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1. #§ 4

BV EEN WG I ROEMAE N TR o p B EAE Y BAEPR E A TR AL
-EAFEL IR AL &°ﬂplﬁaﬁ§\&memk%%ﬁvngéﬁﬁw»ﬁ
A A AR o Flptdee AR E R RS I PBIEB 2 Y o TRARY D LB TR

HEPF XL :Lﬁ‘lé«fﬂﬁ | REE - FERPFARFLIT AFFDERT R R
lf'&ﬁj‘r} ’Fﬁ— #E A ﬁ%fl’( ilizzh Wt BT 1 g FTE-BEETHNAD ESE Gk E
BT THTER RESAFZREEF T O EFT - BB DOR..E2E -
T i\ fc“ﬁ T B A PR T ARE] R AL 0 AR FIR B E [2][8][11] & Ak = w A * A fE L
UL MG AT R S AT R £ A i R R R
B R O¥ ;i‘__eﬂ:]i—frv FEouM o AT g B EGE G A2 BT AR EE"ﬁ - T
L2 gE 0 B2 H RIS I R TR T B D Bk R - e 2R o T
v%ggﬁm{i PR AR D RS R ﬁl&w\ LT
REEH o TRV £ NG 2 R poR T ARSI F R
R ? o APRF FPRATFEZ A RBRERIEGTCRFE - SHTEE
FHBIREFLF RN APBEXT ARG A RAREREFF 0 BT LR
KEREFERp D % —@@mwwm&io% b2k BTGB Y o AR
Frow ek F)iF 3 ﬂ <+ R % (mutation operation) ~ i 4¢ (refine operation) ~ # “f (deletion
operation)s 1% BiE L KB-R BARAFFEZFE S > £ 87 WIRE S TBRE R 3
ﬂ%ﬁ’uéﬂ%@ﬁW%%@kmm%%°ie?%Wﬁﬁiﬁkﬁﬁﬁ?%ﬁ%?
PR\ FEFIR BEEETABMENZ G EZ VT NRRFY S e 5 P RS BIEF D
AR ARG AR F o iRt o8 P BEAF R SR ROE 0 E

o

A A
,H. '%$ (V mk

2010 International Conference of Technology Innovation and Smart Living, June 3- 4, 2010.



PoAthe 2 S A Gd AT Y R BCEIERRG]2 o o

2. JME L B

FER > EAFTAAT FEFETIOTEEPE L RERD ST B R
a ﬁr*’ﬁﬁ w‘:ﬁ{?’l’lﬁ BoF r’—»ﬁ—xffiﬁ’»'i LR BE o i F e % B3k (7 R ‘g\@z WOt L_ﬁk;ﬂ?

BARLINIEY > nEREELERLPRBEHN T E N EiEa a%ﬂm&#
XMMJ R_eh e TP 5 Sugihara 12 %2 Smith & I A2 8 E 5T 0T ﬁvtﬁ&a? AR B
@ Bk A(fixlength): ~ 5 8 eh% & W5 %B > NahAFIFE 2 i@hﬁé@%ﬁgj
[10]- fe Eigfh= ~F ¢ £ 72 FRERIPIrE - BRYE I 2k R L hdriZ-Tu U
% Yang [12]*t 2003 & & 418 * %v\ A (variable-length) s ¢ §8 B~ X @ AL F] T £ B o
Ad ML BB NPATIFE 2 R EFRIERE > @ A RRPE s ELE s e T E B & T
‘/z‘. jim-ﬁd— o

AERSBARERL NI P oo AT RS E 2 E R 9RE - Hu 12 2 Yang
[Bl# 21— B HEx § r»xf e 54 x’e‘ PREEE L R AR E] A A T 2 o 8 PR I K
AF o E s AR R A PFRRTA T E 0 R AP R FREOREL - AE
BEFZT OWEADPBHL T T w:«%ﬂfrm# e F A MiR@E e Nk AT L4
%&%ﬁwﬂﬁﬁéﬂﬁﬁﬁ%Lﬁﬁﬁo BB IS PR R T 0 B
PR A G A EREERES LT LB ARn B ATIFE EAdpA L 2 ¢ 0 4
HEZARGORAL > L g F ek 5 & - B E SRR (heurlstlc rules) ¥ 12§ »xehic
I Rblz %% o Li, Zhang, Yin, 122 Wang [6]R]#% 1 = Bk = 30 H 2L e
(one-point crossover)i& & sEcg 58 AP 2 fie(heuristic crossover)o Tt A il Sl 2R fle k
B 4G o Flaiigd Q>N F R T LGRS IR T A2 - K
& I2 eng ARBL T KR S o Guo M2 Yang [4] 4% 4 - BwERES v o B
”&:%?#'%Lm§§%éi—&€ﬁmr%%@ﬁ%m&#

3. FEENUE I RIBEBFAL L RIZRIIFA

31 5 PHB MR

- BEIPREEGCARNIE A ILERES A R Benp RSN oo m Hap R
Lﬁﬁé’iﬁ %ﬁu%#—@pﬁ&ﬁ’ﬁé'&%%ﬂﬁoﬂﬁﬁﬁﬁﬁﬁﬂ’
TP 2 ﬁ?"ﬁ?ﬁ‘b T AR & 4 q‘ﬂ AriER o B Bp ¥ A EY ’%Eé‘f”fiﬂ]—")—j&ﬁﬁ?—? ’
IF»’”\IF“—%:&— v R R ANPY R szf Hm 3 oo g ARAF AR &~ T RART

B e dgrR sl AP enp koo (e § aaﬂ feg S BB RAAVREE oA R
?m, B A Ak ,% v]v‘_s,'g-mj\mg._— oo ﬁfﬁﬁ}ﬂ,\n; 1R HE R o T
PV E - P F'?sb«i"lﬁxvi v enfz % o "Lr'/w TE T B S Bk iEfE
ey NN TR § - BPIREREE S o RAFR Y - lﬁpfg_’*ji‘lu@]d‘ﬁ--a ey
& - BfEE "3#?& % ﬁs?]..w_—»—,—, fRE gt s g enfid o RN P ALz 5 Pareto B if 7
# & (Set of Pareto -optimal Solutions) -

Ha Do PR EBRENREE AT A B R A I aEAR ) T oA
A S - BPEEIIELChdiFn 5 B & ";T‘u{%fi‘ d ] 1 _mg,,
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Fofkm  $3E - BRPEH= > IW/WF U - BPEINKL T P ¥ 7 F L 3\
i Eal 7 P 7 P i T X
g PG 3F S P RSl B TR Ae(D)F T

)

Maximize/ Minimize F(X)={f,(X), f,(X), f,(X),..., f,(X)}.

1)
ST.(%, %Xy, X5, ) € X
2P X fE2 i Kwe g FX) P e g -
A Gap P T hd PRGBS R g?n‘#iﬁf— Ry oo g A
—afEE s o AN EfRE LY o A - BREEIE A fRenk o RAAP L EN TP D
Pareto & & 2 £ & > j¥_Pareto 324 ¢ > AP EK 3 n B ¥~ (Maximization)chp & > @

He X, 2 X, 9053 Bdfehe £ 8478407 ¢
V(X)) 2 (X)) A3, (X)) = £,(X,) )
fz X, & pe(Dominate) X, (X, = X,) o ¥ - fAFm 5 -
v, (X)) f(X,) 3

RIfE2. 5 X, 33 £ fe(Weakly dominate) X, (X, =X,) °
3.2 i%-/{"‘ {ﬁa%'] i {EFJI'VE BP ‘f%—xﬁfr 5\“

A P TR R AR A 2 m&;a ;*FL%J o B HRAE K Sz BT AE)
F R - AR R LR e 0 X :riry‘; R R Ry e S R G L A
LEn% 2 PEY o FIYt > Ap v Hp AT 2R A e AT B RS RCEIEYR - B
M ﬂﬁh Mo BRI E S ek 24> T T £SR3 R P & SRR TR

hhBH AR > A PERBEAP Y 3 ANB S B, M) T A7 D i
S gV A W T T S el gt 1
(1) mied :
Dist(p)#7 % cnE M B A TR Z R E - H A ) v B #eF S 42 4o [5][3][7][13] :

Minimize  dist(p)=Y_.d(m,m,,) @

Byt o d (M, Mivg) B_7% 4 4 A8 mj BL27 My BEEPFEE o
(2) BeaRT
Smooth(p) *7 & % chE 8 F 4 FiEE ST R B AT B S e
[8][13] :
G

s(m;) = min{d (mifl’mil)’d(mi’mﬂl)} ;

Maximize  smooth(p) = max!"} s(m,) (6)
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tt o 0 [0, 7] R 2y BEgr My B 8 SUE S My BT My 89777 & R > 472

Xk koo
() BT H
SMooth2(p) ik 4 chE S B A (Fiep @ehT 1 # B 5] > 3 §icd 2 2 4o
2}

s(m) = min{d (mi,la mil)’ d(m;, mi+1)} X

Minimize  smooth2(p) = min(var’," s(m,)) (8)

ER I o, 6[0 77]“‘»‘3‘ Ze M BEET Mg BEATA) & SLECEE Miyg BEE My BEATA) = EC > 9775

2 R
(4) % 2pEd

Clear(p) #7H £ eI BB A Fi87 > B3 M@y TIRF e > 2 HA~ 0t > 4
Bg 2 AN e

¢, =d(ob,m,) 9)
Maximize clear(p) = max(mini";z,1 ci) (10)

B o € B A HLES B 0T (R P R B eREE -

4 Bl

AR R AR BT o e EBR R - E2F £ R R o F L Ao
Peig 2 3R R E B EAE 2 O KE RO RIERINEE LY BT o AP
B F oS e E ki T g ke ﬁrﬂmw R = T N *Hr“:k%—g— h e
PEEREF LT A RENBELRFEIRETEFRTBE LS P RAFFE
e

41, 1 R kB AL E i 7k

(o4 8 4 R ERRINAT P PR Y RERESRRLT 2 BT i
BET| M BRI A TRER GE o T KA P OB 1 RTERR S RERE c Bk B1E

= B 10X 10 REBLTRE o BRSBTS 0 GG A - BRELID 0 S0l JACEETI R
B R RGO T S - BB UE LDk R BRESFE T
3% % (0,36,66,74,84,99) -
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S0)51[52]53|54[55]|%|57[58]59
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-3
wti Pt

40414214344 |45 4047148149
30[31]32]133[34]35136|37[38139
20121(22]23124725]126|27(28]29
W0[ 11 2TI3 [ 14[15] 1617 (18|19
G123 [4[5]6]7]8]9

DINOES o A ¥R U H)

42. g ¥

TR A RS S ) iRAETS 2 (Mlnlmum Enclosing Rectangular)[1] % 21| %t
fﬂﬁ»\F’*{& g T {s‘ § 7 aBA, (¢ 7 % 825 (polygon) & 5% 25 (Arc) 2. £
P EEAG 0 PIARAEA])ET AR 2k H T ﬁ»—%i?%wm #B THTFE o T HEH S P

XEZR e BEABCD & & ﬁ-—@_ﬁv Y] & (ag, a2), (b, by), (€1, €2), % (di, d) o & A& iE
& = 4238 (11)(12)(13)(14) 58 T #5252 -~ pF > Bl AB 22 CD & i 5EL & A 492 © 4ol 2
AT oo BRIE AR 0 ARl 3 HTT e

(1) MIN (c1,d;) > MAX (ay,by) (11)
(2) MIN (a,b;) > MAX (cy,d;) 12)
(3) MIN (cz,dz) > MAX (ay,b) (13)
(4) MIN (a,b2) > MAX (c2,d2) (14)

HP MIN & MAX &~ % 4 57 BB Efrd < B o

Ele. e:) E(e. e2)
'jll‘.'l|-|’[:| 0"-'-:::' .jl|i|':.u':| G.'\:.l':| Alay, az) Y Afery, az) r Cley, e2)
\ f ]
'I F(f. /)
'
1 11 , Did. o) Bih. ba) D[:f,.u"\d Bih,. b))
Dqu_llj:' B{ﬂ:._'?_-l ]]u]i,d:fl B|.'!:_h::. R
M2 asprme W3 amsme R4 Q886742 W5 S22

#de o] Pa‘&«fﬁ’b,z (Minimum Enclosmg Rectangular)d #t ez snae # 3 A2 5 chiejs >
Bk - e ABCD > H AEid A u 4 (ag, a2), (b, b2), (1, C2), % (di, do) » @ T 6 F — 4E
 EF> HAHEEAL B (6, €2, (fl, f)) o B AMEE S &2 4255(15)(16)(17)(18) 8 ™ »| §-3)
2. - P PBle ABCD 55 EF & 22 403 » R4 ¥ N EFERmd > 4ol 4 77 o &R
gAp > R AT B o oW 5 AT o

(1) MIN (ay,by, ¢1,d1) > MAX (ey, f1) (15)
(2) MIN (ey, f1) > MAX (ay,by, €1,dy) (16)
(3) MIN (az,b,, €z,dz) > MAX (e, f2) 17
(4) MIN (ey, f2) > MAX (a,b,, €,,d5) (18)

H¢ MIN 2 MAX 4 5] £ 7 B g | @ ok 4 & o
43 FREEZTBREDE 4
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WIREL [T Ao R ahd & - q}a—bf&?.&tﬂ—r :

% - D EIERER chE 2EEHE - 4oF) 6 477 o

‘}47'2?: : ﬁ'ﬁ l—?"t i&ﬁ'r’@ﬁ—ﬁ”é L1(P1, Pz) ’ Lz(Pz, P3) YL I—n(Pn; Pl) ’ -&r’%} T #7151 o

HHI= AL Lo oLy AFFRPEALE LT G Ltltzq;guiﬂ%qi

Poedrkf B tLA AT AR 0 B L G GBS bW 8 £ 2 Bl LB
w0 Aol 9o

HFe P EAT(WE)E Lo Lo oo Ly 2963 28 (Cr, Capnl, C) 0 40BI 100

FHII LT ENA FRE o 4DCrD P1OP D PadCodt 11 A 1> > P> Codtp

HB RFRIE R 4 DIPIPIL N E 1 DPIL

HA- O RGER S R R HER > ER DL HIPOIL

o
-
=
\ |

7l 6 w7 w8 ®9 # 10
] 6-10
Bl 6 ikfimt cnd 2R B 7 G55 € 2RO B8 F My MR B9 G Bt R
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5. $ P HRATFIRE 2

51. % ¢ W4 72

i_’éﬁ#ﬂ%&qiﬁﬁét‘ FEFHPE A R ERERGER 2 TR~
S A R A AT P IR S R A BTG RE > AR 2 H L Ra
BN A R BATIA L BB o - R ST L Ry
oo Havkah d AR AL e

52. % P il Sk

EFPHRATFIFEZ? > d WO FARFRLS BP IR DA G T
SBck & o7 0 AP E Y - B A Pareto I A AH o T A ’an S i
GPSIFF(Generalized Pareto-base Scale-Independent Fitness Function)** & < eyjg & ;2 ¢ > H

GPSIFF crilic ¥ = 4258 4o ¢
F(Y)=p-g+c (19)

53. AFFE# gL 3
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AT RP R T T - B AFEY > & 7 E H(selection) = fEFIRNAFRE
RE > B ”Z‘%“'J“fﬁv@‘g .
53.1. E#

A2 AT H G E - AV iE 4872 (binary tournament selection) o
532. % pe

BL P - BE R fiz ch fiziE (one-point random crossover)[10]F ¥ ac € 2 :s-ga:gc_;{ 1 g
A7 AT o 57 4 WA AR 0 Li, Zhang, Yin, % Wang N2 R

knowledge-based ¥ 2L fiei2[6][9] > A A2 P i i AR o

5.3.2.1. 4 BLH 2L feix (crossover at the location of the common node)

MTAPE - BN o T E Y R EPEB ARSI  BRR A R
% iE 4 ¢ §8 4 s E_V1(0,30,33,47,98,99) 17 2 V2(0,5,35,33,83,99) o i F U X P %%'_'fﬁ’{
MR EA S R AP eBE S 330 ru s AT EH 33§ IFH L feangh H A 4 ehd f*il—
V1(0,30,33,83,99) 17 2 V2(0,5,35,33,47,98,99) - 4] 11 #777 -

5.3.2.2. ipk :# H g% fe 2 (crossover at the location of the interconnected)

BTk V- SRR FE 0 A R G ajp e BE B ek 0 H R fein 2
boT oo B 0 2 R end iE4 4 RA B & V1(0,7,15,46,47,97,99)11 2 V2(0,5,35,33,83,99) -
ST L B g VL 5 }%ﬂt_ﬁvi‘l‘,h 151 V2 8.5 27 8 35 472 3 il 7 S - B 4o
SENL S V248 8150 A V2 3% 4(05,15,35338390) + fi-f ith e gkl B
e B A e e v1(o7 15,35,33,83,99) 12 2 V2(0,5,15,46,47,97,99) 4 [§] 12 7 o

5.3.2.3. 4piTeL ¥ 8L fe i (crossover at the location of the potential node)

BTk V- FEKDIFE P RN G A Bt 0 B A 2 AeT oo
Bk > * a4 d f8 4 W ¥ V1(0,7,26,46,47,98,99) 17 2 V2(0,5,35,33,83,99) o i E
PR A E R d MG ApTengE S 46 M & 350 Afrd o 0 g 46 3 ~ 8 35 £ B

5 m4E 846 @ A= 3T i 4 4 48(0,7,26,46,35,47,98,99) 2 (0,5,35,46,33,83,99) »
Bk H i Ap i B A 4 n 3 R ik % V1(0,7,26,46,35,33,83,99) 11 %
V2(0,5,35,46,47,98,99) ° 4= @] 13 #71 °

533. 2 ¥

REIEWER - BRI Y A el B B o R Fn B O T N OEEfE
L BTl RERE O BEET I - TRIRED KT o
[50[6192/95]94 95196 1 wlo0 80181 2193 94195 96 o7 optow| - [80[]o2]93] 4] lowtao GO 92]55[ ¢ 5 o6 lamion|  BOSH 92]93 94 s 96 07 elow |SOIONI 92,5045 96 97,9819
[80[81] 2] sat 77551 36 7 ¢ [69] 801 2] e 55 6 87 #x 89| [80[gl|52 M& 6 87|85 9] 8081 2] 837755 86 z w[89] [80JR1] k2 katorTHs w6 7 s [89]L 8081 |82 e RS 86 87 89
{70{71{ 72|73 s | 777 79|70l 1| 72| 7 [l 7 s o] 0[] 7|7 s s| 7 78 WE’ﬂ 7|73l is\ae| | 7elaw]  [70l7n] 72| 7 [Tl S ] 7 s 0| 20l 72, 75 7475136 7 s 79
60161 52/ 54165166167/ 5369 60161 52 s 65[6 67/ s 6] o]l 23 6566 7 s 60 gl s el s o] |60l 2. oalss[a] 7 60160 52/ s e 7/ s 69
50[51/52] 5154155156/ 57/ 581 591 5051 5253 [S4155[56] 57158 59| | 50[51] 5255 54155565755 59] s0[51 5255 [54[55156] 55 58 /50| |s0[51 (52 53(54]55)56] 57 58 |59] 50|51 52 5354|585 5515F 58|59]
AD[41| 42 45| 44|45 46547 [ 48| 49) 40|41 42|43 |44 ﬂ‘._ﬁM‘IT ARB|49] [40[41 |42 45| 44|45 | 46147 (48 49) 40|41 | 42|43 | 44|45 | 46147 (48 49| (40|41 (42|43 |44 45| 4647 48 4 '-]"U 4| '7'-1"-411 -‘IS ."1“ 'J
301341321 33754135 36 5013839] 3131 32133-5735 36 S0138[30) |30]31)32/35+34135 5680|3839 0| 31| 3233134135 s SB8[39] | 30311321 F31341351 e[| 38J30 0 31 132 e
2020122128124 5 26121 251 29| 0 21[22103134] 3126 27 25129] |20 [2[2DIBBIaA 25126127 2% 29| 20 [A[2RlBIaN] 5 26|27 28 20| |20 20| ERIB[2Al 3 627 28 29| 20 0| 2a(osmd] 5 m zr % m
_I_IJ ﬁ:lﬁ:l?:lﬁ:l‘}__llnl 5|16/17]18]19] _]I]Ik\Iﬁ 171819 1|1|]§\|r\ 17]18)19] [10[0n{a2{1314] 15| 16417 ] 18] 19] 10 ua|nau3[ua] 15 15171819
G—l—i—'H—JﬁTEU&-—L-—E-—S--#-—-f:Til'JH"‘!‘"‘““""—Sﬁ‘!huiH-—b—LHt-%---ﬁE?R'J OB 1T | 8] 9] G617 819

(@)= ~4 ¢ 8EA; (b)F A% HE (@ A2 HME  (b)F %7 BRI @2 %4 MET  (bD)F ~47¢ WA
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Abstract—This paper describes a multi-objective evolutionary
approach for solving multi-objective 3D deployment problems in
differentiated wireless sensor networks (WSNs). WSN is a
wireless network consisting of spatially distributed autonomous
sensors to monitor physical or environmental -conditions.
Deciding the location of sensor to be deployed on a terrain with
the consideration of different criteria is an important issue for
the design of wireless sensor network. A multi-objective genetic
algorithm is proposed to solve 3D differentiated WSN
deployment problems with the objectives of the coverage of
sensors, satisfaction of detection levels, and energy conservation.
The preliminary experimental results demonstrated that the
proposed approach is suitable for solving 3D deployment
problems of WSNs with different requirements.

Keywords-  Wireless  sensor  network,  multi-objective
optimization, genetic algorithms
I INTRODUCTION

A wireless sensor network (WSN) is a wireless network
consisting of spatially distributed autonomous sensors to
monitor physical or environmental conditions. WSN constitute
a large number of applications related to national security,
surveillance, military, health care, and home automation.
Sensor nodes of a WSN are deployed over a region to sense
events on geographical areas and transmit collected data to a
sink node for further operations. Depending on the
requirements, sensors could be deployed in diverse scenarios
[4,9]. Therefore, deciding the location of sensor to be deployed
on a terrain is an important issue. Several different objectives
should be considered and fulfilled in the design phase of WSNss,
such as the coverage and accuracy, reaction time and
survivability of the sensor network. However, these objectives
may be in conflict with one another and of different importance
to mission planners [10].

Coverage is one of the fundamental issue in the deployment
of WSNs. WSNs need to maintain sufficient coverage quality
to capture the timely changing targets [13]. For enhanced
coverage, a large number of sensors are typically deployed in
the sensor field and, if the coverage areas of multiple sensors
overlap, they may all report a target in their respective zones

[3].

Differentiated sensor network deployment, which considers
the satisfaction of detection levels in different geographical
characteristics, is also an important issue [1]. In many real-
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world WSN applications, such as underwater sensor
deployment, the supervised area may require different
detection levels, depending on the event's location. Therefore,
the sensing requirements are not uniformly distributed within
the area. In other words, all the points of the area under
monitoring are considered with the different importance. As a
result, the deployment strategy of WSN should take into
consideration the geographical characteristics of the monitored
events.

Energy conservation for the lifetime of sensors is another
rising issue [5]. Due to the limited energy resource in each
sensor node, we need to utilize the sensors in an efficient
manner so as to increase the lifetime of the network. There are
two different approaches to the problem of conserving energy
in sensor networks. The first approach is to plan a schedule of
active sensors that enables other sensors to go into a sleep
mode. The second approach is adjusting the sensing range of
sensors for energy conservation. In this paper, we focus on
adjusting the sensing range of each sensor in order to reduce
the overlaps among sensing ranges while keep the detection
ability above a predefined detection level.

In this paper, a 3D differentiated WSN deployment
considering coverage, satisfaction of detection levels, and
energy conservation is formulated into a multi-objective
optimization problem. We represent the sensor field as a three-
dimensional grid of points. Three objectives are to be
optimized: maximizing coverage of sensors, satisfying the
required probability of detection level, and minimizing the
detection power by adjustable sensing range. To solve the
aforementioned multi-objective optimization problem, we
developed a multi-objective genetic algorithm (MOGA)
framework. The proposed approach can obtain a set of non-
dominated solutions for mission planner to deploy sensor nodes
considering different requirements of applications.

II.  RELATED WORK

A.  WSN Deployment Problem

Coverage issue is one of the most important tasks in WSN.
The ultimate goal is to have each location in the physical space
of interest within the sensing range of at least one sensor.
However, due to the number of sensors is limited, complete
coverage cannot be guaranteed. Therefore, many approaches
are proposed to deal with the 2D coverage problem. Oh et al.
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[10] proposed a genetic algorithm for the optimal selection of
the number and type of sensors available from a suite of
sensors. Dhawan et al. [7] proposed a novel searching
algorithm based on improved NSGA-II to select an optimal
cover set. It maintains the full coverage in large sensor
networks by a small number of sensor nodes. For a practical
approach, a probabilistic sensor detection model is adopted in
combination with the detection error range and coverage
threshold. Recently, Oktug et al. [9] proposed an approach to
solve coverage problem by simulating sensor deployment
strategies on a 3D terrain model and to find answers to
questions that how many sensors are needed to cover a
specified 3D terrain at a specified coverage percentage.

Different applications require different degrees of sensing
coverage. While some applications may require a complete
coverage in a region, others may only need a high percentage
of coverage. Such WSN is called differentiated WSN [1]. Take
underwater sensor deployment [2] as an example, sensor field
of underwater is characterized by the geographical irregularity
of the sensed events because some area may be inaccessible or
the event area may not be uniformly distributed. To efficiently
monitor such area with differentiated detection levels,
fulfillment of detection levels in different area is the major
concerns instead of maximizing the coverage of sensors. In
[11], three density control protocols by considering the tradeoff
between energy usage and coverage was developed to select
sensors. Few studies have considered the case of geographical
irregularity of the sensed event. Aitsaadi et al. [1] proposed a
probabilistic event detection model. In this model, each grid
point has a required minimum probability detection threshold.
A tabu Search method is proposed to solve this differentiated
WSN deployment problem.

In recent years, utilizing limited energy efficiently in a
wireless sensor network has become an important issue. In [8],
the problem is to prolong maximum network lifetime when all
grid points are covered and sensor energy resources are
constrained. In [4], they proposed a method to extend the
network lifetime is to divide the sensors into a number of sets,
such that only one set is responsible for monitoring the targets,
and all other sensors are in sleep mode. In the sleep mode, it
consumes the least energy. If all the sensor nodes operate in the
active mode simultaneously, an excessive amount of energy
will be wasted and the data collected will be redundant. In [12],
two new energy-efficient models of different sensing ranges
are proposed. They used scheduling models with adjustable
sensing ranges of each sensor in order to reduce the overlaps
among detection ranges.

B.  Multi-objective Evolutionary Optimization

Assume the multi-objective functions are to be minimized.
Mathematically, MOOPs can be represented as the following
vector mathematical programming problems

Minimize F(Y) = {F,(Y),F,(Y),...,F(Y)}. (1)
where Y denotes a solution and f(Y) is generally a nonlinear
objective function. Pareto dominance relationship and some
related terminologies are introduced below. When the

following inequalities hold between two solutions Y; and Y, Y,
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is a non-dominated solution and is said to dominate Y; (Y,
=7, ])Z

Vi E(X) > F(Y) AY (%) > F(¥). @

When the following inequality hold between two solutions Y;
and Y5, Y, is said to weakly dominate Y; (Y>> Y)):

Vi F(Y) > F(Y). G)

A feasible solution Y * is said to be a Pareto-optimal solution if
and only if there does not exist a feasible solution Y where Y
dominates Y *, and the corresponding vector of Pareto-optimal
solutions is called Pareto-optimal front.

By making use of Pareto dominance relationship, multi-
objective evolutionary algorithms (MOEAs) are capable of
performing the fitness assignment of multiple objectives
without using relative preferences of multiple objectives. Thus,
all the objective functions can be optimized simultaneously. As
a result, MOEA seems to be an alternative approach to solving
production planning and inspection planning problems on the
assumption that no prior domain knowledge is available [6].

III. PROBLEM STATEMENT

A. Notations

In order to formulate problems, the following notations are
introduced:

e j:sensorindex,i=123,... N

j : grid point index, j = 1,2,3,...,M.

k : sensing range index, k = 1,2,3,...,K.

B. Environment

We assume that N sensors 53,55, ..., sy are deployed to cover
the sensor field. Let the sensor field T consist of n,, n,, and n,
grid points p;p,..., py in the x, y, and z dimensions,
respectively [3]. Each sensor has an initial sensor energy E and
has the capability to adjust its sensor range. Sensing range
options are r,r,, ..., g, corresponding to energy consumptions
of e, e, ..., ex and detection error ranges f,/5, ..., fx (fi < 1) [4].
We assume that each grid point p; in sensor field is associated a
required minimum probability detection level, denoted #(p;).

C. Mathematical Formation of 3D Deployment Problem

1) Maximization of Coverage

In many WSN applications, the main task is the
surveillance of certain geographical areas [9]. Target location
can be simplified considerably if the sensors are placed in such
a way that every grid point in the sensor field is covered by
sensors. In this way, the sensors reporting a target at time ¢
uniquely identifies the grid location for the target at time ¢. The
trajectory of a moving target can also be easily determined in
this fashion from time series data [3].

Assume that sensor s, is deployed at grid point. For any grid
point p;, the Euclidean distance between sensor s; and grid
point p; is denoted as

Authorized licensed use limited to: Chung Hwa University. Downloaded on November 3, 2009 at 08:10 from IEEE Xplore. Restrictions apply.



d(s[’pj):\/(xi_xj)2+(yi_yj)2+(Z[_Zj)2 (4)
where x; x;, ¥, ¥, z; and z; are coordinate location values. The
way to compute the sensor and target coverage relationship is
to consider that a sensor covers a target if the Euclidean
distance between the sensor and target is no greater than a
predefined sensing range. The following equation shows a
binary coverage model expressing the coverage c,(s; p;) of a
grid point p; by sensor s;.

1, if d(spp_,-)< 7(s;)

Cb(si’pj):{o’ (5)

otherwise

, Where ry(s;) is the sensing range of the sensor s;.
The coverage rate optimization problem F; can be defined

by

zcb(p/)

gz

M

Max. F = (6)
, Where c¢,(p;) is the coverage of all sensors at grid point p; by
the Equation (5). This objective is to be maximized.

2) Maximization of Differentiated Detection Levels

Considering differentiated detection levels, assumed that
each grid point p; in sensor field T is associated a required
minimum detection level, denoted #(p;). A terrain may have
different required detection levels, as illustrated in Figure 1.
Ideally, a good deployment for differentiated WSN should
satisfy the following condition: for each p; in 7, the measured
detection probability of p; should be greater than or equal to

Upy [1]-

Figure 1. Terrain with different required detection
levels: decreasing linear, normal, Poisson, and
exponential distributions.

In literature, a 0/1 binary detection model for grid points is
often used if a grid is covered by a sensor. However, in reality,
the detection of events may be influence by weather or
obstacles. In such cases, the 0/1 binary detection model has
limitations due to the imprecise detection probability, which
plays a significant role in sensor detection [7]. Hence, a
detection error range is introduced to measure the uncertainty

189

of sensor detection [7]. Each grid point covered by sensors has
different detection probabilities according to their realistic
conditions, such as distance to sensors or weather conditions. If
a gird point in sensor field T is covered only by one sensor and
far from other sensors, it may have a low detection probability.
In this case, it is necessary to reallocate sensors, so that the
detection area of sensors can be overlapped to compensate for
the low detection probability of those grid points that are far
from any sensor.

In this paper, we adopted a probabilistic detection model
for sensor deployment [1]. Assume that event detection
probability of a sensor diminishes as its distance to the sensed
point increases. A probabilistic detection model of sensors is
expressed as

0, i i)+ fils)<d(s.p,)

if 1) fils,) <dls,p, )< nfs,) + £i5,)
i r(s.)-fifs)2ds.p,)

, where a = d(s; py) - (ri(s) - (), A and B are parameters that
measure the detection probabilities when an object is within a
certain distance from the sensor, and f(s;) is the error ranges of
the sensor s;. Each sensor s; has a detection probability c,(s; p;)
at grid point p;. A grid point p; might be covered by more than
one detection range of different sensors [8]. When a detection
area is overlapped by multiple sensors, the closer are the
sensors to each other, the higher is the detection probability of
the grid points [7]. The conjunctive detection probability of all
sensors at grid point p; is given by

Jal

(M

)50, = e
1,

)=1-(1=c,5.p, )
c,p;) 1;[( c,(5,p;) ®)

The optimization of the satisfaction required probability of
detection level F, is expressed by:

M
> DP(p,)
Max. F,=1r——

D tp,)

I=

ip,) if ¢,p,)=1(p; )20

0 otherwise

)

,where DP(p,) —{
This objective is to be maximized.

3) Minimization of Energy Consumption

In terms of energy consumption, we only consider the
energy used in sensing, but not including the power consumed
by radio communication and computation. The sensing ranges
of a sensor determine the energy consumed by the sensor [4].
We attempt to make the detection regions of sensors not
overlapped, thereby minimizing the wasted overlap area and
covering more grid points with a small number of sensors. We
apply an energy model in our evaluation, in which the power
consumption is proportional to the square of the sensing range
7¢[11]. The energy consumption model is expressed as follows:

ek(si):,uxrk(si)zﬂ (10)
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where u is an energy consumption parameter. The optimization
of the detection power minimization with adjustable sensing
range F; can be formulated as

Zek(si)

i=l
N

z emax (Si )
i=1

, where e,,,.(s;) is the maximum detection range of each sensor.
This objective is to be minimized.

Min. F,=

)

IV. MULTI-OBJECTIVE GENETIC ALGORITHM

A. Chromosome Representation

A chromosome has gene information for solving the
problem in MOGA. Each chromosome has fixed gene size,
which is determined by the number of sensors in the WSN.
Each gene has a x, y, and z coordinate location and a sensing
range. The ranges of each gene of coordinate location are [0,
n,, [0, n,], and [0, n.] in the x, y, and z dimensions. Hence
these sensors will have coordinate values to denote their
location. Each gene of sensing range is one of r,7,...,
which represent the detection ability of the sensor.

r'K,

B. Fitness Assignment

We use a generalized Pareto-based scale-independent
fitness function (GPSIFF) considering the quantitative fitness
values in Pareto space for both dominated and non-dominated
individuals. GPSIFF makes the best use of Pareto dominance
relationship to evaluate individuals using a single measure of
performance. The used GPSIFF is briefly described below. Let
the fitness value of an individual Y be a tournament-like score
obtained from all participant individuals by the following
function:

FY)=p-g+c (12)

, where p is the number of individuals which can be dominated
by the individual ¥, and g is the number of individuals which
can dominate the individual Y in the objective space. Generally,
a constant ¢ can be optionally added in the fitness function to
make fitness values positive. ¢ is usually set to the number of
all participant individuals.

C. Genetic Operators

The genetic operators used in the proposed approach are
widely used in literature. The selection operator uses a binary
tournament selection without replacement, which works as
follows. Choose two individuals randomly from the population
and copy the better individual into the intermediate population.

Crossover is a recombination process in which genes from
two selected parents are recombined to generate offspring
chromosomes. The uniform crossover is used in MOGA. In a
uniform crossover operation, first requires a randomly created
binary string, called crossover mask. The genes of offspring
chromosomes are swapped from the parents according to this
mask. If the crossover mask bit is 0, then the characters in the
corresponding string position are not swapped and if the
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crossover mask bit is 1, than the mating string characters at that
position are swapped.

A simple mutation operator is used to alter genes. For each
gene, randomly generate a real value from the range [0, 1]. If
the value is smaller than the mutation probability pm, replace
its index with a randomly generated integer among its possible
values.

D. Procedure of MOGA
The procedure of MOGA is written as follows:

Input: population size N,,, recombination probability p.,
mutation probability p,, the number of maximum generations
Gmax-

Output: The optimum solutions ever found in P.

Step 1: Initialization Randomly generate an initial population
P of N, individuals.

Step 2: Evaluation For each individual in the population,
compute all objective function values F;, F,, and Fj.

Step 3: Fitness assignment Assign each individual a fitness
value by using GPSIFF.

Step 4: Selection Select N, individuals from the population
to form a new population using the binary tournament selection.

Step 5: Recombination Perform the uniform crossover
operation with a recombination probability p..

Step 6: Mutation Apply the mutation operator to each gene in
the individuals with a mutation probability p,,.

Step 7: Termination test If a stopping condition is satisfied,
stop the algorithm. Otherwise, go to Step 2.

V. RESULT AND DISCUSSION

In this section, we present some results of simulation
experiments as the performance evaluation of our proposed
algorithm.

A.  Simulation Environment and Parameters

A 3D WSN deployment benchmark generator for WSN
environment is designed to generate different scale of sensor
fields with different models of detection probability levels.

In this paper, a sensor field with 50x50x50 grid points is
used. The same terrain with four different required minimum
detection probability levels are illustrated as four different
benchmarks. The detection probability levels considered in this
paper are decreasing linear, normal, Poisson, and exponential
distributions, respectively. Figure 2 illustrates a terrain with
linear decreasing levels. For the sensors of WSN, we assume
each sensor has five adjustable sensing ranges 6, 8, 10, 12, 14,
and the detection error ranges are half of the sensing range of
each sensor. The power consumption parameter u is 1. The
probabilistic detection model parameter £ is 0.5 and the
detection radio wave parameter 4 is 0.5.

The parameter settings of MOGA are listed as follows:
population size N,,,=200, recombination probability p.~0.9,
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mutation probability p,=0.01, the number of maximum
generations G,,,,=500 and 1000. Thirty independent runs are
conducted for each problem.

To identify the difficulties of problems and evaluate the
performance of our algorithm, the number of sensor nodes to
be deployed is limited to 20 and 50, respectively. Figures 3-7
show the results of deployment using 20 sensors. Figures 8-12
show the results of deployment using 50 sensors.

Figures 3,4,8,9 depict the box plots of obtained non-
dominated solutions and the maximum and minimum objective
values obtained in different objective functions, using 20 and
50 sensors. Figures 5-7 and 10-12 depict the convergence
speed of a typical run in solving the 3D WSN deployment
problem with four different required minimum detection
probability levels, using 20 and 50 sensor nodes. The results
indicate that different detection levels pose different difficulties
for MOGA. The problems with normal and Poisson detection
levels are more difficult to find a good deployment plan than
problems with decreasing linear and exponential detection
levels using the same number of sensors. The number of
sensors required for a terrain with normal and Poisson
detection levels should be bigger than the same terrain with
decreasing linear and exponential detection levels.

50

= 0 40
2 ;

. 20
Y 10 10 X

Figure 2. A terrain with decreasing linear detection

levels.
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Figure 3. Box plots of non-dominated solutions for
solving the 3D deployment problem with linear and
exponential detection levels, using 20 sensors.
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Figure 4. Box plots of non-dominated solutions for
solving the 3D deployment problem with normal and
Poisson detection levels, using 20 sensors.
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Figure 5. The mean objective value F; of non-
dominated solutions in each generation, for four
problems with different detection levels, using 20
sensors.
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dominated solutions in each generation, for four
problems with different detection levels, using 20
Sensors.
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Figure 7. The mean objective value F; of non-
dominated solutions in each generation, for four
problems with different required detection levels, using
20 sensors.
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Figure 9. Box plots of non-dominated solutions for
solving the 3D deployment problem with normal and
Poisson detection levels, using 50 sensors.
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Figure 10. The mean objective value F; of non-
dominated solutions in each generation, for four
problems with different detection levels, using 50
sensors.
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Figure 11. The mean objective value F, of non-
dominated solutions in each generation, for four
problems with different detection levels, using 50
sensors.
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Figure 12. The mean objective value F, of non-
dominated solutions in each generation, for four
problems with different detection levels, using 20
sensors.

VI. CONCLUSION

In this paper, a multi-objective evolutionary approach is
proposed to solve 3D differentiated WSN deployment
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problems. Experimental results demonstrated MOGA is
capable of optimizing coverage, satisfaction of detection levels,
and energy conservation. Moreover, MOGA can provide
mission planers a set of non-dominated solutions for
deployment of sensor nodes. The results also indicate that some
problems with unusual detection levels requirements may
require more sensor nodes for MOGA than those of problems
with usual detection levels requirements. Our future work will
develop specialized techniques for 3D WSN deployment
problems with unusual detection levels.
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Abstract— Economic dispatch is to determine an efficient, low-
cost and reliable operation of a power system by dispatching the
available electricity generation resources to supply the demands.
Basically, the primary objective of economic dispatch is to
minimize the total cost of generation while satisfying the
operational constraints of the available generation resources.
Recently, due to environmental awareness and environmental
policies, the design and operation of electric utilities are forced to
restructure their power system systems to account for their
emission impacts. In this paper, a combined heat and power
environmental/economic dispatch (CHPEED) problem in a
combined heat and power systems is formulated. Three
objectives: fuel cost, emission, power overhead and heat overhead
are considered in CHPEED problems. A multi-objective
evolutionary algorithm with a modified schemata-based local
search operator is proposed to solve the CHPEED problems.

Keywords-Cogeneration, Heat and  power  dispatch,
Economic/environmental dispatch, multi-objective optimization,
genetic algorithms

. INTRODUCTION

Economic dispatch (ED) is to determine an efficient, low-
cost and reliable operation of a power system by dispatching
the available electricity generation resources to supply the
demands in such a manner that the cost of operation is
minimized while all operational constraints are satisfied.
However, due to increasing concerns on environmental issues
and the implementation of the Clean Air Act Amendments,
environmental constraints have topped the list of utility
management concerns. This issue that has attracted much
attention is pollution minimization due to the pressing public
demand for clean air. Therefore, operating power systems at
absolute minimum fuel cost can no longer be the only criterion
for dispatching electric power nowadays [1].

In the past decades, increasing demand for power and heat
resulted in the existence of cogeneration units [2].
Cogeneration is also referred to as a combined heat and power
(CHP) system. It produces electricity and useful heat
simultaneously. Some industrial processes have large heat
requirements, either as process steam or piped hot fluid, as well
as large power demands [3]. Traditional, the primary objective
of combined heat and power economic dispatch (CHPED) is
similar to economic dispatch problems. The objective of

CHPED is to find the optimal point of power and heat
generation with minimum fuel cost such that both heat and
power demands are met while the combined heat and power
units are operated in a bounded heat versus power plane. The
mutual dependencies of heat and power generation introduce a
complication in the integration of cogeneration units into the
power system economic dispatch [2].

The generation of power and heat from fossil fuel releases
several contaminants, such as Sulfur Oxides, Nitrogen Oxides
and Carbon Dioxide, into the atmosphere [4]. However, the
increasing public awareness of the environmental protection
has forced the utilities to modify their design or operational
strategies to reduce pollution and environmental emissions of
the thermal power plants [5]. Therefore, it becomes very
complicated when dealing with increasingly complex dispatch
problems for conventional techniques.

As a result, economic/environmental dispatch is a multi-
objective problem with conflicting objectives because pollution
minimization is conflicting with minimum cost of generation
[1]. In this paper, a combined heat and power
environmental/economic  dispatch (CHPEED) problem,
considering the fuel cost, emission, power overhead and heat
overhead, is formulated. A multi-objective evolutionary
approach is proposed in this paper to optimize these four
objectives simultaneously.

Il. RELATED WORK

A.  Environmental/Economic Dispatch Problem

Environmental issue has become one of the most important
factors in environmental/economic dispatch (EED) problem.
Emissions are taken into consideration except fuel cost for it is
more and more important to save environment from the
pollutants caused by power plants. In [6], it treats the emission
as a constraint with a permissible limit. This formulation,
however, has a severe difficulty in getting the trade-off
relations between cost and emission [5]. In [7-10], the emission
is treated as another objective in addition to usual cost
objective. However, the EED problem was converted to a
single objective problem either by linear combination of both
objectives or by considering one objective at a time for
optimization. Unfortunately, this approach requires multiple



runs as many times as the number of desired Pareto-optimal

solutions and tends to find weakly non-dominated solutions [5].

In [11-13], both fuel cost and emission are taken into
consideration simultaneously. The approach proposed in [11-
13] handles both fuel cost and emission simultaneously as
competing objectives. Stochastic search and fuzzy-based multi-
objective optimization techniques have been proposed for the
EED problem. However, the algorithms do not provide a
systematic framework for directing the search towards Pareto-
optimal front and the extension of these techniques to include
more objectives is a very involved question. In addition, these
techniques are computationally involved and time-consuming
[5]. Genetic algorithm based multi-objective optimization
techniques have been adopted in [14, 15] where a set of good
non-dominated solutions can be obtained from each evolution
generation. However, GA-based techniques suffer from
premature convergence and the technique presented in [14] is
computationally involved due to ranking process during the
fitness assignment procedure. In [5], a new multi-objective
particle swarm optimization (MOPSQ) technique for
environmental/economic dispatch (EED) problem is proposed.
The proposed MOPSO technique evolves a multi-objective
version of PSO by proposing redefinition of global best and
local best individuals in multi-objective optimization domain.

When some industrial processes have large heat
requirements, the heat load becomes as important as power
load. As a result, the combined heat and power economic
dispatch (CHPED) problem of a system has been raised to
determine the unit heat and power production, so that the
system production cost is minimized while the heat and power
demands and other constraints are met. In [2], a self adaptive
real-coded genetic algorithm (SARGA) is implemented to
solve the problem. However, environmental emission is not
considered in this paper.

Nevertheless, these EED and CHPED problems only
considered a fixed number of power/cogeneration units or heat-
alone units while optimizing fuel costs and emissions. None of
them consider environmental/economic dispatch with a
variable number of units.

B.  Multi-objective Evolutionary Optimization

Assume the multi-objective functions are to be minimized.
Mathematically, MOOPs can be represented as the following
vector mathematical programming problems

FY) = {R) 5(Y), ... £} )

where Y denotes a solution and f;(Y) is generally a nonlinear
objective function. Pareto dominance relationship and some
related terminologies are introduced below. When the
following inequalities hold between two solutions ¥; and Y5, Y
is a non-dominated solution and is said to dominate Y; (Y,
>=7Y)):

Vi F(L) > F(5) AF : F(%) > F(1,). @

When the following inequality hold between two solutions Y;
and Y5, Y is said to weakly dominate Y; (Y, > Y;):

Minimize

Vi E(%) 2 F(Y,). @

A feasible solution Y * is said to be a Pareto-optimal solution if
and only if there does not exist a feasible solution Y where Y
dominates Y *, and the corresponding vector of Pareto-optimal
solutions is called Pareto-optimal front.

By making use of Pareto dominance relationship, multi-
objective evolutionary algorithms (MOEAs) are capable of
performing the fitness assignment of multiple objectives
without using relative preferences of multiple objectives. Thus,
all the objective functions can be optimized simultaneously. As
a result, MOEA seems to be an alternative approach to solving
production planning and inspection planning problems on the
assumption that no prior domain knowledge is available [13].

I1l.  PROBLEM STATEMENT

The CHPEED problem is to minimize four competing
objective functions, fuel cost, emission, power overhead and
heat overhead, while satisfying several equality and inequality
constraints. The CHPEED problem is formulated as follows.

A. Problem objectives

1) Minimization of fuel cost
The total US$/h fuel cost F,,, can be expressed as

Ny N, Ny,
Fr=>.C(P)+>.C(0,,H)+>.C(T,) ®
i=1 j=1 k=1

, where C;, C; and C, are the unit production costs of the
conventional power, cogeneration and heat-alone units,
respectively; P; and O; are power generations of conventional
power and cogeneration units; H; and 7} are heat generation of
cogeneration and heat-alone units.

2) Minimization of emission
Nh

NI’ N,
E= ZEi(B) + ZEj(Oj,Hj) + ZE,{(T,{) )
i=1 j=1 k=1

, Where E;, E; and E; are the emission (kg/h) caused by the

conventional power, cogeneration and heat-alone units,
respectively.

E(P)=a+fR+ 1’ (©)

Ej (Oj) = /UOJ' (N

E () =T, (1o, + o, + Hco) (8)

, Where a, B and vy represent to the emission function
coefficients of the conventional power unit.

3) Minimization of power overhead and heat overhead



N[’ Nr
0,=3B+Y.0,-F, ®
i=1 =
N, N,
0,=>H,+>T,-H, (10)
= k=1

, Where H, and P, are heat and power demands; N,, N. and N,
denote the number of conventional power, cogeneration and
heat-alone units, respectively.

B. Problem constraints

N, N,
YP+>0,>P, (11)
i=1 j=1
NC N/r
YH,+>YT,>H, (12)
j=1 k=1
lem S PI S Bmm1 1 :1’ "Np (13)

O™(H,)<0,<O™(H,), j=L..,N, @4

HI™(0)<H,<HP(0), j=l...N. (9
TkminSTk S]7kmaxl kzl”"’Nh (16)

with
Ci (Pz) =a,+ pr + cppiz (17

2 2
C;(0,,H,))=a,+b.0,+c.0;+d.H,+eH;+ fO0.H, (18)

C.(T,)=a,+bT, + CthZ (19)

, where P and P/ are the minimum and maximum power
generation limits of the conventional units; O;"" and O,"" are
the minimum and maximum power generation limits of the
cogeneration units; H™" and H"* are the minimum and
maximum heat generation limits of the cogeneration units; 7,
and 7, are the minimum and maximum heat generation
limits of the heat-alone units; a,, b, and ¢, are fuel cost
coefficients of the conventional power unit ; a., b, c., d, , e.
and f; are fuel cost coefficients of the cogeneration unit; a,, b,
and ¢, are fuel cost coefficients of the heat-alone unit. The
value of fuel cost coefficients are given in Table I.

TABLE I. GENERATOR FUEL COST COEFFICIENTS.

coefficients - unit -
Conventional power Cogeneration Heat-alone

a 451.32513 2650 0
b 46.15916 145 23.4T,;
c 0.10587 0.0345 0
d 42
e 0.03
f 0.031

IV. MULTI-OBJECTIVE GENETIC ALGORITHM

A. Chromosome Representation

A chromosome has gene information for solving the
problem in MOGA. Each chromosome has dynamic gene size,
which is determined by the max number of all units in
combined heat and power (CHP) systems. The first gene is
numbers of conventional power unit and the second one stands
for numbers of cogeneration, and the third one represents
numbers of heat-alone unit. The remains of the genes are the
dispatch value of all units.

B. Fitness Assignment

We use a generalized Pareto-based scale-independent
fitness function (GPSIFF) considering the quantitative fitness
values in Pareto space for both dominated and non-dominated
individuals. GPSIFF makes the best use of Pareto dominance
relationship to evaluate individuals using a single measure of
performance. The used GPSIFF is briefly described below. Let
the fitness value of an individual Y be a tournament-like score
obtained from all participant individuals by the following
function:

FY)=p—-qg+c (20)

, where p is the number of individuals which can be dominated
by the individual Y, and ¢ is the number of individuals which
can dominate the individual Y in the objective space. Generally,
a constant ¢ can be optionally added in the fitness function to
make fitness values positive. ¢ is usually set to the number of
all participant individuals.

C. Genetic Operators

The genetic operators used in the proposed approach are
widely used in literature. The selection operator uses a binary
tournament selection without replacement, which works as
follows. Choose two individuals randomly from the population
and copy the better individual into the intermediate population.

Crossover is a recombination process in which genes from
two selected parents are recombined to generate offspring



chromosomes. The order crossover (OX) in GA literature is
used in our approach.

A simple mutation operator is used to alter genes. For each
gene, randomly generate a real value from their given range. If
the value is smaller than the mutation probability p,, replace its
index with a randomly generated integer among its possible
values. A modified schemata-guided local search strategy
based on our previous work [17] is applied in our algorithm.

D. Procedure of MOGA
The procedure of MOGA is written as follows:

Input: population size N,,, recombination probability p.,
mutation probability p,, the number of maximum generations
Gmax-

Output: The optimum solutions ever found in P.

Step 1: Initialization Randomly generate an initial population
P of N, individuals.

Step 2: Evaluation For each individual in the population,
compute all objective function values F;, F,, and F.

Step 3: Fitness assignment Assign each individual a fitness
value by using GPSIFF.

Step 4: Selection Select N,,, individuals from the population

to form a new population using the binary tournament selection.

Step 5: Recombination Perform the order crossover operation
with a recombination probability p..

Step 6: Mutation Apply the mutation operator to each gene in
the individuals with a mutation probability p,,..

Step 7: Local Search The current population is classified into
QO species by the best solutions in each objective. For each
species, compute the locations of its similarity and dissimilarity
genes. Hereafter, the locations of its dissimilarity genes in the
selected solutions are perturbed to new solutions. If the new
solutions are non-dominated solutions, the selected solutions
are replaced.

Step 7: Termination test If a stopping condition is satisfied,
stop the algorithm. Otherwise, go to Step 2.

V. RESULTS AND DISCUSSIONS

A.  Simulation Environment and Parameter Settings

This power system considers a type of conventional power
unit, cogeneration unit and heat-alone unit, respectively. The
power generation limits of the conventional power unit are 0
and 150 MW and heat generation limits of heat-alone units are
0 and 2695.2 MWy, The feasible operating regions of the
cogeneration unit are given in figure 1. The value of emission
coefficients a, § and y are given as 13.85932, 0.32767 and
0.00419, respectively. The emission factors of heat-alone units
are obtained from the average heat generation from residential

boilers in urban areas, with an equivalent fuel mix as input [16].

The emission factors uyo., #co: and pco are given as 0.2
kg/MW, 0.27 kg/MW and 0.04 kg/MW, respectively.

The feasible operating regions of the cogeneration unit
from Figure 1 can be expressed as inequality constraints as
follows:

1.781914894H - 0 -105.74468090 <0 (21)

0.177777778H+0O-247.0<0 (22)
-0.169847328H-0+98.8<0 (23)
247‘\\
s
=
|
e 81:\;\7\ ‘
| \
104.8 180
Heat(MWth)

Figure 1. Feasible operating regions of cogeneration unit.

Based on the given environment and constraints, three
benchmark problems “demand (200, 115)”, “demand (700,
615)” and “demand (2000, 1115)” are designed to validate our
approach. The notation “demand (P, H)” represents that the
power demand is P and the heat demand is H.

The parameter settings of our MOGA are listed as follows:
population size N,,,=50, recombination probability p.=0.9,
mutation probability p,=0.01, the number of maximum
generations G,,,,=100. 0=3 and quarter population are selected
for our local search operator. Thirty independent runs are
conducted for each problem.

Figures 2-4 shows the distributions of non-dominated
solutions in four objectives by means of boxplot. The results
indicate that the proposed approach is capable of obtaining a
set of wide-spread and non-dominated solutions.
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Figure 2. Boxplot of non-dominated solutions in solving “demand
(200,115)” problem.
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Figure 3. Boxplot of non-dominated solutions in solving “demand
(700,615)” problem.
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Figure 4. Boxplot of non-dominated solutions in solving “demand
(2000,1115)” problem.

VI. CONCLUSION

In this paper, a multi-objective evolutionary approach is
proposed to solve the combined heat and power
environmental/economic dispatch problem. The problem is
formulated as multi-objective optimization problem with
competing economic and environmental  objectives.
Experimental results demonstrated the proposed method is
capable of optimizing fuel cost, emission, power overhead and
heat overhead simultaneously. Moreover, the proposed
approach can provide decision makers a set of non-dominated
solutions to choose a suitable dispatch plan.

ACKNOWLEDGMENT

This work was supported by the National Science Council of
Taiwan, R.O.C. under Contract NSC-97-2221-E-216-037, and
Chung-Hua University under Contract CHU-97-2221-E-216-
037.

(1]

[2]

[3]

(4]
[5]

(6]

(7

(8]

[]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

L. Xuebin, "Study of multi-objective optimization and multi-attribute
decision-making for economic and environmental power dispatch,"
Electric Power Systems Research, vol. 79, pp. 789-795, 2009.

P. Subbaraj, R. Rengaraj, and S. Salivahanan, "Enhancement of
combined heat and power economic dispatch using self adaptive real-
coded genetic algorithm," Applied Energy, vol. 86, pp. 915-921, 2009.

K. P. Wong and C. Algie, "Evolutionary programming approach for
combined heat and power dispatch," Electric Power Systems Research,
vol. 61, pp. 227-232, 2002.

R. Ramanathan, "Emission constrained economic dispatch,” Power
Systems, IEEE Transactions on, vol. 9, pp. 1994-2000, 1994.

M. A. Abido, "Multiobjective particle swarm optimization for
environmental/economic dispatch problem,"” Electric Power Systems
Research, vol. 79, pp. 1105-1113, 2009.

G. P. Granelli, M. Montagna, G. L. Pasini, and P. Marannino, "Emission
constrained dynamic dispatch," Electric Power Systems Research, vol.
24, pp. 55-64, 1992.

A. Farag, S. Al-Baiyat, and T. C. Cheng, "Economic load dispatch
multiobjective optimization procedures using linear programming
techniques," Power Systems, IEEE Transactions on, vol. 10, pp. 731-738,
1995.

J. S. Dhillon, S. C. Parti, and D. P. Kothari, "Stochastic economic
emission load dispatch,” Electric Power Systems Research, vol. 26, pp.
179-186, 1993.

C. S. Chang, K. P. Wong, and B. Fan, "Security-constrained
multiobjective  generation  dispatch  using  bicriterion  global
optimisation,"  Generation, Transmission and Distribution, IEE

Proceedings-, vol. 142, pp. 406-414, 1995.

R. Yokoyama, S. H. Bae, T. Morita, and H. Sasaki, "Multiobjective
optimal generation dispatch based on probability security criteria,”
Power Systems, IEEE Transactions on, vol. 3, pp. 317-324, 1988.

D. Srinivasan, C. S. Chang, and A. C. Liew, "Multiobjective generation
scheduling using fuzzy optimal search technique,” Generation,
Transmission and Distribution, IEE Proceedings, vol. 141, pp. 233-242,
1994.

H. Chao-Ming, Y. Hong-Tzer, and H. Ching-Lien, "Bi-objective power
dispatch using fuzzy satisfaction-maximizing decision approach," Power
Systems, IEEE Transactions on, vol. 12, pp. 1715-1721, 1997.

D. B. Das and C. Patvardhan, "New multi-objective stochastic search
technique for economic load dispatch,” Generation, Transmission and
Distribution, IEE Proceedings-, vol. 145, pp. 747-752, 1998.

M. A. Abido, "A novel multiobjective evolutionary algorithm for
environmental/economic power dispatch,” Electric Power Systems
Research, vol. 65, pp. 71-81, 2003.

M. A. Abido, "Environmental/economic power
multiobjective evolutionary algorithms," Power
Transactions on, vol. 18, pp. 1529-1537, 2003.

G. Chicco, P. Mancarella, and R. Napoli, "Emission Assessment of
Distributed Generation in Urban Areas," in Power Tech, 2007 IEEE
Lausanne, 2007, pp. 532-537.

J.-H. Chen, “Multi-Objective Inspection Planning and Production
Planning for Flexible Manufacturing Systems,” in Proceeding of 2007
ACM SIG-EVO Genetic and Evolutionary Computation Conference
(GECCO-2007), University London College, London, UK, July, 2007,
pp. 1928-1935.

dispatch
Systems,

using
IEEE



FAL ¢t d

N—

AiT

AFFESSRE FTHA

P #:2010/12/31

S RNUE S U

R Rk WS LA

FhiE 2

P E el 98-2221-E-216-027-

R SRR TR




WEREHFTTHEFT S EFREL

FELIFEA M

33 s - 98-2221-E-216-027-

PRI FEMA P Y PRGN T RS AR FT

N

g Pl B b
& 5 Fp FREES gt | RERT ﬁ&*”%%*‘*%
B (B (B(FFES | A IS Il
pegg) | 2 ST i S
%)
R 0 0 100%
e PiEBREL |0 0 100% 3
¥ E T
i g h | | 100%
P 0 0 100%
by [ RE 0 0 100% .
1Rk 0 0 100%
Ar ¢ ¥ 0 0 100% s
HA 1
#114& 0 0 100% + A
A 3 3 100%
T R 0 0 100% o
=X
(2R BLuersE |0 0 100%
Lz 0 0 100%
8 7% 0 0 100%
o e PALARRBATED |0 0 100% =
gﬁ‘nQ E T
i g 0 0 100%
%1 0 0 100% Y
O 0 0 100% .
S ek 0 0 100%
BN (,l\
" i 0 0 100% “
A 1
11 4& 0 0 100% $
L4 0 0 100%
graig A4 g d 0 0 100%
A =
(hEE) [BLeETE |0 0 100% ’
LiEmm 0 0 100%




H A%
(miz gz
5 hoyE B s d S
HREE S ERREE
V=g g NP LB T
SR R D B
Vicne S TSN | 2
EE G F A

}ljo)

g

’i X538 P

frebs

—

#R%EL S(7 FRredn)

/e

Re|grga epe A1 8

21

Fi

B ye s IR

T e

3
1
4e
g |FiHE/ iy
i
p

PEASHAEZ 2 (BR) Ak

OO O OO O o (o







ZE R R Ve R A R

?ﬁfimﬁﬁﬁféw%ﬁﬁ\ééEﬁpﬁ%m»pfﬁ%iéﬁﬁ@%@
B Fﬁiﬁﬁ%wﬁixﬁa\ﬂ@\%

LR - B2 Tt ) s L F
H# g %

—_

B (
ELga LAY A AR F R 0 (F- AR

Gt P E

LGy p 32 hi R ~ S5y p R iT- 8=t
W= p i

(JxE+p % GRp > 2100 3 5°2)

L5 = 4 Bz

BEES-E S 5

(]2 # Rk 7]

G

2. Ay A % A E D A A GE I E A
w2 W FE A gFL2>F [EEY &
B4 &% Y 57 HE
e #E s Ee
Hw (12100 F 502)

3. ik ?ﬁsﬁ% CEMTEIAT ARG R EE S G 0 A
(RS54 3 &

500 % 3 ')

9T e R R TR T e g f AR - B e kd
GEATE 2 BT T R T L e R BT AT R B

FHTE ot MRy 2 G R Rl kg Rk J Ry sy £

N T R LY R

g&g@ﬁgmﬁﬁﬁig%%&gﬁﬁﬁ@lmiﬁﬁ»iﬁﬁﬁmﬁ—%u’B%é

FLF B2 2 AA 2 B RERGI 2 DY BB BRI R BART g

Piok 2EHREr B RPN FEVE BN WG 1 R BT B B BT o




	cse09 report.pdf
	imcic2010 report.pdf
	An Evolutionary Approach for Multi-objective 3D Differentiated Sensor Network Deployment.pdf
	imcic2010.pdf

