V is voltage, | is current, f is working frequency of CPU, J is joule and s is time in
seconds. It means that lower voltage in the same current condition saves more energy. How and when to
reduce voltage and frequency become an important issue, since one of main targets of clustering computing
computers is to increase the performance, while slowing down CPU’s frequency is conflict with performance.
Considering data latency of network, and CPU load in current CPU technologies, we would like to create a
low energy cost cluster platform based on general network architecture, that keeps almost the same data
transmission time though lower in energy consumption when CPU in full speed.
To address the above questions, we use OpenMPI and multi-core CPU to build up a Linux based a low
energy cost cluster, and implement three solutions on this environment.
® CPU power consumption reduction
Drive CPU power saving technology to reduce working frequency when low working loading, the
method reduces unavailable power consumption.
® CPU internal bus congestion reduction
Add waiting time between each data frame before send out, the method slows down data
transmission speed and reduces core working loading.

® [_oading-Aware Dispatching (LAD) Algorithm

53

Lower loading core is indicated higher priority to receive data frame, the method increases core

working efficiency.

2. Related Work

Based on the concept about reducing computing time, the job scheduling methodology as introduced in [8]
and [21] was designed targeting for a faster complete data transmission; otherwise, adjust cache block size to
find the fastest speed that transmits data using MPI between MPI nodes in situations as listed in [13] was
studied, and similar implementation of the method using OpenMP was also observed in [14]. Another
investigation focused on compiler that analyze program’s semantics, and insert special hardware control
command that automatically adjusts simulation board’s working frequency and voltage, [10] research needs
to be combined both hardware and software resources.

Some kinds of paper designed their methodologies or solutions under simulation board, or called NoC

system, as shown in its structure is as below:

) Sl . Sl Si
CPU CPU CPU
\ J Ik J | \ J |
CPU CPU CPU
\ J N \ JSI . J I
s © 4
CPU CPU CPU

Figure 4: General NoC system structure

54

Base on a simulation board, researchers have designed routing path algorithm that tries to find a shortest
path to transmit data in Networks-on-Chip [15], in order to reduce data transmission time between CPUs, as
also to have opportunities to realistically port and implement it to a cluster environment.

Others, researches have applied Genetic Algorithms to make a dynamically and continuous improvement
on power saving methodology [9]. Through a software based methodology, routing paths are modified, link
speed and working voltage are monitored and modified at the same time to reduce power consumption of
whole simulation board, while the voltage detection information required hardware support.

Consider higher power density and thermal hotspots happened in NoC, the paper [18] provided a
compiler-based approach to balances the processor workload, these researchers partitions a NoC system to
several area and dispathes jobs to them by node remapping, the strategy reduces the chances of thermal
concentration at runtime situation, and brings benefit about a bit of performance increasing. The paper [20]
and [24] studied the same point about thermal control.

Modern Operating Systems as Linux and Windows provides hardware power saving function as
introduced in [1] and [2], where they can drive “SpeedStep” [3] and “PowerNow!” [4] utilizing special
driver to control CPU voltage and frequency. Of course hardware support is necessary, since depending on
the CPU loading, CPU is automatically selected with lower frequency and voltage automatically. Besides,
someone add management system into OS kernel to control energy consumption directly [22].

The peripheral devices of computer, as disk subsystem is a high energy consumption hardware, the paper
[17] studied how to implement disk energy optimization in compiler, these researcheers considered disk start
time, idle time, spindle speed, the disk accessing frequency of program and CPU / core number of each host,
made up a benchmark system and real test environment to verify physical result.

Some groups study the power saving strategy implementation in data center, as database or search engine
server. Huge energy is consumed by this kind of application when they have no work. The nearer research

[19] provides a hardware based solution to detect idle time power waste and designs a novel power supplier

55

operation method, the approach applied in enterprise-scale commercial deployments and saved 74% power
consumption.

Besides, some researchers studied OS resource management and power consumption evaluation and task
scheduling method as [23] and [25], this kind of study provides a direction to optimize computer operation

tuning and reduces system idle time that brings by resource waiting.

3. Challenges of Power Saving in Multi-Core Based Cluster

In the previous single-core CPU based cluster environment, data distribution with CPU energy control are
easier to implement by isolated CPU frequency control of each host. In multi-core based cluster, CPU
internal bus architecture, bandwidth and power control structure bring differnet challanges in this issue.
When we built a cluster platform that combines some key technologies as listed in Chapter 1 for experiment
purposes, their advantages bring higher speed for data transmission peformance, yet only between cores
inside a CPU, a CPU core is maintained with high load means the CPU speed cannot be decreased. Analysis
and reasoning on these situations are discussed next.

The “SpeedStep” and “PowerNow!” were not show in Figure 1 and 2. The “SpeedStep” provides solely
full CPU frequency and voltage adjustment. The design makes power control easier, though consumes extra
energy. If only one core works with high load, power control mechanism cannot reduce other cores’
frequency / voltage, nor dropping down the performance of a busy core. Inefficient energy consumption
brings temperature increasing, since low loading core generates the same heat as high load one, and brings
the CPU’s temperature up at the same time.

AMD “PowerNow!” shows advantage in this issue, since we can reduce frequency when core works in

lower loading without need to consider other cores’ situation, and heat reduction is also another benefit.

56

As description of Figure 1, Intel’s CPU architecture shares L2 cache to cores using individual hub, all
packets between core and cache needs to pass through by it. The architecture has 2 advantages and 2

problems:
Advantages

® Flexible cache allocation

Every core was allowed to use whole L2 cache from cache hub, the hub provides single memory access
channel for each core, and hub assigns cache memory space to requested core. The method simplifies
internal cache access structure.
® Decrease cache missing rate

When each core has massive cache request all of a sudden, flexible cache memory allocation provides

larger space to save data frame, and also decreases page swapping from main memory at the same time.
Problems

® Cache Hub Congestion

If huge amount of data request or sending commands happen suddenly, individual cache hub blocks data
frames in cache memory or stops commands in queue. All cores and hub keep in busy state and thus
consume extra energy.
® Network Bandwidth Condition

Lower network bandwidth makes previous situation more seriously in many nodes' cluster, since network
speed cannot be as fast as internal CPU bus, if cross-node data frames appear, the delivering time is longer
than intra-node data switch.

Compared with Intel, while data frame flood sends to CPU, AMD structure has no enough cache to save

them, yet individual bus / memory access channel of each core provides isolated bandwidth, L2 cache built

57

in core reduces data flow interference. Different CPU structure provides their advantages, and weakness
appears while they are compared to each other.

In a general situation, each computing node executed under a given core / host randomly indicated by
cluster software, signifies that programmer cannot obtain additional core loading from node's code section.
Following our purpose, finding system information about thread / node location works, but it is a hard
method since the program would spend large amount of time in device I/O, includes open system state file,
analysis information and obtaining node’s location. Another alternative method is easier, where we make
cluster platform that fixes node location in indicated core or host, and the function helps to get core loading

from node’s code. OpenMPI is selected for this issue.

4. The Proposed Approach

Upon with CPU specification, CPU power control interface and network structure, we provide a novel
data dispatching strategy to solve the previous challanges in Chapter 3, it combines data flow limitation, core
frequency controlling, and accords core working load to transmit data frame, detail operation is as below.

It is not a good method to keep performance. In fact, we add 1us delay between two packets, in a real
environment, and the total transmission time is added as:

T=N X D ()

where T is total time, N is total number of packets and D is delay time between packets. We found that the
total time has just been added less than one to four seconds in average, when is transmitted 100K data frames
across two hosts that are connected via Gigabit Ethernet. Additionally, the advantage is that the loading of a
central node that sends data to other nodes is decreased by almost 50%. On the other hand, data receiving
core load is decreased by 15% in average when we added 10pus delay in these nodes, follow Function 2, the

amoung of increased delay time should be 1s, yet in experiment result, total transmission time is increased by

58

less than 0.5s. These experiment results means the core work loading brings up by massive data frame, not
by CPU bound process. This method reduces core work loading and helps below method to operate.

Although the challenge presented in section 3.1 exists, as for power saving issue, we use AMD system
and “PowerNow!” to slow down lowering loading core frequency. The given CPU supports two steps
frequency, and therefore they work in different voltage and current. Thus we focus on frequency adjustment,
and calculating power consumption of each core as below:

P=Viyax X Ipax X T 3)

where Viax and Inax are found from AMD CPU technology specification [6], and T is program execution
time. Since “Time” joins the function, the unit of P is Joule.

There is a CPU frequency controlling software: CPUFreq. It provides simple commands to change CPU
work state and 4 default operation modes:

® Performance mode: CPU works in highest frequency always

® Powersave mode: CPU works in lowest frequency always

® OnDemand mode: CPU frequency is adjusted following CPU work loading

® UserSpace mode: User is permitted to change CPU frequency manually follow CPU specification

We have used UserSpace mode and got the best CPU work loading threshold range to change CPU
frequency: 75%~80%, if CPU work loading lower than this, we reduce frequency; if higher, we increase
frequency. But actually, the default threshold of OnDemand mode is 80%, so we use OnDemand mode to
control CPU frequency when our data dispatching method is executed.

Following the previous results, working with OnDemand mode of CPUFreq, we provide a
Loading-Aware Dispatching method (LAD). Based on the AMD “PowerNow!” hardware structure, and
keeping the same load on all cores is necessary for efficient energy consumption, thus sending data from
central node to lowest loading node makes sense. If the load can be reduced on a core, then reducing CPU

frequency is permitted for saving energy.

59

Figure 5: LAD Algorithm structure diagram

Still in LAD algorithm, as indicated in Figure 4, data frames are sent sequentially from Host 1-Core 0 to
other cores. This method is often used to distribute wait-for-calculate data blocks in complex math parallel
calculations. MPI provides broadcast command to distribute data and reduce command to receive result. In
order to changing data frame transmission path dynamically, we use point-to-point command to switch data,
since this type of command can indicate sending and receiving node.

The detail of operation flow is as below:

® Step 1: Detect core loading

® Step 2: Find lowest loading core

® Step 3: Send several data frames to the lowest loading core

® Step 4: Repeat previous two step until all data frames are transmitted over

The data distribution algorithm is given as below.

Loading-Aware Dispatching (LAD)Algorithm

generating wait-for-send data frame
if (node 0)

1.
2.
3. {

4 //send data follow sorting result
5. while(!DataSendingFinish)

6 {

7 //detect nodes’ loading from system information and save in TargetNode
8 OpenCPUState;

9 CalculateCPULoading;

60

10. //sort TargetNode from low to high

11. CPULoadingSorting;

12. //send 1000 data frame

13. for(i=1; i<1000; i++)

14, SendData(TargetNode[i]);
15. if(whole data transmitted)

16. DataSendingFinish=true;
17. }

18. //send finish message to receiving nodes
19. for(i=1; i<NodeNumber; i++)

20. SendData(i);
21. }

22. if (other nodes)
23. {

24, /Ireceive data from node 0
25. ReceiveData(0);

26. usleep();

27. }

5. Performance Evaluation and Analysis

In this chapter, experimental environment and results of LAD algorithm is presented. The cluster platform
includes two computing nodes and connected via Gigabit Ethernet, and each node is installed with Ubuntu
Linux 8.10 / kernel 2.6.27-9, OpenMPI message passing library is selected for thread execution affinity

function, the hardware specification is listed as next.

Table 3: Host specification

CPU AMD Phenom X4 9650
Quad-Core 2.3GHz
Laver 1 Cache 64K Instruction Cache
Y and 64K Data Cache Per Core
Layer 2 Cache 512K Per Core
Layer 3 Cache Share 2M for 4 Cores
Main Memory DDR2-800 4GB

61

e

F,uﬂ"
Gigabit Switch \

Ubuntu 8.1 Ubuntu 8.1
OpenMPI 1.27 OpenMPT 1.27

Figure 6: Test environment

Data frame size

Three different sizes of data frames are transmitted between nodes: one byte, 1460 bytes and 8000 bytes.
One byte frame is not only the smallest one in MPI data frame, but also in network, for complete data
transmission in shortest time, source node generates huge amount of one byte frame, these packets congest

CPU internal bus and network.

1518 bytes frame is the largest one in network, but considering that network header should be inserted
into network packet, we select 1460 bytes frame for testing, and then, this size of packet brings largest
amount of data in a single network packet, and trigger fewest network driver interrupt to CPU. Finally 8000
bytes frame is set for large data frame testing, since it needs to be separated to several other packets by
network driver for transmission, but not necessary to be separated in intra-node, and thus need the longest

time for data transmission.

While the experiment is executed, we send 100K data frames between two nodes, and calculate the power

consumption.
CPU frequency and packet delay

Each experiment result figures and tables that follows next has four blocks. The first one is executed in

Performance Mode (PM, CPU works in 2.3GHz), the second one is PowerSave Mode (PS, 1.15GHz), the

62

third one is OnDemand Mode (OD, slows down frequency while CPU loading lower than 80%), and last one
is LAD algorithm that works with OnDemand Mode.

Besides, each block has four delay time configurations, the first one contains no delay between each data
frame, the second delays 5us, the third one delays 10us, and last one delay 20ys. Still in figures that follows

next, TD stands for Transmission Delay, Transmission Time as TT, and PC for Power Consumption.
Rank number

The “Rank Number” in each figures and tables mean the number of nodes / cores join data dispatching.
For example, rank 2 means rank O dispatchs data to rank one, and rank 4 means rank 0 dispatchs data to rank
one, 2, and 3. Since each host has four cores, the rank number 2~4 are internal node data transmission, and
rank 5~8 are cross node data transmission.

Although only four cores join work in rank number 2~4, other cores consume energy at the same time,

and we still need to add the energy consumed.
One byte frame

Table 3 and Figure 5 show the TT for one byte frame, and Figure 6 the PC. Comparing PM, PS and OD
mode, we find that TD increases the TT over 3 seconds in rank 2~4 in every frequency level, but increases
less than one second in 5~8. Table 4 and Figure 6 displayed one byte frame PC. Clearly, the PS mode spends
the longest time to transmit data, though consumes the lowest energy. OD mode has none remarkable
performance in power saving in rank 7~8, but it uses average 100J less than PM mode in rank 2~6, and
keeps TT increasing less than 0.4s in cross-node situation. LAD algorithm displays advantage in no delay
situation, less than 1s TT increasing yet consumes almost the same energy in rank 7~8. In other situations,

LAD spends maximum 4s longer than OD mode, and saves 400J.

Table 4: Detail results of time effect of TD on TT (Frame = 1 Byte)

63

Rank
Number
2 3 4 5 6 7 8
Mode & TD
0 0.160 0.333 0.501 6.262 10.646 15.072 18.630
PM 5 0.928 1.152 1.286 6.813 11.276 15.867 19.384
mode 10 2.292 2.271 1.775 6.655 11.076 15.419 19.238
20 3.251 3.229 3.216 6.924 11.083 15.603 19.032
0 0.285 0.576 0.909 9.984 16.537 23.151 28.976
PS 5 1.326 1.689 1.935 10.599 17.311 23.679 29.518
mode 10 2.637 2.174 2.429 10.580 17.848 24.157 29.598
20 3.612 6.651 3.850 10.767 17.470 24.165 29.651
0 0.216 0.372 0.531 6.625 11.388 16.025 18.664
oD 5 1.330 1.625 1.824 7.143 11.973 16.863 19.503
mode 10 2.630 2.126 2.256 6.898 11.693 16.456 19.456
20 3.489 3.683 3.756 7.343 11.723 16.615 19.161
0 0.288 0.577 0.918 7.182 12.018 16.699 19.524
LAD 5 1.367 1.423 1.623 8.716 14.587 20.181 20.704
10 2.659 1.960 2.028 8.718 14.508 20.221 21.355
20 3.598 3.813 3.716 9.254 15.129 20.253 22.943
?30
ézo

% 15 .2

,5! z

0 «JjJ' | “

1020 : J J R .j

Performance Betaisy T > mg

0

Figure 7: Time effect of TD on TT (Frame = 1 Byte)

PowerSave

OnDemand

Transmission Delay (us)

64

Table 5: Detail results of power effect of TD on PC (Frame = one Byte)

Rank
umber
2 3 4 5 6 7 8
Mode & TD
0| 25.400| 52864 | 79.535| 994.105 | 1690.074 | 2392.710 | 2957.550
PM 5| 147.322 | 182.882 | 204.155 | 1081.577 | 1790.088 | 2518.918 | 3077.249
mode 10 | 363.860 | 360.526 | 281.785 | 1056.495 | 1758.337 | 2447.797 | 3054.071
20 | 516.103 | 512.610 | 510.546 | 1099.199 | 1759.448 | 2477.007 | 3021.368
0| 20.349| 41.126 | 64.903 | 712.858 | 1180.742 | 1652.981 | 2068.886
PS 5| 94.676 | 120.595 | 138.159 | 756.769 | 1236.005 | 1690.681 | 2107.585
mode 10 | 188.282 | 155.224 | 173.431 | 755.412 | 1274.347 | 1724.810 | 2113.297
20 | 257.897 | 474.881 | 274.890 | 768.764 | 1247.358 | 1725.381 | 2117.081
0| 15422 | 26.561| 43.711| 807.412 | 1516.140 | 2220.892 | 2926.660
oD 5] 105.881 | 133.768 | 161.069 | 767.735| 1733.671 | 2433.350 | 3063.280
mode 10 | 216.499 | 175.010 | 182.916 | 869.106 | 1578.218 | 2407.817 | 3072.742
20 | 232.068 | 220.862 | 300.934 | 799.179 | 1557.660 | 2429.356 | 3029.503
0| 20563 | 41.198| 95.615| 776.907 | 1475.156 | 2291.333 | 2901.684
5| 112.530 | 106.221 | 126.801 | 957.703 | 1557.115 | 2203.301 | 2980.904
LAD 10 | 207.967 | 161.345 | 166.637 | 870.518 | 1631.205 | 2207.031 | 2976.349
20 | 213.865 | 302.963 | 294.978 | 676.686 | 1370.538 | 2073.595 | 2787.763

65

Performance

PowerSave

- o 3 5 of
OnDemand 05 10 "o 4 v\““\‘°
Transmission Delay (us) LAB 20 2 Q&&«

Figure 8: Power effect of TD on PC (Frame = one Byte)

1460 byte frame

Table 5 and Figure 7 show 1460 bytes frame TT. By comparing PM mode and OD mode, the completed
time is longer than one byte frame in all situations. In Figure 8, OD mode uses in average over 200J less than
PM mode. Our LAD algorithm made uses of 24~25s to complete data transmission as OD mode, yet
consumes less than OD mode 200~600J in 8 ranks. In other situations, LAD keeps nearly the same

performance, spending 3s longer than OD mode and consuming 200~600J less than OD mode.

66

Table 6: Detail results of time effect of TD on TT (Frame = 1460 Byte)

Rank
Number
2 3 4 5 6 7 8
Mode & TD
0 0.353 0.525 0.721 8.969 12.421 17.518 25.286
PM 5 0.996 1.188 1.321 11.687 13.115 18.323 24.394
mode 10 2.481 2.267 1.818 9.811 12.892 17.752 23.960
20 3.330 3.281 3.245 14.031 12.760 17.835 24511
0.621 0.913 1.254 11.391 18.925 25.933 31.738
PS 1.448 1.825 2.004 10.599 19.379 26.427 32.430
mode 10 2.947 2.252 2.442 12.100 19.803 26.545 32.802
20 3.708 3.749 3.941 11.890 19.405 26.641 32.827
0 0.408 0.548 0.738 7.769 13.033 18.427 24.356
oD 5 1.394 1.707 1.931 8.435 13.749 19.017 25.097
mode 10 2.818 2.221 2.285 8.329 13.512 18.971 24.542
20 3.723 3.720 3.874 8.352 13.584 18.841 24.547
0 0.630 0.940 1.271 10.855 16.063 21.985 24.732
5 1.403 1.500 1.646 10.192 16.104 21.200 24.741
LAD 10 2.861 1.993 2.080 9.852 16.307 21.228 25.182
20 3.742 3.871 3.611 10.482 17.143 21.356 25.566

w
53]

)

Transmission Time (s

Performance

5
1020

PowerSave

05

10 5q

OnDemand

Transmission Delay (us)

67

hl’l T

"JJJ

- w2
- 3

1 =5

ug

. W3

Figure 9: Time effect of TD on TT (Frame = 1460 Byte)

Table 7: Detail results of power effect of TD on PC (Frame = 1460 Byte)

Rank
umber
2 3 4 5 6 7 8
Mode & TD
0| 56.039 | 83.345| 114.460 | 1423.847 | 1971.859 | 2781.018 | 4014.203
PM 5| 158.117 | 188.597 | 209.711 | 1855.335 | 2082.032 | 2908.813 | 3872.596
mode 10 | 393.864 | 359.891 | 288.611 | 1557.516 | 2046.631 | 2818.166 | 3803.698
20 | 528.644 | 520.865 | 515.150 | 2227.449 | 2025.676 | 2831.342 | 3891.170
44339 | 65.188 | 89.536 | 813.317 | 1351.245 | 1851.616 | 2266.093
PS 103.387 | 130.305 | 143.086 | 756.769 | 1383.661 | 1886.888 | 2315.502
mode 10 | 210.416 | 160.793 | 174.359 | 863.940 | 1413.934 | 1895.313 | 2342.063
20| 264.751 | 267.679 | 281.387 | 848.946 | 1385.517 | 1902.167 | 2343.848
0| 33586 | 39.127 | 52.693 | 945.259 | 1645.667 | 2710.100 | 3839.306
oD 5| 110.451 | 132.799 | 158.958 | 1032.840 | 1849.698 | 2663.291 | 3900.304
mode 10 | 223.043 | 182.830 | 195.905 | 1049.544 | 1827.601 | 2729.659 | 3861.452
20 | 306.473 | 306.226 | 309.360 | 1022.164 | 1827.937 | 2739.376 | 3834.217
0| 44982 | 87.644 | 123.505 | 1028.737 | 1705.181 | 2431.432 | 3650.212
5| 104.575 | 118.019 | 124.578 | 1044.754 | 1715.120 | 2455.331 | 3608.556
LAD 10 | 235,515 | 153.219 | 171.224 | 976.402 | 1847.987 | 2431.883 | 3525.145
20 | 308.037 | 307.738 | 290.581 | 890.359 | 1654.873 | 2355.386 | 3209.088

68

8000 byte frame

Although 8000 byte frame is the longest one, PS mode TT keeps 6s longer than other frames’ size, as in
Figure 9. Comparing OD and PM Mode, OD mode spends less than 1s longer than PM Mode, yet saves
200~400J in other cases. Comparing LAD algorithm and OD mode, LAD algorithm still keeps its advantages

in the longest frame size, spends almost the same TT in 8 ranks and average 2~3s longer in other cross-node

Performance

PowerSave

5
10 59

OnDemand

Transmission Delay (us)

|2
a3

| %5
mg

mg

Figure 10: Power effect of TD on PC (Frame = 1460 Byte)

situations, consuming 100~ 400J less than OD mode.

Table 8: Detail results of time effect of TD on TT (Frame = 8000 Byte)

Rank
Number
2 3 4 5 6 7 8

Mode & TD
0 1.220 1.409 1.597 11.158 20.343 26.952 31.241
PM 5 1.484 1.710 1.783 13.364 21.986 27.664 34.053
mode 10 1.993 2171 2.260 11.857 21.455 27.397 33.398
20 3.824 3.753 3.732 11.247 21.604 27.513 33.178

69

0 2.333 2.619 2.812 16.480 27.429 34.139 38.755
PS 5 2.240 2.684 2.964 16.716 27.728 35.219 39.884
mode 10 2.774 3.088 3.245 17.336 19.803 35.387 41.127
20 4.685 4.678 4.244 16.700 27.613 35.219 39.930
0 1.274 1.464 1.610 10.648 22.022 27.752 31.210
oD 5 2.045 2.407 2.226 14.377 21.778 27.739 34.744
mode 10 2.546 2.810 2.769 13.856 22.079 27.932 34.379
20 4.338 4.380 4.448 14.037 21.957 27.603 34.878
0 1.917 2.125 2.200 12.242 23.169 28.553 33.991
5 2.234 2.399 2.579 13.487 22.152 29.627 34.864
LAD 10 2.672 2.779 2.740 13.018 24.838 30.845 34.518
20 4.456 4.663 4.163 12.754 22.897 29.118 36.666

g 10 4

k

0

+ \.'“" uJ

1020

Performance

>
J.‘!

5
0

OnDemand
Transmission Delay (us)

~ 59
10 20
PowerSave

| =5
LT

N T

Figure 11: Time effect of TD on TT (Frame = 8000 Byte)

70

Table 9: Detail results of power effect of TD on PC (Frame = 8000 Byte)

Rank
umber

Mode & TD

0| 193.677 | 223.682 | 253.527 | 1771.355 | 3229.492 | 4278.684 | 4959.571

PM 5| 235.588 | 271.466 | 283.055 | 2121.562 | 3490.321 | 4391.715 | 5405.982
mode 10 | 316.393 | 344.651 | 358.780 | 1882.322 | 3406.024 | 4349.329 | 5301.999
20 | 607.068 | 595.796 | 592.462 | 17/85.484 | 3429.678 | 4367.744 | 5267.074

166.576 | 186.997 | 200.777 | 1176.672 | 1958.431 | 2437.525 | 2767.107

PS 5| 159.936 | 191.638 | 211.630 | 1193.522 | 1979.779 | 2514.637 | 2847.718
mode 10 | 198.064 | 220.483 | 231.693 | 1237.790 | 1413.934 | 2526.632 | 2936.468
20 | 334.509 | 334.009 | 303.022 | 1192.380 | 1971.568 | 2514.637 | 2851.002

0| 107.866 | 147.418 | 185.271 | 1320.356 | 2877.695 | 4069.769 | 4903.488

oD 5| 156.932 | 193.698 | 202.611 | 1652.663 | 2925.864 | 4059.867 | 5447.829
mode 10 | 203.622 | 231.316 | 238.859 | 1706.812 | 2862.416 | 4076.114 | 5432.837
20 | 353.408 | 367.326 | 361.262 | 1664.418 | 3014.893 | 4030.163 | 5487.617

0| 167.818 | 201.826 | 224.777 | 1355.342 | 2522.337 | 3977.022 | 4695.212
5| 183.581 | 197.163 | 205.979 | 1436.942 | 2499.579 | 3962.008 | 4708.029
10 | 212.619 | 220.259 | 225.554 | 1301.254 | 2938.202 | 4316.622 | 5198.511
20 | 284.493 | 376.613 | 329.994 | 1265.924 | 2629.309 | 4060.896 | 5061.468

LAD

71

6000 T
5000 -
4000
000

2R
8 o
o ©O

Power Consumption (])
w

0 ~ o
OnDemand 5 R 4 "
10 0 3 \
Transmission Delay (us) LAB 20 2 o0

Figure 12: Power effect of TD on PC (Frame = 8000 Byte)

Remarks

In this proposed research, LAD algorithm keeps in average 4s TT increasing, yet saves 200~600J that
compares with OD mode in cross-node situation. Limited by only 2 steps experimental cases of CPU
frequencies (2.3GHz and 1.15GHz), we cannot keep CPU loading in a smooth curve. In desktop and server
CPU, they do not keep in high loading work longer time, while they complete a concurrent job and next one

does not be started. Power saving technology helps to decrease host energy consumption, and decreasing

energy cost and carbon dioxide emissions can be reduced.

6. Conclusions

One byte data frame is the smallest one, and it has 5 seconds transmission time shorter than 1460 bytes
frame and 14 seconds shorter than 8000 bytes frame in cross node situation. That means two kinds of

application which have no huge data need to be transmitted are suitable to use small data frame.

® Mathematical calculation

72

® Operation command sending in any application

Small data frame helps to reduce transmission time and energy consumption, more core calculation cycles
can be released to do CPU bound jobs.

Besides, there are two kinds of application suitable to use large data frame.

® Database server that is sending data back

® Distributed file transmission

Larger data frame reduces frame generated time and transmits more data in single frame because larger
content space.

There are many directions to continue this investigation, to develop methods to save energy. If hardware
and software provides functions about voltage or speed control, motherboard or any other type of peripheral
device, then a hardware driver, power-aware job scheduling and data distribution algorithms can be
combined and implemented, targeting in the construction of a low energy cost cluster computing platform in

future.

Reference

1. “Power Management Guide”, http://www.gentoo.com/doc/en/power-management-guide.xml

2. “Enabling CPU Frequency Scaling”, http://ubuntu.wordpress.com/2005/11/04/enabling-cpu-freq uency

-scaling/

3. “Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor”, ftp://download.intel.co
m/design/network/papers/30117401.pdf

4. “AMD PowerNow! Technology Platform Design Guide for Embedded Processors”, http://www.am
d.com/epd/processors/6.32bitproc/8.amdk6fami/x24267/24267a.pdf

5. “AMD / Intel CPU voltage control driver down load”, http://www.linux-phc.org/viewtopic.php? f=
13 &t= 2

73

10

11.

12.

13.

14.

15.

“AMD Family 10h Desktop Processor Power and Thermal Data Sheet”, http://www.amd.com/us-en
/assets/content_type/white_papers_and_tech_docs/GH_43375_10h_ DT _PTDS_PUB_3.14.pdf

. “AMD Opteron Processor with Direct Connect Architecture”, http://enterprise.amd.com/downloads/4

P_Power PID 4149 8.pdf

Chao-Yang Lan, Ching-Hsien Hsu and Shih-Chang Chen, “Scheduling Contention-Free Irregular R
edistributions in Parallelizing Compilers”, The Journal of Supercomputing, Volume 40, Issue 3, (J
une 2007), Pages: 229-247

. Dongkun Shin and Jihong Kim, “Power-Aware Communication Optimization for Networks-on-Chi

ps with Voltage Scalable Links”, Proceeding of the International Conference on Hardware/Softwar

e Codesign and System Synthesis, 2004, Pages: 170-175

. Guangyu Chen, Feihui Li and Mahmut Kandemir, “Reducing Energy Consumption of On-Chip

Networks Through a Hybrid Compiler-Runtime Approach”, 16th International Conference on Par
allel Architecture and Compilation Techniques (PA CT 2007), Pages: 163-174

“Intel 64 And IA-32 Architectures Software Developers Manual, Volume 17, http://download.in t

el.com/design/processor/manuals/253665.pdf

“Key Architectural Features of AMD Phenom X4 Quad-Core Processors”, http://www.amd.com/u
s-en/Processors/Productinformation/0,,30 118 15331 15332%5E15334,00.html

Lei Chia, Albert Hartono, Dhabaleswar K. Panda, “Designing High Performance and Scalable M
Pl Inter-node Communication Support for Clusters”, 2006 IEEE International Conference on Clu
ster Computing, 25-28 Sept. 2006, Pages: 1-10

Ranjit Noronha and D.K. Panda, “Improving Scalability of OpenMP Applications on Multi-core
Systems Using Large Page Support”, 2007 IEEE International Parallel and Distributed Processin
g Symposium, 26-30 March 2007, Pages: 1-8

Umit Y. Ogras, Radu Marculescu, Hyung Gyu Lee and Na Ehyuck Chang, “Communication Ar
chitecture Optimization: Making the Shortest Path Shorter in Regular Networks-on-Chip”, 2006
Proceedings of the conference on Design, Automation and Test in Europe, Munich, Germany,
March 2006, Volume 1, Pages: 712-717

74

16.

17.

18.

19.

20.

21.

22.

23.

24.

“InfiniBand Introduction”, http://en.wikipedia.org/wiki/InfiniBand

Seung Woo Son, Guangyu Chen, Ozcan Ozturk Mahmut Kandemir and Alok Choudhary, “Com
piler-Directed Energy Optimization for Parallel-Disk-Based Systems” IEEE Transactions on Parall
el and Distributed Systems, September 2007, Volume. 18, No. 9, Pages: 1241-1257

Sri Hari Krishna Narayanan, Mahmut Kandemir and Ozcan Ozturk, “Compiler-Directed Power D
ensity Reduction in NoC-Based Multi-Core Designs”, Proceedings of the 7th International Synpo

sium on Quality Electronic Desing, 2006, Pages: 570-575

David Meisner, Brian T. Gold and Thomas F. Wenisch, “PowerNap: eliminating server idle po
wer”, Proceeding of the 14th International Conference on Architectural Support for Programming

Languages and Operation Systems, 2009, Pages: 205-216

Michael B. Healy, Hsien-Hsin S. Lee, Gabriel H. Loh and Sung Kyu Lim, “Thermal Optimizati
on in Multi-Granularity Multi-core Floorplanning” Proceedings of the 2009 Conference on Asia

and South Pacific Design Automation, 2009, Pages: 43-48

M. Aater Suleman, Onur Mutlu, moinuddin K. Qureshi and Yale N. Patt, “Accelerating Critical
Section Execution with Asymmetric Multi-core Architecture”, Proceeding of the 14th Inteernati
onal Conferenceon Architectural Support for Programming Languages and Operating Systems, 20
09, Pages: 253-264

David C. Snowdon, Etienne Le Sueur, Stefan M. Petters and Gemot Heiser, “Koala: A Platform
for OS-Level Power Management”, Proceedings of the Fourth ACM European Conference on
Computer Systems, 2009, Pages: 289-302

Alexander S. van Amesfoort, Ana lucia Varbanescu, Henk J. Sips and Rob V. van Nieuwpoort,
“Evaluating Multi-core Platforms for HPC Data-Intensive kernels”, Proceedings of the 6th AC

M Conference on Computing Frontiers, 2009, Pages: 207-216

XianGrong Zhou, Chenlie Yu and Peter Petrov, “Temperature-Aware Register Reallocation for
Register File Power-Density Minimization”, ACM Transactions on Design Automation of Electro
nic Systems, March 2009, Volume 14, Issue 2, No. 26.

75

25. Radha Guha, Nader Bagherzadeh and Pai Chou, “Resource Management and Task Partitioning a
nd Scheduling on a Run-Time Reconfigurable Embedded System”, Computers and Electrical En
gineering, March 2009, Volume 35, Issue 2, Pages: 258-285

76

7 pT R i g
5H 30 H

¥

03-5186410
chh@chu.edu.tw

FAEY PR M LA

T

)

62 & 2 23 P Bl

I

e

The 3rd ChinaGrid Annual Conference (ChinaGrid)

)

W

al | p 98 & 05 % 24 p

Kunming, China -
Hp Bl iz 98 & 05 * 29 p

Y}

PP ETRR TR AT R A X o R - X b A A g
7 A #F - F-invited session s F & o BPEF o R
A B R A o B X 0 BB Prof. Kai
Hwang 3 & ** Massively Distributed Systems From Grids and P2P to Clouds #f
Begie 5 - A F S ER 7 FTH e F 4 o & L 4 2 Architecture and
Infrastructure ~ Grid computing ~ 2 2 P2P computing 4p & 3=x P-3F 2 - B
PAAT R F ISR E R B AR REIRLL B
TLE %=X A4 4 2KPT Data and Information Management #p ki 2
T REELE S ATEAST Y AN B R R E A SR Y A&
?Z Do 3P e JEAS & BRI RRCIRILE) B A SRR P RER BT
FE g oo Hw X o A AR EE# Service Oriented Computing 14 % Network
Storage tp A T R M F A o A T RO AAFTF L RA TR B AL o
LRy Rl SUCE W s R 77 - ek SLHE s 1 (TR s R E S M»‘;
FTAREMZ @ Rpp S SR 8 7 34 2 = hBE S T3 € R

A r?'ﬁ BT s E - (i B g Hensd 'FKBI: 79 7 R%E &%‘?mﬂ;ﬁ:

PEEE I o &

e

T"“'

° ax_— ,J\ ,t—# 1:,-\' Ié m§4h‘lﬂ;‘} g 7‘2-\4‘1 Y,

Z
4

oA A BERF|2F

]EIK?‘ 4’["

:Tuﬁf"g§~i AR

&ﬂ 9,5']}!'}3

N =y

= R B 6

7

o

e R A B H W o e Bk g AT A §~p;
BRI R BT B S0 AAGRE 0 §RITREDE F U Fran
A x *Kﬂjg 7 4 gvi%ﬁl*iv’v\'ﬁ EEAPEEY o

i

oy | o 8

77

Towards Improving QoS-Guided Scheduling in Grids

Ching-Hsien Hsu', Justin Zhan?, Wai-Chi Fang® and Jianhua Ma*

'Department of Computer Science and Information Engineering, Chung Hua University, Taiwan
chh@chu.edu.tw

2Heinz School, Carnegie Mellon University, USA
justinzh@andrew.cmu.edu

*Department of Electronics Engineering, National Chiao Tung University, Taiwan
wfang@mail.nctu.edu.tw

*Digital Media Department, Hosei University, Japan
jianhua@hosei.ac.jp

Abstract

With the emergence of grid technologies, the
problem of scheduling tasks in heterogeneous systems has
been arousing attention. In this paper, we present two
optimization schemes, Makespan Optimization
Rescheduling (MOR) and Resource Optimization
Rescheduling (ROR), which are based on the QoS
Min-Min scheduling technique, for reducing the
makespan of a schedule and the need of total resource
amount. The main idea of the proposed techniques is to
reduce overall execution time without increasing
resource need; or reduce resource need without
increasing overall execution time. To evaluate the
effectiveness of the proposed techniques, we have
implemented both techniques along with the QoS
Min-Min scheduling algorithm. The experimental results
show that the MOR and ROR optimization schemes
provide noticeable improvements.

1. Introduction

With the emergence of IT technologies, the need of
computing and storage are rapidly increased. To invest
more and more equipments is not an economic method for
an organization to satisfy the even growing computational
and storage need. As a result, grid has become a widely
accepted paradigm for high performance computing.

To realize the concept virtual organization, in [13],
the grid is also defined as “A type of parallel and
distributed system that enables the sharing, selection, and
aggregation of geographically distributed autonomous and
heterogeneous resources dynamically at runtime
depending on their availability, capability, performance,
cost, and users' quality-of-service requirements”. As the
grid system aims to satisfy users’ requirements with limit

78

resources, scheduling grid resources plays an important
factor to improve the overall performance of a grid.

In general, grid scheduling can be classified in two
categories: the performance guided schedulers and the
economy guided schedulers [16]. Objective of the
performance guided scheduling is to minimize turnaround
time (or makespan) of grid applications. On the other
hand, in economy guided scheduling, to minimize the cost
of resource is the main objective. However, both of the
scheduling problems are NP-complete, which has also
instigated many heuristic solutions [1, 6, 10, 14] to
resolve. As mentioned in [23], a complete grid scheduling
framework comprises application model, resource model,
performance model, and scheduling policy. The
scheduling policy can further decomposed into three
phases, the resource discovery and selection phase, the
job scheduling phase and the job monitoring and
migration phase, where the second phase is the focus of
this study.

Although many research works have been devoted
in scheduling grid applications on heterogeneous system,
to deal with QOS scheduling in grid is quite complicated
due to more constrain factors in job scheduling, such as
the need of large storage, big size memory, specific 1/0
devices or real-time services, requested by the tasks to be
completed. In this paper, we present two QoS based
rescheduling schemes aim to improve the makespan of
scheduling batch jobs in grid. In addition, based on the
QoS guided scheduling scheme, the proposed
rescheduling technique can also reduce the amount of
resource need without increasing the makespan of grid
jobs. The main contribution of this work are twofold,
one can shorten the turnaround time of grid applications
without increasing the need of grid resources; the other
one can minimize the need of grid resources without
increasing the turnaround time of grid applications,

mailto:chh@chu.edu.tw

compared with the traditional QoS guided scheduling
method. To evaluate the performance of the proposed
techniques, we have implemented our rescheduling
approaches along with the QoS Min-Min scheduling
algorithm [9] and the non-QoS based Min-Min scheduling
algorithm. The experimental results show that the
proposed techniques are effective in heterogeneous
systems under different circumstances. The improvement
is also significant in economic grid model [3].

The rest of this paper is organized as follows.
Section 2 briefly describes related research in grid
computing and job scheduling. Section 3 clarifies our
research model by illustrating the traditional Min-min
model and the QoS guided Min-min model. In Section 4,
two optimization schemes for reducing the total execution
time of an application and reducing resource need are
presented, where two rescheduling approaches are
illustrated in detail. We conduct performance evaluation
and discuss experiment results in Section 5. Finally,
concluding remarks and future work are given in Section
6.

2. Related Work

Grid scheduling can be classified into traditional grid
scheduling and QoS guided scheduling or economic based
grid scheduling. The former emphasizes the
performance of systems of applications, such as system
throughput, jobs’ completion time or response time.
Swany et al. provides an approach to improving
throughput for grid applications with network logistics by
building a tree of “best” paths through the graph and has
running time of O(NlogN) for implementations that keep
the edges sorted [15]. Such approach is referred as the
Minimax Path (MMP) and employs a greedy,
tree-building algorithm that produces optimal results [20].
Besides data-parallel applications requiring high
performance in grid systems, there is a Dynamic Service
Architecture (DSA) based on static compositions and
optimizations, but also allows for high performance and
flexibility, by use of a lookahead scheduling mechanism
[4]. To minimizing the processing time of extensive
processing loads originating from various sources, the
approaches divisible load model [5] and single level tree
network with two root processors with divisible load are
proposed [12]. In addition to the job matching algorithm,
the resource selection algorithm is at the core of the job
scheduling decision module and must have the ability to
integrate multi-site computation power. The CGRS
algorithm based on the distributed computing grid model
and the grid scheduling model integrates a new
density-based internet clustering algorithm into the
decoupled scheduling approach of the GrADS and
decreases its time complexity [24]. The scheduling of
parallel jobs in a heterogeneous multi-site environment,

79

where each site has a homogeneous cluster of processors,
but processors at different sites has different speeds, is
presented in [18]. Scheduling strategy is not only in batch
but also can be in real-time. The SAREG approach
paves the way to the design of security-aware real-time
scheduling algorithms for Grid computing environments
[21].

For QoS guided grid scheduling, apparently,
applications in grids need various resources to run its
completion. In [17], an architecture named public
computing utility (PCU) is proposed uses virtual machine
(VMs) to implement “time-sharing” over the resources
and augments finite number of private resources to public
resources to obtain higher level of quality of services.
However, the QoS demands maybe include various
packet-type and class in executing job. As a result, a
scheduling algorithm that can support multiple QoS
classes is needed. Based on this demand, a multi-QoS
scheduling algorithm is proposed to improve the
scheduling fairness and users’ demand [11]. He et al. [7]
also presented a hybrid approach for scheduling moldable
jobs with QoS demands. In [9], a novel framework for
policy based scheduling in resource allocation of grid
computing is also presented. The scheduling strategy
can control the request assignment to grid resources by
adjusting usage accounts or request priorities. Resource
management is achieved by assigning usage quotas to
intended users. The scheduling method also supports
reservation based grid resource allocation and quality of
service feature. Sometimes the scheduler is not only to
match the job to which resource, but also needs to find the
optimized transfer path based on the cost in network. In
[19], a distributed QoS network scheduler (DQNS) is
presented to adapt to the ever-changing network
conditions and aims to serve the path requests based on a
cost function.

3. Research Architecture

Our research model considers the static scheduling
of batch jobs in grids. As this work is an extension and
optimization of the QoS guided scheduling that is based
on Min-Min scheduling algorithm [9], we briefly describe
the Min-Min scheduling model and the QoS guided
Min-Min algorithm. To simplify the presentation, we
first clarify the following terminologies and assumptions.

® QoS Machine (Mg) — machines can provide special
services.

® QoS Task (Tg) — tasks can be run completion only on
QoS machine.

® Normal Machine (My) — machines can only run
normal tasks.

® Normal Task (Ty) — tasks can be run completion on

both QoS machine and normal machine.

® A chunk of tasks will be scheduled to run completion
based on all available machines in a batch system.

® A task will be executed from the beginning to
completion without interrupt.
® The completion time of task t; to be executed on

machine m; is defined as

CTij = dtij + etij (1)

Where et;; denotes the estimated execution time of task t;
executed on machine myj; dt; is the delay time of task t; on

machine m;.

The Min-Min algorithm is shown in Figure 1.

Algorithm_Min-Min()

while there are jobs to schedule
for all job i to schedule
for all machine j
Compute CT;; = CT(job i, machine j)
end for
Compute minimum CT;;
end for
Select best metric match m
Compute minimum CT,
Schedule job m on machine n
end while
} End_of _ Min-Min

Figure 1. The Min-Min Algorithm

Analysis: If there are m jobs to be scheduled in n
machines, the time complexity of Min-Min algorithm is
O(m?n). The Min-Min algorithm does not take into
account the QoS issue in the scheduling. In some
situation, it is possible that normal tasks occupied
machine that has special services (referred as QoS
machine). This may increase the delay of QoS tasks or
result idle of normal machines.

The QoS guided scheduling is proposed to resolve
the above defect in the Min-Min algorithm. In QoS
guided model, the scheduling is divided into two classes,
the QoS class and the non-QoS class. In each class, the
Min-Min algorithm is employed. As the QoS tasks have
higher priority than normal tasks in QoS guided
scheduling, the QoS tasks are prior to be allocated on
QoS machines. The normal tasks are then scheduled to
all machines in Min-Min manner. Figure 2 outlines the
method of QoS guided scheduling model with the
Min-Min scheme.

80

Analysis: If there are m jobs to be scheduled in n
machines, the time complexity of QoS guided scheduling
algorithm is O(m?n).

Figure 3 shows an example demonstrating the
Min-Min and QoS Min-Min scheduling schemes. The
asterisk * means that tasks/machines with QoS
demand/ability, and the X means that QoS tasks couldn’t
be executed on that machine. Obviously, the QoS
guided scheduling algorithm gets the better performance
than the Min-Min algorithm in term of makespan.
Nevertheless, the QoS guided model is not optimal in
both makespan and resource cost. We will describe the
rescheduling optimization in next section.

Algorithm_QOS-Min-Min()
{

for all tasks ti in meta-task Mv (in an arbitrary order)
for all hosts m; (in a fixed arbitrary order)
CTij =et; +dt
end for
end for
do until all tasks with QoS request in Mv are mapped
for each task with high QoS in My,
find a host in the QoS qualified host set that obtains
the earliest completion time
end for
find task t, with the minimum earliest completion time
assign task t, to host m, that gives the earliest completion
time
delete task t, from Mv
update dy
update CT; for all i
end do
do until all tasks with non-QoS request in Mv are mapped
for each task in Mv
find the earliest
corresponding host
end for
find the task t, with the minimum earliest completion time
assign task t, to host m, that gives the earliest completion
time
delete task t, from Mv
update dy
update CT, for all i
end do
} End_of _ QOS-Min-Min

completion time and the

Figure 2. The QoS Guided Algorithm

4. Rescheduling Optimization

Grid scheduling works as the mapping of individual
tasks to computer resources, with respecting service level
agreements (SLAs) [2]. In order to achieve the
optimized performance, how to mapping heterogeneous
tasks to the best fit resource is an important factor. The
Min-Min algorithm and the QoS guided method aims at
scheduling jobs to achieve better makespan. However,
there are still having rooms to make improvements. In
this section, we present two optimization schemes based
on the QoS guided Min-Min approach.

4.1 Makespan Optimization Rescheduling (MOR)

The first one is Makespan Optimization Rescheduling
(MOR), which focuses on improving the makespan to
achieve better performance than the QoS guided
scheduling algorithm. Assume the makespan achieved by
the QoS guided approach in different machines are CTy,
CT,, ..., CTy, with CTy = max { CTy, CTy, ..., CTy },
where m is the number of machines and 1 <k <m. By
subtracting CT, — CT;, where 1 <i <mand i =k, we can
have m-1 available time fragments. According to the
size of these available time fragments and the size of tasks
in machine My, the MOR dispatches suitable tasks from
machine My to any other machine that has available and
large enough time fragments. Such optimization is
repeated until there is no task can be moved.

*M1 M2 M3
T1 7 4 7
T2 3 3 5
T3 9 5 7
*T4 5 X X
T5 9 8 6
*T6 5 X X

Makespan Makespan

12 |—

)
I
+
X
S
-
3

w
I

Machine M1 M2 M3 Machine

B. The QOS guided scheduling algorithm

A. The Min-Min algorithm

Figure 3. Min-Min and QoS Guided Min-Min

81

*M1 M2 M3
T1 7 4 7
T2 3 3 5
T3 9 5 7
*T4 5 X X
T5 9 8 6
*T6 5 X X
Makespan
Makespan
4 s
12 +— —
T3 u T2
*T6 *T6
s - 8 [— T3
T1
5 T
3 - *T4 3 |— | *T4 T1
T2

*M1 M2 M3 Machine *M1L M2 M3 Machine

A. The QOS guided scheduling B. The Makespan
algorithm Rescheduling (MOR) algorithm

Optimization

Figure 4. Example of MOR

Recall the example given in Figure 3, Figure 4
shows the optimization of the MOR approach. The left
side of Figure 4 demonstrates that the QoS guided scheme
gives a schedule with makespan = 12, wheremachine M2
presents maximum CT (completion time), which is
assembled by tasks T2, T1 and T3. Since the CT of
machine ‘M3’ is 6, so ‘M3’ has an available time
fragment (6). Checking all tasks in machine M2, only
T2 is small enough to be allocated in the available time
fragment in M3. Therefore, task M2 is moved to M3,
resulting machine ‘M3’ has completion time CT=11,
which is better than the QoS guided scheme.

As mentioned above, the MOR is based on the QoS
guided scheduling algorithm. If there are m tasks to be
scheduled in n machines, the time complexity of MOR is
O(m?n). Figure 5 outlines a pseudo of the MOR scheme.

Algorithm_MOR()

for CT; in all machines
find out the machine with maximum makespan CTpax and
set it to be the standard
end for
do until no job can be rescheduled
for job i in the found machine with CTyax
for all machine j
according to the job’s QOS demand, find the
adaptive machine j
if (the execute time of job i in machine j + the
CT; < makespan)
rescheduling the job i to machine j
update the CT; and CTpax
exit for
end if
next for
if the job i can be reschedule
find out the new machine with maximum CT,ax
exit for
end if
next for
end do
} End_of MOR

Figure 5. The MOR Algorithm

4.2 Resource Optimization Rescheduling (ROR)

Following the assumptions described in MOR, the main
idea of the ROR scheme is to re-dispatch tasks from the
machine with minimum number of tasks to other machines,
expecting a decrease of resource need. Consequently, if
we can dispatch all tasks from machine M, to other
machines, the total amount of resource need will be
decreased.

Figure 6 gives another example of QoS scheduling,
where the QoS guided scheduling presents makespan = 13.
According to the clarification of ROR, machine ‘M1’ has
the fewest amount of tasks. We can dispatch the task
‘T4’ to machine ‘M3’ with the following constraint

CTij + CTJ <= CTmax (2)

The above constraint means that the rescheduling can be
performed only if the movement of tasks does not
increase the overall makespan. In this example, CT43= 2,
CTs=7 and CT.,»=CT,=13. Because the makespan of
M3 (CTj;) will be increased from 7 to 9, which is smaller
than the CT,., therefore, the task migration can be
performed. As the only task in M1 is moved to M3, the
amount of resource need is also decreased comparing with
the QoS guided scheduling.

82

M1 *M2 M3
T1 3 4 2
T2 6 6 3
*T3 X 7 X
T4 4 6 2
T5 5 7 2
*T6 X 6 X
Makespan Makespan
13 — 13 —

*T3

e e
B
T1 T1
0 1
M1 *M2 M3 Machine M1 *M2 M3 Machine

B. The Resource Optimization Rescheduling

A. The QOS guided scheduling (ROR) Algorithm

Figure 6. Example of ROR

The ROR is an optimization scheme which aims to
minimize resource cost. If there are m tasks to be
scheduled in n machines, the time complexity of ROR is
also O(m?n). Figure 7 depicts a high level description of
the ROR optimization scheme.

Algorithm_MOR()

for m in all machines
find out the machine m with minimum count of jobs
end for
do until no job can be rescheduled
for job i in the found machine with minimum count of jobs
for all machine j
according to the job’s QOS demand, find the
adaptive machine j
if (the execute time of job i in machine j + the
CT; <= makespan CTay)
rescheduling the job i to machine j
update the CT;
update the count of jobs in machine m and
machine j
exit for
end if
next for
next for
end do
} End_of_ MOR

Figure 7. The ROR Algorithm
5. Performance Evaluation
5.1 Parameters and Metrics
To evaluate the performance of the proposed

techniques, we have implemented the Min-Min
scheduling algorithm and the QoS guided Min-Min

scheme. The experiment model consists of heterogeneous
machines and tasks. Both of the Machines and tasks are
classified into QoS type and non-QoS type. Table 1
summarizes six parameters and two comparison metrics
used in the experiments. The number of tasks is ranged
from 200 to 600. The number of machines is ranged from
50 to 130. The percentage of QoS machines and tasks are
set between 15% and 75%. Heterogeneity of tasks are
defined as H; (for non-QoS task) and Hq (for QoS task),
which is used in generating random tasks. For example,
the execution time of a non-QoS task is randomly
generated from the interval [10, Hx10?] and execution
time of a QoS task is randomly generated from the
interval [10%, Hox10%] to reflect the real application world.
All of the parameters used in the experiments are
generated randomly with a uniform distribution. The
results demonstrated in this section are the average values
of running 100 random test samples.

Table 1: Parameters and Comparison Metrics

Task number (Ny) {200, 300, 400, 500, 600}

Resource number (Ng) {50, 70, 90, 110, 130}

Percentage of QOS resources (Qr %) | {15%, 30%, 45%, 60%, 75%}

Percentage of QOS tasks (Qr %) {15%, 30%, 45%, 60%, 75%}

Heterogeneity of non-QOS tasks (H7) | {1, 3,5, 7,9}
Heterogeneity of QOS tasks (Hg) {3,5,7,9,11}
Makespan ;I;giscompletlon time of a set of

Number of machines used for
executing a set of tasks

Resource Used (Ry)

5.2 Experimental Results of MOR

Table 2 compares the performance of the MOR, Min-Min
algorithm and the QoS guided Min-Min scheme in term of
makespan. There are six tests that are conducted with
different parameters. In each test, the configurations are
outlined beside the table caption from (a) to (f). Table (a)
changes the number of tasks to analyze the performance
results. Increasing the number of tasks, improvement of
MOR is limited. An average improvement ratio is from
6% to 14%. Table (b) changes the number of machines.
It is obvious that the MOR has significant improvement in
larger grid systems, i.e., large amount of machines. The
average improvement rate is 7% to 15%. Table (c)
discusses the influence of changing percentages of QoS

machines. Intuitionally, the MOR performs best with
45% QoS machines. However, this observation is not
always true. By analyzing the four best ones in (a) to (d),

we observe that the four tests (a) N;=200 (Ng=50, Qz=30%,
Q1=20%) (b) Ng=130 (N;=500, Qr=30%, Q=20%) (c)
Qr=45% (N;=300, Nz=50, Q;=20%) and (d) Q=15%
(Nt=300, Ng=50, Qr=40%) have best improvements. All of
the four configurations conform to the following relation,

83

0.4 x (Nrx Qr) = Ng x Qg 3
This observation indicates that the improvement of MOR
is significant when the number of QoS tasks is 2.5 times
to the number of QoS machines. Tables () and (f)
change heterogeneity of tasks. We observed that
heterogeneity of tasks is not critical to the improvement
rate of the MOR technique, which achieves 7%
improvements under different heterogeneity of tasks.

Table 2: Comparison of Makespan

(a) (Ng=50, Qr=30%, Q;=20%, H=1, Ho=1)

Task Number (Ny) 200 300 400 500 600
Min-Min 978.2| 1299.7| 1631.8| 1954.6| 2287.8
QOS Guided Min-Min 694.6 917.8| 1119.4| 1359.9| 1560.1
MOR 597.3 815.5 1017.7 1254.8 1458.3
Improved Ratio 14.01%| 11.15%| 9.08%| 7.73%| 6.53%
(b) (Nt=500, Qz=30%, Qr=20%, H:=1, Ho=1)

Resource Number (Ng) 50 70 90 110 130
Min-Min 19315 | 14322 | 1102.1 | 985.3 874.2
QOS Guided Min-Min | 1355.7 | 938.6 724.4 590.6 508.7
MOR 1252.6 | 8408 633.7 506.2 429.4
Improved Ratio 7.60% | 10.42% | 12.52% | 14.30% | 15.58%

(¢) (Ny=300, Ng=50, Qr=20%, Hr=1, Ho=1)

Qr% 15% 30% 45% 60% 75%
Min-Min 2470.8 | 1319.4 888.2 777.6 650.1
QOS Guided Min-Min | 1875.9 | 913.6 596.1 463.8 376.4
MOR 1767.3 | 810.4 503.5 394.3 339.0
Improved Ratio 5.79% | 11.30% | 15.54% | 14.99% | 9.94%

(d) (Ny=300, Ng=50, Qz=40%, H:=1, Ho=1)

Q% 15% 30% 45% 60% 75%
Min-Min 879.9 1380.2 | 1801.8 | 2217.0 | 2610.1
QOS Guided Min-Min 558.4 915.9 12452 | 1580.3 | 1900.6
MOR 474.2 817.1 1145.1 | 14785 | 1800.1
Improved Ratio 15.07% | 10.79% | 8.04% | 6.44% 5.29%

(€) (Ny=500, Ng=50, Qz=30%, Qr=20%, Hg=1)
Hr 1 3 5 7 9
Min-Min 1891.9 | 19451 | 1944.6 | 1926.1 | 1940.1
QOS Guided Min-Min | 1356.0 | 1346.4 | 1346.4 | 1354.9 | 1357.3
MOR 1251.7 1241.4 1244.3 1252.0 1254.2
Improved Ratio 7.69% | 7.80% | 7.58% | 7.59% | 7.59%

(f) (Ny=500, Nx=50, Qx=30%, Q;=20%, H=1)

Ho 3 5 7 9 11
Min-Min 1392.4| 1553.9| 1724.9| 1871.7| 2037.8
QOS Guided Min-Min 867.5| 1007.8| 11482 1273.2| 1423.1
MOR 822.4 936.2| 1056.7] 1174.3] 1316.7
Improved Ratio 5.20% 7.11% 7.97% 7.77% 7.48%

5.3 Experimental Results of ROR

Table 3 analyzes the effectiveness of the ROR technique
under different circumstances.

Table 3: Comparison of Resource Used

(a) (Nz=100, Qz=30%, Q;=20%, H=1, Hy=1)

Task Number (Nr) 200 300 400 500 600
QOS Guided Min-Min 100 100 100 100 100
ROR 39.81 44.18 46.97 49.59 51.17
Improved Ratio 60.19% | 55.82% | 53.03% | 50.41% | 48.83%
(b) (N;=500, Qz=30%, Q1=20%, H:=1, Ho=1)

Resource Number (Ng) 50 70 90 110 130
QOS Guided Min-Min 50 70 90 110 130
ROR 26.04 35.21 43.65 50.79 58.15
Improved Ratio 47.92% | 49.70% | 51.50% | 53.83% | 55.27%

(€) (N7=500, Ng=50, Q;=20%, H=1, Ho=1)

Qr% 15% 30% 45% 60% 75%
QOS Guided Min-Min 50 50 50 50 50
ROR 14.61 25.94 35.12 40.18 46.5
Improved Ratio 70.78% | 48.12% | 29.76% | 19.64% | 7.00%

(d) (Ny=500, Ng=100, Qz=40%, H.=1, Hy=1)

Q1% 15% 30% 45% 60% 75%
QOS Guided Min-Min 100 100 100 100 100
ROR 57.74 52.9 48.54 44.71 41.49
Improved Ratio 42.26% | 47.10% | 51.46% | 55.29% | 58.51%

(e) (N7=500, Ng=100, Qr=30%, Qr=20%, Ho=1)
Hy 1 3 5 7 9

QOS Guided Min-Min 100 100 100 100 100
ROR 47.86 4751 47.62 47.61 47.28
Improved Ratio 52.14% | 52.49% | 52.38% | 52.39% | 52.72%

(f) (Ny=500, Ng=100, Qz=30%, Q;=20%, H,=1)

Ho 3 5 7 9

QOS Guided Min-Min 100 100 100
ROR 54.61 52.01 50.64

11
100
46.53

100
48.18

Improved Ratio 45.39%| 47.99%| 49.36%| 51.82%| 53.47%

84

Similar to those of Table 2, Table (a) changes the
number of tasks to verify the reduction of resource that
needs to be achieved by the ROR technique. We noticed
that the ROR has significant improvement in minimizing
grid resources. Comparing with the QoS guided
Min-Min scheduling algorithm, the ROR achieves 50% ~
60% improvements without increasing overall makespan
of a chunk of grid tasks. Table (b) changes the number
of machines. The ROR retains 50% improvement ratio.
Table (c) adjusts percentages of QoS machine. Because
this test has 20% QoS tasks, the ROR performs best at
15% QoS machines. This observation implies that the
ROR has significant improvement when QoS tasks and
QoS machines are with the same percentage. Table (d)
sets 40% QoS machine and changes the percentages of
QoS tasks. Following the above analysis, the ROR
technique achieves more than 50% improvements when
QoS tasks are with 45%, 60% and 75%. Tables (e) and
(f) change the heterogeneity of tasks. Similar to the
results of section 5.2, the heterogeneity of tasks is not
critical to the improvement rate of the ROR technique.
Overall speaking, the ROR technique presents 50%
improvements in minimizing total resource need compare
with the QoS guided Min-Min scheduling algorithm.

6. Conclusions

In this paper we have presented two optimization
schemes aiming to reduce the overall completion time
(makespan) of a chunk of grid tasks and minimize the
total resource cost. The proposed techniques are based
on the QoS guided Min-Min scheduling algorithm. The
optimization achieved by this work is twofold; firstly,
without increasing resource costs, the overall task
execution time could be reduced by the MOR scheme with
7%~15% improvements. Second, without increasing task
completion time, the overall resource cost could be
reduced by the ROR scheme with 50% reduction on
average, which is a significant improvement to the state of
the art scheduling technique. The proposed MOR and
ROR techniques have characteristics of low complexity,
high effectiveness in large-scale grid systems with QoS
services.

References

[1] A. Abraham, R. Buyya, and B. Nath, "Nature’s Heuristics for
Scheduling Jobs on Computational Grids", Proc. 8th IEEE
International Conference on Advanced Computing and
Communications (ADCOM-2000), pp.45-52, 2000.

[2] A. Andrieux, D. Berry, J. Garibaldi, S. Jarvis, J. MacLaren, D.
Ouelhadj, D. Snelling, "Open Issues in Grid Scheduling",
National e-Science Centre and the Inter-disciplinary Scheduling
Network Technical Paper, UKeS-2004-03.

[3] R. Buyya, D. Abramson, Jonathan Giddy, Heinz Stockinger,
“Economic Models for Resource Management and Scheduling

in Grid Computing”, Journal of Concurrency: Practice and
Experience, vol. 14, pp. 13-15, 2002.

[4] Jesper Andersson, Morgan Ericsson, Welf Léwe, and Wolf
Zimmermann, "Lookahead Scheduling for Reconfigurable
GRID Systems", 10th International Europar'04: Parallel
Processing, vol. 3149, pp. 263-270, 2004.

[5] D Yu, Th G Robertazzi, "Divisible Load Scheduling for Grid
Computing”, 15th TASTED Int’l. Conference on Parallel and
Distributed Computing and Systems, Vol. 1, pp. 1-6, 2003

[6] Fangpeng Dong and Selim G. Akl, "Scheduling Algorithms for
Grid Computing: State of the Art and Open Problems",
Technical Report No. 2006-504, 2006.

[7] Ligang He, Stephen A. Jarvis, Daniel P. Spooner, Xinuo Chen,
Graham R. Nudd, "Hybrid Performance-oriented Scheduling of
Moldable Jobs with QoS Demands in Multiclusters and Grids",
Grid and Cooperative Computing (GCC 2004), vol. 3251, pp.
217-224, 2004.

[8] Xiaoshan He, Xian-He Sun, Gregor Von Laszewski, "A QoS
Guided Scheduling Algorithm for Grid Computing"”, Journal of
Computer Science and Technology, vol.18, pp.442-451, 2003.

[9] Jang-uk In, Paul Avery, Richard Cavanaugh, Sanjay Ranka,
"Policy Based Scheduling for Simple Quality of Service in Grid
Computing", IPDPS 2004, pp. 23, 2004.

[10] J. Schopf. "Ten Actions when Superscheduling: A Grid
Scheduling Architecture”, Scheduling Architecture Workshop,
7th Global Grid Forum, 2003.

[21] Junsu Kim, Sung Ho Moon, and Dan Keun Sung, "Multi-QoS
Scheduling Algorithm for Class Fairness in High Speed
Downlink Packet Access", Proceedings of IEEE Personal,
Indoor and Mobile Radio Communications Conference (PIMRC
2005), vol. 3, pp. 1813-1817, 2005

[12] M.A. Moges and T.G. Robertazzi, "Grid Scheduling Divisible
Loads from Multiple Sources via Linear Programming", 16th
IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS), pp. 423-428, 2004.

[13] M. Baker, R. Buyya and D. Laforenza, "Grids and Grid
Technologies for Wide-area Distributed Computing", in Journal
of Software-Practice & Experience, Vol. 32, No.15, pp.
1437-1466, 2002.

[14] Jennifer M. Schopf, "A General Architecture for Scheduling on
the Grid", Technical Report ANL/MCS, pp. 1000-1002, 2002.
[15] M. Swany, "Improving Throughput for Grid Applications with
Network Logistics”, Proc. IEEE/ACM Conference on High

Performance Computing and Networking, 2004.

[16] R. Moreno and A.B. Alonso, "Job Scheduling and Resource
Management Techniques in Economic Grid Environments",
LNCS 2970, pp. 25-32, 2004.

[17] Shah Asaduzzaman and Muthucumaru Maheswaran,
"Heuristics for Scheduling Virtual Machines for Improving QoS
in Public Computing Utilities", Proc. 9th International
Conference on Computer and Information Technology
(ICCIT’06), 2006.

[18] Gerald Sabin, Rajkumar Kettimuthu, Arun Rajan and P
Sadayappan, "Scheduling of Parallel Jobs in a Heterogeneous
Multi-Site Environment", in the Proc. of the 9th International
Workshop on Job Scheduling Strategies for Parallel Processing,
LNCS 2862, pp. 87-104 , June 2003.

[19] Sriram Ramanujam, Mitchell D. Theys, "Adaptive Scheduling
based on Quality of Service in Distributed Environments",
PDPTA’05, pp. 671-677, 2005.

[20] T. H. Cormen, C. L. Leiserson, and R. L. Rivest, "Introduction
to Algorithms", First edition, MIT Press and McGraw-Hill,
ISBN 0-262-03141-8, 1990.

[21] Tao Xie and Xiao Qin, "Enhancing Security of Real-Time
Applications on Grids through Dynamic Scheduling”, Proc. the
11th Workshop on Job Scheduling Strategies for Parallel

85

Processing (JSSPP'05), pp. 146-158, 2005.

[22] Haobo Yu, Andreas Gerstlauer, Daniel Gajski, "RTOS
Scheduling in Transaction Level Models", in Proc. of the 1st
IEEE/ACM/IFIP international conference on Hardware/software
Codesign & System Synpaper, pp. 31-36, 2003.

[23] Y. Zhu, "A Survey on Grid Scheduling Systems", LNCS 4505,
pp. 419-427, 2007.

[24] Weizhe Zhang, Hongli Zhang, Hui He, Mingzeng Hu,
"Multisite Task Scheduling on Distributed Computing Grid",
LNCS 3033, pp. 57-64, 2004.

86

RAL gt pmd g SR T4

p#:2011/10/28

B €At

PR OAH Ao e P2P&VWebdktra B i S0A G A AR R P A g8 SRR

FRIE FAT

3 F %l 97-2628-E-216-006-MY3 BMAEE: T80 i

R A RHR TR

M EREHFAF LT SR EL

thh

PR T

33 B 0 97-2628-E-216-006-MY3

LA I PP e pRAR e B HE(S0N) 5 ARz s B R k33 E - v PP

Web Bt B 12 SOA 5 A A iR ¥ 4 8 Al

£ it o (F it R
R P el B R
EVCRE FrEe g FEH B Kf‘%?—};)‘—ﬁ L ok
' B (g (G RE | Hn I LS
Ao Fi) i = k) #H oo o= F .
)
W 0 0 100%
o i gL IR 2 |0 0 100% -
" g 2 2 100%
%4 0 0 100%
PN CE XS T T T
S T 0 0 100%
el i dc 0 0 100% &
Py
#1l 4 0 0 100% + A
A 5 5 100%
g A4 (Bl 2 2 100%
A =z
(*AK) |[ELeegE |0 0 100% '
L oiErm 0 0 100%
en A2 Ty
EEIEN 4 3 100% s ea
s Fiv EiELEEL 5 5 100% f”’
g 6 6 100%
%4 0 0 100% | %/*
P ST 0 0 100% .
a S W 0 0 100%
B 0 0 100% it
SR 0
w14 0 0 100% + A
A 0 0 100%
ggih A4 (A 0 0 100% o
("R [BELipErE |0 0 100% -
% iEeig 0 0 100%

Hi o5
(mizrugidgz
5 hoyE B s d S
WEE L EREE
Ry Ak R R
A2 B g LR
W B2 E R E E
WE Y FAGEE

}ljo)

- A7%2009 s B E - THEIPCFEIEE R

& ICEGT 2011 &5 & dgwa

Best Paper Award, Computer Society of the Republic of China, 2010
- Best Paper Award, 2009 National Computer Symposium, 2009

- T%Eézéf]& Taiwan UniGrid < 5 o # 2 UniBox %8417 20 RPN < & 4c 2
UniGrid ¥ & - = # B % Data Replication and Management =+ & %t o

’i = 58P

b
)
=
2
=
)
¥
ey
5y
=

4 |BIEL BB G

R E(F FEEE)
A/ He

R ERC R o it N
o

g Pt/ ivy

N I

Plirdssnpgoge (BR) %

OO O OO O o (o

T PR S TR PR R

FREL R R R R RARA E ST A S R R AR
w(f Q%f*%%%%~&£‘$m‘%gék HFBRLT) ATE R
ELgmaF LY R AR FRAEBFHEES > T- FEFTR o

1L AP FERFEAWMFGER - EXFH P RFRIT- FEFTR
W= P
[JxZ=p 4k (G#p > 21100 F 5 12)
[5 =% % px
HEESF-
(JH © & 7]
o

2. By %k nFid A8 & g 2 ¥ in% SLUE X i

we M F2 Oiasg 224 ORY s

B EE Y 3 WA

g []e ﬁﬁ[lmﬁ’lﬂ

Hu (12100 % 5)

- Peer-to-Peer Grid Technologies (FGCS, 2010) (SCI)

- An Anticipative Recursively Adjusting Mechanism for parallel file transfer in
Data Grids (CCPE, 2010) (SCI)

- An Efficient Peer Collaboration Strategy for Optimizing P2P Services in

BitTorrent-Like File Sharing Networks (JIT, 2010) (SCI)
- Message Transmission Techniques for Low Traffic P2P Services (1JCS, 2010) (SCI)

3. IRF TR BATEIAT AL E X ’;J‘-f"lzﬂ’{%\?i‘iciﬁjﬁi\l)%q*iﬁ
B (B AESETEEZ L E BE s BEAE-H PR fe) (o
500 % % *2)

Fr i W3C enWeb Ap B Lt 2 g cnP2P i B2 S AAL FEL 2 F TR pa? 4 T4
@ﬁ%ﬁ’*iﬁ%ﬁﬂiﬁwﬁﬁ%@%°ﬁmﬁﬁﬁﬁﬁ;ﬂﬁﬁﬁSmM$
Resource Broker(SRB) » it 7 2%y cravt fin o gt #b » SV % Tl g A 471 5
BT DA G2 k> @8 T haylk i > BRI - & TR ah 50 > 4o+ I+ P2P A
TGN R F TR ARRI AR AT FET UG Y o AP
PRI G o PR AT > B 0t L Web JRA - i8A B R R FhF fo o
AT e B A R R R {:—‘F*f SRAEIE A N B R AL ?’*”zm% 7 $(QoS) » # B

- EART UE O fRRRORESHER LB ERFT D APMITH] 0T
TR F e s X JHAEHT CEF R o b SRR B BT B ik
4 % % [EEE Transactions on Service Computing % & % iE- # 7| (guest editors:
Ching-Hsien Hsu and Hai Jin) - 4-¥fs — 2 RE G — # adE 3t

