FRERTIEELE CLEF T 2L

Bt s PRwBRrpediFRitFEkit 5T
H Web Service z. =%

P 5L CGEG®)

Pl d

{7 IL‘

FhiEz

* %o
E S B
HoEw R
HoFE
S
X oA F A
PR
F A oM
)‘%@ m 3 A

SR Y

: NSC 98-2221-E-216-023-

:098# 082 01 px99& 07" 31p
PP ELFTN YR

Do

DR

DAL 4 IR AR Rz
ﬁJﬁP”4~iﬁMW R
ML fT{ﬁ"“ A GE - B iz if
Ta‘i__lfrx;ﬁ""—l_al\,xpl,;w B ’*g—_g‘;/j}_

D MR REEHRE T S ERLE F LB

oo

AR 99 #1077 29 p

FRBEARAEELE A ML TV 4

) TR NN -

C EE¥

)‘L;’[i %‘P{;LPE'%JL@'{IL £ ;}n_l 7L E.,’.Er ox

Web Service z #%

hae MR E OFERE
34 sl NSC98—2221 —E—216—023—
HNEHEF 98 A 1 P2 99&TH 3P

HEREE for Y B

TEHAFA I HER
B - R F

SEFLIFA(REFPTFERTEY) A FRE = ERS
AP ELEASERL N TEHAINT R FRL
IEN:IRGRHE S =R N -
(A A pad B M Z Ay F 4R 2
WA BT E R R
CR®= L emy 3 MAFm T R4
FdZ S s R FIE SRR T %7\Wé€3
Oz e flad e rEMatE (- #[J- 287 2B 43
¢ F o @ 99 & 10 * 25

1

(g ¥ e pdp 2

-~ R

MAERD WA RPEEROPETTZ R FEIE > Frua P E T LG RO E B e
TR BT o D HP OB B4 e S ol ® ~ F 8 s Hé LR R LRDR) L E
(CPDF BT 5o fEd LA BBRE Ak gonic b BT 2o RA MG PR NER
SRALS P RS P R R ARG DA G R RN E S B AT A
1‘]&7‘ FET A TR S QAR ERE SRS R AR G BATT FRE T 5

SOF LR RO R A ATEHRGEY 0 APEEA ST AR TN e W EgR
ﬂlﬁ BEE DI B EF M Minimun UltrametricTree, MUT) % i & # $&3# (Chemical
Compound Inference, CCI) » % B 17 % 1w pd2 B 5 zé?&‘!‘j T T E o P IR B
M2 IHEFEF TV BN P RN RA S o e A RGBT AL R
'ﬁ@gﬁﬁﬁ‘w.“%ﬁﬂmﬁﬁlﬁﬁﬁ’Uﬁé_ﬂﬁﬁiﬂﬁﬂﬁwﬁﬁﬁjgﬁwé#ﬁ
2L iFEEE > T e B AR R AL o NREEE A o

Gl;lr

BAET: Sl ®E s TS R EER A A dE

Abstract:
Recently, the computation-intensive research topics and applications grow unceasingly,

the demand of high-performance computation platform also increase. The computation
platform moves towards multiple-core processor, cluster system, grid system as well as
advanced graphics processor (GPU) platform, to provide a high efficiency, high throughput
computation platform. However, the existing solutions for the important research topics
1n various research areas are mostly designed by using the single core processor
technologies; they are unable to adapt the new parallel computation platform inevitably.

In this project, we toke multiple-core and graphics processor as the foundation to design
an efficient parallel algorithm, and integrate the grid system to develop a conformity
high-performance computation platform. In this project, we carried on four main research
topics: First, the development of the multiple-core processor parallel computing
techniques. Second, take the advantage of graphics processor to construct high efficient
parallel algorithms. Third, integrates multiple-core processors and graphics processors
to construct a distributed high-performance computation platform based on grid technology.
Fourth, publishes above research results by web services. Moreover, the above parallel
algorithms all aims at MUT (Minimum Ultrametric Tree) and CCI (Chemical
CompoundInference), two important applications in the bioinformatics and drug research
fields. We have organized obtained results and published two international conference
papers in the projects.

Keywords: MultiCore, Multi-thread, MUT, CCI

THER DN EFETROPEFTZE R 2L Bt BT S g N2 K
de o T E T A4 H P g2 ® (Single-core processor) d_w § s I B (Multi-core
processor) ~ %% i % (Cluster system) ~ ## % 5t (Grid system) ~ ™ % kit cr[g] a5 e B
(Graphics Processing Unit, GPU) - %ﬁ“d LA EF B H A RJ{EFrea et 5T 5 o d 3 H
Pis T BAPER Pk d R AILEBRARB AT ELLH e FI P w B2 L
VU RPERR ARG E- TR A S P it B R G R S o c RS IZER T 2 S o
PoAdlEe 25 maigt B Intel 2P L A7 BAT EPp i G AP o E s ¥
PA BN TRERETARTRET O RO IL R RA R EAB DT R SA N P AHE P o
®EATR A F B 2 (Sequential algorithm) » #-3R G chfpm@ * & % oo ki P ¥ a2
jﬁﬁ%*ﬁ%?ﬁﬁ*’ﬁ%ﬁ’ﬂﬁ’ﬁmmﬁwﬂﬁﬁﬁwﬁ HIvVRAA LI T
drgpg v E P T SRR M) 0 WA PR T T ARN { E REY § PRI B M o

2. FAy P in

EEFAF BT R FR A Braa B Ry 2 B4 o S e 2 E (multi-core
processor) & * i B agn CPU e B3 v o M€ 8- L endBf > 2 83 74 B4 (1) %
CPU Pkt 2 i3 S o RUMPFRE 2 & » L BB 4 cache TF ENEREFOEFERF > Ra
H#i4e CPUHE-B~= Adpiteng 5 (2) %ﬁﬁ W HE M T B R T LR ézm;ﬁk”%ﬁii(*’-ﬁé‘é
MEIRAD BN VU - X2 R E) PR BRIl R a2 LT EER R D
SR Aran B T3% AL o BEMGED H A CPU e S FBanb RFo BRI P
B2 BT S BB FantEa 4 o Ae GRS BN E RS2 S L H P AT Bar st o At
PR T SHERG RN T AN G ki@ o T S dorn B g s W RILT gk
M RE AR ERFRE WP P PRI B 3 R AT F R AR S B

W@ BT EANEATER DT EE A4 G r c BARE I AR AR DTFEAE > R
eIt BrrE Ak CPU 3 E g > W E R PO AL B PR O LB E R
A E L TR FEEA A FEAIED o AR EREY APPSR AL
WiEAS BE & R AE E) 8 EF AH(Minimum Ul trametricTree, MUT) 2 it & 4~ 4& % (Chemical
Compound Inference, CCI) R 4g “f g2 ek e > AR e Web Service B A B Rk F o

3. pET

B # E R EEF A (Minimum Ultrametric Tree, MUT)

FCAPE AR A S AT ER PR PR EANE R EARDHE A §
FFEEF AL RS G A AR T aF M 2 AR A P R E R A
&2 2R e i R T SR K o BR R F AR M A e A R 2 AR
RBEEBIERTAELNEE > FPL > FHF 5 A RhTEARN T ERIBEELAS nEE g%
BEREERORIF 2 e 2 Bolre e N2 5 pHA2 T B M ORI Ra g p

L EaE a2 it ayg it = AL 5 B NP-hard > ~ A & p >
eayF it A B S o FI o AR F § 1T 0w B 2 (Heuristic Algorithm) 44 3% & > 4r
UPGMA ~NJ ~PAUP % » 2 > §* 5 AR &2 F @ B itajgit iz 2 v 3 He g o

it & 323 (Chemical compound inference, CCI)
AN FARE T A5 .“H:f#/} O NIV L N Ef?&“#ﬂ?ﬁ?ﬁvg}*fﬁfﬁ’ PFL R R
WP B RV LEMR P AR RSB B ENGEMTEA T E R OERE LA o T oy
pr & a2 2t A & § fk BReceptor ' % Ligandshe w82 T ¥ Ao = ngand known ~ Ligand unknown -~
Receptor known ~ Receptor unknown iz iE3F i@ 24732 * PAEF KXok (FEF DFTEXK
PEBRH AR REF IR RE) o i EF 4k (CCL) Hard- faam A4 - k7| Er il B4p
e g HA P o 3 &g 5 I - @pst 3t (Mapping function) #-p i & 3 ph b
I ¥ B (feature space) » 48 % Fx % A XA B F P NTF B P E LS F PR By W 8
BRI R Lo
1. % Receptor frLigand " B 53 BT ¥ g * Docking [1,2] s> Lk
FEHFR > HEHFFTHE (Ligand database) ehF # le - # Receptor =¥ i&{7 «’ 4
PR Y o
2. % 7 7 Receptor %42 #vpF » ¥ 14 % De Novo Ligand Design [3-6]akjwen= 58 » e &
“Receptor FHEz® P B AF I A+ R E S RGNS RSP EdRAe kR BRI F
PR xR E o
3. % ¥ 7 Ligand Rt soehpRiz o RI¥ 003 * 3D-QSAR [7-11]# Pharmacophor [12-15] it

R

4. % Receptor {rLigand fgHifR & A fwehfiin™ » @i 4 & soch#H k3 K o

4. FFg

, ’Lé FREEF NI RBETLIEFEZ FHEHIP LT e RMOFER
SHE ML AHTRIME G) B ERF A (Minimum Ultrametric Tree, MUT) %2 t &+ 42
(Chemlcal Compound Inference, CCI) k3L F/@E/2x ¥ & * web services & £/ 3 = % o
TR IE BT MR R RIL S PN a - T FRIEF A 5 (1)Task parallelism
1% (2) Data parallelism - Task parallelism i & §_# %38 2 b ch1l (£4 %83 b chpio #
7o ehT Tt A B d (FF kG scihh kA b enfe B (process) %7 Fehfia T o &
Data parallelism xﬂ‘“%“" Eehi 940 Ra S Pe e ER R p g dp § FlEL > £ Y 3

%o 4 5% (Deadlock) ~ FAL B % enf' 38 o 71‘*'“@%"3%i$ﬁ#"‘%Wv\%'l‘:“f?—‘:’i’&
CRLIRI A IR N i T"“'J HREV s b g BT AR 4258 o — #& Dataparallelism T

FRNEIFT UL LA 28 (1) £ 3 Bt i| (shared memory model) ™% (2) 4 @ vEH-
4] (message passing model) °
d A BAT FAN ot BT S 5 DR R AR A R L BRI E T R R
AR RBECE R R IR T L AR k- R M EEETY UL 3RS
e AR EATHAEE B ks 2 P eRMER R NI P T SR F
I EREY FHEFHE (nulti-threaded) #ai 4258 B #F afh & -

b, X Bt

AP ERFTEL K E] T

. &I K35 40 (Multi-core) st {7 i g it fﬁﬂ’@"}#ﬁﬁﬁ pESIN

2. BT EFMEp 7 BmE 257 250 & input space ¥ 45 Bl B FE T hIT R 0 W
MR ZEBR A B R A feature space ¥ E 0 TS Bz idkiT t A

3. IR I aUFE 2 ¢ K webservice A > @ @R b BABSP R BB S P ¥
TR E-ik 2 MUT 2 CCI 332 5

L EWPE SR LA % o o5 40E1% a2 B £ 3% (ICA3PP2010% SMC 2010)

5. Mt E A RS BR RFIAEF LT RE AL -

~N

o

3o

[1] L. ARR., S. B.K,, and P. C.E, "Prediction of protein—ligand interactions. Docking and scoring: successes
and gaps," J. Med. Chem, vol. 49, pp. 5851-5855,2006.

[2] P. E., W. W.P., and C. P.S, "A detailed comparison of current docking and scoring methods on systems of
pharmaceutical relevance," Proteins, vol. 56, pp.235-249, 2004.

[3] S. A. Khedkar, A. K. Malde, and E. C. Coutinho, "Design of Inhibitors of the MurF Enzyme of
Streptococcus pneumoniae Using Docking, 3D-QSAR, and de Novo Design,” J. Chem. Inf. Model, vol.
47, pp. 1839-1846, 2007.

[4] Y. Iwata and M. Arisawa, "Discovery of novel aldose reductase inhibitors using a protein structure-based
approach: 3D-database search followed by design and synthesis,” J. Med. Chem., vol. 44, pp. 1718-1728,
2001,

[5] E. Perola, K. Xu, and T. M. Kollmeyer, "Successful virtual screening of a chemical database for
farnesyltransferase inhibitor leads,” J. Chem. Inf. Model., vol. 43, pp. 401-408, 2000.

[6] H. Mauser and M. Stahl, "Chemical Fragment Spaces for de novo Design,” J.Chem. Inf. Model., vol. 46,
pp. 318-324, 2007.

[7] A. N. Jain, "Optimization of biaryl piperidine and 4-amino-2-biarylurea MCH1 receptor antagonists using
QSAR modeling, classification techniques and virtual screening,” J Comput Aided Mol Des., vol. 21, pp.
281-306, 2007.

[8] G. O. Tiziano Tuccinardi, Armando Rossello, Claudiu T. Supuran, and Adriano Martinelli, "Homology
Modeling and Receptor-Based 3D-QSAR Study of Carbonic Anhydrase 1X," J. Chem. Inf. Model, vol.
47, pp. 2253-2262, 2007.

[9] M. O. Taha, Y. Bustanji, A. G. Al-Bakri, A.-M. Yousef, W. A. Zalloum, I. M. Al-Masri, and N. Atallah,
"Discovery of new potent human protein tyrosine phosphatase inhibitors via pharmacophore and QSAR
analysis followed by in silico screening,” Journal of Molecular Graphics and Modelling, vol. 25, 2007.

[10] H. J. Bohm, "The Computer-Program Ludi - A New Method For The Denovo Design Of
Enzyme-Inhibitors,” J. Comput Aided Mol Des., vol. 6, 1992.

[11] P. Prathipati and A. K. Saxena, "Evaluation of Binary QSAR Models Derived from LUDI and MOE
Scoring Functions for Structure Based Virtual Screening,” Journal of Molecular Graphics and Modelling.
Chem. Inf. Model., vol. 46, pp.39-51, 2006.

[12] M. J. McGregor, "A Pharmacophore Map of Small Molecule Protein Kinase Inhibitors,” J. Chem. Inf.
Model, vol. 47, pp. 2474-2382, 2007.

[13] M. Rella, C. A. Rushworth, J. L. Guy, A. J. Turner, T. Langer, and R. M. Jackson, "Structure-Based
Pharmacophore Design and Virtual Screening for Novel Angiotensin Converting Enzyme 2 Inhibitors," J.
Chem. Inf. Model. , vol. 46, pp.708-716, 2006.

[14] M. Gastreich, M. Lilienthal, H. Briem, and H. Claussen, "Ultrafast de novo docking combining
pharmacophores and combinatorics,” J Comput Aided Mol Des., vol. 20, pp. 717-734, 2006.

[15] T. M. Steindl, D. Schuster, G. Wolber, C. Laggner, and T. Langer, "High-throughput structure-based
pharmacophore modelling as a basis for successful parallel virtual screening,” J Comput Aided Mol Des.,
vol. 20, pp. 703-715, 2006.

A -

AP ER RS Poo BT R E 2 R EMUT S CCIR AL £ st ehd % v
web services(drfl— ~ =) A e KEH T o S 5% T T R LA ¢ B RS WERE DF
e 0@ 2 R E webservices ¢ Eende B U E &3 4 *#ﬂ%?‘\ﬁtﬁ SERNRLSIY A
1~ F 2R web service P o RAP S A Z A AT T A FIRGE o AP F LGP
;"k’}"%'dﬁ#?f“ P e E R 2 PR FT A ET LS %ﬁbﬂ% E o s L 8 L i3
IE_°
1. $3 %2 15X B orEE2 215

PR RIE R S P RSE BT TR R R B EAY TR 2 FY RS
a2 MPL > 3 A R$E A AR > A ER P Fruac 4858 220 ~ enfler o 27 LR W
MEYITEARNBRFOER - F A DY BN T Rt o B ERY oL FUEYF
T E o BT RS ER SR
2. BaFH T B £ ¢ X BT REYH T

hprdearm g 2% has BEIREF 3T ¢ ¢ 3 4 (ICA3PP 20102 SMC 2010 » 34 B *iék) -
T%fﬁi‘*’%\ﬁm&vaﬁm MELYINE RF L E IR LG ERP RIS 6T AT

FRaEoBFEBLG RERL S 2 i ks

Home | Services | Portfolio | Forum | Information | Links | About us | Contact us

Add mol File

Upload mol File.

» Home

» Upload mol User E-mail j|

» Query Result

» Monitor

» temp mol File - HE..

mol Text -

K value :
Submit :

Motice : Hello World. this line can say something about upload....

Bl- web service

Home | Services | Portfolic | Forum | Information | Links | About us | Contact us

Please Input TaskID String.
#» Home
» Upload mol TaskID :| H Query.]
» Query Result
Monit
z te?.:lp or Query Result as follow.
k30539yh03mymqic4sbz6d0r.k03.inferred.00001.mol Ha &
New mol Download ke l |r|/ o
smi - O(P(=0)(0)0)P(=0)(0)0 k50539yh03mymqic4sbz6d0r.k03.inferred.00001.mol oF o ™y
1
Notice : Hello World. this line can say something about query action....
Bl- web service
y Vd
I~ s

[1]. Jiayi Zhou, Kun-Ming Yu, Chun Yuan Lin, Kuei-Chung Shihl and Chuan Yi Tang, “Balanced
Multi-process Parallel Algorithm for Chemical Compound Inference with Given Path Frequencies,” The
10th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP 2010) -
Lecture Notes in Computer Science, Vol. 6082, Part Il, pp.188-197, Springer-Verlag, May, 2010. (El)

(NSC98-2221-E-216-023 and NSC97-2221-E-216-020)

[2]. Jiayi Zhou, Kun-Ming Yu* and Bin-Chang Wu, “Parallel Frequent Patterns Mining Algorithm on GPU,”
2010 IEEE International Conference on Systems, Man, and Cybernetics (SMC2010), pp. 435-440, 2010
(Istanbul, Turkey, Oct. 10 - 13, 2010). (EI). (NSC 98-2221-E-216-023), *corresponding author.

P EUR R Yok TR R

AR LR EERP R PR SRR] kL S
B (Rt raritdz R K ‘%‘/%?KE“@—’JV&?‘*%’ vt~ LE
PR IIE LAY R A EFRAA W ?w%ﬁi’ﬁ—ﬁ€?%°

Ly p 28 RFHEDEARR ~ LY P RHEIRIT- LT
B &=k
(] &&= 04k GGep > 12100 F 5 ")
(] F &4
[Fleef s @ 47
(] #2# k7
L

AR Y TR E R SR TEY =}

we e wE Oawdies /i OERY O
’f' :I:Ig E g D\z‘ 7‘3—:‘ |:|£L

=S S An L ﬁﬁllm“*mﬁ

#w (12100 % 5 12)

3u&@§w$%‘ﬁ%ﬂ%‘té%@$*@ LR
lE(Fs?Q%iﬂ’;\'a‘er'k %i%\fﬁfﬁ‘ﬁ/@zi\;@"}b

500 F % *2)

A E IR S pos (Multi-core) s (7 1 Y BHEHIF B2 0 T A A A
input space ¥ 45 FlHIRITANTIfR 0 T LT AR A H 8 R & feature space
VhE s TN BRI S PRAMIEENGEERY > NP S - B GPU
T FAER FE R > Fon e R TAHFEBER o AP E MR R A AEE 2 e KR
web service ~ i > R @R Pt BABap b BRI 5t B TR iR MUT 2
CCI 34 -

AP ERFAEE S F B MITCCL 2 FRFL E P L 240 5 o Bpn
ZIFTEEFARG <A E e

FRERTSPELRE AR R REFNARFEINEREL
98 & 81 25p

. v oE-X = %
LR PR 4 FAFFL
PR P o P
i
P Y 98/8/17 —98/8/19 kP
&> & Nanchang, China Mok 5
= (¥ <) 2009 IEEE # A3 & M3 ¢
R (% =) 2009 IEEE International Conference on Granular Computing
w4 (¢ =) &* MPI & T FAataf g gmeimit gt iy fam
EL (¥ =) Parallel Branch-and Bound Approach with MPI Technology in Inferring
P Chemical Compounds with Path Frequency
© Rk RS

§HRABFL D 1 M BN L PR R K e B d g kend
BELRED AEFEEIE B (55 345 5 » &5 165 £)2 A B § e d &
EREBL ETER AR ERAYINF - X2 5 X g RRAY FXET = BH
F2ZPRFEEA TR RIETRY AR 2 B ATARR 2 & 324R £ ¢ (1). Generalized Bags
and Their Relations: An Alternative Model for Fuzzy Set Theory and Applications, (2).
Formal Theory of Granular Computing and Two Major Applications, (3). High-throughput
DNA Sequencing and Bioinformatics: Bottlenecks and Opportunities, (4).
Ubiquitous/Pervasive Intelligence: Visions and Challenges, (5). Ubiquitous Personalized
Information Processing with Wildcard % (6). Computational Models in Systems
Biology » 4 %] d Sadaaki Miyamoto (University of Tsukuba, Japan) ~ T. Y. Lin (San Jose
State University, USA) ~ Stephen Kwok-Wing TSUI (The Chinese University of Hong
Kong,China) Laurence T. Yang(St Francis Xavier University, Canada) ~ Xindong Wu
(The University of Vermont, USA) 12 %2 Xue-wen Chen (The University of Kansas,USA)
EHTNEREHFEL PN 2B/ FLE LN EZ BH OB HFLLEEGT AL H?

[parallel Branch-and Bound Approach with MPI Technology in Inferring Chemical

Compounds with Path Frequency ; #& % £ & % — % 7 — Session C3 “Intelligent Data

9

Analysis and Applications” 2. 3=t 3 % o

GrC 2009 & - & 24~ 3+ ¥ (Granular computing)# 3 4E % ¢ 2% 7 dp itk £
EREER VT EREF P I RO R R LR - LR IRA D
RRTE T AR ARG od ERAETEARY T 0 I A PRE g R

55 =T 2 g Vo=
P I e i e

Bipg * oo

(
S
‘.Er
¥
IRy
A%‘*
@
B
ok
!
=
=k
e
\
tal}
4
g
F
L
3
o
0%
_.
o

oW PRI OB LAY LBE

2o SRIRERRLTESFEY)

144
/
o

R LR

1.+ ¢34z
2. The Proceeding of 2009 IEEE International Conference on Granular Computing 77 3¢ ¢€ %
@ % o
7\< N g 20

10

Balanced Multi-process Parallel Algorithm for Chemical
Compound Inference with Given Path Frequencies*

Jiayi Zhou', Kun-Ming Yu***, Chun Yuan Lin’, Kuei-Chung Shih',
and Chuan Yi Tang'

! Department of Computer Science,

National Tsing Hua University, Hsinchu 300, Taiwan
jyzhou@mx.nthu.edu.tw, shiuh0307@seed.net.tw,
cytang@cs.nthu.edu. tw
? Department of Computer Science and Information Engineering,
Chung Hua University, Hsinchu 300, Taiwan
yvu@pdlab.csie.chu.edu. tw
? Department of Computer Science and Information Engineering,
Chang Gung University, Taoyuan 333, Taiwan
cyulin@mail.cgu.edu.tw

Abstract. To enumerate chemical compounds with given path frequencies is a
fundamental procedure in Chemo- and Bio-informatics. The applications in-
clude structure determination, novel molecular development, etc. The problem
complexity has been proven as NP-hard. Many methods have been proposed to
solve this problem. However, most of them are heuristic algorithms. Fujiwara et
al. propose a sequential branch-and-bound algorithm. Although it reaches all
solutions and avoids exhaustive searching, the computation time still increases
significantly when the number of atoms increases. Hence, in this paper, a paral-
lel algorithm is presented for solving this problem. The experimental results
showed that computation time was reduced even when more processes were
launched. Moreover, the speed-up ratio for most of the test cases was satisfac-
tory and, furthermore, it showed potential for use in drug design.

Keywords: Branch-and-bound algorithm, load-balancing, chemical compound
inference, drug design.

1 Introduction

The enumeration of chemical compounds that has the same characteristics is one of
the fundamental issues in Chemo- and Bio-informatics. Its applications include struc-
ture determination using mass-spectrum [1-2], reconstructing molecular structure with
given signatures [3-4], classification of compounds [5], etc. In an effort to improve on
existing algorithms, many studies have proposed different ways of dealing with the

* This work is partially supported by Nation Science Council. (NSC98-2221-E-216-023 and
NSC97-2221-E-216-020).

** Corresponding author.

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part II, LNCS 6082, pp. 178 010.
© Springer-Verlag Berlin Heidelberg 2010

Balanced Multi-process Parallel Algorithm for Chemical Compound Inference 179

enumeration of constraints for other purposes, such as the virtual exploration of
chemical universe [6-7]. However, none can guarantee that all solutions can be found
since they are based on heuristic algorithms and require additional operations to avoid
generating isomorphic results.

The Kernel Methods (KMs) approach maps the data in the input space into a high
dimension feature space. The data are computed as points in the feature space where
each coordinate represents one feature of the data. In applying KMs to chemical
compounds, all compounds are mapped to feature vectors in the feature space. The
definition of feature vector is widely based on frequencies of labeled paths [8] or
frequencies of small fragments [5]. In this study, the pre-image problem was focused
on by enumerating all chemical compounds with the same path frequency. The de-
sired object was computed as a point in the feature space, and then the point was
mapped back to the input space. This point was called the pre-image of the point. A
given point in the feature space (frequency path) was then mapped back to the point in
the input space (chemical compound). Let 1 be the mapping function, then the pre-
image is defined as follows: given a point y in the feature space, to find all z in the
input space such that y = v(z). Therefore, the chemical compound inference (CCI)

is defined as follows: given a target compound ¢ and computed path frequency (c).

The objective is to infer all compounds c, ...c such that 4(c,)=1(c) for

¢t =1,...,n. Since the solution for CCI can be applied to new chemical compounds
with the same path frequencies, it may be useful in drug design.

Akutsu and Fukagawa have proved that to enumerate chemical compounds with
given constrains is an NP-hard problem [9]. The branch-and-bound algorithm is gen-
erally used to solve a wide variety of NP-hard problems [10], such as Traveling
Salesman, Knapsack, Vertex Covering, avoiding exhaustive searches. For CCI prob-
lem, Fujiwara et al. have proposed an efficient branch-and-bound algorithm [11]. The
branching and bounding strategies are based on the path frequency and the valence
constrains of atoms, respectively, to avoid the generation of an invalid tree, thus re-
ducing the search space. Although this algorithm outperforms the exhaustive search
algorithms, the computation time increases significantly when the number of atoms in
a compound grows.

A balanced multi-process parallel branch-and-bound algorithm for CCI (BMPBB-
CCI) was designed in this study. In BMPBB-CCI, the searching space is dynamic
divided into p subspaces with p processors. Since each subspace is independent, it
can be processed by a processor and then applied to a sequential branch-and-bound
algorithm. Hence, it minimizes the parallel communication cost between processors
since only local communication is required. Moreover, two types of queuing, global
queue (GQ) and local queue (LQ), are used for load-balancing in branching. A hash-
able and a serial data structure were used to store the path frequencies instead of the
Trie structure because it can be transferred between processors as a plain string.

The development trend in computers is one of multi-core processors. Adding more
cores to a computer makes it faster, but it also leads to difficulties in designing
programs. Although OpenMP [12] is a standard and easy to use multi-threading li-
brary that gives the performance of multi-core processors, it is not flexible enough for

180 J. Zhou et al.

delicate operations or for designing complicated parallel algorithm. Therefore,
BMPBB-CCI was implemented using multi-process architecture (MPA). Different
from multi-thread architecture, for long running programs, MPA obtains memory
protection and access control benefits of operating systems. In addition, when a
process crashes it does not affect the remaining running processes. Moreover, it also
could be easily extended to distributed memory multi-processors system, e.g. a multi-
node cluster. The experimental results showed that BMPBB-CCI found the optimal
solution for chemical compounds in a short time. In addition, it also had a satisfactory
speed-up ratio.

2 Preliminaries

Being different from a simple graph, a graph that allows multiple edges is called a
multigraph. A multigraph without self-loop and cycle is called a multitree. Let ¥ de-
note a label set with each label representing a symbol of an atom, e.g.
Y ={C,0,H}. A X -labeled multitree can be denoted as T' = (V,E) with a vertex

set V and edge set E. A valence function, val : ¥ — Z*, is introduced to be the
maximum number of bonds an atom can hold, e.g. val(C') =4 and val(O) = 2. For
any vertex v in T, the valence of v is val(l(v)), where [is the function returning
label € ¥ of vertex v. A chemical compound can be treated as a (3, val) -labeled

multitree, where the number of edges represents the chemical bonds between two
vertices (atoms). The path frequencies of the (¥, val)-labeled multitree are defined.

Let P = (v,,...v,) be the path in multitree 7" and I(P) = (/(v,),.--I(v,)) be the la-

beled sequence of the path. For a labeled sequence ¢, let oce(t,T') stand for the num-
ber of paths of ¢ in multitree 7', where the multi-edge is treated as a single edge.
Then ©* denotes the set of sequences with % labels, and ¥ = U’;Zl >* . The path

frequencies with level K are defined as f, (1) = occ(t,T) . Fig. 1 illustrates the

-
path frequencies of un-rooted (3,val)-labeled multitree (a chemical compound,
C,0O,H,) with level K =1. Where all paths are treated as "directed", thus
occ(OH,T)=0cc(HO,T)=1 and so on.

CClI is further defined in the following [11]. Given a finite label K > 1, a target
with path frequencies g, and a valence function val:¥ — Z*. Find all (3, val)-

labeled multitree 7" such that f (7') = g and deg(v) = val(l(v)) for each vertex v

in multitree T = (V, E) . However, the main concern with CCI is to avoid the genera-

tion of isomorphic chemical compounds. Many methods [13-14] propose to solve this
problem by choosing a unique vertex or a unique pair of adjacent vertices as a root.
Fujiwara et al. [11] applied centroid-rooted [15] left-heavy properties (Theorem 1) to
avoid the generation of isomorphic chemical compounds.

Balanced Multi-process Parallel Algorithm for Chemical Compound Inference 181

H //0 £={(C.0.H)}
H—Cc—¢C val(C) =4
val(Q)=2
£ O H)=
F(T)

Fig. 1. Example of (E, val) -labeled multitree T

Theorem 1. For any tree with n vertices, either there is a unique vertex v such that

each subtree obtained by removing v to contain at most {(n -1/ Zj vertices, or

there is a unique edge e such that both of the subtrees obtained by removing e
contain exactly n / 2 vertices.

Vertex v is identified as a unicentroid of the tree, or a bicentroid for ¢ . In order to
introduce left-heavy properties, multitree 7' is indexed using a depth-first search
(DFS) order. In general, the vertex sequence, v,,v,,...v, , is labeled by DFS from the
root vertex. The depth function d(v) of vertex v is the number of edges in P(v),
where the depth of the root vertex is 0. The depth label sequence of T 1is defined
as DL(T) = (d(v,),1(v,),...,d(v, ,),1(v, ,)). T(v) denotes a subtree rooted at vertex
v and all of its descendants. The left-heavy properties are defined as follows. T is
left-heavy if i < j implies DL(T(v,)) > DL(T(v,)) for any two siblings v, and v,.

For any two depth label sequences DL(T))=(d, .l .d, ! d ,l) and

1,077,071 ML T P,) My

DL(T,) = (d, .1, .4, .1 d, ,I,), DL(T)>DL(T,) means that there is a

2,072,070 P20 %21 7 Yo, o,
i € [L,min(n, —1,n, —1)] such that d,; =d, and [=1, for j=0,..i—1.1In

addition to either (1) d, >d, ,or (2) d, =d,, and [, >, .

Fujiwara et al. [11] propose a branch-and-bound algorithm to enumerate all tree-
like chemical compounds with given path frequencies. It starts from an empty multi-
tree, then iteratively creates a multi-tree rooted in atom v, where I(v) € ¥ . After that,
new children multitree offspring can be obtained by inserting vertex v»' where
I(v') € X at the right-most path. If T violates (1) centroid-rooted constraints, (2)
[.(T) < g, and (3) deg(v) < val(l(v)) for each v € T then candidate T' is bounded

immediately.

3 BMPBB-CCI

BMPBB-CCI was designed on shared memory multi-core computers. However, the
built-in shared memory facilities of the operating system (OS) somewhat restricted

182 J. Zhou et al.

portability to another OS. In addition, this facility allows fewer types of data struc-
tures. Therefore, a socket-based manager process was implemented which held
various types of data structures. In addition, the manager also could be extended to
distributed memory computing architecture, such as cluster systems. Fig. 2 shows the
framework of the BMPBB-CCI, where the manager module of the manager process
implemented a socket-based communication object which supported the data struc-
ture, such as list, double-ended queue (dequeue) and dictionary. A Global Queue
(GQ) was also implemented on the manager process as well as a Local Queue (LQ) on
each computing process to balance the workload among processors and to reduce
inter-process communication.

There are three different processes, main process (MP), computing process (CP)
and manager process (MgP). Since the valence of the H atom is 1 and always at-
tached in the leaf node, the H atom can be removed during branching operations. The
path frequency with the H atom is computed in step 2. After that, in steps 3 and 4, the
MgP is created and started, and the required shared objects are also allocated in this
step. In steps 5 and 6, the CP is created and launched at each computing core. More-
over, the obtained Id of created shared objects is passed to each CP. Finally, the MP
joins all launched CPs until it is terminated and then MP writes the results to disk.

Manager Process (MgP) Main Process (MP)
Sub-process
Manager - Launcher
Module Sub-process
lg—1 Synchronizer

Global Queue (GQ)

k‘E‘:IZl—N Computing Process (CP1)
Balanced Branch-
and-Bound Module

> | ocal Queue (LQ) !

|

Computing Process (CP,)

Balanced Branch-
and-Bound Module
® Local Queue (LQ) [

vw[o] Teg*

Fig. 2. Multi-process framework of BMPBB-CCI

The branch and bound operations are done in CP. Moreover, CP also uses the
shared object to balance the workload. An overview of the algorithm of CP, show that
it is an infinite loop. It loops the algorithm over until all solutions are found. From
steps 2 to 6, the compound in LQ is chosen first. If the LQ is empty, then the
compound in the GQ is chosen if that is not empty. Otherwise, the new atom in inser-
tAtomQueue is selected as a new root of the candidate compound in step 5. The

Balanced Multi-process Parallel Algorithm for Chemical Compound Inference 183

bounding operations are applied in steps 7 to 13. H atoms are inserted back to comp to
check the feature vector constrains and valence constrains in steps 8 and 9. The cen-
troid-rooted and left-heavy properties are verified in step 10 to avoid generation of
isomorphic chemical compounds. If the comp passes all verifications, it is inserted
into resultQueue in step 11. The comp is dropped immediately if its path frequency

fK(comp) greater than g . (step 13). Steps 14 to 17 are branching operations. In step
16, the potentially new pair of atoms are verified in the g . . If the pair is presented

in g . then the new candidate compound newComps is generated. Moreover, borrow

a single bond transformation as proposed by Fujiwara et al. [11]. The number of
bonds of the attached new vertex is limited by the maximum number of bonds be-
tween pairs of atoms in the target compound. Therefore, the searching spaces can be
significantly reduced to save on computation time. In order to balance the workload,
when there are too few compounds in the GQ, the newComps are appended to GQ,
otherwise the newComps are appended to LQ (step 17). Since the GQ is filled during
branching operations, the CP can immediately acquire the candidate compounds from
GQ without waiting for other CPs to transfer candidates.

MgP creates and obtains a shared object via socket-based connections. The benefits
of the shared object facilities are (1) they deal with various types of data structures,
(2) they have built-in synchronization facility, and (3) they share objects from differ-
ent computers. The algorithm for BMPBB-CCI is given below.

Algorithm. BMPBB-CCI

Input: Target compound and valence function
Output: Chemical compound which confirms to path frequencies of given compound
Environment: Multi-core architecture computers

Main Process (MP)

Step 1: Remove H atoms from given target compound and

compute its path frequency g, . .

Step 2: Insert the H atoms back to the given target compound and
compute its path frequency g, .

Step 3: Create and start MgP and create a global queue on MgP.

Step 4: Allocate shared object form MgP, resultQueue and
insertAtomQueue.

Step 5: Create CP on each computing core in processor.

Step 6: Start CP with following parameters: g ., g,

resultQueue, insertAtomQueue.
Step 7: Wait all started CPs terminated.
Step 8: Write the results to disk.

Computing Process (CP)
Step 1: while True:

Step 2: if local queue is not empty:
comp = pop last item of local queue
Step 3: else:

if global queue is not empty:
comp = pop last item of global queue
else:

184 J. Zhou et al.

Step 4: if resultQueue is not empty: break
Step 5: else if insertAtomQueue is not empty:
comp = pop a atom from insertAtomQueue and create new compound
Step 6: else: break
Step 7: if num of atom of comp = target compound w/o H:
Step 8: Add H atom to comp
Step 9: if f (comp)!= g, : continue
Step 10: Check the centroid-rooted and left-heavy properties
Step 11: If pass the checks, add the comp to resultQueue

Step 12: else: Checkif f, (comp) <= g, ,
Step 13: for v in right most path of comp:
Step 14: if v is the last atom on right most path:

insertAtom = ¥

else: insertAtom = s forall s < [(next vertext of v)
Step 15: for s in insertAtom:

if (s,0) in g, :
Insert s on v to generate new candidate newCompo,...,newC'Ompq such that bond
< the maximum number of bond of pair .. in target compound
Step 16: if len(GQ) < (numberOfProcessors)’ | 2
Insert newComp, to GQ for i =0,...,q
else: Insert. to L@ for i =0,...,q

Manager Process (MgP)

Step 1: Create a socket and waiting for the request.

Step 2: if incoming request is shared object creation:
Create a shared object of request data type
return shared object Id

Step 3: if incoming request is shared object read:
Read the corresponding shared object of given Id
return the read value

Step 4: if incoming request is shared object write:
Acquire a lock object
Write the given data to shared object of given Id
Release a lock object

4 Experimental Results

BMPBB-CCI was implemented in Python language 2.6 on IBM System x 3650 T con-
sisting of 2 Intel Xeon 3.20GHz CPUs (8 computing cores, 4 cores per CPU). Two
data sets were used to verify BMPBC-CCI. One was KEGG LIGAND database [16],
the other was a set of 22 compounds for neuraminidase (NA) inhibitors of the influ-
enza A virus from Zhang et al. [17].

The chemical compounds in KEGG LIGAND’s database were used to verify the
performance of BMPBB-CCI, and path frequencies were computed for levels 1 and 2.
Due to page limitation, selected compounds and their properties are shown in Table 1,
where (1) C00064, C00073, and CO00077 are the entries for L-Glutamine, L-
Methionine and L-Ornithine in the KEGG LIGAND database, (2) n; is the number of
atoms of an entry and n, is the number of atoms which removed H atoms, (3) fs is the
number of feasible solutions found. Fig. 3 (a)-(c) shows the computation time of

Balanced Multi-process Parallel Algorithm for Chemical Compound Inference 185

BMPBB-CCI with a different number of processes. It was found that a large number
of processes (computing process, CP) reduced computation time. Moreover, smaller
K values had fewer constraints and more feasible solutions were found (see Table 1).
Therefore, there were more candidate compounds in branch-and-bound operations,
leading to larger solution spaces to be traversed. The computation time was long
when level K was small. Fig. 3 (d) illustrates the speed-up ratio of BMPBB-CCI
from (a)-(c). The speed-up ratio increased when the number of processes increased.
Moreover, the speed-up ratios were satisfactory even for 8 processes. This result
showed that BMPBB-CCI was scalable.

Table 1. Properties of selected compounds

Entry n; n K fs
Formula
C00064 20 10 1 274
CsH,oN,O; 2 3
C00073 21 9 1 339
CsH;;NO,S 2 2
C00077 21 9 1 236
CH,N,0, 2 3
Computation time of different quantities of processes (C00064) Computation time of different quantities of processes (C00073)
250 90
80
200 70
- ~ 60
\;-% 150 :;/ 50
E 100 ——K=1 E 40 kel
= = 30
==K=2 —O-K=2
50 20
D_D\D\D 10
0 0 = —
1 2 4 8 1 2 4 8
Number of processes Number of processes
(2) (b)
Computation time of different quantities of processes (C00077) Speed-upratio of dfiirent entries o= ! proc.
—0—2 proc.
70 45
=—ty=4 proc.
0 ¢ —x % —x=3 proc.
50 35
3 £
ERl g s
[_g 30 ——K=1 1: 2
20 —O-K=2 & 15
T ;
0 0.5
1 2 4 8 0
Numberof processes €00064,K=1 C00064,K=2 C00073,K=1 C00073,K=2 C00077,K=1 C00077, K=2
Entries
©) (d)

Fig. 3. Computation time and speed-up ratio

BMPBB-CCI was used to infer novel chemical compounds for the second data set to
show that it had potential for drug design. A pharmacophore model consists of a 3D
arrangement of a collection of features necessary for the biological activity of ligands
(compounds). At first, the pharmacophore model (by Accelrys DiscoveryStudio) fwas

186 J. Zhou et al.

constructed for NA of an influenza A virus from Zhang et al. [17]. Then the model was
tested with Tamiflu and Zanamivir. The results (Table 2) showed that it was reliable
since the predicted I1Csy and actual ICsy were on the same quantity level. Finally, the
model was used to test new chemical compounds inferred by BMPBB-CCI. Due to
page limitation, only the compound Cpd was used as an example (Table 2). The new
compound Cpd-Reb had a better predicted ICs, and Fit value than Cpd-Ori. Discover-
yStudio CDOCKER'’s docking program was also used to compute the interactions
between compound and protein. The best CDOCKER interaction energy for Cpd-Ori
was 42.565. The best CDOCKER interaction energy for Cpd-Reb was 45.324. The
docked poses are given in Fig. 4. These results showed that the novel compound Cpd-
Reb may be a candidate for NA inhibiting of the influenza A virus.

Table 2. Results for test compounds in the pharmacophore model

Compound Actual ICsy Estimated ICsq Fit * Map*ped feaiure * _

(nM) (nM) valuee HD1 HD2 HY NI PI

Tamiflu 1 8.502 10.95 + + + +

Zanamivir 1.3 4.848 11.194 + + + +

*Cpd-Ori 6300 5639.67 8.129 + + o+
*Cpd-Reb NA 6.577 11.062 + + + +

"HD1: hydrogen-bond donor 1; HD2: hydrogen-bond donor 2; HY: hydrophobic group;
NI: negative ionizable group; PI: positive ionizable group.
*Cpd-Ori: original compound Cpd; Cpd-Reb: novel compound inferred by BMPBB-CCI.

(a) Cpd-Ori (b) Cpd-Reb

Fig. 4. The Cpd-Ori and Cpd-Reb docked pose into NA protein (PDB code: 2hu4)

5 Conclusions

An algorithm (BMPBB-CCI) was designed and verified on multi-core computers.
From the experimental results, it was observed that BMPBB-CCI reduced computa-
tion time with more processors in the case of the KEGG LIGAND database. It also
achieved a satisfactory speed-up ratio for most of the test cases. Moreover, it showed
potential for drug design.

Balanced Multi-process Parallel Algorithm for Chemical Compound Inference 187

Acknowledgement

We are grateful to the National Center for High-performance Computing for computer
time and facilities.

References

10.

11.

12.

13.

14.

15.

16.
17.

. Buchanan, B., Feigenbaum, E.: DENDRAL and Meta-DENDRAL, Their Applications

Dimension. Artif. Intell. 11, 5-24 (1978)

Funatsu, K., Sasaki, S.: Recent advances in the automated structure elucidation system,
chemics. Utilization of two-dimensional nmr spectral information and development of pe-
ripheral functions for examination of candidates. J. Chem. Inf. Comput. Sci. 36(2), 190—
204 (1996)

. Faulon, J., Churchwell, C., Visco Jr., D.: The signature molecular descriptor. 2. Enumerat-

ing molecules from their extended valence sequences. J. Chem. Inf. Comput. Sci. 43(3),
721-734 (2003)

Hall, L., Dailey, R., Kier, L.: Design of molecules from quantitative structure-activity rela-
tionship models. 3. Role of higher order path counts: path 3. J. Chem. Inf. Comput.
Sci. 33(4), 598-603 (1993)

Deshpande, M., Kuramochi, M., Wale, N., Karypis, G.: Frequent substructure-based ap-
proaches for classifying chemical compounds. IEEE Trans. Knowl. Data Eng. 17(8),
1036-1050 (2005)

Fink, T., Reymond, J.: Virtual Exploration of the Chemical Universe up to 11 Atoms of C,
N, O, F: Assembly of 26.4 Million Structures (110.9 Million Stereoisomers) and Analysis
for New Ring Systems, Stereochemistry. J. Chem Inf. Model. 47(2), 342-353 (2007)
Mauser, H., Stahl, M.: Chemical fragment spaces for de novo design. J. Chem. Inf.
Model. 47(2), 318-324 (2007)

Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In:
ICML, pp. 321-328 (2003)

Akutsu, T., Fukagawa, D.: Inferring a Graph from Path Frequency. In: Apostolico, A.,
Crochemore, M., Park, K. (eds.) LOPSTR 2004. LNCS, vol. 3573, pp. 371-382. Springer,
Heidelberg (2005)

Yu, C., Wah, B.: Efficient branch-and-bound algorithms on a two-level memory system.
IEEE Trans. Softw. Eng. 14(9), 1342-1356 (1988)

Fujiwara, H., Wang, J., Zhao, L., Nagamochi, H., Akutsu, T.: Enumerating Treelike
Chemical Graphs with Given Path Frequency. J. Chem. Inf. Model. 48(7), 1345-1357
(2008)

OpenMP, http://openmp.org/

Nakano, S., Uno, T.: Generating colored trees. In: Kratsch, D. (ed.) WG 2005. LNCS,
vol. 3787, pp. 249-260. Springer, Heidelberg (2005)

Wright, R., Richmond, B., Odlyzko, A., McKay, B.: Constant time generation of free trees.
SIAM J. Comput. 15, 540 (1986)

Jordan, C.: Sur les assemblages de lignes. J. Reine Angew. Math. 70(185), 81 (1869)
KEGG Ligand database, http: //www.genome. jp/kegg/ligand.html

Zhang, J., Yu, K., Zhu, W., Jiang, H.: Neuraminidase pharmacophore model derived from
diverse classes of inhibitors. Bioorg. Med. Chem. Lett. 16, 3009-3014 (2006)

Parallel Frequent Patterns Mining Algorithm on GPU

Jiayi Zhou
Department of Computer Science
National Tsing Hua University

Kun-Ming Yu'
Department of Computer Science
and Information Engineering

Bin-Chang Wu
Department of Computer Science
and Information Engineering

Hsinchu 300, Taiwan Chung Hua University Chung Hua University
jyzhou@mx.nthu.edu.tw Hsinchu 300, Taiwan Hsinchu 300, Taiwan
yu@chu.edu.tw aquavit@pdlab.csie.chu.edu.tw
Abstract—Extraction of frequent patterns from a Although many Apriori-like methods have been proposed [3-4],

transactional database is a fundamental task in data mining. Its
applications include association rules, time series, etc. The
Apriori approach is a commonly used generate-and-test
approach to obtain frequent patterns from a database with a
given threshold. Many parallel and distributed methods have
been proposed for frequent pattern mining (FPM) to reduce
computation time. However, most of them require a Cluster
system or Grid system. In this study, a graphic processing unit
(GPU) was used to perform FPM with a GPU-FPM to speed-up
the process. Because of GPU hardware delimitations, a compact
data structure was designed to store an entire database on GPU.
In addition, MemPack and CLProgram template classes were
also designed. Two datasets with different conditions were used
to verify the performance of GPU-FPM. The experimental results
showed that the speed-up ratio of GPU-FPM can achieve 14.857
with 16 times of threads.

Keywords—frequent pattern mining, parallel processing,
graphic processing unit (GPU), OpenCL

L

Both in business and scientific research, there has been a
tremendous growth of data that needs to be processed.
Extracting information from large amount of data is necessary
in making correct and effective decisions. Different methods
have been developed to determine the characteristics and
interrelationships of data. Association rule learning,
classification, clustering, and regression commonly need to
mine data. Extraction of frequent patterns from a transaction-
oriented database is one of the most important of these.
Frequent patterns represent the number of times an itemset
appears in a given database. Therefore, if an itemset is frequent
it means there are strong relationship between items.

INTRODUCTION

Most frequent patterns mining (FPM) either uses the
generate-and-test (Apriori-like) [1] or the pattern growth
approach (FP-growth) [2]. The core concept of the Apriori-like
approach is that if the length & pattern is not frequent in the
database, then the super-pattern (length £+1) will not be
frequent. It uses a bottom-up approach, extending frequent
subsets one item at a time. Since the generated candidates are
independent, this approach is suitable for parallelization.

* This work is partially supported by National
Science Council. (NSC 98-2221-E-216-023)
+ The corresponding author.

978-1-4244-6587-3/10/$25.00 E2010 IEEE

435

the computation time increases significantly when the database
contains a large number of transactions. Some studies [5-7]
apply parallel and distributed techniques to speed-up the
mining processes. However, most of them require a high
performance computing system, e.g., a Cluster or Grid System.

In recent years, the graphic processing unit (GPU) has
developed from a 3D rendering device for games to a general-
purpose computing device [8]. While the GPU can only
execute some simple instructions and functions, compared with
CPU, it has a large number of computing units. Moreover,
using GPU as a high-performance computing device which
does not only reduce the deployment cost but also saves on
maintenance. GPU programming strategies can be classified
according to either graphic APIs or GPU programming
language. It is difficult for developers to use the graphic APIs
since they need understand the graphic hardware and encode
their data to graphic vectors. The most serious problem is the
use of previously designed parallel algorithms. Therefore, GPU
programming language is currently being used to develop
GPU-enabled programs. NVIDIA and ATI have been proposed
as GPU programming language by CUDA [9] and Stream [10]
respectively. Programs can be written in C programming
language (C99) to use the power of GPU. However, CUDA can
only be used on NVIDIA’s GPU and vice versa. Therefore,
OpenCL [11] was proposed in 2009 to deal with this situation.
The program design with OpenCL not only can be executed on
different brand GPU devices, but also on multi-core CPUs.

In this study, the GPU-FPM algorithm was used to speed-
up the mining processes for FPM when using GPU. Although
GPU is a powerful computing device, there are limitations: like
memory size, memory latency, etc. Therefore, the data
structure has to be re-designed for the FPM algorithm on GPU.
Since the verification time dominates computation time, the
main goal of GPU-FPM is to use GPU to verify generated
candidates in order to speed-up the FPM processes. Compact
Data Structure, MemPack, and CLProgram class were used to
achieve this. For verifying the GPU-FPM performance, it was
implemented on Microsoft Windows with OpenCL 1.0, in
addition, data generated by an IBM Quest Data Generator [12]
was used. The proposed algorithm was tested under different
conditions, including different transaction lengths, threads,

block sizes, and thresholds. The experimental results showed
that GPU-FPM significant reduced the computation time with
increasing threads. The speed-up ratio achieved 14.857 with 16
times of threads (in case of the T40110D100K threshold being
1900, and block size 10). Moreover, even in the worst case,
GPU used 89.942% of the execution time. This means that
GPU-FPM efficiently used the GPU computing power.

The rest of the paper is organized as follows: In section 2,
the FPM, GPU, and OpenCL are described. The proposed
GPU-FPM is introduced in section 3 and the experimental
results are illustrated in section 4. Finally, the conclusions
discussed in section 5.

II. PRELIMINARIES

A. Frequent Pattern Mining (FPM)

The main concept of FPM is to find the number of times a
given pattern appears in a database. FPM is defined as follows:

Let D be a transactional database consisting of a set of
transactions 7,,7,...,T,: D={1,T,,...,T,} . Let I be a set of

items i,i,,...,i, , a set X ={i,i,,...,i,} =/ called an itemset
or a k -itemset if it consists of £ items. The support of an
itemset X is the number of transactions containing X .

support(X,D)=|{i|XgTI.,Xg1}| fori=1...n

An itemset is called frequent if the support is greater than or
equal to the given absolute minimal threshold &. FPM is given

a set of items 7/, a database D, and a minimal threshold &,
then find FP(D,¢&).

FP(D, &) ={X < I |support(X,D) > &}

B. Graphic Processing Unit (GPU)

GPU is a parallel-oriented computing device. It always
consists of massive processing units to perform mathematical
computing. It used to be used as a co-processor CPU for games
and 3D design applications. The DirectX 9 proposed in 2005,
has taken graphics cards to the next generation because of
vertex and pixel shaders being integrated in general-purpose
processing units—introducing the universal shader. The
mainstream GPU has hundreds to thousands computing units.
Each unit can be regarded as a simplified CPU. Compared with
the multicore CPU, the number of processing units has also
increased. Consequently, GPU also has a whole new
application—general-purpose ~ computing on graphics
processing units (GPGPU).

C. OpenCL

The GPU programming language can be classified as
graphic APIs (DirectX, OpenGL, etc.), GPU programming
language (NVIDIA CUDA [9], ATI Stream [10], OpenCL [11],
etc). Previously, GPU programming required developers with
in-depth knowledge of graphics programming and hardware. In
order to utilize the computation resources on GPU, developers
had to encode data to a graphic vector, and then use the
DirectX or OpenGL functions to perform rendering. After that,

436

the rendered data had to be decoded. This procedure not only
required graphic programming knowledge, but also depended
on different GPUs. Recently, CUDA and Stream have been
proposed by NVIDIA and ATI. Both of them provide C
interface and allow developers to adapt the hardware, e.g.,
number of processing units, size of local and global memory.
However, previous frameworks could only be used with the
respective GPUs, e.g., CUDA could only be executed on
NVIDIA’s GPUs.

In order to solve this situation, the Khronnos Group and
many industry-leading companies created the OpenCL.
OpenCL is an open and cross-platform parallel heterogeneous
programming system. It provides a uniform programming
environment for developers to write efficient and portable
codes using a diverse mix of multi-core CPUs, GPUs, and other
processors.

1. GPU-FPM

The goal of GPU-FPM was using massive processing units
on GPU to speed-up the FPM procedures. However, each
processing unit on GPU can only perform simple instructions.
Another important issue is memory size and access latency.
Therefore, the algorithm and data structure had to be re-
designed for GPUs to fully utilize its computation resources.
Figure 1 illustrates the architecture of GPU-FPM. GPU-FPM
has the following features: (1) data handling between CPU and
GPU, (2) compact data structure, and (3) highly parallel.

MemPack Pattern Verification
Host2Device GPU
Device2Host

“ Candidate Generator
CLProgram CPU

Parameter Parser

«

Kernel Launcher

Figure 1. Architecture of GPU-FPM

A. Compact Data Structure

The memory access latency on GPU is very high, and it
limits the computational speed-up ratio. Therefore, reducing
the number of fetchings of memory improves the performance.
It fetches the memory many times if used directly on a
transaction-oriented database. This is because the entire
transaction needs to be scanned for verifying each single
itemset. Consequently, a transaction identification set (7idser)
was used to directly select transactions instead of scanning
whole databases. Tid and Tidset were defined as follows:

Tid(i,) =4, NT, # D} for k=1...n
Tidset = {Tid(i,)} for j=1...m

For example, if transactions 1 and 3 contain item i ,
Tid(i,) = {1,3} , then a whole transaction-oriented database is
represented by Tidset. In order to store the Tidset to memory
on GPU, TidValue and TidIndex arrays were used to represent
Tidset. Figure 2 is an example of TidValue and TidIndex
arrays. The TidValue array stored the Tid of each item, e.g.,
Tid(i,) ={1,3} , Tid(i,) = {1,2,5} , Tid(i;) = {2}, etc. (Figure 2
(a)) The boundary of each item on the TidValue array was
determined by the TidIndex array. The TidIndex stored each
items start and end position, e.g., item i, ranging from 6 to 10

means six cells were used for i, in TidValue array and values

were stored from TidValue[6] to TidValue[11]. Therefore, the
information required for mining was transformed from
database to two arrays.

1183|1252 |4|5 |7 |[10]15]18

Tid(ir) Tid(iz) Tid(is) Tidl(is)
(a) TidValue

0|1 214|556 |1
iq i is is
(b) TidIndex
Figure 2. Example of TidValue and TidIndex
B. GPU-FPM

Compared with CPU, GPU is special hardware with
massive processing units. GPU processing is in single
instruction, multiple data (SIMD) and there is no support
recursion on it. Therefore, a compact data structure was
designed and implemented to store necessary data for mining
on GPU. The FPM could be roughly summarized to the
following steps: load database, generate candidate itemset, and
verify the candidate itemset frequently or not. Candidate
itemset verification usually dominates computing time.
Therefore, in this study, GPU was used to reduce candidate
verification time.

GPU-FPM was an Apriori-based mining algorithm and it
generated and verified the itemset to produce frequent patterns.
Since memory access between CPU and GPU is a common
operation, MemPack was designed to lower GPU programming
complexities. MemPack is C++ class template that provided
abilities to store different types of data, e.g., int, float,
customized structure, class, etc. Two transfer functions:
Host2Device and Device2Host and two memory control
functions: ReleaseHost and ReleaseDevice were also provided.
Moreover, the CLProgram class was also designed to have the

following abilities: allow arbitrary number of parameters, bind
arbitrary of MemPack, launch with arbitrary number of threads,
and launch with CPU. The GPU-FPM algorithm follows:

Algorithm GPU-FPM

Input: a transaction database D and a given minimum
threshold ¢&.

Output: a complete set of frequent patterns FP(D,).

1. Load D from disk.
Generate Tidset via scanning the D and store it on hash
table.
Transform hash table to compact array structure—
TidValue and TidIndex.
Create MemPacks mpTidValue and mpTidlndex to store
TidValue and TidIndex.
Perform Host2Device
mpTidIndex to GPU.
Use prefix tree data structure to generated candidate
itemset.
Create MemPack mpCand]IS to store generated candidates.
Perform Host2Device to copy mpCandIS to GPU.
Create MemPack mpResults for storing results.
Create CLProgram c/Prog to store related parameters and
bind the mpTidValue, mpTidindex, mpCandIS, and
mpResults.
Perform launch kernel of c/Prog (on GPU)
a. Each processing unit (PU) allocated a set of candidate
itemsets (Cls)

b. for each Clin Cls

i. PU compute the support of CI according to
mpTidValue and mpTidIndex
If support of CI greater than or equal to given
threshold & then set it is frequent on mpResults,

to copy mpTidValue and

= o >

11.

ii.

else is not frequent.
12. Wait until kernel code executed.
13. Perform Device2Host of mpResults to store the results.
14. Perform Step 6 until all candidates generated and verified.

437

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed
algorithm, GPU-FPM was implemented along with OpenCL
library and Visual C++ on Microsoft Windows. Synthesized
datasets generated by IBM’s Quest Synthetic Data Generator
were used to verify the algorithm. The hardware and software
configurations are given in Table 1. The algorithm evaluated
with different transaction lengths, different threads, different
block sizes, and different thresholds. Table 2 gives the details of
the dataset testing.

Table 1. Hardware and Software configuration

Item Description

CPU AMD Phenom II X4 965 3.4 GHz
Memory 8G DDR3 memory

GPU ATI Radeon HD 5850 with 1440 stream

processing units and 1G DDRS memory

OS Microsoft Windows 7

Compiler Microsoft Visual C++ 2008 w/ SP1

SDK ATI Stream SDK 2.0 w/ OpenCL 1.0 support

Table 2. Statistical Characteristic of Datasets

Dataset Avg Trans Avg Len of No of Trans
Len Max Pattern

T10I4D100K 10 4 100

T40I110D100K 40 10 100

A. Various Thread NumberrsQuantities

In this section, two datasets with different threads and
thresholds were used to verify the performance of GPU-FPM.
Figure 3 and Figure 4 illustrate the computation time of various
thresholds and threads. The computation time of the same
threads was affected by the threshold. A smaller threshold
refers to a smaller degree of support becoming a frequent
pattern. There were 385 and 13,253 frequent itemsets with
£=1000 and &£=200, respectively. The speed-up ratio is
depicted in Figure 5 and Figure 6. For 16 times of threads, the
best speed-up ratio was 13.066. Even in the worst case, it was
11.037. The average speed-up ratio was 12.576.

B. Various Block Sizes

In this section, GPU-FPM used different block sizes to
verify the performance. The block size is the number of
candidates that each processing unit on GPU deals with at each
kernel launch. A small block size implied that the kernel had to
be launched more times. Figure 7 and Figure 8 show the
computation time of various block sizes. The Var stands for the
block size changing with the number of threads, and the block
size (blockSize) and number of threads (noOfThread) had the

following relationship.

blockSize* noOfThread =1024

Although a larger block size saved a bit on computation
time (block size from 2 to 10, saving 0.826 second in case of
T1014D100K with 1024 threads), it only had a small influence
on computation time. In some cases, larger block size even
caused more computation time. The speed-up ratio is shown in
Figure 9 and Figure 10. The trend of the speed-up ratio could
not be observed from the results. According to the experimental
results, the block size had no significant effect on the
computation time.

C. Computation Time used by CPU and GPU

Finally, the computation time used by CPU and GPU is
depicted in Figure 11 and Figure 12. GPU occupied most of the
computation time in all cases. This means that the GPU-FPM

algorithm on GPU had the biggest workload. It also pointed out
that pattern verification required much computing resources
than pattern generation. For 1,024 threads, GPU occupied
93.837% computation time on average.

Computation Time: Various Threshold
500 (T10I4D100K,B10)
450 "\ ——1000 —
400 -
\ =300
350 —
~ N\ 600
g 300 —
2 250 \ ==400 __
_E o \\ \\ 200 —
oo S S
100 A
50 4
0 T T T T \
64 128 256 512 1024
Numberof Threads

Figure 3. Computation Time of Various Thresholds (T1014D100K,

B10)
Computation Time: Various Threshold
2000 (T40110D100K,B10)
1800 ==2000 —
A\
1600 —8=1900
1400 A —
~- AN 1800
3 1200 R —
Z \\\ =>é=1700 __
5 1000 \\\\‘\
E 500 = ¥ 1600 —
600 -
400
200 =
0 T
64 128 256 512 1024
Numberof Threads

Figure 4. Computation Time of Various Thresholds (T40110D100K,
B10)

Speed-up Ratio: Various Threshold (T1014D100K,B10)

8
3 /
= 8 / =4=1000 —
2 6 ==800 —
153
o
&y 600
=>=400
2 —
=#=200
0 T
64 128 256 512 1024

Numberof Threads

Figure 5. Speed-up Ratio of Various Thresholds (T10I4D100K, B10)

438

Speed-up Ratio: Various Threshold (T40110D100K,B10)

16

14 +— ==2000 /’

12 +— =#=1900 //)K
2 A
g 10 +— ===1800
= g | =<1700
T 6 1 =¥1600
o
w0

4

2

0

64 128 256 512 1024
Numberof Threads

Speed-up Ratio: Various Block Size (T1014D100K,T1000)

14
12
g 10
2 —_
= 2
S 6 =4
3
@y —+—6
=g
2
=H=10
0 T T T T Var
64 128 256 512 1uze
Numberof Threads

Figure 6. Speed-up Ratio of Various Thresholds (T40I10D100K,
B10)

Computation Time: Various Block Size
(T10I14D100K,T1000)

120
——2
100 —
-4
80 — —
g \
2 =<8
£ \ =10
= 40 —
\ =®=Var
20 \
0 T T
64 128 256 512 1024
Numberof Threads

Figure 7. Computation Time of Various Block Sizes (T1014D100K,
T1000)

Computation Time: Various Block Size

600 (T1014D100K,T200)
——2
500 —
-
__ 400 =6
5]
Q
< 300 N
E =10
=
200 =@=Var —
100 \
0 T T T T)
64 128 256 512 1024
Numberof Threads

Figure 8. Computation Time of Various Block Sizes (T1014D100K,
T200)

439

Figure 9. Speed-up Ratio of Various Block Sizes (T1014D0100K,
T1000)

Speed-up Ratio: Various Block Size (T1014D100K,T200)

14
12
g 10
S
£ g —
B
% 6 -4
o
@y —A—6
=g
2 —¥=10
0 =@ Var
64 128 256 512 1024
Numberof Threads
Figure 10. Speed-up Ratio of Various Block Sizes (T1014D0100K,
T200)
Computation Time Occupied by GPU and CPU
120 (T1014D100K,T1000,B10)
100 A = GPU ~
'g 80 - = CPU -
Té’ 60
£ 40 -
[]
o . -
64 128 256 512 1024
= GPU 99.746 50.653 26.255 13.776 7.395
=CPU| 0812 0.796 0.765 0.779 0.827
Numberof Threads

Figure 11. Computation Time Occupied by GPU and CPU
(T10I4D100K, T1000, B10)

Computation Time Occupied by GPU and CPU
500 (T1014D100K,T200,B10)
450 -
400 - B GPU -
350 + -
. [
§ 300 - CPU _
= 250 -
E 200 -
& 150
100] .
50 +
o] N =
64 128 256 512 1024
BGPU| 446801 251.613 120.636 62.975 34976
= CPU 0.826 0.842 0.826 0.845 0.811
Numberof Threads

Figure 12. Computation Time Occupied by GPU and CPU
(T1014D100K, T200, B10)

V. CONCLUSIONS

Frequent pattern mining (FPM) is important and
fundamental in data mining. Most FPM methods can be
classified as Apriori-like or FP-growth-like. However, the
computation time increased significantly when the number of
transactions grew. In this study, a GPU based parallel
algorithm—GPU-FPM was used to speed-up the mining
processes. In order to conform to GPU hardware delimitation, a
compact data structure was used to store entire database in
GPU. Moreover, two template classes, MemPack and
CLProgram were also used. Two datasets with different
conditions were used to verify the performance of GPU-FPM.
The speed-up ratio was 12.57 and 7.11 for 16 and 8 times of
threads on average. In addition, most computation time was
occupied by GPU because of all pattern verification processes
being performed by it.

REFERENCES

[1] R. Agrawal, and R. Srikant, “Fast algorithms for mining
association rules,” in International Conference on Very
Large Data Bases, 1994, pp. 487-499.

[2] J. Han, J. Pei, Y. Yin ef al, “Mining frequent patterns
without candidate generation: A frequent-pattern tree
approach,” Data Mining and Knowledge Discovery, vol. 8,
no. 1, pp. 53-87, 2004.

[3] E. Lazcorreta, F. Botella, and A. Fernandez-Caballero,
“Towards personalized recommendation by two-step
modified Apriori data mining algorithm,” Expert Systems
with Applications, vol. 35, no. 3, pp. 1422-1429, 2008.

[4] J. Park, M. Chen, and P. Yu, “An effective hash-based
algorithm for mining association rules,” ACM SIGMOD
Record, vol. 24, no. 2, pp. 175-186, 1995.

[5] A. Javed, and A. Khokhar, “Frequent pattern mining on
message passing multiprocessor systems,” Distributed and
Parallel Databases, vol. 16, no. 3, pp. 321-334, 2004.

[6] K.-M. Yu, J. Zhou, T.-P. Hong et al., “A Load-Balanced
Distributed Parallel Mining Algorithm,” Expert Systems
with Applications, vol. 37, no. 3, pp. 2486-2494, 2009.

440

(7]

[8]
[9]
[10]

[11]
[12]

M. Chen, C. Huang, K. Chen et al., “Aggregation of orders
in distribution centers using data mining,” Expert Systems
with Applications, vol. 28, no. 3, pp. 453-460, 2005.

D. Luebke, M. Harris, N. Govindaraju et al, "GPGPU:
general-purpose computation on graphics hardware." p. 208.
NVIDIA. "Compute Unified Device Architecture (CUDA),"
http://www.nvidia.com/object/cuda_home new.html.

ATI. "Stream SDK,"
http://developer.amd.com/gpu/ATIStreamSDK/.

OpenCL. "OpenCL," http://www.khronos.org/opencl/.

R. Agrawal, and R. Srikant, "Quest Synthetic Data
Generator. IBM Almaden Research Center, San Jose,
California," 2009.

FRERTHEELR EHBFP S TE S A RNEEHE R

98 # 8% 25 p
’ 2 [P RIRE

P 08/8/17 -98/8/19 kg

£ ® Nanchang, China .
£ & (* *)2009 IEEE # /& 3+ & R'%573 ¢
- (% =) 2009 IEEE International Conference on Granular Computing
w4 (F2) &% MPI2# T FA 2 e e imt g A2 ik
w2 (¥ =) Parallel Branch-and Bound Approach with MPI Technology in Inferring
AP Chemical Compounds with Path Frequency

- B fHREE

ERAFHFLAD T MG FR L PR RRE KRG E P ¥ d g R%
B &L BHM AR AR &5 F i (45 345 F » 45~ 165)% A B & hengd &
ERTBLE ETER > AR ERABINF - X2 52 X NERFAY L = BH
TR RPFEELFTRAIL TR Af 12 B ATAES 2 & 323R 4 1 (1). Generalized Bags
and Their Relations: An Alternative Model for Fuzzy Set Theory and Applications, (2).
Formal Theory of Granular Computing and Two Major Applications, (3). High-throughput
DNA Sequencing and Bioinformatics: Bottlenecks and Opportunities, (4).
Ubiquitous/Pervasive Intelligence: Visions and Challenges, (5). Ubiquitous Personalized
Information Processing with Wildcard 2 % (6). Computational Models in Systems
Biology > 4~ %|d Sadaaki Miyamoto (University of Tsukuba, Japan) ~ T. Y. Lin (San Jose
State University, USA) ~ Stephen Kwok-Wing TSUI (The Chinese University of Hong
Kong,China) Laurence T. Yang(St Francis Xavier University, Canada) ~ Xindong Wu
(The University of Vermont, USA) 12 %2 Xue-wen Chen (The University of Kansas,USA)
ER A NE AEAR L o B N2 A AR Z BB IR LT A A 2%
I Parallel Branch-and Bound Approach with MPI Technology in Inferring Chemical
Compounds with Path Frequency j; # % # % % — % = — Session C3 “Intelligent Data

Analysis and Applications”z_ 3=t 3 % o

. omgen

1

GrC 2009 & - & 4 A& 3+ ¥ (Granular computing)# 3 485 ¥ £ 3 dp itk £
. 5 % =)

.J

ERRER ST GRRF A SR Bofh 0 EE
RATE TR SAER ke o §REFEARY T g A pRE o 6 R AR
PARE o AELRERLAEEVHEF LTGRO ARARVETR A RE LIS TR
2 LTI AR TFE A 0 A T AR g R AR LR F

I RO P E AR E R i I i

= BERAB(REAFEFEW)

=4
ra
-ﬁ

v FR LR B

1.~ ¢z
2. The Proceeding of 2009 IEEE International Conference on Granular Computing # 31 € #
v B o

7\:\ ﬂ)l

F YRR B Y

WEREHFT LI, 2SR E4

g3

D EH P

3 %5 ¢ 98-2221-E-216-023-

PE AR SR SRR R B ST 5 S 2 H Web Service 2 A%

£ A AU IR S
LA I Brd s s 3
& 55 F S (i *"ngf&gj Fusg (Hi|% 7] 5392 46
£ Ao g ag;g:) T A mELLLE)
) 2
P73k 0 0 100%
B AR 2 R 0 L00%
e FiTO|% ’
it g 0 0 100%
%2 0 0 100%
1) R 0 0 100% .
B @ Bk 0 0 100%
K 0 0 100% g
TS B
#11 4 0 0 100% |+ =
AL 4 3 3 100%
TN R) 1 1 100%
A =z
(+W#A) [BELuerE |0 0 100% '
4izeim 1 1 100%
B | e EiE (W Tm 0 1 100%
PRI, 0 100%

Bt g

100%

1. Jiayi Zhou, Kun-Ming
Yu, Chun Yuan Lin,
Kuei-Chung Shihl and
Chuan Yi
Tang, " Balanced
Multi-process
Parallel Algorithm for
Chemical Compound
Inference with Given
Path Frequencies,’
The 10th International

Conference on
Algorithms and
Architectures for
Parallel Processing

(ICA3PP 2010) -
Lecture Notes in
Computer Science, Vol.
6082, Part I1,
pp. 188-197,
Springer-Verlag, May,
2010. (Busan, Korea,
5/21-23, 2010). (EI)
(NSC98-2221-E-216-023
and
NSC97-2221-E-216-020)
2. Jiay1 Zhou, Kun-Ming
Yu¥ and Bin-Chang
Wu, " Parallel
Frequent Patterns
Mining Algorithm on
GPU,”’ 2010 [EEE
International
Conference on Systems,
Man, and Cybernetics
(SMC2010), pD.
435-440), 2010
(Istanbul, Turkey,
Oct. 10 - 13, 2010).
(ED). (NSC
98-2221-E-216-023),
X*corresponding
author.

100%

=l

100%

100%

FoHs

100%

o | O O (O o

O | O O (o o

100%

N
Bl

100%

Sprztd A 4

100%

==
SESHIrs

(R

-‘4—‘»
it
e+
puy

100%

||

Ery
\m
o~

i

OO O o

O (O O o

100%

=K

“

45
&
7

(miz g tdz
D B Yo PRI B S
B~
B e e g %
S I
f;zwéfa’ A R

E-

s

EFpER X

LI S A}
Fﬂ—u v F At E

°)

X3P

fres

—_

Pl L (7 FHEe i)

AR/

PR P R

K4

Byes w0 R

m:w*x‘-@»%-}‘: i

it g/ vy

TR~ et

PEAREAZ 22 (BR) L ¥k

OO O OO O o (o

R € A B4 & A5

FRETL N E 2 R AR P ARA i
NG EY TR R
R S R ST

/L

jul

R

™

s LR 2

P
-2
A RFMAHE

=4

R)
i
7 R

= %2 Be gt g
EDRI S E

i N2 ot
» (T- FEFEG

[

> =i
2.7 A
27

2
W

=

o

B

5

N

Lgpegr 2R 2 PAR ~ 2577
.¢¢pﬂ

[JxZ=p 4k (P > 12100 F 5
LI % % Pz

HEESE A

[J# & J 7]

o

x€\1>

PP R R4

w7

FEa
F

3l-

2. By %k nFid A8 & g

He W F4 rw iz
LA gw Y i Ee

Pt D i D/m" M=
Hi 1 (12100 F 5 '2)

A _L_g)ﬁ A riq, :
< s CHER Y e

3. G B g IR AR
(Rt ETriz LR
500 F % ")
L
space P 33 Il B 42T it 013
[EARRE) R R VAR S SUE AR R
LR
service ~i* » i¢

WL

WEE o T RERER .

A3 H T AE g & MUT ~ CCL 2 FRE S 1 4T

LR A e

% (Multi-core) s {7 v w Itﬁfi*fﬁﬁﬂ Zo v A A input
P E U GELRAFERAE L
)‘LE

BRI G S oip b B)

v&’?%Pfﬁ%Lgﬁﬁﬁy%
i BEN - HFRE 2T) (1

feature space ¥)
EFRFERY APk - B GPUT 7
jK)J-i —rr%-?’{)’l_* = m/ﬁﬁ S "%\; web
Pig fz - MUT 2 CCI

?Jf%'?‘i‘%u‘ B F' /}57

	NSC_98_Report
	ICA3PP_99
	Balanced Multi-process Parallel Algorithm for Chemical Compound Inference with Given Path Frequencies
	Introduction
	Preliminaries
	BMPBB-CCI
	Experimental Results
	Conclusions
	References

	SMC_2010_773

