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一、 摘要 

近幾年來由於大量計算需求的科學研究及應用不斷成長，高效能計算平台的需求亦隨之增加，

電腦計算平台也由單核心處理器走向多核心處理器、叢集系統、網格系統以及先進的圖形處理器

(GPU)計算平台，藉由整合大量的運算單元來提供高效能的計算平台。然而現有各研究領域的重要

課題大多是對單核心處理器所設計的循序演算法，無法將現有的技術直接運用在此新興的硬體架

構之計算平台上，也因此許多傳統的循序計算演算法勢必要重新設計以適應新的平行計算平台，

以有效發揮實際的硬體計算能力。在本計畫執行中，我們針對生物資訊領域及電腦輔助製薬領域

中兩個重要的問題：最小權值演化樹(Minimum UltrametricTree, MUT)及化合物推論(Chemical 

Compound Inference, CCI)，發展以多核心處理器為基礎之平行演算法，探討多核心處理器的特

性及多執行緒實作可能遭遇的問題並且提出解決方案，包括:共同記憶體存取的機制、分時分區記

憶體存取機制、動態多執行緒負載平衡機制，以及為上述兩個重要應用問題設計以多核心為架構

之平行演算法，並且已將所得之成果整理成論文，於國際研討會上發表。 

 

關鍵詞: 多核心處理器、多執行緒、最小權值演化樹、化合物推論 

 

Abstract: 
Recently, the computation-intensive research topics and applications grow unceasingly, 

the demand of high-performance computation platform also increase. The computation 

platform moves towards multiple-core processor, cluster system, grid system as well as 

advanced graphics processor (GPU) platform, to provide a high efficiency, high throughput 

computation platform. However, the existing solutions for the important research topics 

in various research areas are mostly designed by using the single core processor 

technologies; they are unable to adapt the new parallel computation platform inevitably. 

In this project, we toke multiple-core and graphics processor as the foundation to design 

an efficient parallel algorithm, and integrate the grid system to develop a conformity 

high-performance computation platform. In this project, we carried on four main research 

topics: First, the development of the multiple-core processor parallel computing 

techniques. Second, take the advantage of graphics processor to construct high efficient 

parallel algorithms. Third, integrates multiple-core processors and graphics processors 

to construct a distributed high-performance computation platform based on grid technology. 

Fourth, publishes above research results by web services. Moreover, the above parallel 

algorithms all aims at MUT (Minimum Ultrametric Tree) and CCI (Chemical 

CompoundInference), two important applications in the bioinformatics and drug research 

fields. We have organized obtained results and published two international conference 

papers in the projects. 

 

Keywords: MultiCore, Multi-thread, MUT, CCI 
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二、 報告內容 

1. 前言 

近幾年來，由於大量計算需求的科學研究及應用不斷成長，高效能計算平台的需求亦隨之增

加，電腦計算平台由單核心處理器 (Single-core processor) 走向多核心處理器 (Multi-core 

processor)、叢集系統 (Cluster system)、網格系統 (Grid system)、以及先進的圖形處理器 

(Graphics Processing Unit, GPU)，藉由整合大量的運算單元來提供高效能的計算平台。由於單

核心處理器在時脈上的提升會使得處理器溫度提高、耗電量隨之增加。因此目前處理器的設計不再

以追求時脈做為唯一考量，轉而以多核心的封裝提供更強大的性能。從雙核心處理器問市至今，四

核心處理器已成為主流的處理器，Intel 公司更表示將在五年內製造出擁有八十核心的處理器，並

且也陸續於電腦展展示實驗性質的八十核心處理器。然而現有各領域的重要課題大多是對單核心處

理器所設計的循序演算法 (Sequential algorithm)，將現有的技術運用在多核心的環境中並無法

有效的使用硬體計算能力，相對的，目前多核心的時脈都較單核心低，甚至可能產生在多核心平台

的效能比單核心平台還要低的情形，於是如何設計平行程式便是有效運用多核處理器的關鍵。 

 

2. 研究目的 

隨著科學計算的需求日益增加，高效能計算的需求也隨之增加。多核心處理器 (multi-core 

processor) 已成為目前主流 CPU 的發展方向，也將會是一長期的趨勢，主要有兩個關鍵：(1) 若 

CPU 時脈繼續提升造成記憶體時脈無法配合，勢必要增加 cache 的容量以降低等待的時間，然而

增加 CPU的快取成本相對的高；(2) 藉由稍微降低處理器的性能可以有效的減少耗電量(將性能降

低至原本的 87% 可以減少一半左右的耗電量)，若將兩個處理器放在一起後，耗電量與原來相當而

效能卻能夠提升 73% 左右。這個特性便是目前主流 CPU 朝向多核心發展的最大原因。雖然多核心

處理器平台能夠提供更多的計算能力，然而傳統的應用程式及演算法多為單核心處理器所設計，於

多核心平台執行現有的程式並未能夠有效的運用多核心平台帶來效能提升的優勢，也迫使現有的課

題及演算法需重新審視及設計以適應多核心的架構，然而不同的應用課題有著不同的限制及特性，

要開發一種平行程式模型需要龐大的資金及人力的投入。雖然設計多核心程式有相當的困難度，然

而多核心處理器確是未來 CPU 發展的趨勢，於是克服多核心處理器的設計挑戰並針對各領域重要

的課題研發平行演算法是刻不容緩的項目。在本計畫執行中，我們設計以多核心為架構之演算法用

於解決兩個重要的問題：最小權值演化樹(Minimum UltrametricTree, MUT)及化合物推論(Chemical 

Compound Inference, CCI)問題  除此之外，我們建立相關的 Web Service 提供給生物學家來使用。 

 

3. 文獻探討 

最小權值等距演化樹 (Minimum Ultrametric Tree, MUT) 

    演化樹建立是計算生物學相當重要的研究課題，同時也是分類學家極為重視的課題，分類  學

家可透過演化樹去觀察現今存在的物種彼間的演化關係及親疏程度，生物學家亦可以透過演化樹的

建立及相關的演化知識去推斷其背後的意義。雖然，實際的演化關係未知，而所建立的演化樹皆是

根據某個定義所產生的結果，因此，有許多不同的定義被提出，並嘗試去解釋其產生的結果與實際

觀察結果間的異同之處。不同的模組被提出之後，相對產生了相當多計算相關的問題，然而這些問
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題經長年的探討研究之後，最佳化的演化樹建立問題多屬於NP-hard，亦即在合理的時間內，能建

立的演化樹其物種個數相當少。因此，相當多近似演算法(Heuristic Algorithm)被提出，如 

UPGMA、NJ、PAUP 等，不過，對於物種個數不多時，最佳化的演化樹建立仍是有其必要性。 

 

化合物推論(Chemical compound inference, CCI) 

由於資訊科學、分子生物學、結構生物學、組合化學、藥物化學等的蓬勃發展，可以  藉由電

腦輔助藥物設計在短時間內進行大量且複雜的運算後得以縮短新藥研究發展的時間與成本。電腦輔

助藥物設計主要是依照Receptor 以及Ligand的已知與否可分成: Ligand known、Ligand unknown、

Receptor known、Receptor unknown 這四選項進而判斷該使用何種藥物設計策略 (可從事於新藥設

計、老藥新用、非原廠藥物等設計策略)。化合物推論 (CCI) 技術是一種能產生一系列藥效基團相

同但是結構不同的藥物。主要的概念為利用一個映射函式 (Mapping function) 將目標化合物映射

至特徵空間 (feature space)，接用採用分支與界定技術找出所有與目標化合物有相同特徵且化學

結構不同的化合物。 

   1. 當Receptor 和Ligand 都是已經有結構的情況下可以採用Docking [1,2] 技術的方 式來進

行藥物設計，將藥物資料庫 (Ligand database) 的資料在同一個 Receptor 位置進行大量幾

何配對與能量計算。 

   2. 當只有Receptor 結構已知時，可以採用De Novo Ligand Design [3-6]技術的方式，在已知

的Receptor 結構之中，置入許多分子片段，再以合理的方式將片段連接起來，形成符合化學

原理的全新藥物結構。 

   3. 當只有Ligand 結構已知的時候，則可以採用3D-QSAR [7-11]或Pharmacophor [12-15]  技術

的方式。 

   4. 當Receptor 和Ligand 的結構都是未知的情況下，目前尚無有效的藥物設計策略。 

 

4. 研究方法 

本計畫發展適用於多核心處理器下之平行演算法，針對多核心共享記憶體的架構以及     

多執行緒為基礎的設計概念為最小權值演化樹 (Minimum Ultrametric Tree, MUT) 及化合物推論

(Chemical Compound Inference, CCI) 設計平行演算法並且使用 web services 包裝研究成果。

平行處理指的是處理器可以同時處理多件事情，而一般平行處理可以分為 (1)Task parallelism 

以及 (2) Data parallelism。Task parallelism 主要是將多項不同的工作分派給不同的核心執

行，這部份的平行化主要由作業系統有效的分派不同的程序 (process) 給不同的核心執行。而 

Data parallelism 是本計畫考量的主要課題，然而多核心的程式撰寫以及除錯相當困難，並且容

易發生死結 (Deadlock)、資料異變的問題。而多核心處理器有三個主要的挑戰：分割、平行與最

佳化，能有一個良好的程式模型的話可較輕易的發展平行應用程式。一般 Data parallelism 的平

行程式設計可以分為兩大類：(1) 共享記憶體模型(shared memory model) 以及 (2) 訊息傳遞模

型 (message passing model)。 

由於傳統平行程式的計算平台多為叢集系統或網格系統，於是訊息傳遞模型是平行演算法領域

中大家比較熟悉的模型。然而多核心平台的特色是共享同一記憶體空間，此時若採用訊息傳遞模型

不僅會造成不必要的資料封裝及傳遞，效能也比不上記憶體直接存取，於是對於多核心平台本計畫

主要採用多執行緒 (multi-threaded) 做為程式開發的基礎。 
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5. 結果與討論 

本計畫執行所獲之成果條列如下: 

     1. 提出並設計於多核心( Multi-core)的平行化演化樹建構演算法； 

     2. 提出平行化合物列舉演算法並可以列出在 input space 中找到最接近的近似解，可     

以應用該特性讓生物學家調整在feature space 中的值，並找出與該似接近之化合物； 

     3. 設計完成的演算法包裝成 web service 元件，使得國內外有興趣的相關團隊利用多核心計算

資源快速解決 MUT 及CCI 課題； 

     4. 整理計畫成果為兩篇論文，並發表於EI等級之國際研討會議中(ICA3PP 2010及 SMC 2010)； 

     5. 將計畫成果整理成兩篇論文投稿至國際著名期刊尋求發表機會。 
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四、 計畫成果自評 

本計畫除了提出以多核心為架構之平行演算法解決MUT 與CCI問題外，並且將計畫的成果以 

web services(如圖一、二) 形態包裝後發佈。此種方式除了可以滿足生物學家及製藥領域的學者

使用上的方便，而且以標準 web services 包裝的物件可以直接引用在生物學家現有的工作流程軟

體、或者與標準的 web service 串連，使我們的方法成為未來不可或缺的服務。本計畫之研究內

容與原計畫相符，並且已達成預期之目標，研究成果不但具有學術價值，同時也具有一定之應用價

值。 

1. 對於參與之工作人員所獲得之訓練 

此計劃的發展以多核心處理器平行演算法解決上述問題，開發過程中所使用及學習的多執行緒

技術及 MPI 技術，對於未來參與人員投入軟體產業開發高效能程式有非常大的幫助。參與人員可

以學習到平行程式開發的理論、實務、並且學習獨立思考的能力。在參與的過程中，也可以學習研

究方法、團隊工作精神、以及論文撰寫經驗。 

2. 學術期刊已發表於研討會並將投稿於國際期刊 

本計畫的研究成果已在兩個EI國際研討會上發表(ICA3PP 2010及 SMC 2010，請参閱附錄)，

並將整理成兩篇論文投稿至國際著名期刊尋求發表機會，並希望能結合國內外從事此方面研究的研

發能量，發展更有國際競爭力及高效能的系統。 

 

圖一 web service 
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圖二 web service 
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Abstract. To enumerate chemical compounds with given path frequencies is a 
fundamental procedure in Chemo- and Bio-informatics. The applications in-
clude structure determination, novel molecular development, etc. The problem 
complexity has been proven as NP-hard. Many methods have been proposed to 
solve this problem. However, most of them are heuristic algorithms. Fujiwara et 
al. propose a sequential branch-and-bound algorithm. Although it reaches all 
solutions and avoids exhaustive searching, the computation time still increases 
significantly when the number of atoms increases. Hence, in this paper, a paral-
lel algorithm is presented for solving this problem. The experimental results 
showed that computation time was reduced even when more processes were 
launched. Moreover, the speed-up ratio for most of the test cases was satisfac-
tory and, furthermore, it showed potential for use in drug design. 

Keywords: Branch-and-bound algorithm, load-balancing, chemical compound 
inference, drug design. 

1   Introduction 

The enumeration of chemical compounds that has the same characteristics is one of 
the fundamental issues in Chemo- and Bio-informatics. Its applications include struc-
ture determination using mass-spectrum [1-2], reconstructing molecular structure with 
given signatures [3-4], classification of compounds [5], etc. In an effort to improve on 
existing algorithms, many studies have proposed different ways of dealing with the 
                                                           
 ∗  This work is partially supported by Nation Science Council. (NSC98-2221-E-216-023 and  
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enumeration of constraints for other purposes, such as the virtual exploration of 
chemical universe [6-7]. However, none can guarantee that all solutions can be found 
since they are based on heuristic algorithms and require additional operations to avoid 
generating isomorphic results. 

The Kernel Methods (KMs) approach maps the data in the input space into a high 
dimension feature space. The data are computed as points in the feature space where 
each coordinate represents one feature of the data. In applying KMs to chemical  
compounds, all compounds are mapped to feature vectors in the feature space. The 
definition of feature vector is widely based on frequencies of labeled paths [8] or 
frequencies of small fragments [5]. In this study, the pre-image problem was focused 
on by enumerating all chemical compounds with the same path frequency. The de-
sired object was computed as a point in the feature space, and then the point was 
mapped back to the input space. This point was called the pre-image of the point. A 
given point in the feature space (frequency path) was then mapped back to the point in 
the input space (chemical compound). Let ψ  be the mapping function, then the pre-
image is defined as follows: given a point y  in the feature space, to find all x  in the 

input space such that ( )y xψ= . Therefore, the chemical compound inference (CCI) 

is defined as follows: given a target compound c  and computed path frequency ( )cψ . 

The objective is to infer all compounds 
1 n
c c… such that ( ) ( )

i
c cψ ψ=  for 

1, ,i n= … . Since the solution for CCI can be applied to new chemical compounds 
with the same path frequencies, it may be useful in drug design. 

Akutsu and Fukagawa have proved that to enumerate chemical compounds with 
given constrains is an NP-hard problem [9]. The branch-and-bound algorithm is gen-
erally used to solve a wide variety of NP-hard problems [10], such as Traveling 
Salesman, Knapsack, Vertex Covering, avoiding exhaustive searches. For CCI prob-
lem, Fujiwara et al. have proposed an efficient branch-and-bound algorithm [11]. The 
branching and bounding strategies are based on the path frequency and the valence 
constrains of atoms, respectively, to avoid the generation of an invalid tree, thus re-
ducing the search space. Although this algorithm outperforms the exhaustive search 
algorithms, the computation time increases significantly when the number of atoms in 
a compound grows. 

A balanced multi-process parallel branch-and-bound algorithm for CCI (BMPBB-
CCI) was designed in this study. In BMPBB-CCI, the searching space is dynamic 
divided into p  subspaces with p  processors. Since each subspace is independent, it 
can be processed by a processor and then applied to a sequential branch-and-bound 
algorithm. Hence, it minimizes the parallel communication cost between processors 
since only local communication is required. Moreover, two types of queuing, global 
queue (GQ) and local queue (LQ), are used for load-balancing in branching. A hash-
able and a serial data structure were used to store the path frequencies instead of the 
Trie structure because it can be transferred between processors as a plain string. 

The development trend in computers is one of multi-core processors. Adding more 
cores to a computer makes it faster, but it also leads to difficulties in designing  
programs. Although OpenMP [12] is a standard and easy to use multi-threading li-
brary that gives the performance of multi-core processors, it is not flexible enough for 
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delicate operations or for designing complicated parallel algorithm. Therefore, 
BMPBB-CCI was implemented using multi-process architecture (MPA). Different 
from multi-thread architecture, for long running programs, MPA obtains memory 
protection and access control benefits of operating systems. In addition, when a  
process crashes it does not affect the remaining running processes. Moreover, it also 
could be easily extended to distributed memory multi-processors system, e.g. a multi-
node cluster. The experimental results showed that BMPBB-CCI found the optimal 
solution for chemical compounds in a short time. In addition, it also had a satisfactory 
speed-up ratio. 

2   Preliminaries 

Being different from a simple graph, a graph that allows multiple edges is called a 
multigraph. A multigraph without self-loop and cycle is called a multitree. Let Σ de-
note a label set with each label representing a symbol of an atom, e.g. 

{ , , }C O HΣ = . A Σ -labeled multitree can be denoted as ( , )T V E=  with a vertex 

set V  and edge set E . A valence function, :val +Σ → ] , is introduced to be the 
maximum number of bonds an atom can hold, e.g. ( ) 4val C =  and ( ) 2val O = . For 

any vertex v  in T , the valence of v  is ( ( ))val l v , where l  is the function returning 

label ∈ Σ  of vertex v . A chemical compound can be treated as a ( , )valΣ -labeled 

multitree, where the number of edges represents the chemical bonds between two 
vertices (atoms). The path frequencies of the ( , )valΣ -labeled multitree are defined. 

Let 
0

( , )
s

P v v= …  be the path in multitree T  and 
0

( ) ( ( ), ( ))
s

l P l v l v= …  be the la-

beled sequence of the path. For a labeled sequence t , let ( , )occ t T  stand for the num-

ber of paths of t  in multitree T , where the multi-edge is treated as a single edge. 

Then kΣ  denotes the set of sequences with k  labels, and 
1

k k k
j

≤
=Σ = Σ∪ . The path 

frequencies with level K  are defined as 1( ) ( , ) KK t
f T occ t T +∈Σ

= . Fig. 1 illustrates the 

path frequencies of un-rooted ( , )valΣ -labeled multitree (a chemical compound, 

C2O2H4) with level K =1. Where all paths are treated as "directed", thus 
( , )occ OH T = ( , )occ HO T =1 and so on. 

CCI is further defined in the following [11]. Given a finite label 1K ≥ , a target 

with path frequencies g , and a valence function :val +Σ → ] . Find all ( , )valΣ -

labeled multitree T  such that ( )
K
f T g=  and deg( ) ( ( ))v val l v=  for each vertex v  

in multitree ( , )T V E= . However, the main concern with CCI is to avoid the genera-

tion of isomorphic chemical compounds. Many methods [13-14] propose to solve this 
problem by choosing a unique vertex or a unique pair of adjacent vertices as a root. 
Fujiwara et al. [11] applied centroid-rooted [15] left-heavy properties (Theorem 1) to 
avoid the generation of isomorphic chemical compounds.  
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Fig. 1. Example of ( , )valΣ -labeled multitree T 

Theorem 1. For any tree with n vertices, either there is a unique vertex *v  such that 

each subtree obtained by removing *v  to contain at most ( 1) / 2n⎢ ⎥−⎢ ⎥⎣ ⎦  vertices, or 

there is a unique edge *e  such that both of the subtrees obtained by removing *e  
contain exactly / 2n  vertices. 

 

Vertex *v  is identified as a unicentroid of the tree, or a bicentroid for *e . In order to 
introduce left-heavy properties, multitree T  is indexed using a depth-first search 

(DFS) order. In general, the vertex sequence, 
0 1
, ,

n
v v v… , is labeled by DFS from the 

root vertex. The depth function ( )d v  of vertex v  is the number of edges in ( )P v , 

where the depth of the root vertex is 0. The depth label sequence of T  is defined 

as
1 1

DL( ) (d( ), l( ), ,d( ), l( ))
o o n n

T v v v v
− −

= … . T( )v  denotes a subtree rooted at vertex 

v  and all of its descendants. The left-heavy properties are defined as follows. T  is 

left-heavy if i j<  implies DL(T( )) DL(T( ))
i j
v v≥  for any two siblings 

i
v  and j

v . 

For any two depth label sequences 
1 11 1,0 1,0 1,1 1,1 1, 1,

DL( ) ( , , , , , )
n n

T d l d l d l= …  and 

2 22 2,0 2,0 2,1 2,1 2, 2,
DL( ) ( , , , , , )

n n
T d l d l d l= … , 

1 2
DL( ) DL( )T T>  means that there is a 

1 2
[1,min( 1, 1)]i n n∈ − −  such that 

1, 2,j j
d d=  and 

1, 2,j j
l l=  for 0, 1j i= −… . In 

addition to either (1) 
1, 2,i i
d d> , or (2) 

1, 2,i i
d d=  and 

1, 2,i i
l l> .  

Fujiwara et al. [11] propose a branch-and-bound algorithm to enumerate all tree-
like chemical compounds with given path frequencies. It starts from an empty multi-
tree, then iteratively creates a multi-tree rooted in atom v , where ( )l v ∈ Σ . After that, 

new children multitree offspring can be obtained by inserting vertex 'v  where 
( ')l v ∈ Σ  at the right-most path. If T  violates (1) centroid-rooted constraints, (2) 

( )
K
f T g≤ , and (3) deg( ) val( ( ))v l v≤ for each v T∈  then candidate T  is bounded 

immediately.  

3   BMPBB-CCI 

BMPBB-CCI was designed on shared memory multi-core computers. However, the 
built-in shared memory facilities of the operating system (OS) somewhat restricted 
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portability to another OS. In addition, this facility allows fewer types of data struc-
tures. Therefore, a socket-based manager process was implemented which held  
various types of data structures. In addition, the manager also could be extended to 
distributed memory computing architecture, such as cluster systems. Fig. 2 shows the 
framework of the BMPBB-CCI, where the manager module of the manager process 
implemented a socket-based communication object which supported the data struc-
ture, such as list, double-ended queue (dequeue) and dictionary. A Global Queue 
(GQ) was also implemented on the manager process as well as a Local Queue (LQ) on 
each computing process to balance the workload among processors and to reduce 
inter-process communication. 

There are three different processes, main process (MP), computing process (CP) 
and manager process (MgP). Since the valence of the H atom is 1 and always at-
tached in the leaf node, the H atom can be removed during branching operations. The 
path frequency with the H atom is computed in step 2. After that, in steps 3 and 4, the 
MgP is created and started, and the required shared objects are also allocated in this 
step. In steps 5 and 6, the CP is created and launched at each computing core. More-
over, the obtained Id of created shared objects is passed to each CP. Finally, the MP 
joins all launched CPs until it is terminated and then MP writes the results to disk. 

 
Main Process (MP)Manager Process (MgP)

Global Queue (GQ)

Manager
Module

Sub-process
Launcher

Computing Process (CP1)

Local Queue (LQ)

Balanced Branch-
and-Bound Module

Sub-process
Synchronizer

Computing Process (CPn)

Local Queue (LQ)

Balanced Branch-
and-Bound Module

.

.

.

 

Fig. 2. Multi-process framework of BMPBB-CCI 

 
The branch and bound operations are done in CP. Moreover, CP also uses the 

shared object to balance the workload. An overview of the algorithm of CP, show that 
it is an infinite loop. It loops the algorithm over until all solutions are found. From 
steps 2 to 6, the compound in LQ is chosen first. If the LQ is empty, then the  
compound in the GQ is chosen if that is not empty. Otherwise, the new atom in inser-
tAtomQueue is selected as a new root of the candidate compound in step 5. The  
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bounding operations are applied in steps 7 to 13. H atoms are inserted back to comp to 
check the feature vector constrains and valence constrains in steps 8 and 9. The cen-
troid-rooted and left-heavy properties are verified in step 10 to avoid generation of 
isomorphic chemical compounds. If the comp passes all verifications, it is inserted 
into resultQueue in step 11. The comp is dropped immediately if its path frequency 

( )
K
f comp greater than 

noH
g  (step 13). Steps 14 to 17 are branching operations. In step 

16, the potentially new pair of atoms are verified in the 
noH
g . If the pair is presented 

in 
noH
g  then the new candidate compound newComps is generated. Moreover, borrow 

a single bond transformation as proposed by Fujiwara et al. [11]. The number of 
bonds of the attached new vertex is limited by the maximum number of bonds be-
tween pairs of atoms in the target compound. Therefore, the searching spaces can be 
significantly reduced to save on computation time. In order to balance the workload, 
when there are too few compounds in the GQ, the newComps are appended to GQ, 
otherwise the newComps are appended to LQ (step 17). Since the GQ is filled during 
branching operations, the CP can immediately acquire the candidate compounds from 
GQ without waiting for other CPs to transfer candidates. 

MgP creates and obtains a shared object via socket-based connections. The benefits 
of the shared object facilities are (1) they deal with various types of data structures, 
(2) they have built-in synchronization facility, and (3) they share objects from differ-
ent computers. The algorithm for BMPBB-CCI is given below. 

 
Algorithm. BMPBB-CCI 

 
Input: Target compound and valence function  
Output: Chemical compound which confirms to path frequencies of given compound 
Environment: Multi-core architecture computers 

 
Main Process (MP) 
Step 1: Remove H atoms from given target compound and      

compute its path frequency 
noH
g . 

Step 2: Insert the H atoms back to the given target compound and  

compute its path frequency 
H
g . 

Step 3: Create and start MgP and create a global queue on MgP. 
Step 4: Allocate shared object form MgP, resultQueue and  

insertAtomQueue. 
Step 5: Create CP on each computing core in processor. 

Step 6: Start CP with following parameters: 
noH
g , 

H
g ,  

resultQueue, insertAtomQueue. 
Step 7: Wait all started CPs terminated. 
Step 8: Write the results to disk. 

 
Computing Process (CP) 
Step 1: while True: 
Step 2:   if local queue is not empty: 

         comp = pop last item of local queue 
Step 3:   else: 

        if global queue is not empty:  
            comp = pop last item of global queue 
        else: 
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Step 4:        if resultQueue is not empty:                   break 
Step 5:        else if insertAtomQueue is not empty: 

                   comp = pop a atom from insertAtomQueue and create new compound 
Step 6:         else:                   break 
Step 7:   if num of atom of comp = target compound w/o H: 
Step 8:     Add H atom to comp 

Step 9:     if ( )
K
f comp != 

H
g :             continue 

Step 10:     Check the centroid-rooted and left-heavy properties 
Step 11:     If pass the checks, add the comp to resultQueue 

Step 12:   else:   Check if ( )
K
f comp  <= 

noH
g  

Step 13:   for v  in right most path of comp: 
Step 14:     if v  is the last atom on right most path:  

         insertAtom = Σ  
        else:  insertAtom = s  for all (next vertext of )s l v<  

Step 15:     for s  in insertAtom: 

         if ( , )s v  in 
H
g : 

                 Insert s  on v  to generate new candidate 0
, ,

q
newComp newComp…  such that bond 

≤  the maximum number of bond of pair .. in target compound  

Step 16:      if 2len( ) ( ) / 2GQ numberOfProcessors≤  

           Insert 
i

newComp  to GQ  for 0, ,i q= …  

        else:  Insert .
.
 to LQ  for 0, ,i q= …  

 
Manager Process (MgP) 
Step 1: Create a socket and waiting for the request. 
Step 2: if incoming request is shared object creation: 

       Create a shared object of request data type 
       return shared object Id 

Step 3: if incoming request is shared object read: 
      Read the corresponding shared object of given Id 
      return the read value 

Step 4: if incoming request is shared object write: 
      Acquire a lock object 
      Write the given data to shared object of given Id 
      Release a lock object 

4   Experimental Results 

BMPBB-CCI was implemented in Python language 2.6 on IBM System x 3650 T con-
sisting of 2 Intel Xeon 3.20GHz CPUs (8 computing cores, 4 cores per CPU). Two 
data sets were used to verify BMPBC-CCI. One was KEGG LIGAND database [16], 
the other was a set of 22 compounds for neuraminidase (NA) inhibitors of the influ-
enza A virus from Zhang et al. [17]. 

The chemical compounds in KEGG LIGAND’s database were used to verify the 
performance of BMPBB-CCI, and path frequencies were computed for levels 1 and 2. 
Due to page limitation, selected compounds and their properties are shown in Table 1, 
where (1) C00064, C00073, and C00077 are the entries for L-Glutamine, L-
Methionine and L-Ornithine in the KEGG LIGAND database, (2) n1 is the number of 
atoms of an entry and n2 is the number of atoms which removed H atoms, (3) fs is the 
number of feasible solutions found. Fig. 3 (a)-(c) shows the computation time of 
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BMPBB-CCI with a different number of processes. It was found that a large number 
of processes (computing process, CP) reduced computation time. Moreover, smaller 
K  values had fewer constraints and more feasible solutions were found (see Table 1). 
Therefore, there were more candidate compounds in branch-and-bound operations, 
leading to larger solution spaces to be traversed. The computation time was long 
when level K  was small. Fig. 3 (d) illustrates the speed-up ratio of BMPBB-CCI 
from (a)-(c). The speed-up ratio increased when the number of processes increased. 
Moreover, the speed-up ratios were satisfactory even for 8 processes. This result 
showed that BMPBB-CCI was scalable. 

Table 1. Properties of selected compounds 

Entry 
Formula 

n1 n2 K fs 

C00064 20 10 1 274 
C5H10N2O3   2 3 

C00073 21 9 1 339 
C5H11NO2S   2 2 

C00077 21 9 1 236 
C5H12N2O2   2 3 
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Fig. 3. Computation time and speed-up ratio 

 

BMPBB-CCI was used to infer novel chemical compounds for the second data set to 
show that it had potential for drug design. A pharmacophore model consists of a 3D 
arrangement of a collection of features necessary for the biological activity of ligands 
(compounds). At first, the pharmacophore model (by Accelrys DiscoveryStudio) fwas 
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constructed for NA of an influenza A virus from Zhang et al. [17]. Then the model was 
tested with Tamiflu and Zanamivir. The results (Table 2) showed that it was reliable 
since the predicted IC50 and actual IC50 were on the same quantity level. Finally, the 
model was used to test new chemical compounds inferred by BMPBB-CCI. Due to 
page limitation, only the compound Cpd was used as an example (Table 2). The new 
compound Cpd-Reb had a better predicted IC50 and Fit value than Cpd-Ori. Discover-
yStudio CDOCKER’s docking program was also used to compute the interactions 
between compound and protein. The best CDOCKER interaction energy for Cpd-Ori 
was 42.565. The best CDOCKER interaction energy for Cpd-Reb was 45.324. The 
docked poses are given in Fig. 4. These results showed that the novel compound Cpd-
Reb may be a candidate for NA inhibiting of the influenza A virus. 

 

Table 2. Results for test compounds in the pharmacophore model 

Mapped feature Compound Actual IC50 
(nM) 

Estimated IC50 
(nM) 

Fit 
value HD1* HD2* HY* NI* PI* 

Tamiflu 1 8.502 10.95  + + + + 
Zanamivir 1.3 4.848 11.194 + +  + + 
#Cpd-Ori 6300 5639.67 8.129  +  + + 
#Cpd-Reb NA 6.577 11.062 + + + +  

*HD1: hydrogen-bond donor 1; HD2: hydrogen-bond donor 2; HY: hydrophobic group;  
                  NI: negative ionizable group; PI: positive ionizable group. 

#Cpd-Ori: original compound Cpd; Cpd-Reb: novel compound inferred by BMPBB-CCI. 

 

 
(a) Cpd-Ori (b) Cpd-Reb 

Fig. 4. The Cpd-Ori and Cpd-Reb docked pose into NA protein (PDB code: 2hu4) 

5   Conclusions 

An algorithm (BMPBB-CCI) was designed and verified on multi-core computers. 
From the experimental results, it was observed that BMPBB-CCI reduced computa-
tion time with more processors in the case of the KEGG LIGAND database. It also 
achieved a satisfactory speed-up ratio for most of the test cases. Moreover, it showed 
potential for drug design. 
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Abstract—Extraction of frequent patterns from a 
transactional database is a fundamental task in data mining. Its 
applications include association rules, time series, etc. The 
Apriori approach is a commonly used generate-and-test 
approach to obtain frequent patterns from a database with a 
given threshold. Many parallel and distributed methods have 
been proposed for frequent pattern mining (FPM) to reduce 
computation time. However, most of them require a Cluster 
system or Grid system. In this study, a graphic processing unit 
(GPU) was used to perform FPM with a GPU-FPM to speed-up 
the process. Because of GPU hardware delimitations, a compact 
data structure was designed to store an entire database on GPU. 
In addition, MemPack and CLProgram template classes were 
also designed. Two datasets with different conditions were used 
to verify the performance of GPU-FPM. The experimental results 
showed that the speed-up ratio of GPU-FPM can achieve 14.857 
with 16 times of threads. 

 Keywords—frequent pattern mining, parallel processing, 
graphic processing unit (GPU), OpenCL 

 

I. INTRODUCTION 
Both in business and scientific research, there has been a 

tremendous growth of data that needs to be processed. 
Extracting information from large amount of data is necessary 
in making correct and effective decisions. Different methods 
have been developed to determine the characteristics and 
interrelationships of data. Association rule learning, 
classification, clustering, and regression commonly need to 
mine data. Extraction of frequent patterns from a transaction-
oriented database is one of the most important of these. 
Frequent patterns represent the number of times an itemset 
appears in a given database. Therefore, if an itemset is frequent 
it means there are strong relationship between items. 

Most frequent patterns mining (FPM) either uses the 
generate-and-test (Apriori-like) [1] or the pattern growth 
approach (FP-growth) [2]. The core concept of the Apriori-like 
approach is that if the length k  pattern is not frequent in the 
database, then the super-pattern (length 1k + ) will not be 
frequent. It uses a bottom-up approach, extending frequent 
subsets one item at a time. Since the generated candidates are 
independent, this approach is suitable for parallelization. 

Although many Apriori-like methods have been proposed [3-4], 
the computation time increases significantly when the database 
contains a large number of transactions. Some studies [5-7] 
apply parallel and distributed techniques to speed-up the 
mining processes. However, most of them require a high 
performance computing system, e.g., a Cluster or Grid System.  

In recent years, the graphic processing unit (GPU) has 
developed from a 3D rendering device for games to a general-
purpose computing device [8]. While the GPU can only 
execute some simple instructions and functions, compared with 
CPU, it has a large number of computing units. Moreover, 
using GPU as a high-performance computing device which 
does not only reduce the deployment cost but also saves on 
maintenance. GPU programming strategies can be classified 
according to either graphic APIs or GPU programming 
language. It is difficult for developers to use the graphic APIs 
since they need understand the graphic hardware and encode 
their data to graphic vectors. The most serious problem is the 
use of previously designed parallel algorithms. Therefore, GPU 
programming language is currently being used to develop 
GPU-enabled programs. NVIDIA and ATI have been proposed 
as GPU programming language by CUDA [9] and Stream [10] 
respectively. Programs can be written in C programming 
language (C99) to use the power of GPU. However, CUDA can 
only be used on NVIDIA’s GPU and vice versa. Therefore, 
OpenCL [11] was proposed in 2009 to deal with this situation. 
The program design with OpenCL not only can be executed on 
different brand GPU devices, but also on multi-core CPUs. 

In this study, the GPU-FPM algorithm was used to speed-
up the mining processes for FPM when using GPU. Although 
GPU is a powerful computing device, there are limitations: like 
memory size, memory latency, etc. Therefore, the data 
structure has to be re-designed for the FPM algorithm on GPU. 
Since the verification time dominates computation time, the 
main goal of GPU-FPM is to use GPU to verify generated 
candidates in order to speed-up the FPM processes. Compact 
Data Structure, MemPack, and CLProgram class were used to 
achieve this. For verifying the GPU-FPM performance, it was 
implemented on Microsoft Windows with OpenCL 1.0, in 
addition, data generated by an IBM Quest Data Generator [12] 
was used. The proposed algorithm was tested under different 
conditions, including different transaction lengths, threads, 
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block sizes, and thresholds. The experimental results showed 
that GPU-FPM significant reduced the computation time with 
increasing threads. The speed-up ratio achieved 14.857 with 16 
times of threads (in case of the T40I10D100K threshold being 
1900, and block size 10). Moreover, even in the worst case, 
GPU used 89.942% of the execution time. This means that 
GPU-FPM efficiently used the GPU computing power.  

The rest of the paper is organized as follows: In section 2, 
the FPM, GPU, and OpenCL are described. The proposed 
GPU-FPM is introduced in section 3 and the experimental 
results are illustrated in section 4. Finally, the conclusions 
discussed in section 5. 

II. PRELIMINARIES 

A. Frequent Pattern Mining (FPM) 
The main concept of FPM is to find the number of times a 

given pattern appears in a database. FPM is defined as follows: 

Let D  be a transactional database consisting of a set of 
transactions 1 2, , , nT T T… : 1 2{ , ,..., }nD T T T= . Let I  be a set of 
items 1 2, , , mi i i… , a set 1 2{ , , , }kX i i i I= ⊆…  called an itemset 
or a k -itemset if it consists of k  items. The support of an 
itemset X  is the number of transactions containing X . 

support( , ) { | , }iX D i X T X I= ⊆ ⊆  for 1i n= …  

An itemset is called frequent if the support is greater than or 
equal to the given absolute minimal threshold ξ . FPM is given 
a set of items I , a database D , and a minimal threshold ξ , 
then find FP( , )D ξ . 

FP( , ) { | support( , ) }D X I X Dξ ξ= ⊆ ≥  

B. Graphic Processing Unit (GPU) 
GPU is a parallel-oriented computing device. It always 

consists of massive processing units to perform mathematical 
computing. It used to be used as a co-processor CPU for games 
and 3D design applications. The DirectX 9 proposed in 2005, 
has taken graphics cards to the next generation because of 
vertex and pixel shaders being integrated in general-purpose 
processing units—introducing the universal shader. The 
mainstream GPU has hundreds to thousands computing units. 
Each unit can be regarded as a simplified CPU. Compared with 
the multicore CPU, the number of processing units has also 
increased. Consequently, GPU also has a whole new 
application—general-purpose computing on graphics 
processing units (GPGPU).  

C. OpenCL 
The GPU programming language can be classified as 

graphic APIs (DirectX, OpenGL, etc.), GPU programming 
language (NVIDIA CUDA [9], ATI Stream [10], OpenCL [11], 
etc). Previously, GPU programming required developers with 
in-depth knowledge of graphics programming and hardware. In 
order to utilize the computation resources on GPU, developers 
had to encode data to a graphic vector, and then use the 
DirectX or OpenGL functions to perform rendering. After that, 

the rendered data had to be decoded. This procedure not only 
required graphic programming knowledge, but also depended 
on different GPUs. Recently, CUDA and Stream have been 
proposed by NVIDIA and ATI. Both of them provide C 
interface and allow developers to adapt the hardware, e.g., 
number of processing units, size of local and global memory. 
However, previous frameworks could only be used with the 
respective GPUs, e.g., CUDA could only be executed on 
NVIDIA’s GPUs. 

In order to solve this situation, the Khronnos Group and 
many industry-leading companies created the OpenCL. 
OpenCL is an open and cross-platform parallel heterogeneous 
programming system. It provides a uniform programming 
environment for developers to write efficient and portable 
codes using a diverse mix of multi-core CPUs, GPUs, and other 
processors.  

III. GPU-FPM 
The goal of GPU-FPM was using massive processing units 

on GPU to speed-up the FPM procedures. However, each 
processing unit on GPU can only perform simple instructions. 
Another important issue is memory size and access latency. 
Therefore, the algorithm and data structure had to be re-
designed for GPUs to fully utilize its computation resources. 
Figure 1 illustrates the architecture of GPU-FPM. GPU-FPM 
has the following features: (1) data handling between CPU and 
GPU, (2) compact data structure, and (3) highly parallel. 

 

 
Figure 1. Architecture of GPU-FPM 

 

 

A. Compact Data Structure 
The memory access latency on GPU is very high, and it 

limits the computational speed-up ratio. Therefore, reducing 
the number of fetchings of memory improves the performance. 
It fetches the memory many times if used directly on a 
transaction-oriented database. This is because the entire 
transaction needs to be scanned for verifying each single 
itemset. Consequently, a transaction identification set (Tidset) 
was used to directly select transactions instead of scanning 
whole databases. Tid and Tidset were defined as follows: 
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Tid( ) { }j j ki i T= ∩ ≠ ∅  for 1k n= …  

Tidset {Tid( )}ji=  for 1j m= …  

For example, if transactions 1 and 3 contain item 1i , 

1Tid( ) {1,3}i = , then a whole transaction-oriented database is 
represented by Tidset. In order to store the Tidset to memory 
on GPU, TidValue and TidIndex arrays were used to represent 
Tidset. Figure 2 is an example of TidValue and TidIndex 
arrays. The TidValue array stored the Tid of each item, e.g., 

1Tid( ) {1,3}i = , 2Tid( ) {1,2,5}i = , 3Tid( ) {2}i = , etc. (Figure 2 
(a)) The boundary of each item on the TidValue array was 
determined by the TidIndex array. The TidIndex stored each 
items start and end position, e.g., item 4i  ranging from 6 to 10 
means six cells were used for 4i  in TidValue array and values 
were stored from TidValue[6] to TidValue[11]. Therefore, the 
information required for mining was transformed from 
database to two arrays. 

 

 
(a) TidValue 

 
(b) TidIndex 

Figure 2. Example of TidValue and TidIndex 
 

B. GPU-FPM 
Compared with CPU, GPU is special hardware with 

massive processing units. GPU processing is in single 
instruction, multiple data (SIMD) and there is no support 
recursion on it. Therefore, a compact data structure was 
designed and implemented to store necessary data for mining 
on GPU. The FPM could be roughly summarized to the 
following steps: load database, generate candidate itemset, and 
verify the candidate itemset frequently or not. Candidate 
itemset verification usually dominates computing time. 
Therefore, in this study, GPU was used to reduce candidate 
verification time.  

GPU-FPM was an Apriori-based mining algorithm and it 
generated and verified the itemset to produce frequent patterns. 
Since memory access between CPU and GPU is a common 
operation, MemPack was designed to lower GPU programming 
complexities. MemPack is C++ class template that provided 
abilities to store different types of data, e.g., int, float, 
customized structure, class, etc. Two transfer functions: 
Host2Device and Device2Host and two memory control 
functions: ReleaseHost and ReleaseDevice were also provided. 
Moreover, the CLProgram class was also designed to have the 

following abilities: allow arbitrary number of parameters, bind 
arbitrary of MemPack, launch with arbitrary number of threads, 
and launch with CPU. The GPU-FPM algorithm follows: 

 

Algorithm GPU-FPM 
 
Input: a transaction database D  and a given minimum 
threshold ξ . 
Output: a complete set of frequent patterns FP( , )D ξ . 
 
1. Load D  from disk. 
2. Generate Tidset via scanning the D  and store it on hash 

table.  
3. Transform hash table to compact array structure—

TidValue and TidIndex. 
4. Create MemPacks mpTidValue and mpTidIndex to store 

TidValue and TidIndex. 
5. Perform Host2Device to copy mpTidValue and 

mpTidIndex to GPU. 
6. Use prefix tree data structure to generated candidate 

itemset. 
7. Create MemPack mpCandIS to store generated candidates.  
8. Perform Host2Device to copy mpCandIS to GPU. 
9. Create MemPack mpResults for storing results. 
10. Create CLProgram clProg to store related parameters and 

bind the mpTidValue, mpTidIndex, mpCandIS, and 
mpResults. 

11. Perform launch kernel of clProg (on GPU) 
a. Each processing unit (PU) allocated a set of candidate 

itemsets (CIs) 
b. for each CI in CIs 

i. PU compute the support of CI according to 
mpTidValue and mpTidIndex 

ii. If support of CI greater than or equal to given 
threshold ξ  then set it is frequent on mpResults, 
else is not frequent. 

12. Wait until kernel code executed. 
13. Perform Device2Host of mpResults to store the results. 
14. Perform Step 6 until all candidates generated and verified. 
 

IV. EXPERIMENTAL RESULTS 
In order to evaluate the performance of the proposed 

algorithm, GPU-FPM was implemented along with OpenCL 
library and Visual C++ on Microsoft Windows. Synthesized 
datasets generated by IBM’s Quest Synthetic Data Generator 
were used to verify the algorithm. The hardware and software 
configurations are given in Table 1. The algorithm evaluated 
with different transaction lengths, different threads, different 
block sizes, and different thresholds. Table 2 gives the details of 
the dataset testing. 
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Table 1. Hardware and Software configuration 
Item Description 
CPU AMD Phenom II X4 965 3.4 GHz 
Memory 8G DDR3 memory 

GPU ATI Radeon HD 5850 with 1440 stream 
processing units and 1G DDR5 memory 

OS Microsoft Windows 7 
Compiler Microsoft Visual C++ 2008 w/ SP1 
SDK ATI Stream SDK 2.0 w/ OpenCL 1.0 support 

 

Table 2. Statistical Characteristic of Datasets 
Dataset Avg Trans 

Len 
Avg Len of 
Max Pattern 

No of Trans 

T10I4D100K 10 4 100 
T40I10D100K 40 10 100 

 

A. Various Thread NumberrsQuantities 
In this section, two datasets with different threads and 

thresholds were used to verify the performance of GPU-FPM. 
Figure 3 and Figure 4 illustrate the computation time of various 
thresholds and threads. The computation time of the same 
threads was affected by the threshold. A smaller threshold 
refers to a smaller degree of support becoming a frequent 
pattern. There were 385 and 13,253 frequent itemsets with 

1000ξ =  and 200ξ = , respectively. The speed-up ratio is 
depicted in Figure 5 and Figure 6. For 16 times of threads, the 
best speed-up ratio was 13.066. Even in the worst case, it was 
11.037. The average speed-up ratio was 12.576.  

B. Various Block Sizes 
In this section, GPU-FPM used different block sizes to 

verify the performance. The block size is the number of 
candidates that each processing unit on GPU deals with at each 
kernel launch. A small block size implied that the kernel had to 
be launched more times. Figure 7 and Figure 8 show the 
computation time of various block sizes. The Var stands for the 
block size changing with the number of threads, and the block 
size ( blockSize ) and number of threads ( noOfThread ) had the 
following relationship. 

* 1024blockSize noOfThread =  

Although a larger block size saved a bit on computation 
time (block size from 2 to 10, saving 0.826 second in case of 
T10I4D100K with 1024 threads), it only had a small influence 
on computation time. In some cases, larger block size even 
caused more computation time. The speed-up ratio is shown in 
Figure 9 and Figure 10. The trend of the speed-up ratio could 
not be observed from the results. According to the experimental 
results, the block size had no significant effect on the 
computation time. 

C. Computation Time used by CPU and GPU 
Finally, the computation time used by CPU and GPU is 

depicted in Figure 11 and Figure 12. GPU occupied most of the 
computation time in all cases. This means that the GPU-FPM 

algorithm on GPU had the biggest workload. It also pointed out 
that pattern verification required much computing resources 
than pattern generation. For 1,024 threads, GPU occupied 
93.837% computation time on average. 
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Figure 3. Computation Time of Various Thresholds (T10I4D100K, 

B10) 
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Figure 4. Computation Time of Various Thresholds (T40I10D100K, 

B10) 
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Figure 5. Speed-up Ratio of Various Thresholds (T10I4D100K, B10) 
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Figure 6. Speed-up Ratio of Various Thresholds (T40I10D100K, 

B10) 
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Figure 7. Computation Time of Various Block Sizes (T10I4D100K, 

T1000) 
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Figure 8. Computation Time of Various Block Sizes (T10I4D100K, 

T200) 
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Figure 9. Speed-up Ratio of Various Block Sizes (T10I4D0100K, 

T1000) 
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Figure 10. Speed-up Ratio of Various Block Sizes (T10I4D0100K, 

T200) 
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Figure 11. Computation Time Occupied by GPU and CPU 

(T10I4D100K, T1000, B10) 
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Figure 12. Computation Time Occupied by GPU and CPU 

(T10I4D100K, T200, B10) 
 

V. CONCLUSIONS 
Frequent pattern mining (FPM) is important and 

fundamental in data mining. Most FPM methods can be 
classified as Apriori-like or FP-growth-like. However, the 
computation time increased significantly when the number of 
transactions grew. In this study, a GPU based parallel 
algorithm—GPU-FPM was used to speed-up the mining 
processes. In order to conform to GPU hardware delimitation, a 
compact data structure was used to store entire database in 
GPU. Moreover, two template classes, MemPack and 
CLProgram were also used. Two datasets with different 
conditions were used to verify the performance of GPU-FPM. 
The speed-up ratio was 12.57 and 7.11 for 16 and 8 times of 
threads on average. In addition, most computation time was 
occupied by GPU because of all pattern verification processes 
being performed by it.  
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