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設計與建構一個具有多因子及自我學習能力排程演算法之高效能網

格計算環境 

游坤明 

中華大學資訊工程學系 

摘要 

隨著電腦科學的發展，資訊處理以及分析在各研究領域扮演了相當重要的角色。雖然根據

莫耳定律提到，電晶體的數目平均每兩年會成長一倍，但是計算量的需要卻成長的相對快

速。於是藉由系統匯流排，區域網路或網際網路連接多個計算資料是目前的主流，叢集及

網格系統便是典型的高效能計算平台。本計畫主要運用上述高效能計算平台對生物資訊及

資料探勘領域中兩個重要的問題設計平行演算法，分別為平行化合物推論以及平行頻繁項

目集探勘。化合物推論的問題目標為列舉出所有相同特徵的化合物，在計畫執行中，我們

在主從架構的叢集系統上設計並實作該平行演算法。並且採用兩階段的搜尋策略，主節點

可以先運用 bread-first search 產生適量的候選項目後，將候選項目分配給從屬節點後

使用 depth-first search 找到所有的解。頻繁項目集探勘的目標是在一個給定的交易資

料庫中找到所有符合給定支持度的高頻項目集。我們亦順利在叢集系統及網格系統設計平

行演算法，實驗結果觀察到所設計的方法在叢集系統減少計算所需時間，而在網格系統亦

可以平衡異質節點間的計算負載。計畫進行中所得到的研究成果已發表一篇國際期刊論文

於 Expert System with Application (SCI)，三篇國際研討會論文(兩篇為 EI)，以及一

篇國內研討會論文。 

 
Keywords: 分支與界定, 叢集運算, 網格運算, 化合物推論, 頻繁項目 

Abstract 

With the development of computer science, information processing and data analysis play an 
important role in various research areas. According to Moore’s law, describing a long-term trend 
of computing hardware, the number of transistors can be doubling approximately every two years. 
With the growth of the amount of data, the computing power also needed to grow up. Therefore, 
connect multiple computing units through system bus, interconnection network, or internet to 
produce high throughput computing power is currently the trend. Cluster system and grid system 
are the typical high performance computing platform. This project used cluster or grid system to 
solve two important problems in Bioinformatics and Data Mining named Chemical Compound 
Inference (CCI) problem and Frequent Pattern Mining (FPM) problem respectively. The goal of 
CCI is to enumerate all chemical compounds having the same characteristics; we developed our 
parallel algorithm on cluster system constructed of master/slave architecture. Proposed method 
used two stages searching strategy, in the first stage, bread-first search was used to generate set of 
candidate items on master node. Then each participated slave node use depth-first search to 



generate all possible solutions after received candidate items from master node. The goal of FPM 
is to find all frequent patterns confirmed to given support from a transactional database. We also 
designed and implemented two parallel algorithms for FPM problem on cluster and grid system. 
The results illustrated proposed method could reduce the computation time on cluster system and 
could balance the workload among participated nodes on grid system. Finally, we sum up our 
works to publish an international journal paper and four conference papers. 
 
Keywords: branch and bound, cluster computing, grid computing, chemical compound inference, 
frequent patterns  
 

1 緣由與目的 

連結計算資源成為一大型高效能資源是叢集運算 (Cluster Computing) 及網格運算 
(Grid Computing) 的基本概念。與傳統叢集電腦 (Cluster Computing) 不同之處，網格可藉

由共同的規範將座落於不同網域及地理空間的叢集系統、個人電腦乃至於行動計算裝置的

資源整合成一虛擬的高效能計算平台。網格運算是一個鬆散整合的分散式系統，參與網格

的計算資源稱為計算節點 (Computing Node)，在計算節點的作業系統之上藉由中介軟體 
(middleware) 將不同節點連結在一起，允許它們共用資源，並形成一個虛擬組織 (virtual 
organization)。共用計算能力、儲存能力讓使用者可得到超越單一設備極限的工作能力。 

許多生物資訊及資料探勘領域的問題都已被證明為  NP 問題，例如多序列比對

(Multiple Sequence Alignment)，最短共同子字串(Shortest Common Superstring)，最小權值等

距演化樹(Minimum Ultrametric Tree)，等。運用單一電腦是不可能在多項式時間內得到這些

問題的最佳解。尤其當輸入資料增加時，平行處理是解決該類問題的一個主要策略，本計

畫分別探討在生物資訊及資料探勘中重要的問題並設計平行演算法。分別為 (1) 化合物推

論問題 (Inference of a chemical structure from path frequency) 以及 (2) 頻繁項目集探勘 
(Frequent patterns mining)。 

化合物推論 (Chemical Compounds Inference, CCI) 在生物資訊中是一個重要的問題，

該問題主要目的是列舉出所有擁有相同特性的化合物。應用上包含了 structure determination 
using mass-spectrum [1; 2], reconstructing molecular structure with given signatures [3; 4], 以及 
classification of compounds [5] 等。從特徵空間 (特徵值) 尋找相對應的輸入空間 (化合物) 
是一個 pre-image 問題。我們要解決的問題亦已被證明為 NP-hard，利用叢集及網格系統

的計算能力來降低計算時間是本計畫的研究目標。 
本計畫亦於叢集及網格系統中加入資料探勘領域中一個相當重要的研究應用--頻繁項

目集的探勘。頻繁項目集是許多重要資料探勘研究的基礎，如關聯式法則、時間序列、分

類式法則、群組式法則…等。然而資料庫的交易量很多時，或者給定的最小支持度很小時，

探勘的時間往往會成長非常快速。於是，平行化技術可以讓探勘所需的計算分散在各個計

算節點，並且降低計算時間。該應用與之前兩個生物資訊的應用最大的不同在於前兩個應

用是 CPU-bound，計算節點的計算能力決定了效能。然而找尋頻繁項目集不單是需要高效

的計算能力，還有大量的資料需要從資料庫載入以及在計算過程中亦會有許多資料需要透

過網路連線交換。於是，一個考慮到網路頻寬、磁碟存取速度、儲存空間的排程演算法可

以讓探勘頻繁項目集的應用有更高效能的表現 



2 研究方法與成果 

本計畫已完成項目為：(1) 設計並實作化合物推論演算法於叢集系統中，(2) 設計並實

作頻繁項目集探勘演算法於叢集及網格系統。 

2.1 平行化合物推論 

對化合物推論問題 (Chemical Compound Inference Problem, CCI) 我們提出一 Parallel 
Branch-and-Bound Chemical Compound Inference with Path Frequency (PB-CIPF) 演算法。首

先我們先定義問題本身： 
Definition 1. Let G(V,E) be an undirected vertex-labeled connected graph and ∑ be a set of vertex 

labels. 
由於要解決的問題是化合物，因此可以合理假設圖上最大 degree 是一個常數值，鍵結

數是由原子所決定。圖 1 為一個 feature vector 的例子。f1(G) 代表的就是 G(V,E) 這個圖

的 path frequency. 

 
圖 1  Examples of feature vectors 

利用 path frequency 推論回化合物的問題稱為 Chemical Compound Inference (CCI)。定

義如下： 
Definition 2. Given a feature vector v of level K, output a graph G(V,E) satisfying vGfK =)( and 

∑ ∈
≤

Ewvw
vlvalwvm

},{:
))((}),({ for all Vv∈ . If there does not exist such G(V,E), 

output “no solution”. 
因為 CCI 問題已被證明為 NP-hard 的問題，於是我們採用平行處理的技術來降低計

算所需的時間。本計畫採用叢集系統做為平行程式執行的平台，叢集系統的主要特性為計

算節點的硬體規格相同，於是在負載平衡的設計上不需要考慮節點的異質特性。圖 2 描述

了我們的方法的概念，可以將圖 2 視為一分支與界定樹 (branch and bound tree)，PB-CIPF 
在執行期間分成 BFS 以及 DFS 兩個階段。由於叢集系統中，我們採用的是標準的主從架

構，在第一階段時，主節點 (master node) 採用 bread-first search (BFS) 的搜尋策略，當產

生了一定數量的候選項目後，再將這些項目採用區塊分配 (block distribution) 的策略分給

所有參與計算的節點。而後各節點便在本機端使用分支與界定演算法結合 depth-first search 
(DFS) 策略求解，直到沒有任何候選項目為止。 
 



 

圖 2. Procedure diagram of PB-CIPF 

 
我們提出的分支與界定演算法可以分成三個階段： 

1. Branching stage: 採用 BFS 或 DFS 的搜尋策略，並在搜尋到的候選項目中插入

新的原子及相對映的鍵結數。 

2. Bounding stage: 如果新產生的候選項目的鍵結數目大於該原子本身的限制，則該

候選項目就被捨棄。 

3. Terminating stage: 重覆上述兩個階段，直到在佇列中沒有任何候選項目為止。 

圖 3 為主節點採用 BFS 策略時的一個範例，圖 4 為從屬節點採用 DFS 策略時的範

例。 

 

 
圖 3. 主節點採用 BFS 的範例 圖 4. 從屬節點採用 DFS 的範例 



 
在實驗的結果中，我們使用的叢集系統硬體規格為 AMD Athlon XP 2000+ 的處理器

以及 1GB 記憶的電腦，並且採用 C 以及 MPI 做為通訊函式庫作我們的程式。為了驗證

程式的正確性及效能，我們使用了 KEGG LIGAND Compound Database 中的化合物為做實

驗資料。效能評估以程式執行的 makespan 做為比較的依據，並且對 K=1 到 K=4 不同限

制條件分別在 1, 2, 4 個節點上執行。(見圖 5) 結果中可以觀到，我們提出的方法能夠在計

算節點增加時，降低計算所需要的時間。 
 

  

(a) (b) 

  

(c) (d) 
圖 5. Makespan of C00097, C11108, C11109, C15987 

2.2 平行頻繁項目集探勘 

探勘頻繁項目集是許多資料探勘研究的基礎，分類（Classification）、分群（Clustering）、
關聯式法則（Association rule）、時間序列（Time sequence）。以關聯式法則為例子，主要的

目標是關聯式法則是一個能從大量資料中去找出資料間彼此關聯性的技術。例如一家資訊

商品量販店從過去 3 個月的交易紀錄中找出顧客最常購買的商品關聯性，發現凡是購買了

噴墨印表機的顧客，都會在一個月內回到店內來購買墨水匣，因此店家便可以利用這樣的

發現去訂出促銷決策，提升其業績及利潤。 
然而隨著資訊系統被廣泛應用，資料庫的交易筆數增加非常快速，面對大量的資料，

只要做一個檢索的動作可能就需要非常多的時間，更遑論要去找出項目之間的相關性，當

探勘時間需要好幾個工作天甚至是一個禮拜之時，探勘得到的資料早已過時。因此，平行

運算技術是減少探勘所需時間的主要策略。 
我們已設計並實作平行頻繁項目集探勘演算法，並且於叢集系統及網格系統中執行並

驗證。首先，設計平行程式時，最重要的是需要資料計算時間的瓶頸的所在，所以我們實

作先前 Javed  [6] 所提出的 PFP-tree 演算法，並且將各階段計算所需時間列於表 1。表



中可以觀察到，整體的效能瓶頸在於資料交換的步驟 (Exchange)，於是我們提出的方法就

是以減少資料交換所需時間為目標。 
 

表 1. PFP-tree 各階段計算所需時間(t20.i04.d200k.n100k, threshold = 0.0005) 

 P01 P02 P03 P04 P05 P06 P07 P08 

Data Transfer 0.91 0.04 0.06 0.12 0.06 0.05 0.08 0.04 

Header Table 0.6 0.59 0.6 0.59 0.6 0.6 0.6 0.59 

All reduce 1.05 0.17 0.18 0.17 0.17 0.17 0.17 0.17 

FP-tree 13.62 12.49 12.49 12.40 12.40 12.42 12.43 12.51 

Exchange 98.29 157.11 204.78 233.51 241.07 235.06 223.06 197.02 

FP-growth 18.06 26.34 27.09 31.1 24.51 22.44 20.07 12.59 

Total 132.53 196.74 245.2 277.89 278.81 270.74 256.41 222.92 

 
對叢集系統以及格網系統分別提出了 Tidset-based Parallel FP-tree (TPFP-tree) 以及 

Balanced Tdiset Parallel FP-tree (BTP-tree)。同時我們也分別對於上述兩個演算法分別在實際

的叢集系統及網格系統執行並驗證我們所提出的方法。叢集系統的軟硬體規格如表 2，其

實驗結果列於圖 6。圖中可以觀察到，當資料量愈大時，或其支持度愈小時，我們的平行

程式愈能夠展現出其擴充性。 
 

表 2. Hardware and Software Specification of PC cluster 

Hardware Specification 

CPU AMD Athlon XP 2000+ 

Memory 1GB DDR ram 

Network 100 Mbps interconnection network 

Disk 80GB IDE H.D. 

Software Configuration 

OS and Compiler Linux 2.6 
Gcc/G++ 4.03 

Message Passing 
Library 

MPICH2 1.0.5 
mpi4py 0.5 
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(c)  
圖 6. Execution time of TPFP-tree 

相同的，表 3 為 BTP-tree 執行時的網格系統軟硬體規格，而圖 7 為 BTP-tree 在網

格系統上的執行時間。實驗結果中可以觀察到，即是在網格的異質環境下，我們提出的 
BTP-tree 依然能夠平衡不同節點間的負載，並且降低計算所需時間。 
 

表 3. Hardware and Software Specification of Multi-cluster Grid 

 Cluster 1 Cluster 2 Cluster 3 

 Hardware Specification 

Number of 
Nodes 

5 5 3 

CPU Pentium 4 3.2G AMD XP 2.0G Pentium 4 3.0G 

Memory 512 MB 1024 MB 1024 MB 

Network 100 Mbps interconnection network 

 Software Configuration 

OS and 
Compiler 

Linux 2.6 
Gcc/G++ 4.03 
Globus Toolkit 4.0 

Message 
Passing Library 

MPICH-G2 
MPICH2 1.0.5 
mpi4py 0.5 
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(c) (d) 
圖 7. Execution time of BTP-tree 

3 計畫成果自評 

本計畫之研究成果已達到計畫預期之目標--成功為兩個於生物資訊及資料探勘領域中

重要的問題設計平行演算法，分別為化合物推論以及頻繁項目集探勘。對化合物推論問題，

我們所設計出的平行演算法可以運用叢集系統的計算資源以降低計算時間，並且亦使用 
KEGG 資料庫中的化合物來驗證程式的正確性。化合物推論的部份不但已順利完成預期目

標，亦將所獲得的成果整理成論文並且發表了兩篇國際研討會論文 (其中一篇為 EI)，以及

一篇國內研討會論文。在頻繁項目集探勘的問題部份，我們已達到預期目標在叢集及網格

系統分別設計一平行演算法，從實驗結果中可以觀察到我們提出的方法已經能夠藉由叢集

系統的計算能力減少所需時間。並且在網格系統上，我們提出的方法能夠有效的平衡計算

節點間的負載，以達到高效能計算的目標。除了完預期目標外，亦將所獲得的成果整理成

論文並且發了一篇國際期刊論文 (SCI)，以及一篇國際研討會論文 (EI)。最後感謝國科會

給予機會讓本計畫有此研究成果，下一個計畫我們將更加努力，爭取經費以建立更完備的

研究環境，同時亦感謝參與計畫的同學的努力讓本計畫得以完成預期目標。 
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Abstract 
 

Because of the exponential growth in worldwide 
information, companies have to deal with an ever 
growing amount of digital information. One of the 
most important challenges for data mining is quickly 
and correctly finding the relationship between data. 
The Apriori algorithm is the most popular technique in 
association rules mining; however, when applying this 
method, a database has to be scanned many times and 
many candidate itemsets are generated. Parallel 
computing is an effective strategy for accelerating the 
mining process. In this paper, the Weighted 
Distributed Parallel Apriori algorithm (WDPA) is 
presented as a solution to this problem. In the 
proposed method, metadata are stored in TID forms, 
thus only a single scan to the database is needed. The 
TID counts are also taken into consideration, and 
therefore better load-balancing as well as reducing 
idle time for processors can be achieved. According to 
the experimental results, WDPA outperforms other 
algorithms while having lower minimum support. 
 
1. Introduction 
 

With the rapid development of information 
technology, companies have been working on 
digitizing all areas of business to improve efficiency 
and thus competitiveness.  However, the consequences 
of full-digitization are that tremendous amounts of 
data are generated. It is important to extract 
meaningful information from scattered data, and data 
mining techniques are developed for that purpose. 
There are many techniques being used for data mining, 
for example, Classification, Regression, Time Series, 
Clustering, Association Rules and Sequence. 
Association rule [1, 2] is one of the most useful 
techniques in data mining. Generally, it takes long to 
find the association rules between datasets when a 
database contains a large number of transactions. By 

applying parallel-distributed data mining techniques, 
the mining process can be effectively speeded up. 
With parallel-distributed data mining the calculation is 
done in a distributed environment [3, 7, 8, 9, 12], but 
most of the time, irregular and imbalanced 
computation loads are allocated between processors 
and thus the overall performance is degraded.  

In this paper the Weighted Distributed Parallel 
Apriori algorithm (WDPA) is presented as a solution 
for this problem. In the proposed method, a database 
has only to be scanned once because metadata are 
stored in TID tables. This approach also takes the TID 
count into consideration. Therefore, WDPA improves 
load-balancing as well as reduces idle time of 
processors. 

The experimental results in this study showed that 
the running time of WDPA was significantly faster 
than that of previous methods. In some cases, WDPA 
only used about 2% of the time used in previous 
methods. This can be achieved because WDPA 
successfully reduced the number of scan iterations to 
databases and was able to evenly distribute workloads 
among processors.  

The paper is organized as follows: In section 2, 
association rule and parallel distributed algorithms are 
explained. The WDPA algorithm is proposed in 
section 3. Section 4 gives the experimental results. 
Finally, the conclusion is given in section 5. 
 
2. Related Work 
 

Frequent pattern mining problem is defined as 
follows. Let DB = {T1, T2, …, Tk} be a database of 
transactions, where each transaction Te consists of  I, I 
= {i1, i2, …, im} be a set of all items. Assuming A, B 
are itemsets, A, B ⊆ I, A ∩ B=∅, A→B denotes there 
is an association rule between A and B. Each 
association rule has support and confidence to confirm 
the validity of the rule. Support denotes the occurrence 
rate of an itemset in a DB. Confidence denotes the 



proportion of data items containing Y in all items 
containing X in a DB. When the support and 
confidence are greater than or equal to the pre-defined 
minimum support and minimum confidence, the 
association rule is considered to be a valid rule.  

The Apriori algorithm was proposed by R. Agrawal 
and R. Srikant in 1994 A.D. [2]. The Apriori algorithm 
is one of the most representative algorithms in mining 
association rules. It is based on the assumption that 
subsets of low-frequency itemsets must be low-
frequency as well. Even though the Apriori algorithm 
takes lots of time to calculate combination of itemsets, 
the design of the data structure makes it easy for the 
algorithm to be parallelized. Therefore, some scholars 
propose that parallel- distributed Apriori algorithms be 
used [3, 7, 8, 9, 10, 11, 12, 13, 14]. For example, CD, 
DD, FDM, FPM, DMA etc. Recently, Ye [12] 
proposed a parallel-distributed algorithm using Trie 
Structure [6]. Ye’s algorithm distributes computing 
workload using the Trie Structure to speed up the 
computation, however, this causes significant variance 
between the sizes of candidate itemsets distributed 
among processors. Moreover, this method also 
requires a database to be scanned many times. The 
problems related to multiple-scan and load-imbalance 
gets worse when dealing with large databases and 
huge itemsets. Therefore, a Weighted Distributed 
Parallel Apriori algorithm (WDPA) is proposed. By 
storing the TIDs of itemsets and precisely calculating 
and distributing computation workloads, WDPA is 
able to effectively accelerate the computation of 
itemsets and reduce the required scan iterations to a 
database and balancing the load, thus significantly 
reduces processor idle time. 

 
3. Weighted Distributed Parallel Apriori 
(WDPA) Algorithm 
 

To avoid the problems associated with load-
imbalance and multiple-scan, the WDPA algorithm is 
proposed so that a database only needs to be scanned 
once while maintaining load balancing among 
processors. In the algorithm, each transaction has a 
Transaction IDentification, called TID. By using hash 
functions to store TID in table structure, the number of 
itemsets can be quickly calculated without the need of 
rescanning the database.   

In the WDPA parallel-distributed processing 
algorithm, the number of combinations for items, 
called a lattice, is first calculated. Lattice is the number 
of combinations calculated from candidate (k+1)-
itemset counts by frequent k-itemsets. Equation (1) is 
the required count of itemset combinations of Ii, 
Equation (2) represents the total number of k-itemsets. 
Using block division to do frequent itemset 

distribution after calculating the number of 
combinations, is called Block_Lattice (BL) (Figure 1). 
From Figures 1 and 2 we can see that the Lattice count 
decreases gradually at the lower-left part of the matrix, 
thus if itemsets are distributed sequentially, the load-
imbalance distribution will occur. Therefore by cyclic 
partitioning of lattice, itemsets are distributed to the 
processors cyclically to balance the distribution of 
itemsets. This is called )(_ CLLatticeCyclic . 
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Figure 1. Block partitioning 

 

 
Figure 2. Cyclic partitioning  

 
By only calculating the Lattice number and 

ignoring the length of the itemsets' TID, an uneven 
distribution of workload occurs. Therefore, this 
algorithm also takes TID length into consideration and 
regards it as a weight value, which makes the 
distribution of itemsets more accurate and more even. 
Equation (3) calculates the weighted value of itemset 



Ii. Equation (4) represents the total weight value of k-
itemsets. 
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There are two methods of partitioning weighted 
TID, the Block_WeightTid(BWT) partitions and 
distributes TID by block, the Cyclic_WeightTid(CWT) 
partitions and distributes TID in cyclic. 

 
An example of the algorithms is given below: 

For step1 and step2, P1 (MP), P2 (SP) read and scan 
database, then build level-1 candidate itemsets. (Figure 
3) 

 
Figure 3. Scan database and creating TID forms 
 
Figure 4 shows that P1 collects itemsets that match 

given support into frequent 1-itemsets, then uses CWT 
to calculate and distribute the itemsets on P1. P1: {C, 
B}, P2: {A, F, L, M, O}. (Step 3 and Step 4) 

 
Figure 4. Distributing frequent 1-itemsets on P1 

 
Figure 5 describes P1 and P2 combining level-2 

candidate itemsets and calculating itemset counts 
according to the TID table. Figure 6 represents level-2 
candidate itemset counts on P1 and P2. (Take level-2 
candidate A and C for example, the intersection of A 

and C on TID, [1, 5], is the resulting set, AC) (Step 5 
and Step 6) 

 

 
Figure 5. Itemsets are calculated by counting the 
TID forms 

 

 
Figure 6. P1 and P2 level-2 candidate itemsets 

 
Select the itemsets that match the given support 

value, and save them as frequent 2-itemsets. Because 
the frequent 1-itemsets are larger, candidate itemsets 
that required combination computation will be larger, 
too. In this case, distributing the itemsets in Cyclic will 
produce better results. On the other hand, if there are 
frequent itemsets above level 1, candidate itemsets that 
required combination computation will be smaller, too. 
In this case, distributing the itemsets in Block will 
produce better results. 

P1 receives P2 itemsets, and repeats execution step 4 
to step 9 until there are no more frequent itemsets. 
Figure 7 illustrates the use of BWT to calculate and 
distribute the itemsets on P1. P1: {BC, AC}, P2: {AO, 
AP, CP}. (Step 3 and step 4) 

Figure 8 represents P1 combined level-3 candidate 
itemsets matching given support value into frequent 3-
itemset. 

 



 
Figure 7. Distributing frequent 2-itemsets on P1 

 

 
Figure 8. The resulting frequent 3-itemsets 

 
Because the resulting frequent 3-itemset contains 

only one itemset, no more combination operation can 
be made, the mining process ends here. The number of 
resulting frequent itemsets are: level-1: Eight, level-2: 
Six, level-3: One. 
 
The algorithms are described in detail below: 

Input: a transaction database DB = {T1, T2, ..., Tn}, 
and each transaction Ti

⊆ I, I = {i1, i2, ..., im}. A given 
minimum support s. P is the number of processors. (p1 
is master processor (MP), and p2, p3, ..., pp are salve 
processors (SPs)) 
Output: All frequent itemsets. 
Method: 
Step  1. Each processor reads the database DB. 
Step 2.Each processor scans DB and creates the 

transaction identification set (TID).  
Step 3. Each processor calculates candidate k-itemset 

counts, when the count is greater than s, let 
freqk be frequent k-itemsets. 

Step 4. MN equally divides the freqk into p disjointed 
partitions and assigns itemsetsi to pi. Itemsetsi 
denote that SPs were assigned to the itemsets 
from MN. The frequent pattern dividing 
method: 
(1) Block_Lattice (BL) 
(2) Cyclic_Lattice (CL) 
(3) Block_WeightTid (BWT) 
(4) Cyclic_WeightTid (CWT) 

Step 5. Each processor receives the itemsetsi and the 
combination candidate (k+1)-itemsets. 

Step 6. Each processor candidate itemsets is calculated 
by counting the TID forms.  

Step 7. When itemset count is greater than s then it is a 

frequent (k+1)-itemset, and itemset appeared 
in transaction id is saved to (k+1)-TID. 

Step 8. SPs send frequent itemsets to MN. 
Step_9.MN receives SPs itemsets, and repeats 
execution step4 to setp9 until there are no more 
frequent itemsets. 
 
4. Experiments 
 

In order to evaluate the performance of the 
proposed algorithm, the WDPA was implemented 
along with the algorithm proposed by Ye [12]. The 
program was executed in a PC cluster with 16 
computing processors. Table 1 gives the hardware and 
software specifications. Synthesized datasets generated 
by IBM's Quest Synthetic Data Generator [4] were 
used to verify the algorithm. Moreover, the database 
T10I4D50N100K, T10I4D100N100K, 
T10I4D200N100K was used to examine the WDPA. 
From the experimental results, our proposed method 
balances the workload among processors and saves on 
processor idle time because of the way CWT 
distributes itemsets. Therefore, the following 
experiments are calculated based on the CWT method. 

 
Table 1. Hardware and Software Specifications 

Hardware Environment 
CPU AMD Athlon Processor 2200+ 
Memory 1GB DDR Ram 
Network 100 Mbps interconnection network 
Disk 80GB IDE H.D. 

Software Environment 
O.S. ReadHat Linux 7.3 
Library MPICH2 1.0.3 
 
Figure 9 shows the speed up of four WDPA 

methods. From the results, it can be seen that the 
speeded up of the four methods is similar, but the 
CWT itemsets distributed used weighted TID and 
cyclic partition, therefore the CWT have more 
accurately parallel-distributed itemsets. According to 
the experiment, the CWT, regardless of processor 
numbers of 1,2,4,8,16, achieves better results than the 
other methods. 

Figure 10 shows the execution time of the WDPA 
and Ye’s algorithm on different processors. WDPA(8) 
denotes that the WDPA algorithm used eight 
processors. Because Ye’s algorithm needs to 
repeatedly scan the database, the loads are imbalanced 
between processors. Therefore, from Figure 10, 
WDPA is nearly 120 times faster than Ye’s algoritm in 
the 16 processors case. The use of TID form in WDPA 
accurately parallelize the workloads, hence it 
effectively reduced the database scanning and saved 
on processor idle time. 



 
Figure 9. Speedup of Four partition Methods of 

WDPA (T10I4D100KN100K, minsup: 0.2%) 

 
Figure 10. Each Processors Execution Time 

(T10I4D50KN100K, minsup: 0.2%) 
 
Figure 11 and 12 show the execution time and 

speedup under different given supports. Ye’s 
algorithm requires that a database being re-scanned for 
every itemset to be counted during the mining process, 
so when there is lower support, Ye’s algorithm takes 
longer to re-scan the database. On the other hand, 
using the TID table with precise distribution of 
itemsets, the WDPA scans the database once only. 
This greatly reduced the time spent on database 
scanning and balanced the computation workload 
among processors. Thus, there is an obvious 
performance advantage of the WDPA algorithm over 
Ye’s algorithm. 

Figures 13 and 14 give the execution time and 
speed up with different databases. With the increased 
size of the database, the length of the TID of itemsets 
in the table will increase. Therefore, when the size of 
the database increased, the execution took longer. 
Moreover, by parallel-distributing the processing, 
large databases can be more effectively mined and 
itemsets will be allocated to different processors to 
perform the calculation, this significantly speeding up 
the mining process. 

 
Figure 11. Execution Time (WDPA vs. Ye’s 

algorithm )(T10I4D100KN100K, minsup: 0.2%) 

 
Figure 12. Execution Time (WDPA vs. Ye’s 

algorithm )(T10I4D100KN100K, minsup: 0.3%) 

 
Figure 13. WDPA Execution Time, minsup: 0.15% 

 



 
Figure 14. WDPA Speedup, minsup: 0.15% 

 
Figure 15 illustrates the execution time of various 

minimum supports. The number of frequent itemsets 
as well as their length increased with a lower support 
in WDPA. Therefore, by using this method of 
calculation WDPA effectively accelerated the 
computation. Thus WDPA can achieve better speedup 
when there was lower minimum support. 

 

 
Figure 15. WDPA Speedup 

 
5. Conclusion 
 

Determining the association between items in a 
huge database, is a worthwhile research topic. 
However, the process of generating itemsets and 
confirming them is time consuming. Parallel-
distributed computation strategies provide workable 
solutions to this problem.  In this paper, a Weighted 
Distributed Parallel Apriori algorithm (WDPA) is 
proposed, in which the TID of itemsets is stored in a 
table to compute their occurrence. WDPA effectively 
reduced the required scan iterations to a database as 
well as accelerated the calculation of itemsets. By 
taking the factor of itemset counts into consideration, 
this approach effectively balanced workloads among 
processors and reduced processor idle time. 

Experimental results show that WDPA achieved 
higher speedups than pervious works in the case of 
high data volume and low support. 
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a b s t r a c t

The mining of frequent patterns from transaction-oriented databases is an important subject. Frequent
patterns are fundamental in generating association rules, time series, etc. Most frequent pattern mining
algorithms can be classified into two categories: generate-and-test approach (Apriori-like) and pattern
growth approach (FP-tree). In recent years, many techniques have been proposed for frequent pattern
mining based on the FP-tree approach since it only needs two database scans. However, for pattern
growth methods, the execution time increases rapidly when the database size increases or when the
given support is small. Therefore, parallel-distributed computing is a good strategy for solving this prob-
lem. Some parallel algorithms have been proposed, but the execution time is still costly when the data-
base size is large. In this paper, two parallel mining algorithms are proposed; Tidset-based Parallel FP-
tree (TPFP-tree) and Balanced Tidset-based Parallel FP-tree (BTP-tree) for frequent pattern mining on PC
Clusters and multi-cluster grids. In order to exchange transactions efficiently, a transaction identification
set (Tidset) was used to directly select transactions instead of scanning the database. Since a Grid system
is a heterogeneous computing environment, the proposed BTP-tree can balance the loading according to
the computing ability of the processors. BTP-tree, TPFP-tree and PFP-tree were implemented, and datasets
generated with an IBM Quest Synthetic Data Generator were used to verify the performance of TPFP-tree
and BTP-tree. The experimental results showed that the TPFP-tree needed less execution time on a PC
Cluster than the PFP-tree when the database increased. Moreover, the BTP-tree shortened the execution
time significantly and had a better load balance capability than both the TPFP-tree and PFP-tree on a
multi-cluster grid.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Extracting frequent patterns in a transaction-oriented database
is vital in the mining of association rules (Agrawal & Srikant, 1994;
Park, Chen, & Yu, 1995), time series, classification (Gorodetsky,
Karasaeyv, & Samoilov, 2003), etc. The basic problem in frequent
pattern mining is finding the number of times for a given pattern
appears in a database. Most of the research in this area has either
used the generate-and-test (Apriori-like) or the pattern growth
approach (FP-growth) (Coenen, Leng, & Ahmed, 2004; Han, Pei,
Yin, & Mao, 2004).

For the Apriori-like approach (Lazcorreta, Botella, & Fernández-
Caballero, 2008; Park et al., 1995), the core idea is that if any length
of the k pattern is not frequent in the database, then the super-pat-
tern (length k + 1) cannot be frequent. However, this approach gen-
erates a large number of candidate datasets and repetitively scans

the database to verify whether it is frequent or not. For example,
250 (about 1015) candidate datasets may be needed to verify
whether a set is frequent or not in a database with 50 items.

Han et al. (2004) propose a novel data structure and method for
mining frequent patterns: the Frequent Pattern (FP) tree data
structure which only stores compressed, necessary information
for mining. Moreover, a mining algorithm – FP growth – based on
FP-tree was also developed. Unlike the Apriori algorithm, the
FP-tree only scans a database twice and the mining information
is obtained from the proposed data structure.

Based on the above, many methods derived from FP-tree have
been proposed (Hong, Lin, & Wu, 2008; Zhou & Yu, 2008). More-
over, these also proved that FP-tree-like algorithms performed
better than Apriori-like algorithm. However, even though FP-tree
performed better, the execution time still increased significantly
when the database was large. A parallel and distribution technique
is a good strategy for overcoming this problem. Many parallel-
distributed methods have been proposed (Chen, Huang, Chen, &
Wu, 2005; Holt & Chung, 2004; Li, Zhu, & Ogihara, 2003; Lin, Lee,
Chen, & Yu, 2002; Pramudiono & Kitsuregawa, 2003; Tang & Turkia,

0957-4174/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2009.07.072

* Corresponding author. Tel.: +886 3 5186360; fax: +886 3 5186416.
E-mail addresses: yu@chu.edu.tw (K.-M. Yu), jyzhou@pdlab.csie.chu.edu.tw (J.

Zhou).

Expert Systems with Applications xxx (2009) xxx–xxx

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

ARTICLE IN PRESS

Please cite this article in press as: Yu, K.-M., & Zhou, J. Parallel TID-based frequent pattern mining algorithm on a PC Cluster and grid computing system.
Expert Systems with Applications (2009), doi:10.1016/j.eswa.2009.07.072

http://dx.doi.org/10.1016/j.eswa.2009.07.072
mailto:yu@chu.edu.tw
mailto:jyzhou@pdlab.csie.chu.edu.tw
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa
http://dx.doi.org/10.1016/j.eswa.2009.07.072


2006). Javed and Khokhar (2004) propose a parallel FP-tree mining
algorithm (PFP-tree) to solve the problem. The results show that
parallel computing is a good approach for solving this problem.
However, for PFP-tree, when the given threshold is small, or the
average length of the transaction is long, too much information
should be exchanged among processors. The performance deterio-
rates notably when the database increases or the given support
decreases.

In this study, a balanced parallel frequent-pattern mining algo-
rithm was developed to solve frequent pattern mining problems on
a PC Cluster. A PC Cluster is a typical parallel computing environ-
ment with homogeneous hardware and software resources. It con-
sists of many computers interconnected with a fast network
connection. In addition, a transaction identification set (Tidset)
was used to directly select transactions instead of scanning whole
databases. The goal of the proposed Tidset-based Parallel FP-tree
(TPFP-tree) algorithm was to reduce both communication and tree
insertion cost, thus decreasing execution time.

However, we need more computing resources when the prob-
lem sizes increase. Grid computing and pervasive computing can
solve complex problems with large-scale computation power and
data storage resources (Foster & Kesselman, 1998). Grid is a loosely
coupled computing architecture based on internet connection, it
shares heterogeneous computing and storage resources related to
traditional cluster systems, and it can easily add additional com-
puting resources at lower cost. In order to mine the frequent pat-
terns for a large database, large computation resources are
needed. However, the grid computing consisted of heterogeneous
resources. Therefore, the mining algorithm should enhance balance
in a heterogeneous computing environment. Hence, a Balanced
Tidset Parallel FP-tree (BTP-tree) algorithm for mining frequent
patterns on a grid computing system is proposed. The BTP-tree dis-
patches mining items according to the computation ability of the
participating nodes for load balancing. Moreover, the BTP-tree
can also reduce both the communication and tree insertion cost.

The experimental results show that the proposed algorithms –
the TPFP-tree and BTP-tree could shorten the execution time for
various datasets on a PC-Cluster and a multi-cluster grid, respec-
tively. Both algorithms as well as a PFP-tree were implemented
on a PC Cluster and a multi-cluster grid system with MPICH library.
The results showed that on the grid system the BTP-tree performed
better with different size databases, different given thresholds, and
different computing nodes. Moreover, the BTP-tree also had a
better load balancing ability in heterogeneous computing
environments.

This paper is organized as follows: In Section 2, the FP-tree, FP-
growth, PFP-tree, and grid computing systems are described. The
TPFP-tree and BTP-tree are introduced in Section 3 and Section 4
illustrates our experimental results. Finally, the conclusion and fu-
ture work are discussed in Section 5.

2. Related work

The frequent pattern mining problem can be defined as follows:
DB = {T1, T2, . . . , Tn} is a set of transactions. Each transaction Ti # I
where I = {i1, i2, . . . , im} is a set of all items in a database. SupDB(x)
means the number of transactions in a database that contains pat-
tern x, SupDB(x) = |{t|t 2 DB and x # t}|. The problem of frequent
pattern mining is to find itemset x where SupDB(x) P n for a given
threshold (1 6 n 6 |DB|).

2.1. Frequent pattern growth (FP-growth)

Han et al. proposed the FP-growth (Han et al., 2004) algorithm
with which the database only needs to be scanned twice. The FP-

growth algorithm can be decomposed into two phases: the FP-tree
construction and the mining of frequent patterns from it.

FP-tree is a data structure representing the necessary informa-
tion for mining. It consists of a root node labeled as null and child
nodes consisting of the item-name, support and node link. More-
over, the database only needs to be scanned twice. The first scan
is to create a frequent 1-itemset sorted in descending order in
the header table. Secondly, it extracts frequent items from Ti

(i = [1, . . . , n]). After sorting the items the frequent items are in-
serted in the tree. For tree insertion, increase the support of the
node if the node corresponding to the item’s name is found; other-
wise, create a new node and set the support to 1. The header table
keeps the node-link which connects nodes with the same item
name in the FP-tree during the mining process.

The FP-growth is then used for mining frequent patterns. It se-
lects an item as mining target from the header table. The prefix
path can be found via the node-link, following the node to the root
to get the (conditional) pattern base of the item. Then a new FP-
tree, the conditional FP-tree, is constructed based on the pattern.
This mining process is repeated until an empty tree with a single
path is found. Hence, the frequent patterns based on selected items
are found. Then one mining target after another is selected from
the header table to find all frequent item sets.

Since the FP-tree reduces the number of database scans and uses
less memory to represent the necessary information, many fre-
quent pattern mining algorithms are based on its data structure
(Lin, Hong, & Lu, 2009; Yan, Zhang, & Zhang, 2009).

2.2. Parallel FP-tree algorithm

To mine frequent patterns from a transactional database re-
quires intensive computation. The execution time increases signif-
icantly when the database size is large or the given support is
small. Since the database can be divided into different sets of trans-
actions, parallel and distribution technique is a good strategy to
solve frequent pattern mining problem. The multi-processor com-
puting environment can consist of homogeneous or heterogeneous
computing resources. A PC Cluster is a typical homogeneous
computing environment. It has the same hardware and software
specifications and is connected by fast networking, e.g., Gigabit
Ethernet, InfiniBand, etc. Message Passing Library (MPI) is used
to send and receive messages between processors. Since a PC
Cluster provides high performance computing, it has been used
to shorten computation time for mining frequent patterns (Javed
& Khokhar, 2004; Pramudiono & Kitsuregawa, 2003; Tang & Turkia,
2006).

Pramudiono and Kitsuregawa (2003) proposed a parallel FP-tree
algorithm which exchanges the conditional pattern base to parallel
the FP-tree. Moreover, they also introduced a path depth notation to
break down the granularity of parallel processing in conditional
pattern bases. However, the experimental results show that the
ideal speedup ratio is not achieved since it is unbalanced.

Javed et al. proposed a PFP-tree algorithm (Javed & Khokhar,
2004). The PFP-tree is developed for a SIMD computing environ-
ment. It is based on the FP-tree data structure and divides DB into
different partitions DBi (i = 1, . . . , p, p is number of processors). After
that, pi constructs a local header table (LHT) from its own database.
Then the master computing node (MN) aggregates the LHT from
slave computing nodes (SN) to create a global header table
(GHT). Consequently, SN creates a local FP-tree according to GHT.
MN assigns each SN to the mining item by block distribution. Final-
ly, each SN partially exchanges the FP-tree using the FP-growth
mining algorithm to find all frequent patterns.

The main idea of the PFP-tree algorithm is using a special tree
exchange technique. This technique reduces the repeated data
exchange by grouping the SNs. The SNs need to communicate with
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each other at most logp rounds. For example, processor pi commu-
nicates with processor p%pr

p
2þið Þ in round r where 0 6 i 6 p and

1 6 r 6 logp. However, too many trees need to be exchanged if
the given threshold is small. Thus, for the worst case, more proces-
sors will lead to the execution time being longer, since too many
subtrees are needed to send, receive and insert back.

2.3. Grid computing system

Grid computing is a loosely coupled distributed system, it al-
lows for the sharing of processing powers, storage resources, and
services from different geographical locations. Unlike the conven-
tional high performance computing (e.g., Cluster computing)
which is connected by a high speed network, grid computing nodes
are connected by a variety of networks (e.g., gigabit network, inter-
net, etc.). Since a grid connects various computing systems with
different software and hardware specifications at different geo-
graphical locations, middleware plays an important role in inte-
grating these resources. Globus, Sun Grid Engine, gLite, etc. are
the best known grid middleware suppliers. Of these, Globus is
the most popular and is widely used as open source grid middle-
ware. There are many types of grid computing systems. Multi-clus-
ter is the most popular and widely used. In the multi-cluster grid,
resources are distributed across different networks on a multi-
cluster grid. Moreover, each cluster can be a grid site with a grid
head in each site. Jobs are dispatched to a grid head and the grid
head then dispatched the jobs to the computing node inside a clus-
ter according to its job scheduling algorithm. The administrator is-
sues a certificate to the grid head and permits it to manage
computing nodes inside the cluster. Moreover, when the cluster
size varies, it only requires the grid head to adjust the setting in-
stead of reconfiguring the entire grid system.

Since the Grid system has sizeable computing and storage re-
sources. Some researchers have developed their data mining appli-
cation on a Grid system (Cannataro, Talia, & Trunfio, 2002; Ciglaric,
Pancur, Ster, & Dobnikar, 2005; Jiang & Yu, 2005). Cannataro et al.
(2002) propose a knowledge grid system and discuss its use in dis-
tributed data mining services. Their study focused on the underly-
ing framework and developed a distributing tool, based on JXTA
peer-to-peer technology. Ciglaric et al. (2005) implemented the
Apriori and the FP-tree algorithm in a grid environment. The results
indicated benefits when using Apriori and FP-tree with a grid sys-
tem. However, the proposed algorithm did not consider the balanc-
ing issue, therefore the performance did not achieve the ideal
speedup when the number of processors increased.

3. Proposed parallel FP-tree algorithms

In this paper, parallel algorithms for frequent pattern mining on
Cluster and Grid systems are proposed. In spite of the results of
other research (Javed & Khokhar, 2004; Pramudiono & Kitsuregawa,
2003), there are still two important issues that need to be consid-
ered for a parallel algorithm to improve frequent pattern mining,
one is reducing the communication cost and the other is balancing
the computing node workload. In order to evaluate the execution
time of different computing stages in detail, the PFP-tree (Javed &
Khokhar, 2004) algorithm was implemented. Table 1 shows the
execution time for each stage of the PFP-tree. It can be observed
that the exchange stage dominated the others. Thus, the exchange
stage was analyzed in depth. First, the exchange stage examined
the candidate tree paths required for other processors, then ex-
changed the extracted paths with other processors and inserted
it back to the local FP-tree. Therefore, the performance deteriorated
with large databases or lower thresholds. Moreover, more proces-
sors also led to worse load balancing. Therefore, the performance

can be improved significantly if the execution time of the exchange
stage can be reduced and the workload of the processors can be
balanced evenly.

The goal of our algorithm was to reduce the computation and
communication cost of the exchange stage. Since extracting the
candidate tree paths from an FP-tree data structure needs repeated
traversing of the entire tree and inserting the tree paths back to the
objective tree also requires repeated traversing of the trees, it be-
comes costly, leading to the FP-tree construction procedures being
postponed. After creating the Header Table, the necessary informa-
tion for parallel mining is exchanged in the transaction level of the
DB instead of in the tree paths of the FP-tree.

However, indexing the necessary transactions is costly when
the number of processors increases. For example, when there are
n processors, processor pi needs processing mineSeti. mineSeti is
items that block partitioned from header table for processor pi.
Therefore, processor p0 should scan its database |mineSet1| +
� � � + |mineSetn| times and then transfer to corresponding proces-
sors, to efficiently index the item in which transactions can speed
up the execution processes. For that reason, transaction id (TID)
was used to index the item. For a transactional database
DB = {T1, T2, . . . , Tn} and each transaction Ti # I, I = {i1, i2, . . . , im},
TID(j) = {k|ij \ Tk – u, k = 1, . . . , n}. After creating TID, transactions
can be selected directly while the information for mining frequent
patterns is exchanged.

3.1. Tidset-based parallel FP-tree (TPFP-tree) algorithm for cluster
computing

Since finding all frequent patterns from transactional databases
is a computation intensive problem, a parallel and distributed
strategy could reduces the execution time and improve the mining
performance. Therefore, the first parallel FP-tree algorithm based
TID is developed for Cluster computing. Since a Cluster is homoge-
neous computing, the proposed algorithm distributes the workload
to each processor evenly without considering the difference be-
tween processors. The main object is to reduce the execution time
of mining information exchange and to shorten the index cost of
transaction extraction. There are five primary stages in the Tid-
set-based Parallel FP-tree (TPFP-tree) algorithm: (1) create Header
Table and Tidset, (2) distribute mining item set, (3) exchange trans-
actions, (4) FP-tree and (5) FP-growth.

Firstly, although creating the header table needs only one data-
base scan, when the database size is large, the execution time is
still costly. Therefore, the TPFP-tree uses block distribution to par-
tition the database and to distribute the divided database to corre-
sponding computing nodes. Moreover, in order to directly select a
transaction with corresponding item in subsequent procedures, a
local transaction identification set (Tidset) is also created in this
stage. After processing stage 1, frequent 1-itemset was found with
a given threshold. Frequent 1-itemsets were also the mining items
of the TPFP-tree algorithm. Then the mining items were equally
distributed to the participating processors. Each processor was as-
signed n

p

j k
items to mine for n frequent 1-itemset and p processors.

In order to build the FP-tree structure and to mine the frequent
patterns with FP-growth on each processor independently, a pro-
cessor should comprise the transactions which contain the as-
signed mining items from other processors. In the transaction
exchanging stage, processor pi scans its partial database to gather
the transactions containing mining items required by other proces-
sors. However, it is costly since pi must scan its database p � 1
times to gather all transactions. Hence, the Tidset is used to im-
prove the transaction selecting. Tidset is a map between items
and transaction, the transactions can be directly chosen from given
items with Tidset. Since the Tidset table can be concurrently created
with a frequent 1-itemset, the Tidset of each partial database is
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created in stage 1. Consequently, selected transactions are trans-
ferred to corresponding processors after gathering the transac-
tions. Moreover, with the Tidset table, more processors do not
lead to a worse performance.

After exchanging the mining items, a processor has the neces-
sary transaction corresponding to its assigned mining items. There-
fore, the processor can, independently, build the FP-tree and mine
the frequent patterns by FP-growth. Finally, after completing the
mining processes p1 collects the frequent patterns from the others
and merges them into all the frequent patterns. The detailed algo-
rithm of the TPFP-tree is given below.

Input: a transaction database DB = {T1, T2, . . . , Tn}, and each
transaction Ti # I, I = {i1, i2, . . . , im}. A given minimum threshold
n. p is the number of processors. (p1 is master node (MN), and
p2, p3, . . . , pp are salve nodes (SNs)).

Output: a complete set of frequent patterns, where Sup(xi) P n,
"xi.

Method:

1. MN equally divides the database DB into p disjointed parti-
tions (DB1, DB2, . . . , DBp, $DB1 [ DB2 [ � � � [ DBp = DB) and
assigns DBi to pi.

2. Each processor pi receives the database DBi and scans the DBi

to create local header table (HTi).
3. Each processor creates the local transaction identification

set (Tidseti) of DBi.
4. Processors perform all-reduce of HTi to get a global header

table (GHT).
5. MN sorts items in GHT in descending order according to

their support and block divides those items into mining set
MS1, MS2, . . . , Sp where MS1 [MS2 [ � � � [MSp = ItemsofGHT.

6. MN performs broadcast to distribute mining set information
to all processors.

7. In order to create an FP-tree, each processor pi has to obtain
transaction Tjk on processor j (j = 1, . . . , p, j – i) such that
Tjk \MSi – u(k = 1, . . . , |DBj|). Since the mining set MSi is par-
titioned statically, each processor knows the mining set of
others. Moreover, Tidseti (i = 1, . . . , p) helps selecting the
transactions directly in the local database. After that, each
processor exchanges the transactions required for mining
and NewDBi = DBi [ ReversedTransactions.

8. Each processor pi performs the FP-tree constructing proce-
dure of NewDB.

9. Each processor pi performs the FP-growth procedure to mine
the given MSi from their local FP-tree.

10. MN performs the MPI All-Reduce function to collect the fre-
quent pattern from pi (i = 1, . . . , p).

Fig. 1 is an example of a header and Tidset table for four proces-
sors. Fig. 1a shows the database equally partitioned into four parts
with each transaction’s local identity (TID). Fig. 1b depicts the cre-
ated Tidset table of the database. From Tidset1, item F appears in
transaction 1 to 4 and item H appears in transactions 3 and 4
and so on. Moreover, the local header tables (HT) are also created

at the same time (Fig. 1c). Finally, the processors performed all-re-
duce to get a global header table (GHT). After that, the master node
(MN) sorted the GHT in descending order according to its support
and divided items into mining sets (MS) using block distribution.
Then MN broadcast the MSs to all processors.

Then, each processor scanned its database to extract the trans-
action to transfer to the others. Fig. 2 shows the exchanging stage.
Fig. 2a is the MS of each processor, and from Fig. 2b, p0 had to pre-
pare three tables which recorded items to be sent for exchange.
Since it was costly to scan the database three times to create the
table (Fig. 2b), the table using the Tidset was created beforehand
(Fig. 1b). For example, p1 sent the transaction containing M, H, G
to p2, according to Tidset1, the union of item M, H, G was TID 1, 2,
3, and 4. Therefore, p1 sent the transaction 1 to 4 to p2. By the same
process, essential transactions could be efficiently exchanged
among processors. Since each processor had the necessary transac-
tion for mining, each one could build an FP-tree and use FP-growth
to find frequent patterns independently. Finally, MN gathered the
frequent patterns created by each processor to produce the all
the frequent patterns.

3.2. Balanced Tidset Parallel FP-tree (BTP-tree) algorithm for grid
computing

Since a Grid system consists of heterogeneous computing re-
sources, storage, and network connections, the computation ability
and network bandwidth of computing nodes are varied. The pro-
posed TPFP-tree designed for Cluster computing, thus executed
on a Grid system causes load imbalance and increases idle time.
Therefore, a Balanced Tidset Parallel FP-tree (BTP-tree) which con-
siders the computation capability of participating nodes and dis-
patches the mining items to computing nodes according for load
balancing is proposed. However, to evaluate the performance of
processors according to the detected hardware specification is use-
less. For example, one processor of 1.8 GHz with Intel Core 2 archi-
tecture may be faster than one of 4 GHz with Pentium 4
architecture. The wrong performance index will lead to wrong
workload distribution. Moreover, different types of applications re-
quire different types of computation resources. Therefore, BTP-tree
solves this problem by executing a small amount of data on the
processors to establish performance indices. The performance indi-
ces obtained this way can truly respond to the computation ability
of a given application. There are six stages in a BTP-tree algorithm:
(1) create header table and Tidset, (2) evaluate the performance in-
dex of computing nodes, (3) distribute mining item set, (4) ex-
change transactions, (5) create FP-tree and (6) FP-growth.

Creating a header table requires lots of computing time when
the database is large. Therefore, a transaction identification set
(Tidset) is created at this stage to speed-up the transaction selec-
tion for future use. After creating the head table, 1-frequent item
set was found. Moreover, these items were also the target mining
items in FP-growth.

Since the Grid system is a heterogeneous computing system, the
processors’ capability and memory size are different. Distributing

Table 1
Execution time for each stage of the PFP-tree (t20.i04.d200k.n100k, threshold = 0.0005) for the different processors.

p1 p2 p3 p4 p5 p6 p7 p8

Data transfer 0.91 0.04 0.06 0.12 0.06 0.05 0.08 0.04
Header table 0.6 0.59 0.6 0.59 0.6 0.6 0.6 0.59
All reduce 1.05 0.17 0.18 0.17 0.17 0.17 0.17 0.17
FP-tree 13.62 12.49 12.49 12.40 12.40 12.42 12.43 12.51
Exchange 98.29 157.11 204.78 233.51 241.07 235.06 223.06 197.02
FP-growth 18.06 26.34 27.09 31.1 24.51 22.44 20.07 12.59
Total 132.53 196.74 245.2 277.89 278.81 270.74 256.41 222.92
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mining items equally increases the execution time and causes
some computing nodes to be idle. In order to solve this problem,

the target mining items were partitioned according to the perfor-
mance index (PI). Since mining frequent patterns is a computation
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Fig. 1. Example of DB partitioning into 4 processors with the given threshold n.
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Fig. 2. Example of the exchange stage of 4 processors.
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intensive job, only some transactions were picked to execute the
FP-tree and FP-growth creation procedure. Later, the PI of each
processor can be determined and the mining items can be divided
according to the index. For example, there are n frequent
one-itemset, p processors, and PIi represents the performance
index of processors pi (higher is better) "i = 1, . . . , p. Thus, for
processor pi will be assigned n� PIiPp

k¼1
PIk

items to mine.

The next stage is the transaction exchange stage. Each processor
scans the local database via TID to select the transactions from the
local database to send to corresponding computing nodes. After
exchange, each processor creates the FP-tree and FP-growth via
the local database.

Finally, the frequent patterns are obtained after completing the
FP-tree and the FP-growth. The detailed algorithm of the BTP-tree is
given below.

Input: a transaction database DB = {T1, T2, . . . , Tn} and each
transaction Ti # I, I = {i1, i2, . . . , im} A given minimum threshold n.
p is the number of processors. (p1 is master node (MN), and
p2, p3, . . . , pp are salve nodes (SNs)).

Output: a complete set of frequent patterns, where Sup(xi) P n,
"xi.

Method:

1. MN equally divides the database DB into p disjointed parti-
tions ðDB1;DB2; . . . ;DBp9DB1 [ DB2 [ . . . [ DBp ¼ DBÞ and
assigns DBi to pi.

2. Each processor pi receives the database DBi and scans it to
create the local header table (HTi).

3. Each processor creates the local transaction identification
set (TIDSETi) of DBi.

4. Processors perform MPI All-Reduce of HTi to get a global
header table (GHT).

5. MN sends first 1000 transactions to each processor, after
that pi executes the FP-tree construction procedure and
records the execution time as ti.

6. Let performance index PIi = 1/ti.
7. MN gathers all PI and let PItotal ¼

Pp
i¼0PIi.

8. MN sorts items in GHT in descending order according to
their support and these items into mining sets according

to performance index MSi ¼ PIi
PItotal
� ItemsOfGHT

� �
where

MS1 [MS2 [ � � � [MSp = ItemsOfGHT.
9. MN performs broadcast to distribute mining set information

to all processors.
10. In order to create an FP-tree, each processor pi has to obtain

transaction Tjk on processor j (j = 1, . . . , p, j – i) such that
Tj \MSi – /(k = 1, . . . , |DBj|). Since the mining set MSi is
partitioned statically, each processor knows the mining set
of others. Moreover, TIDSETi (i = 1, . . . , p) helps selecting
the transactions directly in the local database. After that,
each processor exchanges the transactions required for
mining and NewDBi = DBi [ ReceivedTransactions.

11. Each processor pi performs the FP-tree constructing proce-
dure of NewDBi.

12. Each processor pi performs the FP-growth procedure to mine
the given MSi from their local FP-tree.

13. MN performs the MPI All-Reduce function to collect the
frequent pattern from pi (i = 1, . . . , p)

4. Experimental results

In order to evaluate the performance of the proposed algo-
rithms, the PFP-tree, TPFP-tree and BTP-tree were implemented
along with Message Passing Library 2 (MPICH2) on Ubuntu with
Linux kernel 2.6. Synthesized datasets generated by IBM’s Quest

Synthetic Data Generator (Almaden, xxxx) were used to verify
the algorithm.

4.1. TPFP-tree on PC Cluster

The program was executed in a PC Cluster with 16 computing
nodes. Table 2 gives the hardware and software specifications. As
can be seen, each computing node had the same hardware and
software environment. To verify the performance of our algorithm,
the thresholds 0.001, 0.0005, 0.0001 were used to examine the
TPFP-tree with different datasets. Table 3 shows the dataset used
to verify the performance of the algorithm. The algorithm was
evaluated with a different number of items, a different number
of average transaction lengths and a different number of transac-
tions. As can be seen from the experimental results, frequent pat-
terns were found for dataset t10.i04.d100k.n100k with threshold
0.01. Therefore, the smaller threshold was used to make sure that
there were frequent patterns. There were 8112, 53,713, and
234,649 frequent patterns for threshold 0.001, 0.0005, and
0.0001, respectively for t10.i04.d100k.n100k dataset.

Figs. 3 and 4 show the execution time of the TPFP-tree and the
PFP-tree with different datasets. From the results in Fig. 3, it can
be seen that the proposed algorithm performed better than the
PFP-tree regardless of the number of processors. Moreover, the re-
sults also illustrated that, when the average items per transaction
increased, the execution time decreased noticeably. Fig. 4 also

Table 2
Hardware and software specification of PC Cluster.

Hardware specification

CPU AMD Athlon XP 2000+
Memory 1 GB DDR RAM
Network 100 Mbps interconnection network
Disk 80 GB IDE H.D.

Software configuration
OS and compiler Linux 2.6

Gcc/G++ 4.03
Message Passing Library MPICH2 1.0.5

mpi4py 0.5
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Fig. 3. Execution time (TPFP vs. PFP), threshold = 0.0005.

Table 3
Statistical characteristics of datasets.

Dataset name No. of items Avg. items No. of trans.

t10.i04.d100k.n100k 100k 10 100k
t10.i04.d200k.n100k 100k 10 200k
t15.i04.d100k.n100k 100k 15 100k
t15.i04.d200k.n100k 100k 15 200k
t20.i04.d050k.n100k 100k 20 50k
t20.i04.d100k.n100k 100k 20 100k
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shows that the algorithm saved on execution time compared to the
PFP-tree. Fig. 5 illustrates the execution time of various thresholds
showing that this algorithm reduced the execution time for differ-
ent given thresholds.

In order to further compare the TPFP- and PFP-tree,
SU2ðnÞ ¼ Execution time of 2 processors

Execution time of n processors was defined. Table 4 shows the

comparisons of the two trees with a given threshold of 0.0005. It
can be seen that the ratio SU2 of the TPFP-tree was better than that
of the PFP-tree for all of the test cases. This means that the TPFP-
tree had better scalability than the PFP-tree with a different num-
ber of processors and different datasets. Moreover, it can be ob-
served that the speedup ratio SU2 improved with a larger
number of transactions.
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Fig. 4. Execution time (TPFP vs. PFP), threshold = 0.0001.
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Table 4
Speed-up ratio (SU2) of TPFP and PFP.

Itemset Method Number of processors

2 4 6 8 10 12 14 16

t10.i04.d050k.n100k TPFP 1 1.67 2.53 3.04 3.88 4.07 4.62 4.62
PFP 1 1.53 2.12 2.7 3.3 3.59 3.95 4.16

t10.i04.d100k.n100k TPFP 1 1.87 2.7 3.47 4.31 5.11 6.33 6.79
PFP 1 1.53 2.12 2.7 3.3 3.59 3.95 4.16

t10.i04.d200k.n100k TPFP 1 1.94 2.94 3.87 4.89 6.23 7.3 8.41
PFP 1 1.62 2.2 2.95 3.61 4.21 5.25 5.61

t15.i04.d050k.n100k TPFP 1 1.6 2.29 2.98 3.55 4.12 4.66 5.39
PFP 1 1.47 2.02 2.52 3.1 3.59 4.14 4.73

t15.i04.d100k.n100k TPFP 1 1.72 2.48 3.22 4.19 4.82 5.83 6.66
PFP 1 1.47 2.02 2.59 3.37 4.08 4.8 5.43

t15.i04.d200k.n100k TPFP 1 1.93 2.81 3.76 4.9 5.98 7.11 8.24
PFP 1 1.5 2.14 2.83 3.59 4.44 5.29 6.35

t20.i04.d050k.n100k TPFP 1 1.57 2.12 2.65 3.22 3.71 4.28 4.86
PFP 1 1.38 1.87 2.32 2.88 3.23 3.79 4.43

t20.i04.d100k.n100k TPFP 1 1.59 2.22 2.78 3.41 3.97 4.74 5.25
PFP 1 1.41 1.9 2.44 2.92 3.57 4.13 4.62

t20.i04.d200k.n100k TPFP 1 1.62 2.27 2.96 3.67 4.42 5.14 5.91
PFP 1 1.4 1.93 2.5 3.06 3.69 4.46 5.02

Table 5
Hardware and software specification of multi-cluster grid.

Cluster 1 Cluster 2 Cluster 3

Hardware specification

Number of Nodes 5 5 3
CPU Pentium 4 3.2G AMD XP 2.0G Pentium 4 3.0G
Memory 512 MB 1024 MB 1024 MB
Network 100 Mbps interconnection network

Software configuration

OS and compiler Linux 2.6
Gcc/G++ 4.03
Globus Toolkit 4.0

Message Passing Library MPICH-G2
MPICH2 1.0.5
mpi4py 0.5
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Fig. 6. Execution time of different processors (d50k).
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4.2. BTP-tree on multi-cluster grid

For the BTP-tree algorithm, the performance was verified on a
multi-cluster grid system consisting of three Linux based PC Clus-
ters. Table 5 depicts the hardware and software specifications
showing that each cluster had different computing capability and
different memory size. Different thresholds, 0.0005, 0.0003,
0.0001 were used with datasets t10.i4.d050k.n100k,
t10.i4.d100k.n100k, t20.i4.d050k.n100k, and t20.i4.d100k.n100k to
examine the BTP-tree in order to make sure that there were fre-
quent patterns.

In order to construct a heterogeneous computing environment
for 3 processors, one node from each cluster was selected. For 6

and 9 processors, 2 and 3 nodes were selected from each cluster.
Finally, for 13 processors, all processors in Table 5 were used.

Figs. 6 and 7 show the execution time of the BTP-tree, TPFP-tree,
and PFP-tree with a different number of processors with 50k and
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Table 6
Execution time of BTP, TPFP, and PFP.

Dataset Method Number of processors

3 6 9 13

Threshold: 0.0005
t10.d050k BTP 7.73 5.84 5.68 6.43

TPFP 9.4 6.66 6.16 6.72
PFP 12.04 10.21 8.35 8.2

t10.d100k BTP 15.99 10.95 9.68 9.9
TPFP 20.05 13.14 11.25 10.72
PFP 28.6 22 18 17.31

t20.d050k BTP 38.93 26.03 21 18.27
TPFP 51.4 33.8 28.03 22.54
PFP 66.31 52.99 49.37 44.8

t20.d100k BTP 111.11 65.45 50.42 39.41
TPFP 138.27 90.11 69.67 52.65
PFP 192.61 148.21 129.03 117.32

Threshold: 0.0003
t10.d050k BTP 10.84 7.89 7.11 7.65

TPFP 14.57 9.79 9.14 8.98
PFP 18.59 15.46 12.51 12.65

t10.d100k BTP 25.04 15.02 12.84 12.29
TPFP 32.37 19.5 17.3 14.43
PFP 45.84 33.65 27.09 26.28

t20.d050k BTP 48.34 31.46 24.85 21.43
TPFP 60.92 39.18 32.01 27.1
PFP 79.16 61.19 56.75 51.87

t20.d100k BTP 138.07 82.14 62.18 46.22
TPFP 166.78 107.82 81.81 64.66
PFP 230.14 172.8 149.78 136.69

Threshold: 0.0001
t10.d050k BTP 15.86 11.46 10.32 10.89

TPFP 20.29 13.96 11.92 11.55
PFP 25.7 21 18.03 17.04

t10.d100k BTP 36.05 21.91 19.14 16.86
TPFP 46.49 29.17 23.76 18.9
PFP 62.45 46.17 41.85 38.62

t20.d050k BTP 56.47 35.84 29.5 24
TPFP 68.04 46.88 37.44 31.36
PFP 87.63 69.98 61.77 58.05

t20.d100k BTP 162.18 98.38 72.31 54.47
TPFP 197.38 127.13 96.48 73.8
PFP 258.85 198.49 169.08 153.85
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100k transactions, respectively. From the results of Fig. 6, it is clear
that BTP performed better than the TPFP and PFP regardless of how
many processors were assigned. Moreover, it can be seen that BTP
reduced about 20% and 58% on TPFP and PFP. Fig. 6 also shows that
BTP saved on execution time compared to TPFP and PFP.

Figs. 8 and 9 illustrate the execution time of various thresholds
with 50k and 100k transactions, respectively. This confirmed that
BTP can efficiently reduce the execution related to TPFP and PFP.
Moreover, it can be seen that in a heterogeneous computing envi-
ronment (three types of CPU in this case) balancing the workload
can reduce the execution time.

Fig. 10 shows that BTP could balance the workload to save exe-
cution time. The experimental results showed BTP had better bal-
ancing capability and it could save about 25% and 66% on the
execution time needed with TPFP and PFP.

Table 6 shows the complete execution time for dataset
t10.i4.d050k.n100k, t10.i4.d100k.n100k, t20.i4.d050k.n100k, and
t20.i4.d100k.n100k with threshold 0.0005, 0.0003, and 0.0001. Here
it can be seen that BTP-tree performed better than the TPFP-tree
and PFP-tree for all test cases. Moreover, the BTP-tree shortened
execution time with more processors with different thresholds
and datasets. Consequently, with a smaller threshold BTP per-
formed significantly better than the others.

5. Conclusions

Mining frequent patterns from a transaction-oriented database
is important in data mining research. Many methods have been
proposed to solve this problem, and some of them have been
developed for a parallel-distributed computing system. However,
the execution time increases significantly with an increase in data-
base size and a decrease in the given threshold. In this paper, two
parallel algorithms Tidset-based Parallel FP-tree (TPFP-tree) and
Balanced Tidset-based Parallel FP-tree (BTP-tree) were developed
to solve frequent pattern mining problems. TPFP-tree is based on
FP-tree data structure for a Cluster system, it exchanges necessary
information for mining before tree construction to improve the
performance. Moreover, it also uses a TID set to select transactions
directly instead of scanning the database repeatedly. Furthermore,
BTP-tree was proposed for solving mining problems on Grid sys-
tems. BTP-tree calculates the performance index (PI) of each com-
puting node, then dispatches mining items to a computing node
according to its PI. The experimental results show that TPFP-tree
performed better than PFP-tree on a Cluster system judged upon
a variety of computing nodes, database sizes or different given
thresholds. Additionally, the results also show that BTP-tree had
better load balancing ability and it performed better than TPFP-

and PFP-tree on a Grid system. Moreover, it also reduced both exe-
cution and idle time.
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Abstract 

Drug design is the approach of finding drugs by design using 
computational tools. When designing a new drug, the structure 
of the drug molecule can be modeled by classification of 
potential chemical compounds. Kernel Methods have been 
successfully used in classifying potential chemical compounds. 
Frequency of labeled paths has been proposed to map 
compounds into feature in order to classify the characteristics 
of target compounds. In this study, we proposed an algorithm 
based on Kernel method via parallel computing technology to 
reduce computation time. This less constrain of timing allows 
us to aim at back tracking a full scheme of all of the possible 
pre-images, regardless of their difference in molecular 
structure, only if they shared with the same feature vector. Our 
method is modified on BB-CIPF and used MPI to reduce the 
computation time. The experimental results show that our 
algorithms can reduce the computation time effectively for 
chemical compound inference problem. 
 
Keyword: chemical compound inference, parallel 
branch-and-bound, MPI 
 
 

1. Introduction  
 

Drug design is a very valuable issue in the chemogenomics 
[1]. To classify appropriately characteristic, classification of 
drug are important in designing new drug. Quantitative 
structure activity relationship was used to classify the chemical 
compounds by many researchers. Support Vector Machines 
(SVMs) [2, 3] of Kernel methods [4, 5, 6, 7] have been widely 
used in various classification problems of chemogenomics. 
Kernel method is usually required to develop a mapping from 
the set of objects in the target problem to a feature space and a 
kernel function is defined as an inner product between two 

feature vectors. In order to apply kernel methods, it is usually 
required to develop a mapping from the set of objects in the 
target problem to a feature space. An object will be defined as a 
feature vector in the feature space by Kernel methods, and then 
SVMs can be employed to learn the classification rules. Feature 
vectors have been successfully used based on frequency of 
labeled paths [8, 9] or frequency of small fragments [4, 5]. 

A desired object is computed as a point in the feature space 
using suitable function and then the point is mapped back to the 
input space, where this mapped back object is called a 
pre-image.  

Let φ be a function of mapping from an input space G to a 
feature space F. The pre-image problem [18] is, given a point y 
in F, to find x in G such that y = φ(x), through a proper function, 
if the feature vector can be mapped backward to an object from 
y such as y = φ(x), where such x is called a pre-image.�

For example, if we want to infer a graph from numbers of 
occurrences of vertex-labeled paths [10,11]. In [10], a feature 
vector g is a multiple set of strings of labels with length at most 
K which represents the path frequency. Given a feature vector 
g, they considered the problem of finding a vertex-labeled 
graph G that attains a one-to-one correspondence between g 
and the set of sequences of labels along all paths of length at 
most K in G. In this study, we took into compound structure of 
bigger size. This will spend more time in inferring a pre-image 
from path frequency of g.  

Parallel computing makes more computing resources than a 
single processor [13]. In science and engineering, some 
applications (the complex challenge problems) are 
computationally bounded. Also, the new application areas 
where large amounts of computation can be put to profitable by 
using parallel computing, such as data mining and 
optimization. 

Processing computations in a parallel way is natural and 
intuition, because the real world is naturally parallel. Parallel 
computing has allowed complex problems to be solved and 
high-performance applications to be implemented in science 
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and engineering area, or in new application areas [13]. 
In this study, we want to reduce the computing time in 

inferring chemical compounds with path frequency. We 
developed a parallel computing method by modifying the 
algorithm published by Akutsu and Fukagawa[12]. The main 
concept is to assign independent tasks to different computing 
nodes expect for reducing computing time. 

The rest of this paper is organized as follows. Section II 
introduces the background about problem and definition. Next, 
we present our algorithm and description in section III. In 
section IV, we show the experiment results. Finally we 
conclude this paper in section VI. 

 

2. Related Work 
 
2.1 The BB-CIPF algorithm 

 
Terms of compound characteristics such as Frequency of 

labeled paths [8, 9] or frequency of small fragments [4, 5] are 
used by some researchers to classify compound. Extending 
from inferring a tree from walks [14] or graphic reconstruction 
problem [15], Kernel Principal Component Analysis and 
Regression [4] and stochastic search algorithms [5] are used to 
find pre-images. However, in previous cases, the obtained 
results and performance of these algorithms were not 
thoroughly verifies against more complex compound cases. 
 

Figure 1 shows that giving a target x to find φ(x) with kernel 
method and then inferring the compound. Inferring a chemical 
structure from a feature vector based on frequency of 
labeled-paths and small fragments, Branch-and-Bound 
Chemical compound Inference from Path Frequency 
(BB-CIPF) [12] is used to infer chemical compounds of 
tree-like structures. BB-CIPF algorithm extends from [10, 11]. 
BB-CIPF uses tree-like structures and infers chemical 
compound. Chemical compounds are assigned with a feature 
vector by the algorithm based on frequency of small fragments. 
Moderate size chemical compounds are inferred. 

 
Figure 1: Inferring a Chemical Structure from a Feature 

Vector 
The pre-image problem was defined as follows. Let� � be�

an� alphabet� and� K�be� the� set� of� strings with� length� K�
over� .�For�a� string� t�and�a�graph�G,�occ(t,�G)�denotes�
the�number of�occurrences�of�substring�t� in�G.�Then,�the�
feature� vector� fK� (G)� of� level� K for� G� is� a�
— K—-dimensional� integer� vector� such� that� the�
coordinate�indexed�by�t�∈� K�is�occ(t,�G).�That�is,�fK�(G)�
is� defined� by� fK� (G)� =� (occ(t,� G))t∈ΣK. For example, 

consider a compound C2H4O2 (see figure2) over Σ = {C, O, H} 
and the K value is 1. Then, fK� (G) = (2,2,4,2,2,3,2,0,1,3,1,0) 
because occ(C,G) = 2, occ(O,G) = 2, occ(H,G) = 4, occ(CC,G) 
= 2, occ(CO,G) = 2, and so on. If K is large, the number of 
dimensions of a feature vector will be large (exponential of K). 

�
C� O� H� CO� CH� OC� OO� OH� HC� HO� HH�
2� 2� 4� 2� 3� 2� 0� 1� 3� 1� 0�

Figure 2: An illustration of a multitree G and its feature 
vector 

 
Give a target compound Ttarget and Tcur is inferred to Ttarget. 

Tcur insert a node n becoming Tnext. ftarget is the feature vector of 
Ttarget and fnext is the feature vector of Tnext. After inserting a 
node compare Ttarget and Tnext. If the feature vector fnext of Tnext 
does not match with the feature vector ftarget of Ttarget, the Tnext 
will be discarded and Tnext will not continue to carry out the 
evolution of Tnext. Tcur may be re-inserted into another node for 
comparison with Ttarget. 

The concept of branch-and-bound chemical compound 
inference from path frequency algorithm is inferring tree-like 
structures of chemical compounds. Back tracking a full scheme 
of all of the possible pre-images, regardless of their difference 
in molecular structure, if they shared with the same feature 
vector to come close to the reality of the development of 
algorithms for drug design. 

The BB-CIPF algorithm will track back pre-images as the 
solution of partial results. For example, giving a target 
compound, if there are three objects having the same feature 
vector, then those are the partial results. 

Our method is based on BB-CIPF. We will find all possible 
compounds with same feature vector. To reduce the computing 
time, the method we proposed used MPI to solve the chemical 
compound inference problem.  

 
2.2 Message Passing Interface 

 
Message Passing Interface has already used in solving 

chemistry problems [16]. MPI (Message Passing Interface) is a 
specification for a standard library for message passing that was 
defined by the MPI Forum, a broadly based group of parallel 
computer vendors, library writers, and applications specialists. 
Multiple implementations of MPI have been developed [17]. 

The message-passing model of parallel computation has 
emerged as an expressive, efficient, and well-understood 
paradigm for parallel programming. Until recently, the syntax 
and precise semantics of each message-passing library 
implementation were different from the others, although many 
of the general semantics were similar. The proliferation of 
message-passing library designs from both vendors and users 
was appropriate for a while, but eventually it was seen that 
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enough consensus on requirements and general semantics for 
message-passing had been reached that an attempt at 
standardization might usefully be undertaken. MPI is a 
message-passing application programmer interface, which 
including protocol and semantic specifications for behaving 
implementation in the feature (such as a message buffering and 
message delivery progress requirement). 

 

3. Parallel BB-CIPF (PB-CIPF) 
 

In the previous section, we have described that the feature 
vector g in feature space has been mapped from a compound c 
thought a function φ, we want to find all possible c’=φ (g). 
Figure 3 shows that we are interested in inferring compounds 
which have same feature vector of the target compound. If a 
compound structure is bigger, the solution space will bigger. It 
leads to larger computation time to find the answer. In other 
word, consistent with the feature vector g are also less, it needs 
more time that mapped back to c’ from g, this will be a 
substantial increase in the amount of time spent.  

 

 
Figure 3: Inferring all possible c’=φ (g) of a graph from a 

feature vector.  
 

In this study, we develop a parallel algorithm to decrease 
the computing time and wish to find all possible compound 
structure having the same feature vector with the target 
compound. The task will be separated into several parts and 
appropriate to distribute for computing node.  

 

 
Figure 4: Procedure diagram of PB-CIPF 

 
Figure 4 depicts the idea of our approach. Our proposed 

method has two stages. Firstly, a master node builds several 
candidate compounds using BFS. Dispatch candidate 
compounds to each participated computing nodes according to 
block distribution. Then each computing node will infer the 
c’=φ(g) using a DFS approach. The BFS and DFS adopted 
branch-and-bound approach. 

 
The branch-and-bound approach has 3 stages: 

(1) Branching Stage: Insert a new node to selected candidate 
compound. 

(2) Bounding Stage: If addition of a leaf with atom label 
violates the condition on the numbers of 
occurrences of atoms. 

(3) Terminating Stage: If all candidate compounds are 
complete the computation. 

Each task will spend different computing time. A bigger 
structure compound means having larger solution space and 
required more computing time. For example, if we had four 
computing node C1, C2, C3 and C4. The master computing node 
C1 analyzed the target compound calculating feature vector and 
established four tasks T1, T2, T3, T4, and assigned tasks to four 
computing nodes to execute. It will stop counting after the last 
task finished.  

At BFS stage, the first step, master node loads the target 
compound and computes the feature vector. The master 
computing node employs the Breadth-First-Search (BFS) 
approach to obtain the candidate compounds. Figure 5 shows 
that each job is initiated based on the atoms that exist in the 
target compound. However, H atoms are not included. A master 
node will build several candidate compounds using BFS 
approach and obtain its path frequency for distributing jobs. 
Tasks will be putted into a block with appropriate amount then 
each block will be assigned one by one to computing nodes.  
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Figure5: An example of BFS stage of PB-CIPF 

 
After the tasks were assigned by the master computing node, 

each slave computing node used Depth-First-Search (DFS) 
approach to insert an atom into a candidate compound. After 
inserted an atom, the candidate compound will be compared 
feature vector with target compound. If the feature vector of 
candidate compound and target compound has the same feature 
vector with parts of target compound structure, then the atom 
will be kept. If the candidate feature vector is different from 
target compound structure, then the atom will be dropped and 
continue to apply DFS approach to insert another atom into the 
candidate compound. If the candidate compounds have the 
same feature vector with the target structure, then it got a 
solution. Do the same thing until all nodes completed its 
candidate compounds. Figure 6 shows the idea of this stage. 

 

 
Figure 6: An example of DFS stage of PB-CIPF 

3.1 The procedure of PB-CIPF 
 
The pseudo code of PB-CIPF is shown below; the 

implemented code has more details and will be presented later. 
 

Procedure PB-CIPF(Ttemp
i, ftemp

i, Ttarget, ftarget) 
GET processors numbers:n 
Let first computing node = master computing node 
 
Master computing node: 

step 1: Produce candidate compounds. Run BFS (Ttarget). 
Store all candidate compounds computed in Tqueue 
which is a queue that stores all candidate 
compounds. 

 
 The procedure of BFS is shown below: 
 Procedure BFS (Ttarget): 

      for (a = all atoms exist in Ttarget ) do  
Let Ttemp be a temporary candidate compound  
Initial Ttemp  
Insert a as a new node into Ttemp 
Add Ttemp to Tqueue 
Process the next atom in Ttarget 

end 
step 2: Gather candidate compounds as tasks. Block tasks 

by computing nodes number.  
step 3: For each block of tasks will be assigned to slave 

computing node. 
 

 
Slave computing node: 

step 1: Receive tasks. 
step 2: Run DFS approach. 

The procedure of DFS is shown below:  
      Procedure DFS(Ttemp

i, ftemp
i, Ttarget, ftarget) 

if ftemp
i = ftarget  

then output a solution Ttemp
i; 

return true; 
else return false; 
for (a = all atoms exist in Ttarget )do 

if atom = H continue; 
(Hydrogen atoms will be added at the last 

stage) 
if {l(u)|u V(Ttemp) ∪ {a} atomset(fterget) 
(set means multiset here) 

then continue; 
for all w ∈ V(Ttemp) do 

Let Tnext be a tree got by connecting new 
leaf node u  

if w does not satisfy the valence constraint  
then continue; 
Compute fnext from Tnext and ftemp; 
if DFS(Tnext, fnext, Ttarget, ftarget)=true  

then return true; 
end 

end 
return false; 

step 3: Send result to a queue stored all matched result.  
step 4: If still needed to process go to step 2. Else end. 
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  The followings are the detail part:  

(i) Hydrogen atoms will be added at the last stage of the 
inferring procedure. Hydrogen atoms will be added only if the 
frequencies of the other atoms are same as those in the target 
feature vector.  
(ii) When calculating fnext from Tnext and fcur, paths beginning 
from and ending at a new node are only computed.  
(iii) Benzene rings can be added as if these were leaves, where 
structural information on benzene is utilized for calculating 
feature vectors.  
(iv) A benzene ring will be given as an initial structure when a 
compound is small and contains a benzene ring.�
 

4. Experimental results 
 

In this section, experimental results of our algorithm were 
shown in term of the comparisons of single node, 2 nodes, and 4 
nodes. 

We used a PC cluster with AMD Athlon(TM) XP 2000+ 
CPU and 1 GB Ram which worked on the Linux to verify the 
performance of our algorithm. PB-CIPF was implemented 
using C language and the MPI version with MPICH2. The test 
data were obtained from KEGG LIGAND Compound 
Database. 

We increase the computing node to verify that increasing 
computing node can reduce the computing time. 

The makespan defined as following: 
In our experiment, it has 4 computing nodes: C0, C1, C2 and 

C3. Then the finish time of four nodes is: t0, t1, t2, t3. If t2 is the 
longest finish time, then the makespan will be t2.  

We choose several compounds form KEGG LIGAND 
Database. We tested and verified our algorithm with K = 1, 2, 3, 
4, where K is the length of sequence labels of feature vectors. 
Bigger value of K means more constrains for target compound.  
Figure 7 to 10 show the makespans from different target 
compound with different size. Compound size of C11108 with 
H atom is 13 and 9 without H atom. Size of C11109 with H 
atom is 14 and 7 without H atom. Size of C00097 with H atom 
is 15 and 9 without H atom. Size of C15987 with H atom is 19 
and 8 without H atom. The less value of K makes bigger 
amount of permutation with small length of path frequency. 
The more amount of permutation with path frequency will 
make more results which match the path frequency then cost 
more computing time. Therefore, figure 11 shows that when 
computing C15987 with K=1, the computing time is much 
bigger than it of other value of K, so makespan of C15987 in 
figure 10 is excluded the result of K =1.We can find that the 
makespan was reduced when the number of nodes increased. 
For example, in Figure7, when the value of K is 4, the 
makespan was reduced from 399.546 seconds to 279.82 second 
by 4 nodes. 
 

 
Figure 7: Makespan of C11108 

 

 
Figure8: Makespan of C00097 

 

 
Figure9: Makespan of C11109. 

 

 
Figure 10: Makespan of C15987 

 

 
Figure 11: Makespan of C15987 with K=1 
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When the K = 1 and size of atoms is bigger than 19, the 

solution space is larger, so it needs more computing time to 
finish. We use several compounds with different size of atoms 
to verify the performance of our algorithm. To look over 
performance of our algorithm, we compute the speedup ratio of 
each testing case. The speedup ratio is defined as follows: 

If the computing time of single node is t0 and the computing 
time of 2 nodes is t1. Then the speedup ratio of 2 computing 
nodes will be t0 / t1. 

Figure12 and 13 show the speedup of our algorithm. 
Increasing the computing nodes to 4 nodes, we can find out that 
the average speedup ratio is about 1.9. According to our 
experiment, it verified that our proposed algorithm can reduce 
the computing time. 

 

 
Figure 12: Speedup ratio of 2 nodes 

 

 
Figure 13: Speedup ratio of 4 nodes 

5.  Conclusion 
 

In this paper, we proposed a parallel algorithm for the 
problem of chemical compound inference from path frequency. 
Our approach has two stages. First, a master node will build 
several candidate compounds using BFS approach. Then 
distribute the candidate compounds to participated computing 
nodes according to block distribution.  Then each computing 
node will infer the c’=φ (g) using a DFS approach. The BFS 
and DFS adopted branch-and-bound approach. The 
experimental results show that our algorithm can reduce the 
computing time. When using 4 nodes to compute, the average 
speedup is 1.820136 when K=1, 1.891199 when K=2, 1.954588 
when K=3 and 1.995495 when K=4.  
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Abstract. Drug design is the approach of finding drugs by design using 
computational tools. When designing a new drug, the structure of the drug 
molecule can be modeled by classification of potential chemical compounds. 
Kernel Methods have been successfully used in classifying chemical 
compounds, within which the most popular one is Support Vector Machine 
(SVM). In order to classify the characteristics of chemical compounds, methods 
such as frequency of labeled paths have been proposed to map compounds into 
feature vectors. In this study, we analyze the path frequencies computed from 
chemical compounds, and reconstruct all possible compounds that share the 
same path frequency with the original ones, but differ in their molecular 
structures. Since the computation time for reconstructing such compounds 
increase greatly along with the size increase of the compounds, we propose an 
efficient algorithm based on multi-core processing technology. We report here 
that our algorithm can infer chemical compounds from path frequency while 
effectively reduce computation time and obtained high speed up. 

Keywords: Chemical compound, feature space, Multi-Core Processing, 
Branch-and-Bound, OpenMP 

1   Introduction 

In recent years, many researchers have worked on the drug design problem in order 
to develop new drugs based on computation methods. When designing a new drug, 
the structure of the drug molecule can be modeled by classifying candidate chemical 
compounds using Kernel Methods [4, 5, 6, 7], within which the most popular one is 
Support Vector Machine (SVM) [10]. Kernel method is a type of pattern analysis, the 
task of which is to discover the relationships, such as clusters, rankings, 
classifications, in the data (such as sequences, vectors, sets of points, images, etc). 
Kernel methods approach the problem by first mapping the data into a high-



dimensional feature space. Recently, it has also been applied to the classification of 
chemical compounds [4, 5, 6, 7]. In these approaches, chemical compounds are 
mapped to feature vectors and then SVMs [9, 10] are employed to learn the rules for 
classifying these feature vectors. Several mapping methods for feature vectors have 
been proposed; among them, the mapping of feature vectors based on the frequency of 
labeled paths [6, 7] or the frequency of small fragments in chemical compounds [4, 5] 
are widely used. 

In kernel methods, an object in the input space can be mapped into a point (or 
feature vector) in a space called feature space. Through a suitable function ∅, a given 
point y in the feature space can be mapped back into an object in the input space. 
Such object is called pre-image. The problem exists when mapping a given y in 
feature space back into an object in the input space such that y=∅(x) is satisfied, as x 
may not exist. 

In [1], a feature vector g is a multiple set of strings of labels with length at most K 
which represents path frequency. Given a feature vector g, they considered the 
problem of finding a vertex-labeled graph G that attains a one-to-one correspondence 
between g and the set of sequences of labels along all paths of length at most K in G. 

In previous works [1, 2], a graph can be inferred from the numbers of occurrences 
of vertex-labeled paths. In [1], they showed that this problem can be solved in 
polynomial time of the size of an output graph if graphs are trees of bounded degree 
and the lengths of given paths are bounded, by a constant, whereas this problem is 
strongly NP-hard even for planar graphs of bounded degree. 

In this study, we have taken into account the situation when chemical compounds 
become increasingly complex, the computation time required to infer pre-images from 
the feature vectors of these compounds increase at a much faster rate. We resort to 
parallel computing, in which the computation tasks are assigned to multiple cores 
appropriately to reduce the overall computation time. We extend the algorithms in [3], 
and therefore the modified algorithms can support multi-core processing technology. 

The rest of this paper is organized as follows. Section 2 introduces the background 
about problem and definition. Next we describe our proposed algorithms in section 3. 
In section 4, we show the experimental result. Finally we conclude this paper in 
section 5. 

2   Related Work 

For classification of the characteristics of chemical compounds to work, chemical 
compounds are often mapped into feature vectors. Several methods for converting 
chemical compounds into feature vectors have been proposed. Among them, methods 
such as frequency of labeled paths [6, 7] or frequency of small fragments [4, 5] are 
popular. Recently, the pre-image methods have been proposed. In [4], pre-images 
were found in a general setting by using Kernel Principal Component Analysis and 
regression. In [8], stochastic search algorithm is used to find pre-images for graphs. 
However, these pre-image methods are not derived from a computational viewpoint. 



In [4], the obtained results and performance of the algorithm was unclear because it 
was applied only to a few similar cases. Other related pre-image studies include 
inferring a tree from walks in [12], as well as inferring by graphic reconstruction [13]. 

In [3], chemical structures are modeled as trees or tree-like structures. They extend 
algorithms in [1, 2] so that constraints on valences of atoms are taken into account. 
They proposed an algorithm, Branch-and-Bound Chemical compound Inference from 
Path Frequency (BB-CIPF), which can infer tree from related chemical structures. 
BB-CIPF works within a few or a few tens of seconds for inferring moderate size of 
chemical compounds (e.g., the number of carbon atoms are less than 20) with tree or 
tree-like structures, and can be modified for inferring more general classes of 
chemical compounds and/or for feature vectors based on frequency of small 
fragments. 

In BB-CIPF, given a tree Tcur to be inferred to a target tree Ttarget, Tcur is first 
inserted into a node n to become Tnext. If the feature vector fnext of Tnext does not 
comply with the feature vector ftarget of Ttarget, the Tnext will be discarded and then the 
Tcur will be re-inserted into another node and be compared to Ttarget. 

The advantage of BB-CIPF algorithm is to effectively reduce the computation time, 
as it terminates the computation process immediately and displays the results once it 
obtains a solution; this also means that there is only one solution [3]. For example, if 
there are three objects, a, b and c, which all correspond to the same feature vectors v. 
Through BB-CIPF algorithm, only one of the objects a, b, c can be inferred from v, so 
the inferred solution is not necessarily be the most useful one in practice. Therefore, 
how to produce all possible compounds that are mapped back from the same feature 
vector but differ in their molecular structures is an important issue in the problem. 
Moreover, when a compound structure is more complex, it will require more 
computation time for inference of its solutions.  

Parallel computing is a suitable technique in shortening the inference procedure. 
Parallel computing is a form of computation in which several calculations are carried 
out simultaneously [11], operated on the principle that large problems can often be 
divided into smaller ones, and then solved concurrently to provide the solution in a 
shorter time. While clusters, Massive parallel processing (MPP), and Grids use 
multiple computers to work on the same task, multi-core and multi-processor 
computers employ multiple processing elements to work on the same task. 

A multi-core processor (or chip-level multiprocessor) combines two or more 
independent cores (normally a CPU) into a single package that consisted of a single 
integrated circuit. A dual-core processor contains two cores, and a quad-core 
processor contains four cores. A multi-core microprocessor implements several 
processing units in a single physical package. In general, programming is required to 
orchestrate processes in several cores in order to solve problems. 

The OpenMP (Open Multi-Processing) standard allows programmers to take 
advantage of the new shared-memory, multiprocessor programming systems from 
vendors like Compaq, Sun, HP, and SGI. Aimed at the researcher working with 
C/C++ or Fortran programming languages, OpenMP explains both what this standard 
is and how to use it to create software that takes full advantage of parallel computing. 
OpenMP support Sun compiler, GNU compiler and Intel compiler. 



In this paper, we extend the inference algorithm [3] to obtaining all possible 
compounds that are mapped back from the same feature vector but differ in their 
molecular structures. We used the Branch-and-Bound concept to derive the trees or 
tree-like structures of chemical compounds. Our algorithm is committed to obtain all 
possible compounds that can be inferred from the same feature vector but differ in 
their molecular structures. We develop our algorithm based upon the algorithm in [3] 
so that the computation process will not terminate on the first obtained solution, but 
will continue to search for all possible solutions. However, in order to output more 
chemical compounds, it also means that the algorithm will consume more 
computation time. Therefore, we also propose adopting the multi-core computing 
technology to reduce the computation time in our proposed algorithm. We hope that 
by providing more thorough and practical solutions to the inference problem, we can 
improve on the development of drug design. 

3   Multi-Core Chemical Compound Inference from Path 
Frequency (MC-CIPF) 

In the previous section, we have described that when a compound structure is more 
complex, it will require more computation time for inference of its solutions. That is 
to say, if the feature vector v in feature space has been mapped from a compound c 
thought a function ∅, and we want to find c’ where c’= ∅(v). If a compound is more 
complex in structure, its feature vector in feature space is also more complex, and it 
will require substantially more computation time to map back to c’ from v. Therefore, 
in this paper, we divide computation tasks into several smaller tasks and distribute 
these tasks appropriately among several processing cores for computation. We 
propose the Multi-Core Chemical Compound Inference from Path Frequency (MC-
CIPF) to obtain all possible compounds. 

 

Fig. 1. Each job is initiated based on the atoms that existed in the target compound. 



In the first step of MC-CIPF, the algorithm loads into the master core a target 
compound for inference of all other chemical compounds that share the same feature 
vector. The master core employs the Breadth-First-Search (BFS) algorithm to analyze 
the target compound and obtain its path frequency for distributing jobs later. Each job 
is initiated based on the atoms that exist in the target compound (Fig. 1). However, H 
atoms are not included in this step. 

 

Fig. 2. An example of balancing the load in each core in MC-CIPF. 

Each job requires different amount of time for computation, and a more complex 
one will require more time. For example, if there are four cores C1, C2, C3 and C4, the 
master core will analyze the target compound, initiate four jobs T1, T2, T3, T4, and 
distribute them among four corresponding cores for execution. If T1, T2 and T3 have 
completed their jobs while T4 is still in process, T1, T2 and T3 cores will be in idle as 
there are no more jobs to allocate to these cores. Therefore, we balance the overall 
computation loads by increasing the number of jobs that can be allocated by the 
master core and reducing the computation time demanded for each job. The scenario 
is depicted in Fig. 2. 

Each core applies the Depth-First-Search (DFS) algorithm to insert an atom into a 
candidate compound. After inserted an atom, the candidate compound will be 
compared with target compound, and if the feature vector of candidate compound has 
the same structure as parts of target compound structure, the inserted atom will be 



kept; otherwise, the inserted atom will be dropped, and the algorithm continues on 
applying DFS to insert the next atom in queue into the candidate compound. If the 
resulted structure of the candidate compounds is in line with the target structure, it is 
output as one of the solution. The algorithm iterates until all cores have completed all 
candidate compounds in their queues. 

Procedure BFS (Ttarge) 
  Let Tqueue be a queue that stores all candidate compounds; 
  for all a ∈ all atoms exist in Ttarget do 
    Let Ttemp be a temporary compound 
    Ttemp ← ∅ ; 
    Insert a into Ttemp; 
    if Ttemp ∈ Ttarget then 
      Add Ttemp to Tqueue; 
    else 
      continue (examine the next atom in Ttarget); 
    end 
  end 
  while Tqueue is not empty do 
    for each core compute a compound from Tqueue per time do 
      Compute feature vector ftempi from T

temp
i in T

queue; 
      if MC-CIPF(Ttempi, f

temp
i, T

target, ftarget)=false then 
        output “no solution”; 
      end 
    end 

Procedure MC-CIPF(Ttempi, f
temp

i, T
target, ftarget) 

  if ftempi = f
target then output Ttempi; 

    popup Ttempi from T
temp; 

    return true; 
  else  
    return false; 
  for all a ∈ all atoms exist in Ttarget do 
    L ← ∅ ; 
    if { L(u)|u ∈ V(Ttemp)} ∪ {a} ⊈ atomset(ftarget) then 
      continue; 
    for all w ∈ V(Ttemp) do 
      Let Tnext be a tree gotten by connecting new leaf u with 
label a to w by bond b; 
      if w does not satisfy the valence constraint then 
        continue; 
      Compute fnext from Tnext and ftemp; 
      if MC-CIPF(Tnext, fnext, Ttarget, ftarget)=true then 
        return true; 
      end 
    end 
  return false; 



4   Experimental Results 

For verifying the effectiveness of MC-CIPF, we implemented the proposed 
algorithm and compared the performance when using single core, dual core and quad 
core for computation. The simulation environment is built by using a personal 
computer equipped with Intel Core 2 Quad Q6600 CPU and 4 GB RAM and installed 
with the operating system of Windows Vista with Service Pack 1. MC-CIPF was 
implemented using C language and experimental datasets are retrieved from KEGG 
LIGAND Database.  

 

Fig. 3(a). Computing time of C00097. 

 

Fig. 3(b). Computing time of C00497. 



In the experiment, we randomly chosen 5 chemical compounds (C00097, C00497, 
C11109, C14601, and C15987; the number of atoms of compound size with hydrogen 
are 14, 15, 16, 15 and 19, respectively) from KEGG LIGAND Database and 
examined them with K = 1, 2, 3, 4, where K is the length of sequence label of feature 
vectors in MC-CIPF. Larger K means more constraints for target compound, which 
leads to less variation for its molecular structure. Fig. 3(a)-(e) are the computing time 
for each chemical compound. In each case, we have found that the computing time 
was reduced as the number of cores was increased. For example, in Fig. 3(c), when K 
was equal to 4, the computing time was reduced from 11.9337 second with 1 core to 
5.542821 second with 4 cores.  

 

 

Fig. 3(c). Computing time of C11109. 

 



 

Fig. 3(d). Computing time of C14601. 

When the K value increases, the constraints of the feature vectors increase 
accordingly. As a result, MC-CIPF spends less computing time in searching for the 
combinations of target compound, as there is less permitted variations to compute for. 
However, the path frequency will be longer, so MC-CIPF needs to spend more 
execution time in re-computing path frequency. Consequently, the shortest computing 
time occurs when K is equal to 2 in the experiment, since the number of constraints 
has not increased too much and the length of path frequency is not too long. Details of 
the computing time are shown in Table 1. 

 

 

Fig. 3(e). Computing time of C15987. 



Table 1. Computing time of MC-CIPF for various chemical compounds. 

Instances Cores detail CPU time (sec.) 

   K=1 K=2 K=3 K=4 
C00097 1 Core  4.27 0.96 1.49 3.71 

2 Cores Core 1 2.99 0.26 1.17 2.81 
 Core 2 3.00 0.72 1.17 2.81 
 Max 3.00 0.72 1.17 2.81 
4 Cores Core 1 2.91 0.20 0.72 1.56 

  Core 2 2.67 0.36 0.46 0.98 
  Core 3 0.77 0.35 0.50 0.97 
  Core 4 2.91 0.51 0.72 1.56 
  Max 2.91 0.51 0.72 1.56 

C00497 1 Core  75.44 31.95 47.23 131.42 
 2 Cores Core 1 28.82 8.78 31.26 35.33 
  Core 2 54.10 25.12 31.27 88.09 
  Max 54.10 25.12 31.27 88.09 
 4 Cores Core 1 13.76 3.93 24.43 11.05 
  Core 2 31.23 7.77 12.25 28.88 
  Core 3 12.47 7.88 12.26 30.69 
  Core 4 56.14 21.67 24.43 64.10 
  Max 56.14 21.67 24.43 64.10 

C11109 1 Core  6.88 5.42 5.63 11.93 
 2 Cores Core 1 5.47 3.59 3.55 6.73 
  Core 2 5.48 3.59 3.56 6.73 
  Max 5.48 3.59 3.561 6.73 
 4 Cores Core 1 5.13 3.18 2.90 5.53 
  Core 2 1.83 2.06 1.91 3.53 
  Core 3 2.48 2.05 1.18 1.93 
  Core 4 5.13 3.18 2.90 5.54 
  Max 5.13 3.18 2.90 5.54 

C14601 1 Core  0.72 0.57 1.02 2.02 
 2 Cores Core 1 0.62 0.40 0.51 0.83 
  Core 2 0.62 0.40 0.55 1.16 
  Total 0.62 0.40 0.55 1.16 
 4 Cores Core 1 0.54 0.27 0.40 0.37 
  Core 2 0.13 0.23 0.38 0.55 
  Core 3 0.21 0.25 0.40 0.68 



  Core 4 0.54 0.29 0.35 0.58 
  Max 0.54 0.29 0.40 0.68 

C15987 1 Core  25.73 3.49 6.77 14.52 
 2 Cores Core 1 16.02 2.00 0.35 4.95 
  Core 2 11.43 2.00 3.67 7.67 
  Max 16.02 2.00 3.67 7.67 
 4 Cores Core 1 14.41 1.87 1.28 2.03 
  Core 2 5.78 1.48 1.65 3.16 
  Core 3 12.85 1.87 3.25 6.76 
  Core 4 1.42 0.72 0.55 0.68 
  Max 14.41 1.87 3.25 6.76 

 

More importantly, we want to compare the speedup ratios of MC-CIPF with respect 
to the core number used in the experiments. Fig. 4(a)-(e) are the speedup ratios of 
C00097, C00497, C11109, C14601, and C15987. In these figures, the speedup ratios 
are increased from 1 core to 4 cores, with the best speedup ratio close to 3 (Fig. 4(c)). 
Interestingly, when the K value is increased, the speedup ratio is raised accordingly. 

 

 

Fig. 5(a). Speedup ratio of C00097 



 

Fig. 4(b). Speedup ratio of C00497. 

 

 

Fig. 4(c). Speedup ratio of C11109. 

 



 

Fig. 4(d). Speedup ratio of C14601. 

 

 

Fig. 4(e). Speedup ratio of C15987. 

5   Conclusions 

In this research, we proposed a multi-core algorithm for solving Chemical 
Compound Inference from Path Frequency problem. We adopted the Branch-and-
Bound concept to evolve the tree-like structures of chemical compounds in the paper. 
The experimental results show that our algorithm can practically reduce computing 



time, with the best speedup ratio close to 3 folds while using 4 cores in the 
experiment. Therefore, our proposed algorithm can infer chemical compounds from 
path frequency effectively and reduce computation time by employing the multi-core 
technology. 
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Abstract 
 

Because of the exponential growth in worldwide 
information, companies have to deal with an ever 
growing amount of digital information. One of the 
most important challenges for data mining is quickly 
and correctly finding the relationship between data. 
The Apriori algorithm is the most popular technique in 
association rules mining; however, when applying this 
method, a database has to be scanned many times and 
many candidate itemsets are generated. Parallel 
computing is an effective strategy for accelerating the 
mining process. In this paper, the Weighted 
Distributed Parallel Apriori algorithm (WDPA) is 
presented as a solution to this problem. In the 
proposed method, metadata are stored in TID forms, 
thus only a single scan to the database is needed. The 
TID counts are also taken into consideration, and 
therefore better load-balancing as well as reducing 
idle time for processors can be achieved. According to 
the experimental results, WDPA outperforms other 
algorithms while having lower minimum support. 
 
1. Introduction 
 

With the rapid development of information 
technology, companies have been working on 
digitizing all areas of business to improve efficiency 
and thus competitiveness.  However, the consequences 
of full-digitization are that tremendous amounts of 
data are generated. It is important to extract 
meaningful information from scattered data, and data 
mining techniques are developed for that purpose. 
There are many techniques being used for data mining, 
for example, Classification, Regression, Time Series, 
Clustering, Association Rules and Sequence. 
Association rule [1, 2] is one of the most useful 
techniques in data mining. Generally, it takes long to 
find the association rules between datasets when a 
database contains a large number of transactions. By 

applying parallel-distributed data mining techniques, 
the mining process can be effectively speeded up. 
With parallel-distributed data mining the calculation is 
done in a distributed environment [3, 7, 8, 9, 12], but 
most of the time, irregular and imbalanced 
computation loads are allocated between processors 
and thus the overall performance is degraded.  

In this paper the Weighted Distributed Parallel 
Apriori algorithm (WDPA) is presented as a solution 
for this problem. In the proposed method, a database 
has only to be scanned once because metadata are 
stored in TID tables. This approach also takes the TID 
count into consideration. Therefore, WDPA improves 
load-balancing as well as reduces idle time of 
processors. 

The experimental results in this study showed that 
the running time of WDPA was significantly faster 
than that of previous methods. In some cases, WDPA 
only used about 2% of the time used in previous 
methods. This can be achieved because WDPA 
successfully reduced the number of scan iterations to 
databases and was able to evenly distribute workloads 
among processors.  

The paper is organized as follows: In section 2, 
association rule and parallel distributed algorithms are 
explained. The WDPA algorithm is proposed in 
section 3. Section 4 gives the experimental results. 
Finally, the conclusion is given in section 5. 
 
2. Related Work 
 

Frequent pattern mining problem is defined as 
follows. Let DB = {T1, T2, …, Tk} be a database of 
transactions, where each transaction Te consists of  I, I 
= {i1, i2, …, im} be a set of all items. Assuming A, B 
are itemsets, A, B ⊆ I, A ∩ B=∅, A→B denotes there 
is an association rule between A and B. Each 
association rule has support and confidence to confirm 
the validity of the rule. Support denotes the occurrence 
rate of an itemset in a DB. Confidence denotes the 



proportion of data items containing Y in all items 
containing X in a DB. When the support and 
confidence are greater than or equal to the pre-defined 
minimum support and minimum confidence, the 
association rule is considered to be a valid rule.  

The Apriori algorithm was proposed by R. Agrawal 
and R. Srikant in 1994 A.D. [2]. The Apriori algorithm 
is one of the most representative algorithms in mining 
association rules. It is based on the assumption that 
subsets of low-frequency itemsets must be low-
frequency as well. Even though the Apriori algorithm 
takes lots of time to calculate combination of itemsets, 
the design of the data structure makes it easy for the 
algorithm to be parallelized. Therefore, some scholars 
propose that parallel- distributed Apriori algorithms be 
used [3, 7, 8, 9, 10, 11, 12, 13, 14]. For example, CD, 
DD, FDM, FPM, DMA etc. Recently, Ye [12] 
proposed a parallel-distributed algorithm using Trie 
Structure [6]. Ye’s algorithm distributes computing 
workload using the Trie Structure to speed up the 
computation, however, this causes significant variance 
between the sizes of candidate itemsets distributed 
among processors. Moreover, this method also 
requires a database to be scanned many times. The 
problems related to multiple-scan and load-imbalance 
gets worse when dealing with large databases and 
huge itemsets. Therefore, a Weighted Distributed 
Parallel Apriori algorithm (WDPA) is proposed. By 
storing the TIDs of itemsets and precisely calculating 
and distributing computation workloads, WDPA is 
able to effectively accelerate the computation of 
itemsets and reduce the required scan iterations to a 
database and balancing the load, thus significantly 
reduces processor idle time. 

 
3. Weighted Distributed Parallel Apriori 
(WDPA) Algorithm 
 

To avoid the problems associated with load-
imbalance and multiple-scan, the WDPA algorithm is 
proposed so that a database only needs to be scanned 
once while maintaining load balancing among 
processors. In the algorithm, each transaction has a 
Transaction IDentification, called TID. By using hash 
functions to store TID in table structure, the number of 
itemsets can be quickly calculated without the need of 
rescanning the database.   

In the WDPA parallel-distributed processing 
algorithm, the number of combinations for items, 
called a lattice, is first calculated. Lattice is the number 
of combinations calculated from candidate (k+1)-
itemset counts by frequent k-itemsets. Equation (1) is 
the required count of itemset combinations of Ii, 
Equation (2) represents the total number of k-itemsets. 
Using block division to do frequent itemset 

distribution after calculating the number of 
combinations, is called Block_Lattice (BL) (Figure 1). 
From Figures 1 and 2 we can see that the Lattice count 
decreases gradually at the lower-left part of the matrix, 
thus if itemsets are distributed sequentially, the load-
imbalance distribution will occur. Therefore by cyclic 
partitioning of lattice, itemsets are distributed to the 
processors cyclically to balance the distribution of 
itemsets. This is called )(_ CLLatticeCyclic . 
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Figure 1. Block partitioning 

 

 
Figure 2. Cyclic partitioning  

 
By only calculating the Lattice number and 

ignoring the length of the itemsets' TID, an uneven 
distribution of workload occurs. Therefore, this 
algorithm also takes TID length into consideration and 
regards it as a weight value, which makes the 
distribution of itemsets more accurate and more even. 
Equation (3) calculates the weighted value of itemset 



Ii. Equation (4) represents the total weight value of k-
itemsets. 
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There are two methods of partitioning weighted 
TID, the Block_WeightTid(BWT) partitions and 
distributes TID by block, the Cyclic_WeightTid(CWT) 
partitions and distributes TID in cyclic. 

 
An example of the algorithms is given below: 

For step1 and step2, P1 (MP), P2 (SP) read and scan 
database, then build level-1 candidate itemsets. (Figure 
3) 

 
Figure 3. Scan database and creating TID forms 
 
Figure 4 shows that P1 collects itemsets that match 

given support into frequent 1-itemsets, then uses CWT 
to calculate and distribute the itemsets on P1. P1: {C, 
B}, P2: {A, F, L, M, O}. (Step 3 and Step 4) 

 
Figure 4. Distributing frequent 1-itemsets on P1 

 
Figure 5 describes P1 and P2 combining level-2 

candidate itemsets and calculating itemset counts 
according to the TID table. Figure 6 represents level-2 
candidate itemset counts on P1 and P2. (Take level-2 
candidate A and C for example, the intersection of A 

and C on TID, [1, 5], is the resulting set, AC) (Step 5 
and Step 6) 

 

 
Figure 5. Itemsets are calculated by counting the 
TID forms 

 

 
Figure 6. P1 and P2 level-2 candidate itemsets 

 
Select the itemsets that match the given support 

value, and save them as frequent 2-itemsets. Because 
the frequent 1-itemsets are larger, candidate itemsets 
that required combination computation will be larger, 
too. In this case, distributing the itemsets in Cyclic will 
produce better results. On the other hand, if there are 
frequent itemsets above level 1, candidate itemsets that 
required combination computation will be smaller, too. 
In this case, distributing the itemsets in Block will 
produce better results. 

P1 receives P2 itemsets, and repeats execution step 4 
to step 9 until there are no more frequent itemsets. 
Figure 7 illustrates the use of BWT to calculate and 
distribute the itemsets on P1. P1: {BC, AC}, P2: {AO, 
AP, CP}. (Step 3 and step 4) 

Figure 8 represents P1 combined level-3 candidate 
itemsets matching given support value into frequent 3-
itemset. 

 



 
Figure 7. Distributing frequent 2-itemsets on P1 

 

 
Figure 8. The resulting frequent 3-itemsets 

 
Because the resulting frequent 3-itemset contains 

only one itemset, no more combination operation can 
be made, the mining process ends here. The number of 
resulting frequent itemsets are: level-1: Eight, level-2: 
Six, level-3: One. 
 
The algorithms are described in detail below: 

Input: a transaction database DB = {T1, T2, ..., Tn}, 
and each transaction Ti

⊆ I, I = {i1, i2, ..., im}. A given 
minimum support s. P is the number of processors. (p1 
is master processor (MP), and p2, p3, ..., pp are salve 
processors (SPs)) 
Output: All frequent itemsets. 
Method: 
Step  1. Each processor reads the database DB. 
Step 2.Each processor scans DB and creates the 

transaction identification set (TID).  
Step 3. Each processor calculates candidate k-itemset 

counts, when the count is greater than s, let 
freqk be frequent k-itemsets. 

Step 4. MN equally divides the freqk into p disjointed 
partitions and assigns itemsetsi to pi. Itemsetsi 
denote that SPs were assigned to the itemsets 
from MN. The frequent pattern dividing 
method: 
(1) Block_Lattice (BL) 
(2) Cyclic_Lattice (CL) 
(3) Block_WeightTid (BWT) 
(4) Cyclic_WeightTid (CWT) 

Step 5. Each processor receives the itemsetsi and the 
combination candidate (k+1)-itemsets. 

Step 6. Each processor candidate itemsets is calculated 
by counting the TID forms.  

Step 7. When itemset count is greater than s then it is a 

frequent (k+1)-itemset, and itemset appeared 
in transaction id is saved to (k+1)-TID. 

Step 8. SPs send frequent itemsets to MN. 
Step_9.MN receives SPs itemsets, and repeats 
execution step4 to setp9 until there are no more 
frequent itemsets. 
 
4. Experiments 
 

In order to evaluate the performance of the 
proposed algorithm, the WDPA was implemented 
along with the algorithm proposed by Ye [12]. The 
program was executed in a PC cluster with 16 
computing processors. Table 1 gives the hardware and 
software specifications. Synthesized datasets generated 
by IBM's Quest Synthetic Data Generator [4] were 
used to verify the algorithm. Moreover, the database 
T10I4D50N100K, T10I4D100N100K, 
T10I4D200N100K was used to examine the WDPA. 
From the experimental results, our proposed method 
balances the workload among processors and saves on 
processor idle time because of the way CWT 
distributes itemsets. Therefore, the following 
experiments are calculated based on the CWT method. 

 
Table 1. Hardware and Software Specifications 

Hardware Environment 
CPU AMD Athlon Processor 2200+ 
Memory 1GB DDR Ram 
Network 100 Mbps interconnection network 
Disk 80GB IDE H.D. 

Software Environment 
O.S. ReadHat Linux 7.3 
Library MPICH2 1.0.3 
 
Figure 9 shows the speed up of four WDPA 

methods. From the results, it can be seen that the 
speeded up of the four methods is similar, but the 
CWT itemsets distributed used weighted TID and 
cyclic partition, therefore the CWT have more 
accurately parallel-distributed itemsets. According to 
the experiment, the CWT, regardless of processor 
numbers of 1,2,4,8,16, achieves better results than the 
other methods. 

Figure 10 shows the execution time of the WDPA 
and Ye’s algorithm on different processors. WDPA(8) 
denotes that the WDPA algorithm used eight 
processors. Because Ye’s algorithm needs to 
repeatedly scan the database, the loads are imbalanced 
between processors. Therefore, from Figure 10, 
WDPA is nearly 120 times faster than Ye’s algoritm in 
the 16 processors case. The use of TID form in WDPA 
accurately parallelize the workloads, hence it 
effectively reduced the database scanning and saved 
on processor idle time. 



 
Figure 9. Speedup of Four partition Methods of 

WDPA (T10I4D100KN100K, minsup: 0.2%) 

 
Figure 10. Each Processors Execution Time 

(T10I4D50KN100K, minsup: 0.2%) 
 
Figure 11 and 12 show the execution time and 

speedup under different given supports. Ye’s 
algorithm requires that a database being re-scanned for 
every itemset to be counted during the mining process, 
so when there is lower support, Ye’s algorithm takes 
longer to re-scan the database. On the other hand, 
using the TID table with precise distribution of 
itemsets, the WDPA scans the database once only. 
This greatly reduced the time spent on database 
scanning and balanced the computation workload 
among processors. Thus, there is an obvious 
performance advantage of the WDPA algorithm over 
Ye’s algorithm. 

Figures 13 and 14 give the execution time and 
speed up with different databases. With the increased 
size of the database, the length of the TID of itemsets 
in the table will increase. Therefore, when the size of 
the database increased, the execution took longer. 
Moreover, by parallel-distributing the processing, 
large databases can be more effectively mined and 
itemsets will be allocated to different processors to 
perform the calculation, this significantly speeding up 
the mining process. 

 
Figure 11. Execution Time (WDPA vs. Ye’s 

algorithm )(T10I4D100KN100K, minsup: 0.2%) 

 
Figure 12. Execution Time (WDPA vs. Ye’s 

algorithm )(T10I4D100KN100K, minsup: 0.3%) 

 
Figure 13. WDPA Execution Time, minsup: 0.15% 

 



 
Figure 14. WDPA Speedup, minsup: 0.15% 

 
Figure 15 illustrates the execution time of various 

minimum supports. The number of frequent itemsets 
as well as their length increased with a lower support 
in WDPA. Therefore, by using this method of 
calculation WDPA effectively accelerated the 
computation. Thus WDPA can achieve better speedup 
when there was lower minimum support. 

 

 
Figure 15. WDPA Speedup 

 
5. Conclusion 
 

Determining the association between items in a 
huge database, is a worthwhile research topic. 
However, the process of generating itemsets and 
confirming them is time consuming. Parallel-
distributed computation strategies provide workable 
solutions to this problem.  In this paper, a Weighted 
Distributed Parallel Apriori algorithm (WDPA) is 
proposed, in which the TID of itemsets is stored in a 
table to compute their occurrence. WDPA effectively 
reduced the required scan iterations to a database as 
well as accelerated the calculation of itemsets. By 
taking the factor of itemset counts into consideration, 
this approach effectively balanced workloads among 
processors and reduced processor idle time. 

Experimental results show that WDPA achieved 
higher speedups than pervious works in the case of 
high data volume and low support. 
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