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Abstract

With the development of computer science, information processing and data analysis play an
important role in various research areas. According to Moore’s law, describing a long-term trend
of computing hardware, the number of transistors can be doubling approximately every two years.
With the growth of the amount of data, the computing power also needed to grow up. Therefore,
connect multiple computing units through system bus, interconnection network, or internet to
produce high throughput computing power is currently the trend. Cluster system and grid system
are the typical high performance computing platform. This project used cluster or grid system to
solve two important problems in Bioinformatics and Data Mining named Chemical Compound
Inference (CCI) problem and Frequent Pattern Mining (FPM) problem respectively. The goal of
CCl is to enumerate all chemical compounds having the same characteristics; we developed our
parallel algorithm on cluster system constructed of master/slave architecture. Proposed method
used two stages searching strategy, in the first stage, bread-first search was used to generate set of

candidate items on master node. Then each participated slave node use depth-first search to



generate all possible solutions after received candidate items from master node. The goal of FPM
is to find all frequent patterns confirmed to given support from a transactional database. We also
designed and implemented two parallel algorithms for FPM problem on cluster and grid system.
The results illustrated proposed method could reduce the computation time on cluster system and
could balance the workload among participated nodes on grid system. Finally, we sum up our

works to publish an international journal paper and four conference papers.

Keywords: branch and bound, cluster computing, grid computing, chemical compound inference,

frequent patterns
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ZN{VW}EE m({v,w})<val(I(v))for all veV . If there does not exist such G(V,E),
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% 1.PFP-tree & F# g 38 #1% p¥ Y (t20.i04.d200k.n100k, threshold = 0.0005)

P01 P02 P03 P04 P05 P06 P07 P08
Data Transfer 0.91 0.04 0.06 0.12 0.06 0.05 0.08 0.04
Header Table 0.6 0.59 0.6 0.59 0.6 0.6 0.6 0.59
All reduce 1.05 0.17 0.18 0.17 0.17 0.17 0.17 0.17
FP-tree 13.62 12.49 12.49 12.40 12.40 12.42 12.43 12.51
Exchange 98.29 157.11 204.78 233.51 241.07 235.06 223.06 197.02
FP-growth 18.06 26.34 27.09 31.1 24.51 22.44 20.07 12.59
Total 132.53 196.74 245.2 277.89 278.81 270.74 256.41 222.92
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% 2. Hardware and Software Specification of PC cluster

Hardware Specification

CPU AMD Athlon XP 2000+

Memory 1GB DDR ram

Network 100 Mbps interconnection network
Disk 80GB IDE H.D.

Software Configuration

OS and Compiler Linux 2.6
Gee/G++4.03
Message Passing MPICH2 1.0.5

Library mpidpy 0.5
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# 3. Hardware and Software Specification of Multi-cluster Grid

Cluster 1 Cluster 2 Cluster 3
Hardware Specification
Number of 5 5 3
Nodes
CPU Pentium 4 3.2G |AMD XP 2.0G |Pentium 4 3.0G
Memory 512 MB 1024 MB 1024 MB
Network 100 Mbps interconnection network
Software Configuration
OS and Linux 2.6
Compiler Gee/G++4.03
Globus Toolkit 4.0
Message MPICH-G2
Passing Library | MPICH2 1.0.5
mpidpy 0.5
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Abstract

Because of the exponential growth in worldwide
information, companies have to deal with an ever
growing amount of digital information. One of the
most important challenges for data mining is quickly
and correctly finding the relationship between data.
The Apriori algorithm is the most popular technique in
association rules mining; however, when applying this
method, a database has to be scanned many times and
many candidate itemsets are generated. Parallel
computing is an effective strategy for accelerating the
mining process. In this paper, the Weighted
Distributed Parallel Apriori algorithm (WDPA) is
presented as a solution to this problem. In the
proposed method, metadata are stored in TID forms,
thus only a single scan to the database is needed. The
TID counts are also taken into consideration, and
therefore better load-balancing as well as reducing
idle time for processors can be achieved. According to
the experimental results, WDPA outperforms other
algorithms while having lower minimum support.

1. Introduction

With the rapid development of information
technology, companies have been working on
digitizing all areas of business to improve efficiency
and thus competitiveness. However, the consequences
of full-digitization are that tremendous amounts of
data are generated. It is important to extract
meaningful information from scattered data, and data
mining techniques are developed for that purpose.
There are many techniques being used for data mining,
for example, Classification, Regression, Time Series,
Clustering, Association Rules and Sequence.
Association rule [1, 2] is one of the most useful
techniques in data mining. Generally, it takes long to
find the association rules between datasets when a
database contains a large number of transactions. By

applying parallel-distributed data mining techniques,
the mining process can be effectively speeded up.
With parallel-distributed data mining the calculation is
done in a distributed environment [3, 7, 8, 9, 12], but
most of the time, irregular and imbalanced
computation loads are allocated between processors
and thus the overall performance is degraded.

In this paper the Weighted Distributed Parallel
Apriori algorithm (WDPA) is presented as a solution
for this problem. In the proposed method, a database
has only to be scanned once because metadata are
stored in TID tables. This approach also takes the TID
count into consideration. Therefore, WDPA improves
load-balancing as well as reduces idle time of
processors.

The experimental results in this study showed that
the running time of WDPA was significantly faster
than that of previous methods. In some cases, WDPA
only used about 2% of the time used in previous
methods. This can be achieved because WDPA
successfully reduced the number of scan iterations to
databases and was able to evenly distribute workloads
among processors.

The paper is organized as follows: In section 2,
association rule and parallel distributed algorithms are
explained. The WDPA algorithm is proposed in
section 3. Section 4 gives the experimental results.
Finally, the conclusion is given in section 5.

2. Related Work

Frequent pattern mining problem is defined as
follows. Let DB = {Ty, T, ..., Tx} be a database of
transactions, where each transaction T, consists of 1, I
= {iy, Iy, ..., iy} be a set of all items. Assuming A, B
are itemsets, A, BC I, ANB=@, A—B denotes there
is an association rule between A and B. Each
association rule has support and confidence to confirm
the validity of the rule. Support denotes the occurrence
rate of an itemset in a DB. Confidence denotes the



proportion of data items containing Y in all items
containing X in a DB. When the support and
confidence are greater than or equal to the pre-defined
minimum support and minimum confidence, the
association rule is considered to be a valid rule.

The Apriori algorithm was proposed by R. Agrawal
and R. Srikant in 1994 A.D. [2]. The Apriori algorithm
is one of the most representative algorithms in mining
association rules. It is based on the assumption that
subsets of low-frequency itemsets must be low-
frequency as well. Even though the Apriori algorithm
takes lots of time to calculate combination of itemsets,
the design of the data structure makes it easy for the
algorithm to be parallelized. Therefore, some scholars
propose that parallel- distributed Apriori algorithms be
used [3, 7, 8,9, 10, 11, 12, 13, 14]. For example, CD,
DD, FDM, FPM, DMA etc. Recently, Ye [12]
proposed a parallel-distributed algorithm using Trie
Structure [6]. Ye’s algorithm distributes computing
workload using the Trie Structure to speed up the
computation, however, this causes significant variance
between the sizes of candidate itemsets distributed
among processors. Moreover, this method also
requires a database to be scanned many times. The
problems related to multiple-scan and load-imbalance
gets worse when dealing with large databases and
huge itemsets. Therefore, a Weighted Distributed
Parallel Apriori algorithm (WDPA) is proposed. By
storing the TIDs of itemsets and precisely calculating
and distributing computation workloads, WDPA is
able to effectively accelerate the computation of
itemsets and reduce the required scan iterations to a
database and balancing the load, thus significantly
reduces processor idle time.

3. Weighted Distributed Parallel Apriori
(WDPA) Algorithm

To avoid the problems associated with load-
imbalance and multiple-scan, the WDPA algorithm is
proposed so that a database only needs to be scanned
once while maintaining load balancing among
processors. In the algorithm, each transaction has a
Transaction IDentification, called TID. By using hash
functions to store TID in table structure, the number of
itemsets can be quickly calculated without the need of
rescanning the database.

In the WDPA parallel-distributed processing
algorithm, the number of combinations for items,
called a lattice, is first calculated. Lattice is the number
of combinations calculated from candidate (k+1)-
itemset counts by frequent k-itemsets. Equation (1) is
the required count of itemset combinations of I,
Equation (2) represents the total number of k-itemsets.
Using block division to do frequent itemset

distribution after calculating the number of
combinations, is called Block Lattice (BL) (Figure 1).
From Figures 1 and 2 we can see that the Lattice count
decreases gradually at the lower-left part of the matrix,
thus if itemsets are distributed sequentially, the load-
imbalance distribution will occur. Therefore by cyclic
partitioning of lattice, itemsets are distributed to the
processors cyclically to balance the distribution of
itemsets. This is called Cyclic Lattice(CL).

Cnt _Lattice(1,) = [(len( freq, ) —1)—i] (1)

len( freq;_,)-1

Z Cnt _ Lattice(1,) (2)

i=0

TotalCnt _ Lattice =

Cnt_Lattice(I,)

!

I0
I, |Po
Po
P,
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L L Loy

Figure 1. Block partitioning
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Figure 2. Cyclic partitioning

By only calculating the Lattice number and
ignoring the length of the itemsets' TID, an uneven
distribution of workload occurs. Therefore, this
algorithm also takes TID length into consideration and
regards it as a weight value, which makes the
distribution of itemsets more accurate and more even.
Equation (3) calculates the weighted value of itemset



Ii. Equation (4) represents the total weight value of k-
itemsets.

len( freq;_)-1 (3)
Value _WeightTid (1,)= Y len(I, )xlen(I, )
J=itl
TotalValue WeightTid
len( freqy-)~1 len( freq;_1)=1 @)
= > D len(I, Yxlen(I, )
i=0 J=i+l

There are two methods of partitioning weighted
TID, the Block WeightTid(BWT) partitions and
distributes TID by block, the Cyclic WeightTid(CWT)

and C on TID, [1, 5], is the resulting set, AC) (Step 5
and Step 6)

C 4 | 1,345
A 3 1,2,5
Figure 5. Itemsets are calculated by counting the
TID forms

Items Count TID
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Figure 3. Scan database and creating TID forms

Figure 4 shows that P, collects itemsets that match
given support into frequent 1-itemsets, then uses CWT
to calculate and distribute the itemsets on Py. P;: {C,
B}, Py: {A,F, L, M, O}. (Step 3 and Step 4)

WeightTid=6439301612 8 4

P, NN AN AR N N/
Items Count TID 4 C
c 4 1,345 3 A
A 3 1,2,5
B 3 3,4,5 3 8B
F 2 2,3 2 F
L 2 2,4 2 L
M 2 2,3
0 2 2,5 2 M
P 2 1,5 2 0
e 2 P
Total WeightTid = 173

Average WeightTid = 86 ma C A B F L MO
Count 4 322 2 2 2

Figure 4. Distributing frequent 1-itemsets on P,

Figure 5 describes P; and P, combining level-2
candidate itemsets and calculating itemset counts
according to the TID table. Figure 6 represents level-2
candidate itemset counts on P; and P,. (Take level-2
candidate A and C for example, the intersection of A

Figure 6. P; and P, level-2 candidate itemsets

Select the itemsets that match the given support
value, and save them as frequent 2-itemsets. Because
the frequent 1-itemsets are larger, candidate itemsets
that required combination computation will be larger,
too. In this case, distributing the itemsets in Cyclic will
produce better results. On the other hand, if there are
frequent itemsets above level 1, candidate itemsets that
required combination computation will be smaller, too.
In this case, distributing the itemsets in Block will
produce better results.

P, receives P, itemsets, and repeats execution step 4
to step 9 until there are no more frequent itemsets.
Figure 7 illustrates the use of BWT to calculate and
distribute the itemsets on P;. P;: {BC, AC}, P,: {AO,
AP, CP}. (Step 3 and step 4)

Figure 8 represents P; combined level-3 candidate
itemsets matching given support value into frequent 3-
itemset.
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Figure 8. The resulting frequent 3-itemsets

Because the resulting frequent 3-itemset contains
only one itemset, no more combination operation can
be made, the mining process ends here. The number of
resulting frequent itemsets are: level-1: Eight, level-2:
Six, level-3: One.

The algorithms are described in detail below:

Input: a transaction database DB = {T,, T, ..., T},

and each transaction T; - L I={i,i, .., iy}. A given

minimum support s. P is the number of processors. (p;

is master processor (MP), and p,, ps, ..., p, are salve

processors (SPs))

Output: All frequent itemsets.

Method:

Step 1. Each processor reads the database DB.

Step 2.Each processor scans DB and creates the
transaction identification set (TID).

Step 3. Each processor calculates candidate k-itemset
counts, when the count is greater than s, let
fregk be frequent k-itemsets.

Step 4. MN equally divides the freqy into p disjointed
partitions and assigns itemsets; to p;. Itemsets;
denote that SPs were assigned to the itemsets
from MN. The frequent pattern dividing
method:

(1) Block_Lattice (BL)
(2) Cyclic_Lattice (CL)
(3) Block WeightTid (BWT)
(4) Cyclic_WeightTid (CWT)

Step 5. Each processor receives the itemsets; and the
combination candidate (k+1)-itemsets.

Step 6. Each processor candidate itemsets is calculated
by counting the TID forms.

Step 7. When itemset count is greater than s then it is a

frequent (k+1)-itemset, and itemset appeared
in transaction id is saved to (k+1)-TID.
Step 8. SPs send frequent itemsets to MN.
Step 9.MN receives SPs itemsets, and repeats
execution step4 to setp9 until there are no more
frequent itemsets.

4. Experiments

In order to evaluate the performance of the
proposed algorithm, the WDPA was implemented
along with the algorithm proposed by Ye [12]. The
program was executed in a PC cluster with 16
computing processors. Table 1 gives the hardware and
software specifications. Synthesized datasets generated
by IBM's Quest Synthetic Data Generator [4] were
used to verify the algorithm. Moreover, the database
T10I4D50N100K, T10I4D100N100K,
T10I14D200N100K was used to examine the WDPA.
From the experimental results, our proposed method
balances the workload among processors and saves on
processor idle time because of the way CWT
distributes  itemsets. Therefore, the following
experiments are calculated based on the CWT method.

Table 1. Hardware and Software Specifications

Hardware Environment
CPU AMD Athlon Processor 2200+
Memory 1GB DDR Ram
Network 100 Mbps interconnection network
Disk 80GB IDE H.D.

Software Environment

O.S. ReadHat Linux 7.3
Library MPICH2 1.0.3

Figure 9 shows the speed up of four WDPA
methods. From the results, it can be seen that the
speeded up of the four methods is similar, but the
CWT itemsets distributed used weighted TID and
cyclic partition, therefore the CWT have more
accurately parallel-distributed itemsets. According to
the experiment, the CWT, regardless of processor
numbers of 1,2,4,8,16, achieves better results than the
other methods.

Figure 10 shows the execution time of the WDPA
and Ye’s algorithm on different processors. WDPA(8)
denotes that the WDPA algorithm used eight
processors. Because Ye’s algorithm needs to
repeatedly scan the database, the loads are imbalanced
between processors. Therefore, from Figure 10,
WDPA is nearly 120 times faster than Ye’s algoritm in
the 16 processors case. The use of TID form in WDPA
accurately parallelize the workloads, hence it
effectively reduced the database scanning and saved
on processor idle time.
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Figure 11 and 12 show the execution time and
speedup under different given supports. Ye’s
algorithm requires that a database being re-scanned for
every itemset to be counted during the mining process,
so when there is lower support, Ye’s algorithm takes
longer to re-scan the database. On the other hand,
using the TID table with precise distribution of
itemsets, the WDPA scans the database once only.
This greatly reduced the time spent on database
scanning and balanced the computation workload
among processors. Thus, there is an obvious
performance advantage of the WDPA algorithm over
Ye’s algorithm.

Figures 13 and 14 give the execution time and
speed up with different databases. With the increased
size of the database, the length of the TID of itemsets
in the table will increase. Therefore, when the size of
the database increased, the execution took longer.
Moreover, by parallel-distributing the processing,
large databases can be more effectively mined and
itemsets will be allocated to different processors to
perform the calculation, this significantly speeding up
the mining process.
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Figure 11. Execution Time (WDPA vs. Ye’s
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Figure 15 illustrates the execution time of various
minimum supports. The number of frequent itemsets
as well as their length increased with a lower support
in WDPA. Therefore, by using this method of
calculation WDPA effectively accelerated the
computation. Thus WDPA can achieve better speedup
when there was lower minimum support.
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Figure 15. WDPA Speedup
5. Conclusion

Determining the association between items in a
huge database, is a worthwhile research topic.
However, the process of generating itemsets and
confirming them is time consuming. Parallel-
distributed computation strategies provide workable
solutions to this problem. In this paper, a Weighted
Distributed Parallel Apriori algorithm (WDPA) is
proposed, in which the TID of itemsets is stored in a
table to compute their occurrence. WDPA effectively
reduced the required scan iterations to a database as
well as accelerated the calculation of itemsets. By
taking the factor of itemset counts into consideration,
this approach effectively balanced workloads among
processors and reduced processor idle time.

Experimental results show that WDPA achieved
higher speedups than pervious works in the case of
high data volume and low support.
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ARTICLE INFO ABSTRACT

The mining of frequent patterns from transaction-oriented databases is an important subject. Frequent
patterns are fundamental in generating association rules, time series, etc. Most frequent pattern mining
algorithms can be classified into two categories: generate-and-test approach (Apriori-like) and pattern
growth approach (FP-tree). In recent years, many techniques have been proposed for frequent pattern
mining based on the FP-tree approach since it only needs two database scans. However, for pattern
growth methods, the execution time increases rapidly when the database size increases or when the
given support is small. Therefore, parallel-distributed computing is a good strategy for solving this prob-
lem. Some parallel algorithms have been proposed, but the execution time is still costly when the data-
base size is large. In this paper, two parallel mining algorithms are proposed; Tidset-based Parallel FP-
tree (TPFP-tree) and Balanced Tidset-based Parallel FP-tree (BTP-tree) for frequent pattern mining on PC
Clusters and multi-cluster grids. In order to exchange transactions efficiently, a transaction identification
set (Tidset) was used to directly select transactions instead of scanning the database. Since a Grid system
is a heterogeneous computing environment, the proposed BTP-tree can balance the loading according to
the computing ability of the processors. BTP-tree, TPFP-tree and PFP-tree were implemented, and datasets
generated with an IBM Quest Synthetic Data Generator were used to verify the performance of TPFP-tree
and BTP-tree. The experimental results showed that the TPFP-tree needed less execution time on a PC
Cluster than the PFP-tree when the database increased. Moreover, the BTP-tree shortened the execution
time significantly and had a better load balance capability than both the TPFP-tree and PFP-tree on a
multi-cluster grid.
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the database to verify whether it is frequent or not. For example,
250 (about 10') candidate datasets may be needed to verify
whether a set is frequent or not in a database with 50 items.

Han et al. (2004 ) propose a novel data structure and method for

1. Introduction

Extracting frequent patterns in a transaction-oriented database
is vital in the mining of association rules (Agrawal & Srikant, 1994,

Park, Chen, & Yu, 1995), time series, classification (Gorodetsky,
Karasaeyv, & Samoilov, 2003), etc. The basic problem in frequent
pattern mining is finding the number of times for a given pattern
appears in a database. Most of the research in this area has either
used the generate-and-test (Apriori-like) or the pattern growth
approach (FP-growth) (Coenen, Leng, & Ahmed, 2004; Han, Pei,
Yin, & Mao, 2004).

For the Apriori-like approach (Lazcorreta, Botella, & Fernandez-
Caballero, 2008; Park et al., 1995), the core idea is that if any length
of the k pattern is not frequent in the database, then the super-pat-
tern (length k + 1) cannot be frequent. However, this approach gen-
erates a large number of candidate datasets and repetitively scans

* Corresponding author. Tel.: +886 3 5186360; fax: +886 3 5186416.
E-mail addresses: yu@chu.edu.tw (K.-M. Yu), jyzhou@pdlab.csie.chu.edu.tw (J.
Zhou).

0957-4174/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2009.07.072

mining frequent patterns: the Frequent Pattern (FP) tree data
structure which only stores compressed, necessary information
for mining. Moreover, a mining algorithm - FP growth - based on
FP-tree was also developed. Unlike the Apriori algorithm, the
FP-tree only scans a database twice and the mining information
is obtained from the proposed data structure.

Based on the above, many methods derived from FP-tree have
been proposed (Hong, Lin, & Wu, 2008; Zhou & Yu, 2008). More-
over, these also proved that FP-tree-like algorithms performed
better than Apriori-like algorithm. However, even though FP-tree
performed better, the execution time still increased significantly
when the database was large. A parallel and distribution technique
is a good strategy for overcoming this problem. Many parallel-
distributed methods have been proposed (Chen, Huang, Chen, &
Wu, 2005; Holt & Chung, 2004; Li, Zhu, & Ogihara, 2003; Lin, Lee,
Chen, & Yu, 2002; Pramudiono & Kitsuregawa, 2003; Tang & Turkia,
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2006). Javed and Khokhar (2004) propose a parallel FP-tree mining
algorithm (PFP-tree) to solve the problem. The results show that
parallel computing is a good approach for solving this problem.
However, for PFP-tree, when the given threshold is small, or the
average length of the transaction is long, too much information
should be exchanged among processors. The performance deterio-
rates notably when the database increases or the given support
decreases.

In this study, a balanced parallel frequent-pattern mining algo-
rithm was developed to solve frequent pattern mining problems on
a PC Cluster. A PC Cluster is a typical parallel computing environ-
ment with homogeneous hardware and software resources. It con-
sists of many computers interconnected with a fast network
connection. In addition, a transaction identification set (Tidset)
was used to directly select transactions instead of scanning whole
databases. The goal of the proposed Tidset-based Parallel FP-tree
(TPFP-tree) algorithm was to reduce both communication and tree
insertion cost, thus decreasing execution time.

However, we need more computing resources when the prob-
lem sizes increase. Grid computing and pervasive computing can
solve complex problems with large-scale computation power and
data storage resources (Foster & Kesselman, 1998). Grid is a loosely
coupled computing architecture based on internet connection, it
shares heterogeneous computing and storage resources related to
traditional cluster systems, and it can easily add additional com-
puting resources at lower cost. In order to mine the frequent pat-
terns for a large database, large computation resources are
needed. However, the grid computing consisted of heterogeneous
resources. Therefore, the mining algorithm should enhance balance
in a heterogeneous computing environment. Hence, a Balanced
Tidset Parallel FP-tree (BTP-tree) algorithm for mining frequent
patterns on a grid computing system is proposed. The BTP-tree dis-
patches mining items according to the computation ability of the
participating nodes for load balancing. Moreover, the BTP-tree
can also reduce both the communication and tree insertion cost.

The experimental results show that the proposed algorithms -
the TPFP-tree and BTP-tree could shorten the execution time for
various datasets on a PC-Cluster and a multi-cluster grid, respec-
tively. Both algorithms as well as a PFP-tree were implemented
on a PC Cluster and a multi-cluster grid system with MPICH library.
The results showed that on the grid system the BTP-tree performed
better with different size databases, different given thresholds, and
different computing nodes. Moreover, the BTP-tree also had a
better load balancing ability in heterogeneous computing
environments.

This paper is organized as follows: In Section 2, the FP-tree, FP-
growth, PFP-tree, and grid computing systems are described. The
TPFP-tree and BTP-tree are introduced in Section 3 and Section 4
illustrates our experimental results. Finally, the conclusion and fu-
ture work are discussed in Section 5.

2. Related work

The frequent pattern mining problem can be defined as follows:
DB={Ty, T, ..., Ty} is a set of transactions. Each transaction T; C I
where [ ={iy, iy, ..., 1y} is a set of all items in a database. Suppg(x)
means the number of transactions in a database that contains pat-
tern x, Suppg(x) = |{t|t € DB and x C t}|. The problem of frequent
pattern mining is to find itemset x where Suppg(x) > ¢ for a given
threshold (1 < ¢ < |DB).

2.1. Frequent pattern growth (FP-growth)

Han et al. proposed the FP-growth (Han et al., 2004) algorithm
with which the database only needs to be scanned twice. The FP-

growth algorithm can be decomposed into two phases: the FP-tree
construction and the mining of frequent patterns from it.

FP-tree is a data structure representing the necessary informa-
tion for mining. It consists of a root node labeled as null and child
nodes consisting of the item-name, support and node link. More-
over, the database only needs to be scanned twice. The first scan
is to create a frequent 1-itemset sorted in descending order in
the header table. Secondly, it extracts frequent items from T;
(i=[1,...,n]). After sorting the items the frequent items are in-
serted in the tree. For tree insertion, increase the support of the
node if the node corresponding to the item’s name is found; other-
wise, create a new node and set the support to 1. The header table
keeps the node-link which connects nodes with the same item
name in the FP-tree during the mining process.

The FP-growth is then used for mining frequent patterns. It se-
lects an item as mining target from the header table. The prefix
path can be found via the node-link, following the node to the root
to get the (conditional) pattern base of the item. Then a new FP-
tree, the conditional FP-tree, is constructed based on the pattern.
This mining process is repeated until an empty tree with a single
path is found. Hence, the frequent patterns based on selected items
are found. Then one mining target after another is selected from
the header table to find all frequent item sets.

Since the FP-tree reduces the number of database scans and uses
less memory to represent the necessary information, many fre-
quent pattern mining algorithms are based on its data structure
(Lin, Hong, & Lu, 2009; Yan, Zhang, & Zhang, 2009).

2.2. Parallel FP-tree algorithm

To mine frequent patterns from a transactional database re-
quires intensive computation. The execution time increases signif-
icantly when the database size is large or the given support is
small. Since the database can be divided into different sets of trans-
actions, parallel and distribution technique is a good strategy to
solve frequent pattern mining problem. The multi-processor com-
puting environment can consist of homogeneous or heterogeneous
computing resources. A PC Cluster is a typical homogeneous
computing environment. It has the same hardware and software
specifications and is connected by fast networking, e.g., Gigabit
Ethernet, InfiniBand, etc. Message Passing Library (MPI) is used
to send and receive messages between processors. Since a PC
Cluster provides high performance computing, it has been used
to shorten computation time for mining frequent patterns (Javed
& Khokhar, 2004; Pramudiono & Kitsuregawa, 2003; Tang & Turkia,
2006).

Pramudiono and Kitsuregawa (2003) proposed a parallel FP-tree
algorithm which exchanges the conditional pattern base to parallel
the FP-tree. Moreover, they also introduced a path depth notation to
break down the granularity of parallel processing in conditional
pattern bases. However, the experimental results show that the
ideal speedup ratio is not achieved since it is unbalanced.

Javed et al. proposed a PFP-tree algorithm (Javed & Khokhar,
2004). The PFP-tree is developed for a SIMD computing environ-
ment. It is based on the FP-tree data structure and divides DB into
different partitions DB; (i=1, ..., p, p is number of processors). After
that, p; constructs a local header table (LHT) from its own database.
Then the master computing node (MN) aggregates the LHT from
slave computing nodes (SN) to create a global header table
(GHT). Consequently, SN creates a local FP-tree according to GHT.
MN assigns each SN to the mining item by block distribution. Final-
ly, each SN partially exchanges the FP-tree using the FP-growth
mining algorithm to find all frequent patterns.

The main idea of the PFP-tree algorithm is using a special tree
exchange technique. This technique reduces the repeated data
exchange by grouping the SNs. The SNs need to communicate with
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each other at most log, rounds. For example, processor p; commu-
nicates with processor p?ﬂi in round r where 0<i<p and
1 < r<log,. However, too 2rrPamy trees need to be exchanged if
the given threshold is small. Thus, for the worst case, more proces-
sors will lead to the execution time being longer, since too many
subtrees are needed to send, receive and insert back.

2.3. Grid computing system

Grid computing is a loosely coupled distributed system, it al-
lows for the sharing of processing powers, storage resources, and
services from different geographical locations. Unlike the conven-
tional high performance computing (e.g., Cluster computing)
which is connected by a high speed network, grid computing nodes
are connected by a variety of networks (e.g., gigabit network, inter-
net, etc.). Since a grid connects various computing systems with
different software and hardware specifications at different geo-
graphical locations, middleware plays an important role in inte-
grating these resources. Globus, Sun Grid Engine, glite, etc. are
the best known grid middleware suppliers. Of these, Globus is
the most popular and is widely used as open source grid middle-
ware. There are many types of grid computing systems. Multi-clus-
ter is the most popular and widely used. In the multi-cluster grid,
resources are distributed across different networks on a multi-
cluster grid. Moreover, each cluster can be a grid site with a grid
head in each site. Jobs are dispatched to a grid head and the grid
head then dispatched the jobs to the computing node inside a clus-
ter according to its job scheduling algorithm. The administrator is-
sues a certificate to the grid head and permits it to manage
computing nodes inside the cluster. Moreover, when the cluster
size varies, it only requires the grid head to adjust the setting in-
stead of reconfiguring the entire grid system.

Since the Grid system has sizeable computing and storage re-
sources. Some researchers have developed their data mining appli-
cation on a Grid system (Cannataro, Talia, & Trunfio, 2002; Ciglaric,
Pancur, Ster, & Dobnikar, 2005; Jiang & Yu, 2005). Cannataro et al.
(2002) propose a knowledge grid system and discuss its use in dis-
tributed data mining services. Their study focused on the underly-
ing framework and developed a distributing tool, based on JXTA
peer-to-peer technology. Ciglaric et al. (2005) implemented the
Apriori and the FP-tree algorithm in a grid environment. The results
indicated benefits when using Apriori and FP-tree with a grid sys-
tem. However, the proposed algorithm did not consider the balanc-
ing issue, therefore the performance did not achieve the ideal
speedup when the number of processors increased.

3. Proposed parallel FP-tree algorithms

In this paper, parallel algorithms for frequent pattern mining on
Cluster and Grid systems are proposed. In spite of the results of
other research (Javed & Khokhar, 2004; Pramudiono & Kitsuregawa,
2003), there are still two important issues that need to be consid-
ered for a parallel algorithm to improve frequent pattern mining,
one is reducing the communication cost and the other is balancing
the computing node workload. In order to evaluate the execution
time of different computing stages in detail, the PFP-tree (Javed &
Khokhar, 2004) algorithm was implemented. Table 1 shows the
execution time for each stage of the PFP-tree. It can be observed
that the exchange stage dominated the others. Thus, the exchange
stage was analyzed in depth. First, the exchange stage examined
the candidate tree paths required for other processors, then ex-
changed the extracted paths with other processors and inserted
it back to the local FP-tree. Therefore, the performance deteriorated
with large databases or lower thresholds. Moreover, more proces-
sors also led to worse load balancing. Therefore, the performance

can be improved significantly if the execution time of the exchange
stage can be reduced and the workload of the processors can be
balanced evenly.

The goal of our algorithm was to reduce the computation and
communication cost of the exchange stage. Since extracting the
candidate tree paths from an FP-tree data structure needs repeated
traversing of the entire tree and inserting the tree paths back to the
objective tree also requires repeated traversing of the trees, it be-
comes costly, leading to the FP-tree construction procedures being
postponed. After creating the Header Table, the necessary informa-
tion for parallel mining is exchanged in the transaction level of the
DB instead of in the tree paths of the FP-tree.

However, indexing the necessary transactions is costly when
the number of processors increases. For example, when there are
n processors, processor p; needs processing mineSet; mineSet; is
items that block partitioned from header table for processor p;.
Therefore, processor po should scan its database |mineSet;|+
...+ |mineSet,| times and then transfer to corresponding proces-
sors, to efficiently index the item in which transactions can speed
up the execution processes. For that reason, transaction id (TID)
was used to index the item. For a transactional database
DB={T{, Ty, ..., Ty} and each transaction T; C I, I={iy, i3, ..., im}
TID(j) = {kli; N Ty # @, k=1, ..., n}. After creating TID, transactions
can be selected directly while the information for mining frequent
patterns is exchanged.

3.1. Tidset-based parallel FP-tree (TPFP-tree) algorithm for cluster
computing

Since finding all frequent patterns from transactional databases
is a computation intensive problem, a parallel and distributed
strategy could reduces the execution time and improve the mining
performance. Therefore, the first parallel FP-tree algorithm based
TID is developed for Cluster computing. Since a Cluster is homoge-
neous computing, the proposed algorithm distributes the workload
to each processor evenly without considering the difference be-
tween processors. The main object is to reduce the execution time
of mining information exchange and to shorten the index cost of
transaction extraction. There are five primary stages in the Tid-
set-based Parallel FP-tree (TPFP-tree) algorithm: (1) create Header
Table and Tidset, (2) distribute mining item set, (3) exchange trans-
actions, (4) FP-tree and (5) FP-growth.

Firstly, although creating the header table needs only one data-
base scan, when the database size is large, the execution time is
still costly. Therefore, the TPFP-tree uses block distribution to par-
tition the database and to distribute the divided database to corre-
sponding computing nodes. Moreover, in order to directly select a
transaction with corresponding item in subsequent procedures, a
local transaction identification set (Tidset) is also created in this
stage. After processing stage 1, frequent 1-itemset was found with
a given threshold. Frequent 1-itemsets were also the mining items
of the TPFP-tree algorithm. Then the mining items were equally
distributed to the participating processors. Each processor was as-
signed |7} items to mine for n frequent 1-itemset and p processors.

In order to build the FP-tree structure and to mine the frequent
patterns with FP-growth on each processor independently, a pro-
cessor should comprise the transactions which contain the as-
signed mining items from other processors. In the transaction
exchanging stage, processor p; scans its partial database to gather
the transactions containing mining items required by other proces-
sors. However, it is costly since p; must scan its database p — 1
times to gather all transactions. Hence, the Tidset is used to im-
prove the transaction selecting. Tidset is a map between items
and transaction, the transactions can be directly chosen from given
items with Tidset. Since the Tidset table can be concurrently created
with a frequent 1-itemset, the Tidset of each partial database is
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Table 1
Execution time for each stage of the PFP-tree (t20.i04.d200k.n100k, threshold = 0.0005) for the different processors.
D1 b2 b3 Da ps Ps D7 Ds

Data transfer 0.91 0.04 0.06 0.12 0.06 0.05 0.08 0.04
Header table 0.6 0.59 0.6 0.59 0.6 0.6 0.6 0.59
All reduce 1.05 0.17 0.18 0.17 0.17 0.17 0.17 0.17
FP-tree 13.62 12.49 12.49 12.40 12.40 12.42 12.43 12.51
Exchange 98.29 157.11 204.78 233.51 241.07 235.06 223.06 197.02
FP-growth 18.06 26.34 27.09 311 24.51 2244 20.07 12.59
Total 132.53 196.74 245.2 277.89 278.81 270.74 256.41 222.92

created in stage 1. Consequently, selected transactions are trans-
ferred to corresponding processors after gathering the transac-
tions. Moreover, with the Tidset table, more processors do not
lead to a worse performance.

After exchanging the mining items, a processor has the neces-
sary transaction corresponding to its assigned mining items. There-
fore, the processor can, independently, build the FP-tree and mine
the frequent patterns by FP-growth. Finally, after completing the
mining processes p; collects the frequent patterns from the others
and merges them into all the frequent patterns. The detailed algo-
rithm of the TPFP-tree is given below.

Input: a transaction database DB={Ty,T5,...,T,}, and each
transaction T; C I, I={iy, i, ...,1n}. A given minimum threshold
& p is the number of processors. (p; is master node (MN), and
P2, D3, ..., Dp are salve nodes (SNs)).

Output: a complete set of frequent patterns, where Sup(x;) > ¢,
VX;.

Method:

1. MN equally divides the database DB into p disjointed parti-
tions (DB, DBy, ...,DB,, 3DByUDB,U---UDB,=DB) and
assigns DB; to p;.

2. Each processor p; receives the database DB; and scans the DB;
to create local header table (HT;).

3. Each processor creates the local transaction identification
set (Tidset;) of DB,;.

4. Processors perform all-reduce of HT; to get a global header
table (GHT).

5. MN sorts items in GHT in descending order according to
their support and block divides those items into mining set
MSq, MS,, ..., S, where MS; UMS, U --- U MS,, = ItemsofGHT.

6. MN performs broadcast to distribute mining set information
to all processors.

7. In order to create an FP-tree, each processor p; has to obtain
transaction Ty on processor j (j=1,...,p, j# i) such that
Ty N MS; # o(k=1, ..., |DBj|). Since the mining set MS; is par-
titioned statically, each processor knows the mining set of
others. Moreover, Tidset; (i=1,...,p) helps selecting the
transactions directly in the local database. After that, each
processor exchanges the transactions required for mining
and NewDB; = DB; U ReversedTransactions.

8. Each processor p; performs the FP-tree constructing proce-
dure of NewDB.

9. Each processor p; performs the FP-growth procedure to mine
the given MS; from their local FP-tree.

10. MN performs the MPI All-Reduce function to collect the fre-
quent pattern from p; (i=1, ..., p).

Fig. 1 is an example of a header and Tidset table for four proces-
sors. Fig. 1a shows the database equally partitioned into four parts
with each transaction’s local identity (TID). Fig. 1b depicts the cre-
ated Tidset table of the database. From Tidset;, item F appears in
transaction 1 to 4 and item H appears in transactions 3 and 4
and so on. Moreover, the local header tables (HT) are also created

at the same time (Fig. 1c). Finally, the processors performed all-re-
duce to get a global header table (GHT). After that, the master node
(MN) sorted the GHT in descending order according to its support
and divided items into mining sets (MS) using block distribution.
Then MN broadcast the MSs to all processors.

Then, each processor scanned its database to extract the trans-
action to transfer to the others. Fig. 2 shows the exchanging stage.
Fig. 2a is the MS of each processor, and from Fig. 2b, po had to pre-
pare three tables which recorded items to be sent for exchange.
Since it was costly to scan the database three times to create the
table (Fig. 2b), the table using the Tidset was created beforehand
(Fig. 1b). For example, p; sent the transaction containing M, H, G
to py, according to Tidset;, the union of item M, H, G was TID 1, 2,
3, and 4. Therefore, p; sent the transaction 1 to 4 to p,. By the same
process, essential transactions could be efficiently exchanged
among processors. Since each processor had the necessary transac-
tion for mining, each one could build an FP-tree and use FP-growth
to find frequent patterns independently. Finally, MN gathered the
frequent patterns created by each processor to produce the all
the frequent patterns.

3.2. Balanced Tidset Parallel FP-tree (BTP-tree) algorithm for grid
computing

Since a Grid system consists of heterogeneous computing re-
sources, storage, and network connections, the computation ability
and network bandwidth of computing nodes are varied. The pro-
posed TPFP-tree designed for Cluster computing, thus executed
on a Grid system causes load imbalance and increases idle time.
Therefore, a Balanced Tidset Parallel FP-tree (BTP-tree) which con-
siders the computation capability of participating nodes and dis-
patches the mining items to computing nodes according for load
balancing is proposed. However, to evaluate the performance of
processors according to the detected hardware specification is use-
less. For example, one processor of 1.8 GHz with Intel Core 2 archi-
tecture may be faster than one of 4 GHz with Pentium 4
architecture. The wrong performance index will lead to wrong
workload distribution. Moreover, different types of applications re-
quire different types of computation resources. Therefore, BTP-tree
solves this problem by executing a small amount of data on the
processors to establish performance indices. The performance indi-
ces obtained this way can truly respond to the computation ability
of a given application. There are six stages in a BTP-tree algorithm:
(1) create header table and Tidset, (2) evaluate the performance in-
dex of computing nodes, (3) distribute mining item set, (4) ex-
change transactions, (5) create FP-tree and (6) FP-growth.

Creating a header table requires lots of computing time when
the database is large. Therefore, a transaction identification set
(Tidset) is created at this stage to speed-up the transaction selec-
tion for future use. After creating the head table, 1-frequent item
set was found. Moreover, these items were also the target mining
items in FP-growth.

Since the Grid system is a heterogeneous computing system, the
processors’ capability and memory size are different. Distributing
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Fig. 1. Example of DB partitioning into 4 processors with the given threshold ¢.
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Fig. 2. Example of the exchange stage of 4 processors.

mining items equally increases the execution time and causes the target mining items were partitioned according to the perfor-
some computing nodes to be idle. In order to solve this problem, mance index (PI). Since mining frequent patterns is a computation
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intensive job, only some transactions were picked to execute the
FP-tree and FP-growth creation procedure. Later, the PI of each
processor can be determined and the mining items can be divided
according to the index. For example, there are n frequent
one-itemset, p processors, and PI; represents the performance
index of processors p; (higher is better) Vi=1,...,p. Thus, for
processor p; will be assigned n x Zf" o items to mine.
k=1

The next stage is the transaction exchange stage. Each processor
scans the local database via TID to select the transactions from the
local database to send to corresponding computing nodes. After
exchange, each processor creates the FP-tree and FP-growth via
the local database.

Finally, the frequent patterns are obtained after completing the
FP-tree and the FP-growth. The detailed algorithm of the BTP-tree is
given below.

Input: a transaction database DB={Ty, T, ...,T,} and each
transaction T; C I, I ={iy, i, ..., in} A given minimum threshold ¢&.
p is the number of processors. (p; is master node (MN), and
P2, D3, ..., Pp are salve nodes (SNs)).

Output: a complete set of frequent patterns, where Sup(x;) > ¢,
VX;.

Method:

1. MN equally divides the database DB into p disjointed parti-
tions  (DBy,DB,,...,DB,3DB; UDB,U...UDB, =DB) and
assigns DB; to p;.

2. Each processor p; receives the database DB; and scans it to
create the local header table (HT;).

3. Each processor creates the local transaction identification
set (TIDSET;) of DB,

4. Processors perform MPI All-Reduce of HT; to get a global
header table (GHT).

5. MN sends first 1000 transactions to each processor, after
that p; executes the FP-tree construction procedure and
records the execution time as t;.

. Let performance index PI; = 1/t;.

. MN gathers all PI and let Pliyq = 37 (Pl;.

8. MN sorts items in GHT in descending order according to

their support and these items into mining sets according

to performance index (MS,-:%xItemsOfGHw where

MS; UMS, U - - - U MSp, = ItemsOfGHT.
9. MN performs broadcast to distribute mining set information
to all processors.

10. In order to create an FP-tree, each processor p; has to obtain
transaction Tj, on processor j (j=1,...,p, j#i) such that
T;NMS; # ¢(k=1,...,|DBj|). Since the mining set MS; is
partitioned statically, each processor knows the mining set
of others. Moreover, TIDSET; (i=1,...,p) helps selecting
the transactions directly in the local database. After that,
each processor exchanges the transactions required for
mining and NewDB; = DB; U ReceivedTransactions.

11. Each processor p; performs the FP-tree constructing proce-
dure of NewDB;.

12. Each processor p; performs the FP-growth procedure to mine
the given MS; from their local FP-tree.

13. MN performs the MPI All-Reduce function to collect the
frequent pattern from p; (i=1,...,p)

N o

4. Experimental results

In order to evaluate the performance of the proposed algo-
rithms, the PFP-tree, TPFP-tree and BTP-tree were implemented
along with Message Passing Library 2 (MPICH2) on Ubuntu with
Linux kernel 2.6. Synthesized datasets generated by IBM’s Quest

Synthetic Data Generator (Almaden, xxxx) were used to verify
the algorithm.

4.1. TPFP-tree on PC Cluster

The program was executed in a PC Cluster with 16 computing
nodes. Table 2 gives the hardware and software specifications. As
can be seen, each computing node had the same hardware and
software environment. To verify the performance of our algorithm,
the thresholds 0.001, 0.0005, 0.0001 were used to examine the
TPFP-tree with different datasets. Table 3 shows the dataset used
to verify the performance of the algorithm. The algorithm was
evaluated with a different number of items, a different number
of average transaction lengths and a different number of transac-
tions. As can be seen from the experimental results, frequent pat-
terns were found for dataset t10.i04.d100k.n100k with threshold
0.01. Therefore, the smaller threshold was used to make sure that
there were frequent patterns. There were 8112, 53,713, and
234,649 frequent patterns for threshold 0.001, 0.0005, and
0.0001, respectively for t10.i04.d100k.n100k dataset.

Figs. 3 and 4 show the execution time of the TPFP-tree and the
PFP-tree with different datasets. From the results in Fig. 3, it can
be seen that the proposed algorithm performed better than the
PFP-tree regardless of the number of processors. Moreover, the re-
sults also illustrated that, when the average items per transaction
increased, the execution time decreased noticeably. Fig. 4 also

Table 2
Hardware and software specification of PC Cluster.

Hardware specification

CPU AMD Athlon XP 2000+

Memory 1 GB DDR RAM

Network 100 Mbps interconnection network
Disk 80 GB IDE H.D.

Software configuration

0S and compiler Linux 2.6
Gce/G++ 4.03
Message Passing Library MPICH2 1.0.5
mpi4py 0.5
Table 3
Statistical characteristics of datasets.
Dataset name No. of items Avg. items No. of trans.
t10.i04.d100k.n100k 100k 10 100k
t10.i04.d200k.n100k 100k 10 200k
t15.i04.d100k.n100k 100k 15 100k
t15.104.d200k.n100k 100k 15 200k
t20.i04.d050k.n100k 100k 20 50k
t20.i04.d100k.n100k 100k 20 100k

Execution time (TPFP vs. PFP), threshold=0.0005
350 —e—110.i104.d200k.n100k

300 (TPFP)

‘\ —0—110.i04.d200k.n100k
250
200 \& —a—115.i04.d200k.n100k

(PFP)
(TPFP)
150 X —x—115.i04.d200k.n100k
100 \
50 D‘\\n

Time (Sec.)

(PFP)

A

6 8 10 12 14 16
Number of processors

N
N

Fig. 3. Execution time (TPFP vs. PFP), threshold = 0.0005.
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Execution time (TPFP vs. PFP), threshold=0.0001

600 —e—110.i04.d200k.n100k
(TPFP)
500 —+10.i04.d200k.n100k
~ 400 (PFP)
S \\ —a—t15.i04.d200k.n100k
3 BN (TPFP)
2 300
© \\\X —x—115.i04.d200k.n100k
E 200 ﬂ\m\ x (PFP)
X\
100 = —
0 . . . . : : : .
2 4 6 8 0 12 14 16

Number of processors

Fig. 4. Execution time (TPFP vs. PFP), threshold = 0.0001.
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Fig. 5. Execution time of various thresholds.

shows that the algorithm saved on execution time compared to the
PFP-tree. Fig. 5 illustrates the execution time of various thresholds
showing that this algorithm reduced the execution time for differ-
ent given thresholds.

In order to further compare the TPFP- and PFP-tree,
SU,(n) = Execution time of 2 processors /55 defined. Table 4 shows the

" Execution time of n processors

Table 4
Speed-up ratio (SU,) of TPFP and PFP.

7
Table 5
Hardware and software specification of multi-cluster grid.
Cluster 1 Cluster 2 Cluster 3
Hardware specification
Number of Nodes 5 5 3
CPU Pentium 4 3.2G AMD XP 2.0G Pentium 4 3.0G
Memory 512 MB 1024 MB 1024 MB
Network 100 Mbps interconnection network

Software configuration

Linux 2.6

Gce/G++ 4.03
Globus Toolkit 4.0
MPICH-G2
MPICH2 1.0.5
mpidpy 0.5

0S and compiler

Message Passing Library

Execution time (t20.i4.d050k.n100k, threshold=0.0003)
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Fig. 6. Execution time of different processors (d50Kk).

comparisons of the two trees with a given threshold of 0.0005. It
can be seen that the ratio SU, of the TPFP-tree was better than that
of the PFP-tree for all of the test cases. This means that the TPFP-
tree had better scalability than the PFP-tree with a different num-
ber of processors and different datasets. Moreover, it can be ob-
served that the speedup ratio SU, improved with a larger
number of transactions.

Itemset Method Number of processors
2 4 6 8 10 12 14 16
t10.i04.d050k.n100k TPFP 1 1.67 2.53 3.04 3.88 4.07 4.62 4.62
PFP 1 1.53 2.12 2.7 33 3.59 3.95 4.16
t10.i04.d100k.n100k TPFP 1 1.87 2.7 3.47 4.31 5.11 6.33 6.79
PFP 1 1.53 2.12 2.7 33 3.59 3.95 4.16
t10.i04.d200k.n100k TPFP 1 1.94 2.94 3.87 4.89 6.23 7.3 8.41
PFP 1 1.62 2.2 2.95 3.61 4.21 5.25 5.61
t15.i04.d050k.n100k TPFP 1 1.6 2.29 2.98 3.55 412 4.66 5.39
PFP 1 1.47 2.02 2.52 3.1 3.59 414 4.73
t15.i04.d100k.n100k TPFP 1 1.72 2.48 3.22 4.19 4.82 5.83 6.66
PFP 1 1.47 2.02 2.59 3.37 4.08 4.8 5.43
t15.104.d200k.n100k TPFP 1 1.93 2.81 3.76 49 5.98 7.11 8.24
PFP 1 1.5 2.14 2.83 3.59 444 5.29 6.35
t20.i04.d050k.n100k TPFP 1 1.57 2.12 2.65 3.22 3.71 4.28 4.86
PFP 1 1.38 1.87 2.32 2.88 3.23 3.79 443
t20.i04.d100k.n100k TPFP 1 1.59 2.22 2.78 3.41 3.97 4.74 5.25
PFP 1 1.41 1.9 2.44 2.92 3.57 413 4.62
t20.i04.d200k.n100k TPFP 1 1.62 2.27 2.96 3.67 4.42 5.14 5.91
PFP 1 14 1.93 2.5 3.06 3.69 4.46 5.02
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Fig. 9. Execution time of different threshold (d100k).

4.2. BTP-tree on multi-cluster grid

For the BTP-tree algorithm, the performance was verified on a
multi-cluster grid system consisting of three Linux based PC Clus-
ters. Table 5 depicts the hardware and software specifications
showing that each cluster had different computing capability and
different memory size. Different thresholds, 0.0005, 0.0003,
0.0001 were used with datasets t10.i4.d050k.n100k,
t10.i4.d100k.n100k, t20.i4.d050k.n100k, and t20.i4.d100k.n100k to
examine the BTP-tree in order to make sure that there were fre-
quent patterns.

In order to construct a heterogeneous computing environment
for 3 processors, one node from each cluster was selected. For 6
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Fig. 10. Execution time of each processor (d050k).
Table 6

Execution time of BTP, TPFP, and PFP.

Dataset Method Number of processors
3 6 9 13
Threshold: 0.0005
t10.d050k BTP 7.73 5.84 5.68 6.43
TPFP 9.4 6.66 6.16 6.72
PFP 12.04 10.21 8.35 8.2
t10.d100k BTP 15.99 10.95 9.68 9.9
TPFP 20.05 13.14 11.25 10.72
PFP 28.6 22 18 17.31
t20.d050k BTP 38.93 26.03 21 18.27
TPFP 51.4 33.8 28.03 22.54
PFP 66.31 52.99 49.37 44.8
t20.d100k BTP 111.11 65.45 50.42 39.41
TPFP 138.27 90.11 69.67 52.65
PFP 192.61 148.21 129.03 117.32
Threshold: 0.0003
t10.d050k BTP 10.84 7.89 7.11 7.65
TPFP 14.57 9.79 9.14 8.98
PFP 18.59 15.46 12.51 12.65
t10.d100k BTP 25.04 15.02 12.84 12.29
TPFP 32.37 19.5 17.3 14.43
PFP 45.84 33.65 27.09 26.28
t20.d050k BTP 48.34 31.46 24.85 2143
TPFP 60.92 39.18 32.01 271
PFP 79.16 61.19 56.75 51.87
t20.d100k BTP 138.07 82.14 62.18 46.22
TPFP 166.78 107.82 81.81 64.66
PFP 230.14 172.8 149.78 136.69
Threshold: 0.0001
t10.d050k BTP 15.86 11.46 10.32 10.89
TPFP 20.29 13.96 11.92 11.55
PFP 25.7 21 18.03 17.04
t10.d100k BTP 36.05 21.91 19.14 16.86
TPFP 46.49 29.17 23.76 189
PFP 62.45 46.17 41.85 38.62
t20.d050k BTP 56.47 35.84 29.5 24
TPFP 68.04 46.88 37.44 31.36
PFP 87.63 69.98 61.77 58.05
t20.d100k BTP 162.18 98.38 72.31 54.47
TPFP 197.38 127.13 96.48 73.8
PFP 258.85 198.49 169.08 153.85

and 9 processors, 2 and 3 nodes were selected from each cluster.

Finally, for 13 processors, all processors in Table 5 were used.
Figs. 6 and 7 show the execution time of the BTP-tree, TPFP-tree,

and PFP-tree with a different number of processors with 50k and
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100k transactions, respectively. From the results of Fig. 6, it is clear
that BTP performed better than the TPFP and PFP regardless of how
many processors were assigned. Moreover, it can be seen that BTP
reduced about 20% and 58% on TPFP and PFP. Fig. 6 also shows that
BTP saved on execution time compared to TPFP and PFP.

Figs. 8 and 9 illustrate the execution time of various thresholds
with 50k and 100k transactions, respectively. This confirmed that
BTP can efficiently reduce the execution related to TPFP and PFP.
Moreover, it can be seen that in a heterogeneous computing envi-
ronment (three types of CPU in this case) balancing the workload
can reduce the execution time.

Fig. 10 shows that BTP could balance the workload to save exe-
cution time. The experimental results showed BTP had better bal-
ancing capability and it could save about 25% and 66% on the
execution time needed with TPFP and PFP.

Table 6 shows the complete execution time for dataset
t10.i4.d050k.n100k, t10.i4.d100k.n100k, t20.i4.d050k.n100k, and
t20.i4.d100k.n100k with threshold 0.0005, 0.0003, and 0.0001. Here
it can be seen that BTP-tree performed better than the TPFP-tree
and PFP-tree for all test cases. Moreover, the BTP-tree shortened
execution time with more processors with different thresholds
and datasets. Consequently, with a smaller threshold BTP per-
formed significantly better than the others.

5. Conclusions

Mining frequent patterns from a transaction-oriented database
is important in data mining research. Many methods have been
proposed to solve this problem, and some of them have been
developed for a parallel-distributed computing system. However,
the execution time increases significantly with an increase in data-
base size and a decrease in the given threshold. In this paper, two
parallel algorithms Tidset-based Parallel FP-tree (TPFP-tree) and
Balanced Tidset-based Parallel FP-tree (BTP-tree) were developed
to solve frequent pattern mining problems. TPFP-tree is based on
FP-tree data structure for a Cluster system, it exchanges necessary
information for mining before tree construction to improve the
performance. Moreover, it also uses a TID set to select transactions
directly instead of scanning the database repeatedly. Furthermore,
BTP-tree was proposed for solving mining problems on Grid sys-
tems. BTP-tree calculates the performance index (PI) of each com-
puting node, then dispatches mining items to a computing node
according to its PI. The experimental results show that TPFP-tree
performed better than PFP-tree on a Cluster system judged upon
a variety of computing nodes, database sizes or different given
thresholds. Additionally, the results also show that BTP-tree had
better load balancing ability and it performed better than TPFP-

and PFP-tree on a Grid system. Moreover, it also reduced both exe-
cution and idle time.
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Abstract

Drug design is the approach of finding drugs by design using
computational tools. When designing a new drug, the structure
of the drug molecule can be modeled by classification of
potential chemical compounds. Kernel Methods have been
successfully used in classifying potential chemical compounds.
Frequency of labeled paths has been proposed to map
compounds into feature in order to classify the characteristics
of target compounds. In this study, we proposed an algorithm
based on Kernel method via parallel computing technology to
reduce computation time. This less constrain of timing allows
us to aim at back tracking a full scheme of all of the possible
pre-images, regardless of their difference in molecular
structure, only if they shared with the same feature vector. Our
method is modified on BB-CIPF and used MPI to reduce the
computation time. The experimental results show that our
algorithms can reduce the computation time effectively for
chemical compound inference problem.

Keyword: chemical
branch-and-bound, MPI

compound inference, parallel

1.Introduction

Drug design is a very valuable issue in the chemogenomics
[1]. To classify appropriately characteristic, classification of
drug are important in designing new drug. Quantitative
structure activity relationship was used to classify the chemical
compounds by many researchers. Support Vector Machines
(SVMs) [2, 3] of Kernel methods [4, 5, 6, 7] have been widely
used in various classification problems of chemogenomics.
Kernel method is usually required to develop a mapping from
the set of objects in the target problem to a feature space and a
kernel function is defined as an inner product between two
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feature vectors. In order to apply kernel methods, it is usually
required to develop a mapping from the set of objects in the
target problem to a feature space. An object will be defined as a
feature vector in the feature space by Kernel methods, and then
SVMs can be employed to learn the classification rules. Feature
vectors have been successfully used based on frequency of
labeled paths [8, 9] or frequency of small fragments [4, 5].

A desired object is computed as a point in the feature space
using suitable function and then the point is mapped back to the
input space, where this mapped back object is called a
pre-image.

Let ¢ be a function of mapping from an input space G to a
feature space F. The pre-image problem [18] is, given a point y
in F, to find x in G such that y = ¢(x), through a proper function,
if the feature vector can be mapped backward to an object from
y such as y = ¢(x), where such x is called a pre-image.-

For example, if we want to infer a graph from numbers of
occurrences of vertex-labeled paths [10,11]. In [10], a feature
vector g is a multiple set of strings of labels with length at most
K which represents the path frequency. Given a feature vector
g, they considered the problem of finding a vertex-labeled
graph G that attains a one-to-one correspondence between g
and the set of sequences of labels along all paths of length at
most K in G. In this study, we took into compound structure of
bigger size. This will spend more time in inferring a pre-image
from path frequency of g.

Parallel computing makes more computing resources than a
single processor [13]. In science and engineering, some
applications (the complex challenge problems) are
computationally bounded. Also, the new application areas
where large amounts of computation can be put to profitable by
using parallel computing, such as data mining and
optimization.

Processing computations in a parallel way is natural and
intuition, because the real world is naturally parallel. Parallel
computing has allowed complex problems to be solved and
high-performance applications to be implemented in science



and engineering area, or in new application areas [13].

In this study, we want to reduce the computing time in
inferring chemical compounds with path frequency. We
developed a parallel computing method by modifying the
algorithm published by Akutsu and Fukagawa[12]. The main
concept is to assign independent tasks to different computing
nodes expect for reducing computing time.

The rest of this paper is organized as follows. Section II
introduces the background about problem and definition. Next,
we present our algorithm and description in section III. In
section IV, we show the experiment results. Finally we
conclude this paper in section VI.

2.Related Work

2.1 The BB-CIPF algorithm

Terms of compound characteristics such as Frequency of
labeled paths [8, 9] or frequency of small fragments [4, 5] are
used by some researchers to classify compound. Extending
from inferring a tree from walks [14] or graphic reconstruction
problem [15], Kernel Principal Component Analysis and
Regression [4] and stochastic search algorithms [5] are used to
find pre-images. However, in previous cases, the obtained
results and performance of these algorithms were not
thoroughly verifies against more complex compound cases.

Figure 1 shows that giving a target x to find ¢(x) with kernel
method and then inferring the compound. Inferring a chemical
structure from a feature vector based on frequency of
labeled-paths and small fragments, Branch-and-Bound
Chemical compound Inference from Path Frequency
(BB-CIPF) [12] is used to infer chemical compounds of
tree-like structures. BB-CIPF algorithm extends from [10, 11].
BB-CIPF uses tree-like structures and infers chemical
compound. Chemical compounds are assigned with a feature
vector by the algorithm based on frequency of small fragments.
Moderate size chemical compounds are inferred.
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Figure 1: Inferring a Chemical Structure from a Feature
Vector

The pre-image problem was defined as follows. Let- -be-
an- alphabet-and- & be- the-set- of- strings with-length- A~
over- .-For-a-string- £-and-a-graph- G,- occ( t,- G)-denotes-
the-number of-occurrences-of-substring- ¢-in- G.-Then,-the-
feature- vector- fi- (G)- of- level- K for- G- is- a
— k—dimensional- integer- vector- such- that- the-
coordinate-indexed-by-¢-€- xis-occ(t,-G).-That-is, f- (G)-

is- defined- by- &= (G)- = (occ(t,- G))tezx. For example,

consider a compound C,H40, (see figure2) over 2'= {C, O, H}

and the K value is 1. Then, f& (G) = (2,2,4,2,2,3,2,0,1,3,1,0)

because occ(C,G)=2, occ(0,G) =2, occ(H,G) =4, occ(CC, G)

=2, 0cc(CO,G) = 2, and so on. If K is large, the number of

dimensions of a feature vector will be large (exponential of K).
4

C-| O-| H-| CO-| CH-| OC-| OO-| OH-| HC-| HO-| HH-

2-12- 14| 2 3- 2- 0- 1- 3- 1- 0-

Figure 2: An illustration of a multitree G and its feature
vector

Give a target compound 7% and T is inferred to 7.
T insert a node n becoming T"". f*’* is the feature vector of
7% and /" is the feature vector of 7", After inserting a
node compare 7“** and 7"". If the feature vector /" of 7"
does not match with the feature vector /¢ of T*“, the T"*"
will be discarded and 7" will not continue to carry out the
evolution of 7", T may be re-inserted into another node for
comparison with 7%,

The concept of branch-and-bound chemical compound
inference from path frequency algorithm is inferring tree-like
structures of chemical compounds. Back tracking a full scheme
of all of the possible pre-images, regardless of their difference
in molecular structure, if they shared with the same feature
vector to come close to the reality of the development of
algorithms for drug design.

The BB-CIPF algorithm will track back pre-images as the
solution of partial results. For example, giving a target
compound, if there are three objects having the same feature
vector, then those are the partial results.

Our method is based on BB-CIPF. We will find all possible
compounds with same feature vector. To reduce the computing
time, the method we proposed used MPI to solve the chemical
compound inference problem.

2.2 Message Passing Interface

Message Passing Interface has already used in solving
chemistry problems [16]. MPI (Message Passing Interface) is a
specification for a standard library for message passing that was
defined by the MPI Forum, a broadly based group of parallel
computer vendors, library writers, and applications specialists.
Multiple implementations of MPI have been developed [17].

The message-passing model of parallel computation has
emerged as an expressive, efficient, and well-understood
paradigm for parallel programming. Until recently, the syntax
and precise semantics of each message-passing library
implementation were different from the others, although many
of the general semantics were similar. The proliferation of
message-passing library designs from both vendors and users
was appropriate for a while, but eventually it was seen that




enough consensus on requirements and general semantics for
message-passing had been reached that an attempt at
standardization might usefully be undertaken. MPI is a
message-passing application programmer interface, which
including protocol and semantic specifications for behaving
implementation in the feature (such as a message buffering and
message delivery progress requirement).

3.Parallel BB-CIPF (PB-CIPF)

In the previous section, we have described that the feature
vector g in feature space has been mapped from a compound ¢
thought a function ¢, we want to find all possible ¢’=¢ (g).
Figure 3 shows that we are interested in inferring compounds
which have same feature vector of the target compound. If a
compound structure is bigger, the solution space will bigger. It
leads to larger computation time to find the answer. In other
word, consistent with the feature vector g are also less, it needs
more time that mapped back to ¢’ from g, this will be a
substantial increase in the amount of time spent.

Atu re space

Figure 3: Inferring all possible ¢ '=¢ (g) of a graph from a
feature vector.

In this study, we develop a parallel algorithm to decrease
the computing time and wish to find all possible compound
structure having the same feature vector with the target
compound. The task will be separated into several parts and
appropriate to distribute for computing node.

BFS stage

Q o
ﬂﬂﬂﬂ .......

Task1 Task2 Task3 Task4 ...

DFS stage

node1 node2 node3 node4 node m
Figure 4: Procedure diagram of PB-CIPF

Figure 4 depicts the idea of our approach. Our proposed
method has two stages. Firstly, a master node builds several
candidate compounds using BFS. Dispatch candidate
compounds to each participated computing nodes according to
block distribution. Then each computing node will infer the
c’=p(g) using a DFS approach. The BFS and DFS adopted
branch-and-bound approach.

The branch-and-bound approach has 3 stages:

(1) Branching Stage: Insert a new node to selected candidate

compound.

(2) Bounding Stage: If addition of a leaf with atom label
violates the condition on the numbers of
occurrences of atoms.

(3) Terminating Stage: If all candidate compounds are

complete the computation.

Each task will spend different computing time. A bigger
structure compound means having larger solution space and
required more computing time. For example, if we had four
computing node C;, C5, C; and C,. The master computing node
C; analyzed the target compound calculating feature vector and
established four tasks 7, T, T3, Ty, and assigned tasks to four
computing nodes to execute. It will stop counting after the last
task finished.

At BFS stage, the first step, master node loads the target
compound and computes the feature vector. The master
computing node employs the Breadth-First-Search (BFS)
approach to obtain the candidate compounds. Figure 5 shows
that each job is initiated based on the atoms that exist in the
target compound. However, H atoms are not included. A master
node will build several candidate compounds using BFS
approach and obtain its path frequency for distributing jobs.
Tasks will be putted into a block with appropriate amount then
each block will be assigned one by one to computing nodes.
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Figure5: An example of BFS stage of PB CIPF

After the tasks were assigned by the master computing node,
each slave computing node used Depth-First-Search (DFS)
approach to insert an atom into a candidate compound. After
inserted an atom, the candidate compound will be compared
feature vector with target compound. If the feature vector of
candidate compound and target compound has the same feature
vector with parts of target compound structure, then the atom
will be kept. If the candidate feature vector is different from
target compound structure, then the atom will be dropped and
continue to apply DFS approach to insert another atom into the
candidate compound. If the candidate compounds have the
same feature vector with the target structure, then it got a
solution. Do the same thing until all nodes completed its
candidate compounds. Figure 6 shows the idea of this stage.

DFS stage
node 1 node 2 node n

candidate compounds 1 candidate compounds n

result 1
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Figure 6: An example of DFS stage of PB-CIPF

3.1 The procedure of PB-CIPF

The pseudo code of PB-CIPF is shown below; the

implemented code has more details and will be presented later.

Procedure PB-CIPF(T*"7,, f°"7, T, fsct)

GET processors numbers:n
Let first computing node = master computing node

Master computing node:
step 1: Produce candidate compounds. Run BFS (T7%%%).
Store all candidate compounds computed in 79
which is a queue that stores all candidate
compounds.

The procedure of BFS is shown below:
Procedure BFS (7%
for (a = all atoms exist in 7% ) do
Let 7" be a temporary candidate compound
Initial 7"
Insert a as a new node into 7"
Add Tremp tO Tqueue
Process the next atom in 7%
end
step 2: Gather candidate compounds as tasks. Block tasks
by computing nodes number.
step 3: For each block of tasks will be assigned to slave
computing node.

Slave computing node:
step 1: Receive tasks.
step 2: Run DFS approach.
The procedure of DFS is shown below:
Procedure DFS(T"7,, ", T8, f'5
if f;empi — ffarget
then output a solution T"%;
return true;
else return false;
for (a = all atoms exist in 7% )do
if atom = H continue;
(Hydrogen atoms will be added at the last
stage)
if {{(w)u V(T") U {a} atomset(f*")
(set means multiset here)
then continue;
for all w € V(Ttemp) do
Let 7" be a tree got by connecting new
leaf node u
if w does not satisfy the valence constraint
then continue;
Compute £ from 7" and f*"”;
if DFS(Tnext,fnext, Target,ftarget):true
then return true;
end
end
return false;
step 3: Send result to a queue stored all matched result.
step 4: If still needed to process go to step 2. Else end.



The followings are the detail part:
(1) Hydrogen atoms will be added at the last stage of the
inferring procedure. Hydrogen atoms will be added only if the
frequencies of the other atoms are same as those in the target
feature vector.
(ii) When calculating £ from 7" and £, paths beginning
from and ending at a new node are only computed.
(iii) Benzene rings can be added as if these were leaves, where
structural information on benzene is utilized for calculating
feature vectors.
(iv) A benzene ring will be given as an initial structure when a
compound is small and contains a benzene ring.-

4.Experimental results

In this section, experimental results of our algorithm were
shown in term of the comparisons of single node, 2 nodes, and 4
nodes.

We used a PC cluster with AMD Athlon(TM) XP 2000+
CPU and 1 GB Ram which worked on the Linux to verify the
performance of our algorithm. PB-CIPF was implemented
using C language and the MPI version with MPICH2. The test
data were obtained from KEGG LIGAND Compound
Database.

We increase the computing node to verify that increasing
computing node can reduce the computing time.

The makespan defined as following:

In our experiment, it has 4 computing nodes: Cy, C;, C, and
C;. Then the finish time of four nodes is: #, ¢, &, t3. If t; is the
longest finish time, then the makespan will be #,.

We choose several compounds form KEGG LIGAND
Database. We tested and verified our algorithm with K =1, 2, 3,
4, where K is the length of sequence labels of feature vectors.
Bigger value of K means more constrains for target compound.
Figure 7 to 10 show the makespans from different target
compound with different size. Compound size of C11108 with
H atom is 13 and 9 without H atom. Size of C11109 with H
atom is 14 and 7 without H atom. Size of C00097 with H atom
is 15 and 9 without H atom. Size of C15987 with H atom is 19
and 8 without H atom. The less value of K makes bigger
amount of permutation with small length of path frequency.
The more amount of permutation with path frequency will
make more results which match the path frequency then cost
more computing time. Therefore, figure 11 shows that when
computing C15987 with K=1, the computing time is much
bigger than it of other value of K, so makespan of C15987 in
figure 10 is excluded the result of K =1.We can find that the
makespan was reduced when the number of nodes increased.
For example, in Figure7, when the value of K is 4, the
makespan was reduced from 399.546 seconds to 279.82 second
by 4 nodes.
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When the K = 1 and size of atoms is bigger than 19, the
solution space is larger, so it needs more computing time to
finish. We use several compounds with different size of atoms
to verify the performance of our algorithm. To look over
performance of our algorithm, we compute the speedup ratio of
each testing case. The speedup ratio is defined as follows:

If the computing time of single node is ¢, and the computing
time of 2 nodes is #;. Then the speedup ratio of 2 computing
nodes will be ¢,/ t;.

Figurel2 and 13 show the speedup of our algorithm.
Increasing the computing nodes to 4 nodes, we can find out that
the average speedup ratio is about 1.9. According to our
experiment, it verified that our proposed algorithm can reduce
the computing time.
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5. Conclusion

In this paper, we proposed a parallel algorithm for the
problem of chemical compound inference from path frequency.
Our approach has two stages. First, a master node will build
several candidate compounds using BFS approach. Then
distribute the candidate compounds to participated computing
nodes according to block distribution. Then each computing
node will infer the ¢’=¢ (g) using a DFS approach. The BFS
and DFS adopted branch-and-bound approach. The
experimental results show that our algorithm can reduce the
computing time. When using 4 nodes to compute, the average
speedup is 1.820136 when K=1, 1.891199 when K=2, 1.954588
when K=3 and 1.995495 when K=4.
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Abstract. Drug design is the approach of finding drugs by design using
computational tools. When designing a new drug, the structure of the drug
molecule can be modeled by classification of potential chemical compounds.
Kernel Methods have been successfully used in classifying chemical
compounds, within which the most popular one is Support Vector Machine
(SVM). In order to classify the characteristics of chemical compounds, methods
such as frequency of labeled paths have been proposed to map compounds into
feature vectors. In this study, we analyze the path frequencies computed from
chemical compounds, and reconstruct all possible compounds that share the
same path frequency with the original ones, but differ in their molecular
structures. Since the computation time for reconstructing such compounds
increase greatly along with the size increase of the compounds, we propose an
efficient algorithm based on multi-core processing technology. We report here
that our algorithm can infer chemical compounds from path frequency while
effectively reduce computation time and obtained high speed up.

Keywords: Chemical compound, feature space, Multi-Core Processing,
Branch-and-Bound, OpenMP

1 Introduction

In recent years, many researchers have worked on the drug design problem in order
to develop new drugs based on computation methods. When designing a new drug,
the structure of the drug molecule can be modeled by classifying candidate chemical
compounds using Kernel Methods [4, 5, 6, 7], within which the most popular one is
Support Vector Machine (SVM) [10]. Kernel method is a type of pattern analysis, the
task of which is to discover the relationships, such as clusters, rankings,
classifications, in the data (such as sequences, vectors, sets of points, images, etc).
Kernel methods approach the problem by first mapping the data into a high-



dimensional feature space. Recently, it has also been applied to the classification of
chemical compounds [4, 5, 6, 7]. In these approaches, chemical compounds are
mapped to feature vectors and then SVMs [9, 10] are employed to learn the rules for
classifying these feature vectors. Several mapping methods for feature vectors have
been proposed; among them, the mapping of feature vectors based on the frequency of
labeled paths [6, 7] or the frequency of small fragments in chemical compounds [4, 5]
are widely used.

In kernel methods, an object in the input space can be mapped into a point (or
feature vector) in a space called feature space. Through a suitable function @, a given
point y in the feature space can be mapped back into an object in the input space.
Such object is called pre-image. The problem exists when mapping a given y in
feature space back into an object in the input space such that y=@(x) is satisfied, as x
may not exist.

In [1], a feature vector g is a multiple set of strings of labels with length at most K
which represents path frequency. Given a feature vector g, they considered the
problem of finding a vertex-labeled graph G that attains a one-to-one correspondence
between g and the set of sequences of labels along all paths of length at most K in G.

In previous works [1, 2], a graph can be inferred from the numbers of occurrences
of vertex-labeled paths. In [1], they showed that this problem can be solved in
polynomial time of the size of an output graph if graphs are trees of bounded degree
and the lengths of given paths are bounded, by a constant, whereas this problem is
strongly NP-hard even for planar graphs of bounded degree.

In this study, we have taken into account the situation when chemical compounds
become increasingly complex, the computation time required to infer pre-images from
the feature vectors of these compounds increase at a much faster rate. We resort to
parallel computing, in which the computation tasks are assigned to multiple cores
appropriately to reduce the overall computation time. We extend the algorithms in [3],
and therefore the modified algorithms can support multi-core processing technology.

The rest of this paper is organized as follows. Section 2 introduces the background
about problem and definition. Next we describe our proposed algorithms in section 3.
In section 4, we show the experimental result. Finally we conclude this paper in
section 5.

2 Related Work

For classification of the characteristics of chemical compounds to work, chemical
compounds are often mapped into feature vectors. Several methods for converting
chemical compounds into feature vectors have been proposed. Among them, methods
such as frequency of labeled paths [6, 7] or frequency of small fragments [4, 5] are
popular. Recently, the pre-image methods have been proposed. In [4], pre-images
were found in a general setting by using Kernel Principal Component Analysis and
regression. In [8], stochastic search algorithm is used to find pre-images for graphs.
However, these pre-image methods are not derived from a computational viewpoint.



In [4], the obtained results and performance of the algorithm was unclear because it
was applied only to a few similar cases. Other related pre-image studies include
inferring a tree from walks in [12], as well as inferring by graphic reconstruction [13].

In [3], chemical structures are modeled as trees or tree-like structures. They extend
algorithms in [1, 2] so that constraints on valences of atoms are taken into account.
They proposed an algorithm, Branch-and-Bound Chemical compound Inference from
Path Frequency (BB-CIPF), which can infer tree from related chemical structures.
BB-CIPF works within a few or a few tens of seconds for inferring moderate size of
chemical compounds (e.g., the number of carbon atoms are less than 20) with tree or
tree-like structures, and can be modified for inferring more general classes of
chemical compounds and/or for feature vectors based on frequency of small
fragments.

In BB-CIPF, given a tree T*" to be inferred to a target tree T®9, T*" is first
inserted into a node n to become T"®. If the feature vector f"** of T does not
comply with the feature vector 2% of T"% the T"** will be discarded and then the
T will be re-inserted into another node and be compared to T,

The advantage of BB-CIPF algorithm is to effectively reduce the computation time,
as it terminates the computation process immediately and displays the results once it
obtains a solution; this also means that there is only one solution [3]. For example, if
there are three objects, a, b and ¢, which all correspond to the same feature vectors v.
Through BB-CIPF algorithm, only one of the objects a, b, ¢ can be inferred from v, so
the inferred solution is not necessarily be the most useful one in practice. Therefore,
how to produce all possible compounds that are mapped back from the same feature
vector but differ in their molecular structures is an important issue in the problem.
Moreover, when a compound structure is more complex, it will require more
computation time for inference of its solutions.

Parallel computing is a suitable technique in shortening the inference procedure.
Parallel computing is a form of computation in which several calculations are carried
out simultaneously [11], operated on the principle that large problems can often be
divided into smaller ones, and then solved concurrently to provide the solution in a
shorter time. While clusters, Massive parallel processing (MPP), and Grids use
multiple computers to work on the same task, multi-core and multi-processor
computers employ multiple processing elements to work on the same task.

A multi-core processor (or chip-level multiprocessor) combines two or more
independent cores (normally a CPU) into a single package that consisted of a single
integrated circuit. A dual-core processor contains two cores, and a quad-core
processor contains four cores. A multi-core microprocessor implements several
processing units in a single physical package. In general, programming is required to
orchestrate processes in several cores in order to solve problems.

The OpenMP (Open Multi-Processing) standard allows programmers to take
advantage of the new shared-memory, multiprocessor programming systems from
vendors like Compag, Sun, HP, and SGI. Aimed at the researcher working with
CI/C++ or Fortran programming languages, OpenMP explains both what this standard
is and how to use it to create software that takes full advantage of parallel computing.
OpenMP support Sun compiler, GNU compiler and Intel compiler.



In this paper, we extend the inference algorithm [3] to obtaining all possible
compounds that are mapped back from the same feature vector but differ in their
molecular structures. We used the Branch-and-Bound concept to derive the trees or
tree-like structures of chemical compounds. Our algorithm is committed to obtain all
possible compounds that can be inferred from the same feature vector but differ in
their molecular structures. We develop our algorithm based upon the algorithm in [3]
so that the computation process will not terminate on the first obtained solution, but
will continue to search for all possible solutions. However, in order to output more
chemical compounds, it also means that the algorithm will consume more
computation time. Therefore, we also propose adopting the multi-core computing
technology to reduce the computation time in our proposed algorithm. We hope that
by providing more thorough and practical solutions to the inference problem, we can
improve on the development of drug design.

3 Multi-Core Chemical Compound Inference from Path
Frequency (MC-CIPF)

In the previous section, we have described that when a compound structure is more
complex, it will require more computation time for inference of its solutions. That is
to say, if the feature vector v in feature space has been mapped from a compound c
thought a function @, and we want to find ¢’ where ¢’= @(v). If a compound is more
complex in structure, its feature vector in feature space is also more complex, and it
will require substantially more computation time to map back to ¢’ from v. Therefore,
in this paper, we divide computation tasks into several smaller tasks and distribute
these tasks appropriately among several processing cores for computation. We
propose the Multi-Core Chemical Compound Inference from Path Frequency (MC-
CIPF) to obtain all possible compounds.
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In the first step of MC-CIPF, the algorithm loads into the master core a target
compound for inference of all other chemical compounds that share the same feature
vector. The master core employs the Breadth-First-Search (BFS) algorithm to analyze
the target compound and obtain its path frequency for distributing jobs later. Each job
is initiated based on the atoms that exist in the target compound (Fig. 1). However, H
atoms are not included in this step.
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Fig. 2. An example of balancing the load in each core in MC-CIPF.

Each job requires different amount of time for computation, and a more complex
one will require more time. For example, if there are four cores Cy, C,, Cz and C,, the
master core will analyze the target compound, initiate four jobs T, T,, Ts, T4, and
distribute them among four corresponding cores for execution. If Ty, T, and T3 have
completed their jobs while T, is still in process, Ty, T, and T; cores will be in idle as
there are no more jobs to allocate to these cores. Therefore, we balance the overall
computation loads by increasing the number of jobs that can be allocated by the
master core and reducing the computation time demanded for each job. The scenario
is depicted in Fig. 2.

Each core applies the Depth-First-Search (DFS) algorithm to insert an atom into a
candidate compound. After inserted an atom, the candidate compound will be
compared with target compound, and if the feature vector of candidate compound has
the same structure as parts of target compound structure, the inserted atom will be



kept; otherwise, the inserted atom will be dropped, and the algorithm continues on
applying DFS to insert the next atom in queue into the candidate compound. If the
resulted structure of the candidate compounds is in line with the target structure, it is

output as one of the solution. The algorithm iterates until all cores have completed all
candidate compounds in their queues.

Procedure BFS (T''%)

Let T9“® be a queue that stores all candidate compounds;
for all a € all atoms exist in T®%* do
Let T*™ be a temporary compound
Ttemp o
Insert a into T™™;
if T e Tt then
Add Ttemp to Tqueue;
else
continue (examine the next atom in T™@eeY);
end
end
while T% is not empty do
for each core compute a compound from T per time do
Compute feature vector *™; from T™"; in TOUeUe;
iT MC-CIPF(T®™"™;, f*™,, Twrret frareety—false then
output “no solution™;
end
end

Procedure MC-CIPF(T™";, ftemp, ~Ttarget gtargety
if £, = F927%t then output T™"™;;
popup T*™™; from T™™;
return true;
else
return false;
for all a € all atoms exist in T do
L -9 ;

it { LQUu ev(@™*™)} U {a} ¢ atomset(Ff?Y) then
continue;
for all w € V(T™) do

Let T"* be a tree gotten by connecting new leaf u with
label a to w by bond b;

if w does not satisfy the valence constraint then
continue;

Compute "t from T"** and f*"™;

if MC-CIPF(T"®®, f"et, Trareet  frareety—true then
return true;

end

end
return false;



4 Experimental Results

For verifying the effectiveness of MC-CIPF, we implemented the proposed
algorithm and compared the performance when using single core, dual core and quad
core for computation. The simulation environment is built by using a personal
computer equipped with Intel Core 2 Quad Q6600 CPU and 4 GB RAM and installed
with the operating system of Windows Vista with Service Pack 1. MC-CIPF was
implemented using C language and experimental datasets are retrieved from KEGG
LIGAND Database.
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In the experiment, we randomly chosen 5 chemical compounds (C00097, C00497,
C11109, C14601, and C15987; the number of atoms of compound size with hydrogen
are 14, 15, 16, 15 and 19, respectively) from KEGG LIGAND Database and
examined them with K = 1, 2, 3, 4, where K is the length of sequence label of feature
vectors in MC-CIPF. Larger K means more constraints for target compound, which
leads to less variation for its molecular structure. Fig. 3(a)-(e) are the computing time
for each chemical compound. In each case, we have found that the computing time
was reduced as the number of cores was increased. For example, in Fig. 3(c), when K
was equal to 4, the computing time was reduced from 11.9337 second with 1 core to
5.542821 second with 4 cores.
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When the K value increases, the constraints of the feature vectors increase
accordingly. As a result, MC-CIPF spends less computing time in searching for the
combinations of target compound, as there is less permitted variations to compute for.
However, the path frequency will be longer, so MC-CIPF needs to spend more
execution time in re-computing path frequency. Consequently, the shortest computing
time occurs when K is equal to 2 in the experiment, since the number of constraints
has not increased too much and the length of path frequency is not too long. Details of

the computing time are shown in Table 1.
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Table 1. Computing time of MC-CIPF for various chemical compounds.

Instances  Cores detail CPU time (sec.)
K=1 K=2 K=3 K=4
C00097 1 Core 4.27 0.96 1.49 3.71
2 Cores Core 1 2.99 0.26 1.17 281
Core 2 3.00 0.72 1.17 2.81
Max 3.00 0.72 1.17 2.81
4 Cores Core 1 291 0.20 0.72 1.56
Core 2 2.67 0.36 0.46 0.98
Core 3 0.77 0.35 0.50 0.97
Core 4 291 0.51 0.72 1.56
Max 291 0.51 0.72 1.56
C00497 1 Core 75.44 31.95 47.23 131.42
2 Cores Core 1l 28.82 8.78 31.26 35.33
Core 2 54.10 25.12 31.27 88.09
Max 54.10 25.12 31.27 88.09
4 Cores Core 1 13.76 3.93 24.43 11.05
Core 2 31.23 7.77 12.25 28.88
Core 3 12.47 7.88 12.26 30.69
Core 4 56.14 21.67 24.43 64.10
Max 56.14 21.67 24.43 64.10
C11109 1 Core 6.88 5.42 5.63 11.93
2 Cores Core 1l 5.47 3.59 3.55 6.73
Core 2 5.48 3.59 3.56 6.73
Max 5.48 3.59 3.561 6.73
4 Cores Core 1 5.13 3.18 2.90 5.53
Core 2 1.83 2.06 191 3.53
Core 3 2.48 2.05 1.18 1.93
Core 4 5.13 3.18 2.90 5.54
Max 5.13 3.18 2.90 5.54
C14601 1 Core 0.72 0.57 1.02 2.02
2 Cores Core 1 0.62 0.40 0.51 0.83
Core 2 0.62 0.40 0.55 1.16
Total 0.62 0.40 0.55 1.16
4 Cores Core 1l 0.54 0.27 0.40 0.37
Core 2 0.13 0.23 0.38 0.55
Core 3 0.21 0.25 0.40 0.68



Core 4 0.54 0.29 0.35 0.58
Max 0.54 0.29 0.40 0.68
C15987 1 Core 25.73 3.49 6.77 14.52
2 Cores Core 1l 16.02 2.00 0.35 4.95
Core 2 11.43 2.00 3.67 7.67
Max 16.02 2.00 3.67 7.67
4 Cores Core 1 14.41 1.87 1.28 2.03
Core 2 5.78 1.48 1.65 3.16
Core 3 12.85 1.87 3.25 6.76
Core 4 1.42 0.72 0.55 0.68
Max 14.41 1.87 3.25 6.76

More importantly, we want to compare the speedup ratios of MC-CIPF with respect
to the core number used in the experiments. Fig. 4(a)-(e) are the speedup ratios of
C00097, C00497, C11109, C14601, and C15987. In these figures, the speedup ratios
are increased from 1 core to 4 cores, with the best speedup ratio close to 3 (Fig. 4(c)).
Interestingly, when the K value is increased, the speedup ratio is raised accordingly.
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5 Conclusions

In this research, we proposed a multi-core algorithm for solving Chemical
Compound Inference from Path Frequency problem. We adopted the Branch-and-
Bound concept to evolve the tree-like structures of chemical compounds in the paper.
The experimental results show that our algorithm can practically reduce computing



time, with the best speedup ratio close to 3 folds while using 4 cores in the
experiment. Therefore, our proposed algorithm can infer chemical compounds from
path frequency effectively and reduce computation time by employing the multi-core
technology.
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Abstract

Because of the exponential growth in worldwide
information, companies have to deal with an ever
growing amount of digital information. One of the
most important challenges for data mining is quickly
and correctly finding the relationship between data.
The Apriori algorithm is the most popular technique in
association rules mining; however, when applying this
method, a database has to be scanned many times and
many candidate itemsets are generated. Parallel
computing is an effective strategy for accelerating the
mining process. In this paper, the Weighted
Distributed Parallel Apriori algorithm (WDPA) is
presented as a solution to this problem. In the
proposed method, metadata are stored in TID forms,
thus only a single scan to the database is needed. The
TID counts are also taken into consideration, and
therefore better load-balancing as well as reducing
idle time for processors can be achieved. According to
the experimental results, WDPA outperforms other
algorithms while having lower minimum support.

1. Introduction

With the rapid development of information
technology, companies have been working on
digitizing all areas of business to improve efficiency
and thus competitiveness. However, the consequences
of full-digitization are that tremendous amounts of
data are generated. It is important to extract
meaningful information from scattered data, and data
mining techniques are developed for that purpose.
There are many techniques being used for data mining,
for example, Classification, Regression, Time Series,
Clustering, Association Rules and Sequence.
Association rule [1, 2] is one of the most useful
techniques in data mining. Generally, it takes long to
find the association rules between datasets when a
database contains a large number of transactions. By

applying parallel-distributed data mining techniques,
the mining process can be effectively speeded up.
With parallel-distributed data mining the calculation is
done in a distributed environment [3, 7, 8, 9, 12], but
most of the time, irregular and imbalanced
computation loads are allocated between processors
and thus the overall performance is degraded.

In this paper the Weighted Distributed Parallel
Apriori algorithm (WDPA) is presented as a solution
for this problem. In the proposed method, a database
has only to be scanned once because metadata are
stored in TID tables. This approach also takes the TID
count into consideration. Therefore, WDPA improves
load-balancing as well as reduces idle time of
processors.

The experimental results in this study showed that
the running time of WDPA was significantly faster
than that of previous methods. In some cases, WDPA
only used about 2% of the time used in previous
methods. This can be achieved because WDPA
successfully reduced the number of scan iterations to
databases and was able to evenly distribute workloads
among processors.

The paper is organized as follows: In section 2,
association rule and parallel distributed algorithms are
explained. The WDPA algorithm is proposed in
section 3. Section 4 gives the experimental results.
Finally, the conclusion is given in section 5.

2. Related Work

Frequent pattern mining problem is defined as
follows. Let DB = {Ty, T, ..., Tx} be a database of
transactions, where each transaction T, consists of 1, I
= {iy, Iy, ..., iy} be a set of all items. Assuming A, B
are itemsets, A, BC I, ANB=@, A—B denotes there
is an association rule between A and B. Each
association rule has support and confidence to confirm
the validity of the rule. Support denotes the occurrence
rate of an itemset in a DB. Confidence denotes the



proportion of data items containing Y in all items
containing X in a DB. When the support and
confidence are greater than or equal to the pre-defined
minimum support and minimum confidence, the
association rule is considered to be a valid rule.

The Apriori algorithm was proposed by R. Agrawal
and R. Srikant in 1994 A.D. [2]. The Apriori algorithm
is one of the most representative algorithms in mining
association rules. It is based on the assumption that
subsets of low-frequency itemsets must be low-
frequency as well. Even though the Apriori algorithm
takes lots of time to calculate combination of itemsets,
the design of the data structure makes it easy for the
algorithm to be parallelized. Therefore, some scholars
propose that parallel- distributed Apriori algorithms be
used [3, 7, 8,9, 10, 11, 12, 13, 14]. For example, CD,
DD, FDM, FPM, DMA etc. Recently, Ye [12]
proposed a parallel-distributed algorithm using Trie
Structure [6]. Ye’s algorithm distributes computing
workload using the Trie Structure to speed up the
computation, however, this causes significant variance
between the sizes of candidate itemsets distributed
among processors. Moreover, this method also
requires a database to be scanned many times. The
problems related to multiple-scan and load-imbalance
gets worse when dealing with large databases and
huge itemsets. Therefore, a Weighted Distributed
Parallel Apriori algorithm (WDPA) is proposed. By
storing the TIDs of itemsets and precisely calculating
and distributing computation workloads, WDPA is
able to effectively accelerate the computation of
itemsets and reduce the required scan iterations to a
database and balancing the load, thus significantly
reduces processor idle time.

3. Weighted Distributed Parallel Apriori
(WDPA) Algorithm

To avoid the problems associated with load-
imbalance and multiple-scan, the WDPA algorithm is
proposed so that a database only needs to be scanned
once while maintaining load balancing among
processors. In the algorithm, each transaction has a
Transaction IDentification, called TID. By using hash
functions to store TID in table structure, the number of
itemsets can be quickly calculated without the need of
rescanning the database.

In the WDPA parallel-distributed processing
algorithm, the number of combinations for items,
called a lattice, is first calculated. Lattice is the number
of combinations calculated from candidate (k+1)-
itemset counts by frequent k-itemsets. Equation (1) is
the required count of itemset combinations of I,
Equation (2) represents the total number of k-itemsets.
Using block division to do frequent itemset

distribution after calculating the number of
combinations, is called Block Lattice (BL) (Figure 1).
From Figures 1 and 2 we can see that the Lattice count
decreases gradually at the lower-left part of the matrix,
thus if itemsets are distributed sequentially, the load-
imbalance distribution will occur. Therefore by cyclic
partitioning of lattice, itemsets are distributed to the
processors cyclically to balance the distribution of
itemsets. This is called Cyclic Lattice(CL).

Cnt _Lattice(1,) = [(len( freq, ) —1)—i] (1)

len( freq;_,)-1

Z Cnt _ Lattice(1,) (2)

i=0

TotalCnt _ Lattice =

Cnt_Lattice(I,)

!

I0
I, |Po
Po
P,
Lattice ?&' P1
L L Loy

Figure 1. Block partitioning
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Figure 2. Cyclic partitioning

By only calculating the Lattice number and
ignoring the length of the itemsets' TID, an uneven
distribution of workload occurs. Therefore, this
algorithm also takes TID length into consideration and
regards it as a weight value, which makes the
distribution of itemsets more accurate and more even.
Equation (3) calculates the weighted value of itemset



Ii. Equation (4) represents the total weight value of k-
itemsets.

len( freq;_)-1 (3)
Value _WeightTid (1,)= Y len(I, )xlen(I, )
J=itl
TotalValue WeightTid
len( freqy-)~1 len( freq;_1)=1 @)
= > D len(I, Yxlen(I, )
i=0 J=i+l

There are two methods of partitioning weighted
TID, the Block WeightTid(BWT) partitions and
distributes TID by block, the Cyclic WeightTid(CWT)

and C on TID, [1, 5], is the resulting set, AC) (Step 5
and Step 6)

C 4 | 1,345
A 3 1,2,5
Figure 5. Itemsets are calculated by counting the
TID forms

Items Count TID

partitions and distributes TID in cyclic. AC 2 1,5 AB 1 5
BC 3 3,4,5 AF 1 2
An example of the algorithms is given below: CF 1 3 AL 1 2
For stepl and ste?p2, P, (MP), Pz (SP) read and scan oL 1 3 AM 1 2
glatabase, then build level-1 candidate itemsets. (Figure Y 1 3 20 5 25
) co 1 5 AP 2 1,5
TID
cp 2 1,5 FL 1 2
DB A 1,2,5 BF 1 3 FM 2 2,3
B 3,4,5
TID Items c 13,45 BL 1 4 FO 1 2
1 ACDGP D 1 BM 1 3 FP 0 null
P, - r 2,3 (null
2 AFLMO - < x BO 1 5 LM 1 2
3 BFCM K 2 BP 1 5 Lo 1 2
- 4 BCKSL L 2,4 LP 0 null
P2 5 ACOPB M 23 (ol
0 25 MO 1 2
P L5 MP 0 (null)
5 4

Figure 3. Scan database and creating TID forms

Figure 4 shows that P, collects itemsets that match
given support into frequent 1-itemsets, then uses CWT
to calculate and distribute the itemsets on Py. P;: {C,
B}, Py: {A,F, L, M, O}. (Step 3 and Step 4)

WeightTid=6439301612 8 4

P, NN AN AR N N/
Items Count TID 4 C
c 4 1,345 3 A
A 3 1,2,5
B 3 3,4,5 3 8B
F 2 2,3 2 F
L 2 2,4 2 L
M 2 2,3
0 2 2,5 2 M
P 2 1,5 2 0
e 2 P
Total WeightTid = 173

Average WeightTid = 86 ma C A B F L MO
Count 4 322 2 2 2

Figure 4. Distributing frequent 1-itemsets on P,

Figure 5 describes P; and P, combining level-2
candidate itemsets and calculating itemset counts
according to the TID table. Figure 6 represents level-2
candidate itemset counts on P; and P,. (Take level-2
candidate A and C for example, the intersection of A

Figure 6. P; and P, level-2 candidate itemsets

Select the itemsets that match the given support
value, and save them as frequent 2-itemsets. Because
the frequent 1-itemsets are larger, candidate itemsets
that required combination computation will be larger,
too. In this case, distributing the itemsets in Cyclic will
produce better results. On the other hand, if there are
frequent itemsets above level 1, candidate itemsets that
required combination computation will be smaller, too.
In this case, distributing the itemsets in Block will
produce better results.

P, receives P, itemsets, and repeats execution step 4
to step 9 until there are no more frequent itemsets.
Figure 7 illustrates the use of BWT to calculate and
distribute the itemsets on P;. P;: {BC, AC}, P,: {AO,
AP, CP}. (Step 3 and step 4)

Figure 8 represents P; combined level-3 candidate
itemsets matching given support value into frequent 3-
itemset.
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Figure 7. Distributing frequent 2-itemsets on P,
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Itemsets Count TID
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Figure 8. The resulting frequent 3-itemsets

Because the resulting frequent 3-itemset contains
only one itemset, no more combination operation can
be made, the mining process ends here. The number of
resulting frequent itemsets are: level-1: Eight, level-2:
Six, level-3: One.

The algorithms are described in detail below:

Input: a transaction database DB = {T,, T, ..., T},

and each transaction T; - L I={i,i, .., iy}. A given

minimum support s. P is the number of processors. (p;

is master processor (MP), and p,, ps, ..., p, are salve

processors (SPs))

Output: All frequent itemsets.

Method:

Step 1. Each processor reads the database DB.

Step 2.Each processor scans DB and creates the
transaction identification set (TID).

Step 3. Each processor calculates candidate k-itemset
counts, when the count is greater than s, let
fregk be frequent k-itemsets.

Step 4. MN equally divides the freqy into p disjointed
partitions and assigns itemsets; to p;. Itemsets;
denote that SPs were assigned to the itemsets
from MN. The frequent pattern dividing
method:

(1) Block_Lattice (BL)
(2) Cyclic_Lattice (CL)
(3) Block WeightTid (BWT)
(4) Cyclic_WeightTid (CWT)

Step 5. Each processor receives the itemsets; and the
combination candidate (k+1)-itemsets.

Step 6. Each processor candidate itemsets is calculated
by counting the TID forms.

Step 7. When itemset count is greater than s then it is a

frequent (k+1)-itemset, and itemset appeared
in transaction id is saved to (k+1)-TID.
Step 8. SPs send frequent itemsets to MN.
Step 9.MN receives SPs itemsets, and repeats
execution step4 to setp9 until there are no more
frequent itemsets.

4. Experiments

In order to evaluate the performance of the
proposed algorithm, the WDPA was implemented
along with the algorithm proposed by Ye [12]. The
program was executed in a PC cluster with 16
computing processors. Table 1 gives the hardware and
software specifications. Synthesized datasets generated
by IBM's Quest Synthetic Data Generator [4] were
used to verify the algorithm. Moreover, the database
T10I4D50N100K, T10I4D100N100K,
T10I14D200N100K was used to examine the WDPA.
From the experimental results, our proposed method
balances the workload among processors and saves on
processor idle time because of the way CWT
distributes  itemsets. Therefore, the following
experiments are calculated based on the CWT method.

Table 1. Hardware and Software Specifications

Hardware Environment
CPU AMD Athlon Processor 2200+
Memory 1GB DDR Ram
Network 100 Mbps interconnection network
Disk 80GB IDE H.D.

Software Environment

O.S. ReadHat Linux 7.3
Library MPICH2 1.0.3

Figure 9 shows the speed up of four WDPA
methods. From the results, it can be seen that the
speeded up of the four methods is similar, but the
CWT itemsets distributed used weighted TID and
cyclic partition, therefore the CWT have more
accurately parallel-distributed itemsets. According to
the experiment, the CWT, regardless of processor
numbers of 1,2,4,8,16, achieves better results than the
other methods.

Figure 10 shows the execution time of the WDPA
and Ye’s algorithm on different processors. WDPA(8)
denotes that the WDPA algorithm used eight
processors. Because Ye’s algorithm needs to
repeatedly scan the database, the loads are imbalanced
between processors. Therefore, from Figure 10,
WDPA is nearly 120 times faster than Ye’s algoritm in
the 16 processors case. The use of TID form in WDPA
accurately parallelize the workloads, hence it
effectively reduced the database scanning and saved
on processor idle time.
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Figure 11 and 12 show the execution time and
speedup under different given supports. Ye’s
algorithm requires that a database being re-scanned for
every itemset to be counted during the mining process,
so when there is lower support, Ye’s algorithm takes
longer to re-scan the database. On the other hand,
using the TID table with precise distribution of
itemsets, the WDPA scans the database once only.
This greatly reduced the time spent on database
scanning and balanced the computation workload
among processors. Thus, there is an obvious
performance advantage of the WDPA algorithm over
Ye’s algorithm.

Figures 13 and 14 give the execution time and
speed up with different databases. With the increased
size of the database, the length of the TID of itemsets
in the table will increase. Therefore, when the size of
the database increased, the execution took longer.
Moreover, by parallel-distributing the processing,
large databases can be more effectively mined and
itemsets will be allocated to different processors to
perform the calculation, this significantly speeding up
the mining process.
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Figure 11. Execution Time (WDPA vs. Ye’s
algorithm )(T1014D100KN100K, minsup: 0.2%)
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Figure 14. WDPA Speedup, minsup: 0.15%

Figure 15 illustrates the execution time of various
minimum supports. The number of frequent itemsets
as well as their length increased with a lower support
in WDPA. Therefore, by using this method of
calculation WDPA effectively accelerated the
computation. Thus WDPA can achieve better speedup
when there was lower minimum support.
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Figure 15. WDPA Speedup
5. Conclusion

Determining the association between items in a
huge database, is a worthwhile research topic.
However, the process of generating itemsets and
confirming them is time consuming. Parallel-
distributed computation strategies provide workable
solutions to this problem. In this paper, a Weighted
Distributed Parallel Apriori algorithm (WDPA) is
proposed, in which the TID of itemsets is stored in a
table to compute their occurrence. WDPA effectively
reduced the required scan iterations to a database as
well as accelerated the calculation of itemsets. By
taking the factor of itemset counts into consideration,
this approach effectively balanced workloads among
processors and reduced processor idle time.

Experimental results show that WDPA achieved
higher speedups than pervious works in the case of
high data volume and low support.
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