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Abstract 

In this study, an automatic birdsong recognition system based on syllable features was developed. In this system, after the 

syllables have been segmented, three syllable features, namely mean, QI and QE, were computed from the MFCCs of each 

syllable. The first feature has been applied in many studies, however, QI and QE are novel features. Adding the advantages of 

the fuzzy c-mean (FCM) clustering algorithm and the linear discriminant analysis (LDA), the presented feature vector was 

used to construct an automatic birdsong recognition system. In the experiment, the proposed system was applied to a 

birdsong database with 420 bird species and achieved an average recognition rate of 83.3%. 

Keywords: Birdsong, MFCC, syllable, linear discriminant analysis, transition matrix

1. Introduction 

 The investigation of bird species diversity is the 

key in monitoring environment and ecosystem 

recovery, and automatic bird species recognition by 

recognizing their birdsongs has become an invaluable 

study method in the long-term investigation of bird 

species. The vocalization types of bird species 

include birdsong and birdcall. Birdsong being 

complicated, varied, agreeable and pleasant to listen 

to, is usually generated by a male bird and is used to 

declare his turf or attract a mate. Birdcall, on the 

other hand, is monotonous, brief, repeated, fixed and 

sexless and is used to contact or alert companions. 

The time duration and acoustic structure of a birdcall 

are usually short and simple while the duration of a 

birdsong is longer and is composed of a succession of 

melodious musical notes. 

Although MFCCs have been well-applied in bird 

species recognition, further study on this feature is 

necessary to increase the recognition rate. In (Lee et 

al. 2003; Lee et al., 2001; Skowronski and Harris, 

2002, 2003; Bou-Ghazale and Hansen, 2000) optimal 

theories were used to obtain the center frequencies 

and bandwidths of the triangular filters. The discrete 

cosine transform (DCT) was replaced with the 

wavelet transform in (Ricotti, 2005). Filter weighting 

was applied in (Hung and Wang, 2001) to assign a 

weight for each order of MFCCs. In (Kwan et al., 

2006) the MFCCs as well as their first-order and 

second-order differences were used to form the 

feature vector. Combination of MFCCs with a lot of 

low-level descriptive parameters such as 

zero-crossing rate, short time energy, syllable length, 

spectrum centroid, bandwidth and so on was applied 

in (Somervuo, 2006) for recognizing 14 bird species.  

In this study, neither modifying the steps for 

computing the MFCCs nor combining the MFCCs 

with other types of features, three features were 

computed from the MFCCs of a syllable to form the 

syllable feature vector. The proposed method aimed 

at easy computation and small time complexity. 

Integrating with the advantages of FCM clustering 

algorithm and the LDA, the proposed system 

achieved an average recognition rate over 83% when 

recognizing the birdsongs of 420 bird species. The 

remaining of this paper is as follows: Section 2 
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describes the structure of the proposed system. 

Experimental results are shown in Section 3. Section 

4 is the conclusion. 

2. The Proposed System 

The block diagram of the proposed system 

containing the training part and the testing 

(recognition) part is shown in Fig. 2.1. Three terms 

named mean, QI and QE were computed to form the 

feature vectors of each syllable, and the recognition 

was achieved by comparing the matching degrees 

between the feature vector of the test syllable and the 

template syllables. Each step in the diagram is 

described in detail in the following. 

2.1 Syllable Segmentation 

Due to the resistance to signal fading and 

echoing, the frequency domain analysis of the 

birdsong signal is better than in the time domain 

approach. So the frequency domain approach was 

utilized in this study. The segmentation process 

applied in this study is described in the following. 

Step 1 Compute the short time Fourier transform of 

x(t) with frame size N = 512, and form the 

spectrogram of the signal. The Hamming window for 

short time analysis has the form of 
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Step 2 For each frame m, find the frequency Bin 

mbin  with the greatest magnitude. 

Step 3 Initialize the syllable index j, j = 1. 

Step 4 Compute the frame t at which the maximum 

magnitude occurs 

 )][(maxarg
1 mMm

binXt
≤≤

= ,    (2) 

and set the amplitude of syllable j as 

 (dB)][log20 10 tj binXA ⋅= ,   (3) 

in which M is the number of frames of x(t), and X[⋅] 

denotes the spectrum of x(t). 

Step 5 Start from frame t and move backward and 

forward up to frames hj and tj such that both 

][log20 10 jhbinX⋅  and ][log20 10 jtbinX⋅  are smaller 

than )20( −jA (dB). 

Step 6 Start from frames hj and tj, find frames 

α−jh  and β+jt  (α, β > 0) such that both 

][log20 110 −−⋅ αjhbinX  and ][log20 110 ++⋅ βjtbinX  are 

greater than )20( −jA . Then α−jh  and β+jt  

are called the head frame and tail frame of syllable j. 

Step 7 Set 

ββαα +−++−−== jjjjm tthhmbinX ,1,,1, ,0][ L . 

         (4) 
Step 8 Let j = j + 1. 
Step 9 Repeat Step 4 to Step 8 until 201−< AA j . 

2.2. Feature Extraction 

After syllable segmentation, three features 

named mean, QI and QE were computed to form the 

feature vector of the syllable as described in the 

following. 

2.2.1. Compute the MFCCs of each frame 

The steps for computing the MFCCs of each 

frame are as follows: 

Step 1 Compute the fast Fourier transform (FFT) of 

each framed signal. 

NkenwnxkX
N

n
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/2π , (5) 

Step 2 Compute the energy of each triangular filter 

band 
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N

k
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−

=
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12
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where ][kjφ  denotes the amplitude(weight) of the 
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jth triangular filter at frequency bin k as shown in Fig. 
2.2, jE  denotes the energy of jth filter band, and J is 

the number of triangular filters. 

Step 3 Compute the MFCCs by Cosine 

transformation 

150 ,)(log)5.0(cos)(
1
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        (7) 
where )(mci  denotes the mth order MFCC of the ith 

frame. 

 In the following, three features named mean, QI 

and QE computed from the MFCCs were used to 

form the feature vector of a syllable. 

2.2.2. Computing the mean, QI, and QE 

In this study, three features, namely mean, QI, 

and QE were used to form the feature vector. 

 

Feature 1: mean of MFCCs 

After computing the first 15 (order) MFCCs of 

each frame, the coefficients of the same order of all 

frames were averaged. The average of mth order 

MFCCs a(m) was obtained by the following 

equation: 

Lmmc
W

ma
W

i
i <≤= ∑

=

0  ,)(1)(
1

,  (8) 

where W is the number of frames and L = 15 is the 

order of MFCCs applied in this study. Due to the 

scale diversity between different orders of MFCCs, a 

normalization process for a(m), )(ˆ ma , is required.  

 

Feature 2: QI of MFCCs 

For saving on computation complexity, 

consecutive frames were used as a time unit to 

compute QI. The process for computing QI is 

described in the following. 

Step 1 Quantize the MFCCs of each order in all 
frames ( )(),...,(),( 21 mcmcmc W ) into Q levels (from 

level 0 to level Q-1). 

  
Q

mcmcmv )()()( minmax −
= ,   (9) 

where 
Wi

i mc
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=  

and v(m) is the quantization interval of the mth order 

MFCCs. 

Step 2 Segment the W frames into S equal sections, 

then compute the mean of each order of MFCCs in 

every section. 
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where s is the section index. 
Step 3 Find the level )(mIs  at which the value 

)(~ mas  locates, where 

  
 1  ,0                                                   

),()1)(()()(~)()( min

SsLm
mvmImamamvmI sss

≤≤<≤
⋅+<−≤⋅ . 

        (11) 
Step 4 Form the sequence )(),...,(),( 21 mImImI S  

for each order of MFCCs. 

Step 5 Those sequences obtained in Step 4 for all 

the 15 orders of MFCCs form the second feature QI. 

 )1(),...,1(..., ),1(),...,1(),0(),...,0(QI 111 −−= LILIIIII SSS  
        (12) 
 

Feature 3: QE of MFCCs 

The process for obtaining QE is described in the 

following. 

Step 1 Perform the same quantization process (Step 

1) used in computing feature 2.  
Step 2 Find the level )(mIi  at which the value 

)(mci  locates, where 

 
 1  ,0                                       

),()1)(()()()()( min

WiLm
mvmImcmcmvmI iii

≤≤<≤
⋅+<−≤⋅ . (13) 

Step 3 For each order of MFCCs, record the frames 

that transit from level x to level y, 1,0 −≤≤ Qyx , 
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and denote it as ),( yxGm . That is 

 
}1 ),()1()()()(    
,)()1()()()({),(

min1

min

Wimvymcmcmvy
mvxmcmcmvxiyxG

i

im

<≤⋅+<−≤⋅

⋅+<−≤⋅=

+

. 

         (14) 
Step 4 Compute the level transition matrix Tm(X,Y) 
for each order of MFCC by using ),( yxGm  
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Step 5 Compute and sort the eigenvalues of Tm(X,Y), 
Q
mmm λλλ ≥≥≥ ...21 , Lm <≤0 . 

Step 6 Form the feature vector QE by using all the 

eigenvalues 
  Q

LL
QQ

1
1

11
1
10

1
0 ,...,,...,,...,,,...,QE −−= λλλλλλ  (16) 

2.2.3. Construct the feature vector by using mean, 

QI and QE 

 Combining the three features forms a 

15+S⋅L+Q⋅L dimensional feature vector. The Linear 

Discriminant Analysis (LDA) was applied to the 

feature vector form by QI and QE. 

 The LDA (Duda et al., 2000) transforms data 

from the original space to a new space which is better 

for classification. To find such a transformation 

matrix W, it requires maximizing the Fisher criterion 

  
)(
)(max)(max

WSWtr
WSWtrWJ

w
T

b
T

WW
= .  (17) 

The matrices wS  and bS , called within-class 

scatter matrix and between-class scatter matrix, are 

computed by the following equations: 
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in which j
ix  denotes the ith vector in class j, jμ  is 

the mean vector of class j, C is the number of classes, 

Nj is the number of vectors in class j and μ is the 

mean of all data vectors. It was found that the optimal 
matrix optW  solved by Eq. (17) is composed of the 

principal eigenvectors of the matrix bw SS 1− . The 

principal eigenvectors of a matrix are defined by the 

corresponding eigenvalues. The eigenvectors whose 

corresponding eigenvalues are the largest d 

eigenvalues of a matrix form the d principal 

eigenvectors of the matrix. Determination of d can be 

accomplished by the following equation 

 ∑∑
==

⋅≥=
m

i
i

t

i
it

d
11

min λθλ ,    (20) 

where iλ  is the ith largest eigenvalue, m is the 

number of eigenvalues and θ is a parameter to be set. 

 After the LDA of QI and QE, the dimension of 

the feature vector formed by the three features was 

reduced. To obtain representative feature vectors for a 

birdsong requires the clustering of the syllable feature 

vectors. In this study, the clustering process was 

accomplished by using the fuzzy c-mean (FCM) 

clustering method. The FCM, proposed by Dunn in 

1973 and enhanced by Bezdek in 1981, is an 

un-supervised clustering algorithm iterative tuning 

the cluster centers and the cluster memberships of 

data vectors. The clustering process is described in 

the following. 

Step 1: Select the cluster number c. 

Step 2: Set the initial fuzzy pseudopartition at t = 0 

satisfying 

 1
1

)( =∑
=

c

i

t
ijμ , Jj ,...,2,1= ,    (21a) 

 J
J

j

t
ij << ∑

=1

)(0 μ , ci ,...,2,1= .   (21b) 

In these two equations, )(t
ijμ  denotes the membership 

grade of feature vector 
jsv  belonging to cluster i at 

time t, and J is the number of feature vectors to be 
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clustered. 
Step 3: Set the initial performance index )(t

mJ , t = 0, 

as 0. 

Step 4: Calculate the c cluster centers )()(
1 ,..., t

c
t vv  

by 
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Step 5: Update the membership grade for each 
feature vector 

jsv , 
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Step 6: Compute the performance index 
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Step 7: If ε≥−+ )()1( t
m

t
m JJ  (a threshold), then t = t + 

1, go to step 4. 

Step 8: Stop 

 Applying the FCM algorithm requires the 

determination of the optimal cluster number, that is, 

to treat the cluster validity problem. In this study, the 

WB index proposed in (Tan, 2000) was applied to 

solve it. The WB index has the purpose of finding 

cluster number c that minimizes the intra-group 

variance ),( vμW  and maximizes the inter-group 

variance ),( vμB . That is, to find optc  such that 
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The two terms ),( vμW  and B(μ,v) are defined as 
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in which 
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 { }1== iji IjS ,     (29) 
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and c
2C  is a combination computation. 

 After the FCM clustering, several mean vectors 

were obtained as the feature vectors of each bird 

species. Before applying them, the LDA was applied 

again to extract the principle components of the 

feature vector and improve the recognition rate. In 

the following, the song of Pallas's Leaf Warbler was 

used as an example for the feature extraction process. 

 

2.3. Recognition 

In the recognition process, after the same feature 

extraction procedure (without the clustering process), 

as shown in Fig. 1.1, the feature vector of a testing 

syllable was matched to those of the template bird 

species. A template bird species usually has several 

syllable feature vectors and so do the matching 

degrees defined by the inverse of the Euclidean 

distance between the feature vectors of the testing 

syllable and the template syllables. The recognition 

of the testing syllable was accomplished by finding 

the template bird species that had syllable with the 

largest matching degree. 

 

3.  Experimental Results 
 The bird species vocalization database used in 
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this study was obtained from a commercial CD 

(Kabaya and Matsuda, 2001) containing both birdcall 

and birdsong files of 420 bird species recorded in the 

field in Japan. Each file contains vocalizations of the 

same bird species. The sampling rate of these 

vocalization signals was 44.1 kHz with 16-bit 

resolution and a monotone type PCM format. 

 In the experiment, the frame size was set as 512 

samples with one-half frame overlapping. Half the 

syllables of each birdsong file were randomly 

selected for training and the remaining for testing. 

The recognition rate RR was defined as 

%100
syllables  all ofnumber 

correctly recognized  syllables ofnumber    

)%(

⋅=

RR
(31) 

The proposed two-stage structure shown in Fig. 

1.1 performed LDA of QI and QE before the FCM 

clustering. Usually the threshold θ used in the LDA is 

set as 0.95. In this experiment various values from 

0.6 to 0.95 were tested to examine the RRs. The RRs 

and corresponding feature dimensions using the 

proposed structure are shown in Table 2.1. It can be 

seen that when θ was 0.95, the RR of the feature 

mean was increased from 79.52% to about 82% if QI, 

QE or both was added. In addition, a RR of 83.3% 

was achieved and the feature dimension was reduced 

to 31 when θ was 0.75. For objectivity, this structure 

with θ equaling 0.75 was performed 20 times, and the 

statistics of the resulting RRs are shown in Table 2.2. 

Table 2.2 shows that a maximum RR of 84.34% can 

be achieved under a relatively low standard deviation 

of RRs. Meanwhile, feature vector with dimension of 

31 is more practical for real application. 

 

4. Conclusions 
 The investigation of bird species diversity is the 

key in monitoring environment and ecosystem 

recovery, and automatic bird species recognition 

based on their songs has become an invaluable study 

method in the long-term investigation of bird species. 

In the design of a voice recognition system, a 

well-known feature that has been widely applied is 

the MFCC. Nevertheless, designing a MFCC-based 

birdsong recognition system requires advanced 

feature extraction processes for obtaining a 

satisfactory recognition rate because birdsongs are 

usually recorded in a noise environment, are 

incomplete or interrupted. In this study, two novel 

features based on the MFCCs were presented. Adding 

the techniques of LDA and the FCM algorithm, the 

mean, QI and QE were applied to develop a birdsong 

recognition system. The proposed system was applied 

for birdsong recognition with 420 bird species. 
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Figure 1.1 Block diagram of the proposed system 

 
 

 
Figure 1.2 Applied triangular filters for computing the 

MFCCs 
 
 

Table 2.1 RRs of using the proposed structure under various 
values of θ 

Dim: dimension of feature vectors 
mean, QI Mean, QE mean, QI, QE features 

θ RRs Dim RRs Dim  RRs Dim 

0.95 81.85 38 82.18 27 82.09 66 

0.90 82.03 32 82.41 22 82.7 53 

0.85 82.1 28 82.4 19 83.04 43 

0.8 82.07 24 82.09 17 83.17 36 

0.75 81.99 22 81.59 16 83.30 31 

0.7 81.87 20 81.11 15 83.28 27 

0.65 81.58 18 80.70 14 83.13 24 

0.6 81.22 16 80.67 14 82.94 20 

 

Table 2.2 Statistics of RRs using the proposed structure 
under θ = 0.75 

RR(%) Max Min Avg S 

mean, QI 82.93 79.51 81.99 0.92

mean, QE 82.68 78.98 81.59 1.08

mean, QI, QE 84.34 81.02 83.30 0.81

 
 

Table 3.5 Comparison of LDA and PCA in the first stage 
dimension reduction. 

Threshold of LDA or 
PCA in the first stage 

RR(%) by 
using LDA 

RR(%) by 
using PCA

0.95 82.8142 68.1191 

0.9 83.3573 67.7633 

0.85 83.5445 68.3376 

0.8 83.8067 68.3001 

0.75 83.9878 68.2627 

0.7 84.0252 67.9006 

0.65 83.7193 68.1129 
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計畫成果自評： 

1. 研究內容與原計畫相符程度 
計畫書中，本年度欲完成之目標： 
1) 針對單一音節為單位，進行音節之MFCCs 特徵改良、開發新的音節特徵，並結

合形成音節特徵向量。 
2) 針對一段聲音為單位，進行MFCCs 特徵改良，並開發新的特徵向量。 
3) 結合上述之特徵擷取法，與前兩年計畫所研究的音節切割法及分類器，開發完整

的鳥鳴聲辨識系統。 
自評：本計劃成果確實針對 MFCC 進行改良，並以 MFCC 為基礎進行特徵擷取的研究。 
 
2. 達成預期目標情況 
自評：本計劃成果提出兩個新的特徵向量，實際應用於鳥鳴聲辨識，並提升辨識效果。 
 
3. 研究成果之學術或應用價值 
自評：本方法為一個新的觀念，計算過程簡單，對於即時的辨識應用，有相當的可行性。 
 
4. 是否適合在學術期刊發表或申請專利 
自評：目前正攥寫成投稿型式，準備投稿中。 
 
5. 主要發現或其他有關價值 
自評：MFCC 為語音辨識中，最重要的聲音特徵之ㄧ。基於 MFCC 特徵的語音辨識，

基本上可以得到某種程度的效果。本計劃針對每一階(order)MFCC，觀察其隨時

間的變化的時間序列。由時間序列的變化特性中，萃取出特徵向量。此向量結合

原本的 MFCC 係數，可以明顯的提升單純由 MFCC 所做的辨識率。 
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報告內容應包括下列各項： 

一、參加會議經過 

這是個跟演算法相關的會議，會議時間在 5/16~5/19。由於首爾至海參崴班機

時間配合的問題，必須在首爾過夜後，再搭乘早晨的班機，於當地時間兩點多抵達

海參崴機場，隨即至飯店 check in，並兌換當地貨幣。 

會議第一天白天為參觀行程，包括西伯利亞鐵路終點站、武器博物館、自然科

學博物館及潛艇等。晚上則為迎賓酒會。   

 
圖一 迎賓酒會之照片 

 

會議開幕及議程於第二天開始共三天，地點在遠東科技大學圖書館大樓。包括

該國科學院的官員及該校的副校長皆前來致詞，感覺出對此研討會之重視。由於是

新大樓，議場的設備不錯，也提供無線網路上網。論文發表包括上台報告及海報兩

種，我的論文排在議程的第一天，與會者大部分來自俄羅斯及台灣、韓國及德國的

學者，主要針對演算法及其應用做學術交流。議程中我也曾問了兩個問題，互動還

不錯。 

 

附
件
三 
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           圖二 議場入口海報                       圖三 會議室一隅 

 

研討會第三天晚上為會議晚宴，餐廳位於十九樓，能俯視整個海參崴視野相當

不錯。食物以當地特色為主，冷盤居多，過程中播放影片介紹海參崴未來的遠景，

並邀請了提琴手及歌手前來表演，場面相當熱烈。研討會於第四天中午結束，除了

紀念品，大會也提供交通車機場接送，相當貼心。 

 

 

圖四 晚宴一隅                       圖五 與主辦單位主管合影 

 

二、與會心得 

1. 會場的佈置似乎不像國內辦研討會的熱鬧，國內辦研討會，會花不少心思在會

場佈置上，感覺比較有那麼個氣氛。 

2. 此次研討會沒有參展的攤位，不太能了解該地區的科技產業如何。 

3. 國內也常舉辦國際性研討會，可以於議程中安排半日遊，讓外國學者增加認識

台灣的機會，或於晚宴時安排有代表性的表演，如此對推展觀光也許有一些幫

助。 

4. 近年來大陸方面參加研討會的學者漸多，國內方面出國留學的學生日漸減少，

因此應該鼓勵國內的研究生，參加國際研討會。 

 

三、考察參觀活動(無是項活動者省略) 

包括海港、西伯利亞鐵路終點站、武器博物館、自然科學博物館及潛艇內部等，

算是相當特別，有歷史意義的景點。 
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四、建議 

1. 大會提供的交通及餐飲算是充足，值得學習，但是接待方面，時間拿捏的不是

很好，有時候會 delay。 
 

五、攜回資料名稱及內容 

    Proceeding 直接於 IEEE 網頁中。 
 

六、其他 

1. 俄羅斯人不太講英文，晚上買東西時，不太好溝通。 

2. 晚宴採歐洲家庭自助式方式，蠻有意思的。 

3. 海參崴 150 年前曾是中國的領土，博物館中感覺得出來，但市容上感覺不太出

來。 

4. 海參崴正在大興土木，幾年後會有新風貌，但可能也會減少原來的俄羅斯氣息。

5. 感謝國科會工程處的補助。 
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