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(MFCC) #3¥ Bl iasd HAEH A~ 47 » ~ 8l A 2 0SC 3 % B5¥ B
(modulated OSC spectrogram) ~ NASE 3 % #-:¥% @]
(modulated NASE spectrogram)% MFCC # % % B
(modulated MFCC cepstrogram) » #X{s p =+ — i 2% 8 4F 25 )
PRBATOTA R 0 ¢ 7 AR EE A ¥
TR AT AR B EE AP
E > ¥ F 1A phA 47 (principal component analysis, PCA)
W REP R 2N R ACE D M e R AR
IS E e B R A T - AT 20 b o BSE LAMET

L4 #7(linear discriminant analysis, LDA)i# & /2 & 224
#c ¥ W) & $7(nonparametric discriminant analysis, NDA)
WEEREAFERS c FREFVRAP RN LS EZ
2004 & F 20 p AEEERFL DT L ,% iy B R A
FRoik T2t~ » Aparddiz 2 fai]ﬁ’»l¢\7ﬁ§ﬁ‘
(89.44%) > v+ 2004 & 5 2o b A sFHEgF 2 B25F (84. 07%) B
% 5.37% -
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In this project, a new set of modulation spectral
features are proposed for automatic music genre
classification based on long-term modulation spectral
analysis on the spectral (0SC and MPEG-7 NASE) as
well as cepstral (MFCC) features. First, modulation
spectral analysis is performed respectively on the
0SC spectrogram, NASE spectrogram, and MFCC
spectrogram to obtain the corresponding modulation
spectrograms. Second, each modulation spectrogram is
decomposed into several logarithmically-spaced
modulation subbands. From each modulation subband,
the modulation subband energy, modulation spectral
centroid, modulation spectral flatness, modulation
spectral valley, and modulation spectral contrast are
computed as the modulation features of each subband.
Principal component analysis (PCA) and linear
discriminant analysis (LDA) or nonparametric
discriminant analysis (NDA) are then employed to
reduce the feature dimension and improve the



classification accuracy. Experiments conducted on the
music database employed in the ISMIR2004 Audio
Description Contest (ISMIR2004) have shown that the
proposed approach can achieve a classification
accuracy of 89.44%, which is better than the winner
of the contest by 5. 37%.

music genre classification, modulation spectrum,
principal component analysis (PCA), linear
discriminant analysis (LDA), nonparametric
discriminant analysis (NDA)
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AEH AP AT AT AT R e o B o2 g R AR AP W
N R ARAR S E(OSC) - B] ~ MPEG-7 2 I 21 B3 #7341 & (NASE) B B 2
f B #MFCO) B Bl st 4~ 47 - » Bl A 4 OSC # % 3% Bl(modulated OSC
spectrogram) ~ NASE # % #-2¥ B](modulated NASE spectrogram)%* MFCC 3 % %% B
(modulated MFCC cepstrogram) » A {é p & — B 2% SAR 34 B ¥ #2370 SR F e iE »
FARMHANEE DR H TR D RREH T DRI LB AR
WOiE s 3% 3 $hA 7 (principal component analysis, PCA)# & 2 % 3E Boif & 2 33 47 2%
PHET T MFer i @R IS EF e E ki - A3 &4 b BEL AP
% %] 4 47 (linear discriminant analysis LDA) % & ;2 & 2- % #i ¥ % 4 17 (nonparametric
discriminant analysis, NDA);# & ;2 %3 2 #5388 F o F RS F P mA P ordg A2 3 2 2
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1. ﬂ “,

ot B o2 A ug HIFE2 HFiow £ F 4 L EPF RS dx(short-term features)fe &
P §E 4% fc(long-term feature) ™ 4f o EFF RS ACE - RRCERT (G ¥ £- B )2 F
B P B B s B o - iim T AR IE L R S Bk Y KL B
b Bp2 5 ¥ T L R Z 8 1§ ¢ (timbre) ~ & % (thythm)% § 3 (pitch) °
FEPHETEIRFTELEELNES MR PFE Bl 255 2 RBHF 5 -
Wp Ry Y2 F ey T S
(1) ™ & #F#c (low-energy feature, LEF)
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LEI(n) = {

0, otherwise

(2) 4% % I (zero-crossing rate)
P LR FAVR TR T KA TR g SR > B s

B 4o o

=—Z|szgn(x[n]) sign(x[n—1])|

nl
He tdmF5ERIE - NZFIES] > F

I, x[n]>

sign(ain]) = {0 A[n]<0

(3) #g# 5 (spectral centroid)

AEY kAT BN L FNTHE T k&7 BF P R (brightness) 4%
Boo A a4
N/2
ZMn[m]xm
C, = m:zlv/z
2 M, [m]
m=1

B CaMHFTe NZFIES]) 05 F12% 7 E(frame index) » M,[m] % % m

BAE S e W R B o
(4) #E#4E 7 (spectral bandwidth)
Pk AR AR HEAR ) AT A FARE Y AT T H kg

AR S AT A AT e R AR -

2. (m=C,)xM [m]

D, = [
D M, [m]
m=1

(5) #E i H & (spectral rolloff)
s E G R AR R - A 2 e




iMn[m] =TH x ﬁ:M”[m]

m=l m=1
B R, GHEFHFEF > TH=0.85 5t 258 % * ihliciE
(6) #E% %3 A (spectral flux)
P hFpET SRS BIIEFEE LR T kA 2B

3R e

Fn

N

Z(Nn [m] - Nn—l [m])z

m=l1

HP N,m]i # M,[m]E R chiE > B2t O8N 40T
M ,[m]

ZM,, [m]

m=1

N,[m]=—

(7) += § @4 3 i (Mel-frequency cepstral coefficients, MFCC)
1 f D Rl PEE ALY - BHOR AR AW AR RiERF - R
A 2. B Bl TR - AFAF 20 H it £ 47 3 B (logrithmic spectra) A3t 5048 5% i
#% (discrete cosine transform, DCT) » ¥ R£EFF - F t=2_ 45 f §HF 3 Sk -

(8) ™ &% ARAR 4t & (octave-based spectral contrast, OSC)
AR AR B[] Rt E - BARFARDIHEF Y S AE o) B
g B B2 A BB o dogt VU Ak gk p B 82 2 4 (harmonic) fr 2t i

(non-harminic) s i % o

SEPFROLRARYE - pR LS EFE Y A - K BY a g Bt Bl(beat
histogram)® #P~H & Z HFjc> e 55977 e R ~ L& pnE R E B R - 2 éi%#ﬁfr
TEdpz R RFEE N2 Ao ERRE Rl SpE Ao R

g1 E ¥ 4% [2, 3] - Tzanetakis % /&~ & 5§ # 2.5 B L3t Bl(pitch histogram)® #8~5
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B8] 9 AT H[O-11] % A 45 -

(1) ToEfoit# L
By REFEL e e £ 57 2 E 0T Hice £ 2 THE{oRE
AR PR TRAEE - FRI ST B2 3 BA5ERF R 2 o

2) paw ﬁﬁ; #-4] (autoregressive (AR) model) :
Meng % 4 11 AR 4] A 455 S U BAEF PR % (- cnfh 28] 0 © I D HHE §
N o Eﬁ‘; #- 7] (diagonal autoregressive model, DAR)¥? % % & p & w ﬁﬁ’?‘ A
(multivariate autoregressive model, MAR) 4 17 k & & ‘EpF e ficw £ o & DAR i3]
M RE - BRI ACEAR S - BB AR FA > T3 E T e R AR D
TioE R L {rx - B AR 03w §F (i iT 5 £ RS e £ 0 & MAR #03
P RERE R e B0 - B RE R AWEFRA AT o MAR #0340 AR #-7
Bt 07 3 MAR #0314 g 0 S ACE R 2 BB > Tt > & MAR #8531 ARE
Beihf RRER e B 6 50T CERFIER e £ T 0E - 2 8 e fo MAR
i3] e B

(3) # #AF# 4 47 (modulation spectrum analysis)
NEPHFLPTIRRRCFER IR0 02 2 RS £d Kingsbury
B KGR rER[9] 0 BT AT A ARCE ST h R4S 4 9 6 4Hz 2

o Sukittanon » & * 3 SAEF A 4T R FERA TS B2 N F[10] 0 H P %A T HE

— FAER AL (S 2 AR AR PR e R 2 B o Shi R B
RARF LT Rt B RIS R H2 S hE R UHT F

(w,

R 2§ ST A o -

AEE P o AP RR AT AR AT R R Y B b2 p R A s
a%ﬁ%%&@e»a%ﬁﬁugg~ﬂ%wﬁi&&\?=ﬁ$®@~ﬂ%wﬁ%@
B3 A HAE ¥ @ 0 2 F 12 4 dh A $7(principal component analysis, PCA)J# & i & i B~
ﬁ%iﬂ%ﬁ%%ﬁﬁiﬁﬁ%k@€ﬁ&’ﬁU¢€%k@€kam SRR X
B0 Efs £ AR W 4 47(linear discriminant analysis, LDA)# & 72 &% 22 S 8cF W] 4 17

(nonparametric discriminant analysis, NDA)# & & & 3% = 5 5 o
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AVIERFABREARN AR 2 pEIRR AN AREHRALEH R AR
#7 % ¥4 & (octave spectral contrast, OSC) ~ MPEG-7 z_ it 4L1v #-% #f 3% 3+ ¢ (NASE)% 5
f EE H (MFCC) 838 Bl i 4 A 47 > A W& 2 OSC % #3% B ~ NASE 3 % #3#
B2 MFCC A ¥ 83# B > RUEAPRE - BARRHFL S HETIEZAREES > &
FRAE-ARHI T AALEEE AR EACEE BRI R - AEN
HE AR HA L EZ AR H B RS AT T APTAE 2 REERF 2
DA B AE T M AR ﬂU$§%%@ﬂ%%ﬁF—ﬁ%¥ﬁ& Bt

B LS T B A A5k S 2 SR B A A B KPR 23 B R LB R
AEW| 23 A h o

b

A2 5 B b p A REFER RS VRIS E TR LS A DR B
b BAR e e S AREHBAIEE A e EATRE 2 S E R R E0E
WEE S EMPRHASITFE AR EEYAITFE G RS I e B R
Sin A R R AGHET A b B AT AR W A T S 2 S R Y A e
e~ o5 o

2.1 3 I AT

oA AR ES L2 BBl 0 ¢ 45 OSC #3¥ Bl - NASE #3# B2 MFCC
BB SRS H S LR R ) R AT R R L R ARE R
Pl o

2.1.1 OSC #3 W

OSC A% Ry it - § # G2 A FFE[] > 7 L ¥g 2 %‘“ﬁu’\i}? B3 AL
WA R BR(APRY B=O)FHA 0 F - A LS PRFEL A AL
“54—+@% W&£%ﬁﬁém%§m’—”5€’Wﬁ£%i$5%§ﬁﬂ%i
iZ_% (harmonic) = > » @ & 5 4p § 3% 2523 (non-harminic) 2% f230 = i » F| U 47 38 4 5 (&
Trik D2 LR BT L% vk R B A R A R - s A
ARHSE A - BRI R B2 FRBTIF - 2 B3 HHF BT AR
3 22 7% i gk B(octave scale band-pass filter) #-— 3 {22 B-F AF 2 25 B B+ AR
B REEEE - AR B o B (w1, Xb2s o o) R R D BT
F2Z R ON, N AT RN R LRI P 2 R G P BRI -S
ﬁ%iﬁ&ﬁﬁa@@%gﬁaﬁd+i¢ﬁﬁ@,4%{ﬁmpnmzmzmM’¥



b%iﬁ%iﬁ%m%am%wﬁaﬁﬁvufﬂaﬁ%ﬁ%:

aN,

Peak, = 10g( be,

btl

aN,,

sz N, t+1)

bll

Valley, = log(

B i TR 2 54 FIF(A34]Y KRa=02) % b BFAEF LA HEVEFT K 5
SC, = Peak, —Valley,.

HE - 2 ApBeary SHAEF 28530 B B (Valleyy, 1 <b < B)Z 3E 3 ¥ B (SC),
1<H<B)S it - 4 122 OSC #fcs B4 A P #94 3 f22 OSC #(# 7 73 + 4
T2 AR B E R B F R AR A R - 2 FRR] 0 AL OSC A5
B -

- ARFAELE - FHEF 2L F W (Sampling rate = 44.1 kHz)

OSC Subband Low Frequency (Hz) High Frequency (Hz)
1 0 100
2 100 200
3 200 400
4 400 800
5 800 1600
6 1600 3200
7 3200 6400
8 6400 12800
9 12800 22050

2.1.2 NASE %3 W)

“=MPEG-71& % @ » & riftdez 87 5 B Kfp i F U BLAE B o J 2 A S en
TG A At R AR R M o TR RO S KBS
1SR LS RN P O E R U e I ']%L o ﬁ‘—‘” ﬁE;& ﬁ 4 (audio spectrum envelope, ASE) £
MPEG-7H& %32 & i #* 2 4 51
it i *tloEdge (3f 3% 62.5Hz)&2 hlEdge (”*’ B 16000HZ)F’§ SHE I 0 KA *v:“loEdgel;‘i’
hiEdgeR¥ erig 5 A 2 f2 A BB FH4EF > @ & — 3474 oo 5 f#47 & .00 ~ & § (octave)f#
3t [loEdge, hiEdge|R 2. 3 45 % #p % B

1R 5 A8 5 111000HZ S ¢ b TR A 0 B4

=8/r> B ¥ rd R OfRTR —ﬁ—?’%}ﬂ—\ﬁ W16 AR F I8B ARG LR
r =2’ octaves, -4< j<3
BAEL|P s AR 2B L2 FrB=160 @ & - —”Htﬁ%“iggi,kﬁﬁﬁg(ﬂdge)ﬁw};“

4T

oge = 2™ 1000

Hoe mE o probx so b 3 BEpeten3 4gF > — B 5 OHzI|loEdges g iv £ & > -
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Tl}éhiEdgeE'JB’\%%ﬁﬁﬁf— LA R ERE FIN ERAEFERT A2 (BY2) B
FooW- A - BARFET R E RS fagee A R 0

1 coefficient | 16 coefficients | 1 coefficient
e >
R
JEE AR A T A A
' 5 " 250 ' 500 ' 1K o2k o4kt osk !
I 88.4 176.8 353.6 707.1 1414 2828 5656 11313'
| |
[ ] |
62.5 16K
loEdge hiEdge
Bl-. "R BV RABHE#ABITR r=172)

NASE & MPEG-7t#-# ¢ 445 - B3 122 ASEc#icig i 2 ~ L 2 2 R 8 =8 it R

L2 B it Rm - B ENEa T o T R AT AP RAT FiEL

NASE % iy F P 8 Hede & = 2 R 25 NASERE R - A i Bvig § 4=
2. NASE % # & (NASE(b), 0 < b < B+1)2 RMS & (R(b))iv: ¥ PF I b ¥ d2Ae k& - 2 @
i > fL 5 NASE#% R -

2.1.3 MFCC %3 W

¥ S e SR LY STE S SR [15-17]) $F ) o 5 (mel)Er 14 A
A zﬁpﬁ%@%ﬁ G- B A(one)g P hE B A HH o A AR Y o
3t - B f B e BE 5 (physical frequency)z. F B 7 £ 2 2 AP > @ F EH
¥ (f)”fﬂ‘;* B AE K (mel)2. B et bl 2 A 5 M+ 1 KHz PRPE_ R AP B 1 > & AgHah
R AR o A F 2 HEM T

mel = 2595 log, (1 + 71(;0)
f= 700(102”:;5 ~1)

AR RE RAV BB 2 S A 5 - BB TRA M (eritical band) 0 23t - TR 4R
P2 AE S B A DA R TR 01 TR AP T 0 — i R E K BRT - TR
AEH 20 F Byl TR - 4F A 2 Hiici £ 4 3 @ (logrithmic spectra) R A7 48 5% 98 4%
(discrete cosine transform, DCT) » ¥ # R {7 & - § 22 MFCC #c » R #9775 § 22
MFCC % #iciv ¥ PR b8 f2Ae ki & = Mz W > 4L 5 MFCC 4% W -

3 E - BEHRBI(OSC %3 K ~ NASE ##®B 2 MFCC %R > 2 #m w

H A AT A Ry & B Y (R ) P R 2 PRk -




2.1.4 # #4734 37 (modulation spectral analysis)

DRFHPHELE T KB B AR ¥ - BRI (REA)ERE R L
oA  HEFFPE2Z B3 Nl 2 FRFLST WEI A I Y 2 R &
H G PH- PTG EREHPIEEFT R 2 B o fL2 50 #F 3# (running
spectrum) » @ ¥ 6 47 F 38 (74 5 /w\%"ri,f‘%%ff%ﬁ;% BRE T

L e RS o SN T O S - R R SR R A LY £
JEE A A > T > Wada F A 3& 0133 %R 3 7 41 (modulation spectrum control) = &
[18] > %% — AR @ e Rk R - BRLE > e 7 F & RS o
L EET LT g B2 - LU delg il B Bl P ~ B - R
Bo~dedp e L % > FP L & F A BF FER kAo Kanedera ¥ A [19, 20433 %47 ¥
POLA0HzZ Z MEF R A R EF A 0 R R AT PR YT EF L RS R
FZERP - BRI AR 12 16 Hz 2 R TP B R 2 SRS
»z% o Vuuren ¥* Hermansky[21]F -+ #-33 S5 A X 2T FHEF > ¢ $3 $H F K
BEA 0L ITHz 0 {22 B3I > AL EMF AMIF05T | Hz2 344
FEPEERET2 L HF RSB B A H S 150 0.5 0 16 Hz # R $F
BBk A Y S B

AR A PR R BEET A L E - ¢ 45 OSC i ~NASE
ficds MFCC Th#ic® 37 5 L A ciE 2 3 Ml > R - sl 2 S BB 3 ¢ 5
A BARIETLARRFAGERT A% 52) 0 LAK - BARI TP
PRI B fo R B A RRACE P A R - M2 BRI
Bl > ¢ 7 OSC 33 % %% Bl ~ NASE A % %<# B 2 MFCC 4 % ¥4 R -

o

2. RRIHF L PR
Modulation Frequency Band Modulation frequency interval (Hz)
0 [0, 0.5)
[0.5,1)
[1,2)
[2,4)
[4,8)
[8, 16)
[16,32)
[32, 64)

N[\ [N B[ WR[(N[ -

T B X = (1), 02), o x(D)]' A I R o B fEL P B0 2 B
w7 S 0 B3 122 OSC # 4w £ ~ NASE # e £ & MFCC # e £ > Jn ¥ pF
B hfAp e B2 3 W B f =R 5 A 1A% )R FFT 3k 7 (8 0] 2 38 a8 %
L

-l —j2x
M (m,d)= > Xy mn(de 7' 0<m<W, 0<d <D,
n=0



P Mm, d)Z7 % t BAYTRET 2D RAH  om S L BRI R E - BFA PN
SAE A L J BB B2 3 % 3 4E 4 (modulation subband) b & B3 %3 4E A 23 $E
FaiERT 53 A (J=8) RgApEp s - 'l%p’%%‘”f?%“ PORRET R AR
B . AR E A § E(modulation subband energy, MSE) ~ % 47 # T i & (modulatlon
spectral flatness, MSF) ~ 7% % #2 3# = (modulation spectral centroid, MSCEN) ~ 4 %47 ¥
# 8 & (modulation spectral valley, MSV) % 24 %47 3 ¥4 +¢ (@ (modulation spectral contrast,
MSC) -

(1) AEHEHLE B2 THRAT

D

MSE(j,d)= Y |M,(m,d)]

m:<1>j71
B @y Dy AU AF S BRETIEF LT R F A Gt R ASE
Q) HRFFTFRT REFE-ARIRF Y LEAREFLAELF LT T
SR & LU

KPM
‘D/,h‘¢/~/+1’ H| M(m,d)|
MSF(j,d) = il

1 Pin
DI M(m,d)|

@jh_¢1,1+1 =¢_1

(3) # % ﬁ?v‘g'%ﬁ—"‘f\ﬂ"q—P%%*ﬁﬁ%~"b—_%ﬁ"u"/ﬁv:‘ij‘g&'&f"r:

MSE(j, d) = 10 log,,(1 + Z (M (m, d))°)

mz@-
(4) B %4 F 4 B @ (modulation spectral valley, MSV) % 24 % 47 3% /& 4 & (modulation
spectral peak, MSP)2_ % _& 4 F
MSP(j,d)— max | M (m,d) |

1 SmSD

MSV(j,d)— rmn |M(m d)|

(5) # RARHH R i%z » a’% f)‘?z*f???&:ﬁ»dé‘r EENRHASEL AR E
MSC(j,d)=MSP(j,d)— MSV(j,d)

FlbE - e B2 7] MR B BRI S B D RIET R R AR

a‘%@%'?'wé’%%*ﬂﬁé%@ﬁég_ BT AT B DS 2B & - BT AL L 2 B R RA

P REED o RS A g BT R 2 REPE Y L R P AT M e

PAR RS ERRe R RA TR - B b B AR R AR A

P P (ST SER S ’*’“ﬁs«] 2R B R AP AR 2 F B R oo

2 A ghe § & 49% 8 2 (principal component analysis, PCA)

10



PCA F L3-8 974 IR F 2 #ies B T 10% B ficee't E[XX' |2 eigenvalue %
eigenvector [22] » i 17 eigenvector § 174 & k fas g - @ eigenvalue e~ /| 7 144
T H $H 2 eigenvector i H (5 2 B A ATIRF 2 TR L ] eigenvalue 4%+ £ 7 '? ¥
M EREL > PRI ERE GRS A FRIh X AT LS FHER T

AR F TR T RARS S i}qﬂm » 11 eigenvalue & #% + 2_ eigenvector #4

=\
\_.

\_
b2

“}&

g.*(
)
&

ﬁﬁaé@,ﬁ#wmﬁﬁamfﬁgwumwmwm@ﬂmm@mmaﬁ#%mA
§ B %8+ o PCA 238 74 BT

HEL:PETHE
m = E[X]
2P XEMNFPRFHE2ZEL X={x]i=1... N> m A} PRFTF Lo E > NEP'R
PR -
HF2: L LB 0
X, =X, —m
HH3: KB TBRREEL ) C
1Y
- N;xi(xi)
%34 KB R gE'L C iheigenvalue X eigenvector ¥ #'5-25—' i% eigenvalue Ed % I -] £ 37§ A
"H}%S v‘iiﬁ?‘ 'EaPCA(%*'T"'T-Q x-‘?—?rn ’%iﬁ}_)i), 3 ﬁ#& sHmR d
2/1,. ZameA,
i=1 i=1
EPNET % i+ 2 eigenvalue» D 5 52 2R
H 6 ETET 2 d B eigenvector #47F T IERILEH
xPCA _APCAXi

E? Apca 3 ¢t d B+ eigenvector #+ 2. PCA &L -

i%&"!"%k\ lﬁ-ér pE

—Hm T o - AR B TP ke E RN SRR Flpt e
F G EE e ] A AT - fER2 e A3hE ¢ AP c-means A R B

7

VR B A S K P L HELEY ST -

A
F
MGG B2 R AR B T 2 KxC B R A e B0 C 53 #apnl ik

2.4 BT Y AL 7% ¥ i (linear discriminant analysis, LDA)

LDA #Ei22 pehE#— BRARNE e BHE S - BHRAR DD E » ¥ 0
Se B Er F[22] o LDA JF & 2 e B A £ B Je Ap e fE 0] 2 B enpedg g 1> X8
AR 2 B REARSEL ( rs  F kT - B R KRB AR Py B

=&

11



A HARE T BEERIEREAPRAE R RS2 FL B @Y
3 aet 3 & xd5 Fisher criterion Jp &k $17 ¢
J(A) =tr((A"S, 4) (4" S, 4))

HP o Sydfe Spa w4 end_4p I 58 W] 2§71 8L (within-class scatter matrix)fe 7 5§ %
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Music Genre Classification Using Modulation
Spectral Features and Multiple Prototype Vectors
Representation

Chang-Hsing Lee, Chih-Hsun Chou, Cheng-Chang Lien, and Jen-Cheng Fang
Department of Computer Science and Information Engineering
Chung Hua University, Hsinchu, Taiwan

Abstract—In this paper, we will propose an automatic music
genre classification approach based on long-term modulation
spectral analysis of spectral (OSC and MPEG-7 NASE) as well as

cepstral (MFCC) features. A modulation spectrogram
corresponding to the collection of modulation spectra of
MFCC/OSC/NASE will be constructed. The modulation

spectrum is then decomposed into several logarithmically spaced
modulation subbands. For each modulation subband, a new set of
modulation spectral features, including modulation spectral
contrast (MSC), modulation spectral valley (MSV), modulation
spectral energy (MSE), modulation spectral centroid (MSCEN)
and modulation spectral flatness (MSF) are then computed from
each modulation subband. To cope with the problem that the
feature vectors extracted from the music tracks of identical music
genre might differ significantly, each music genre is modeled with
a number of representative prototype vectors generated by c-
means clustering algorithm. An information fusion approach
which integrates both feature level fusion method and decision
level combination method is then employed to improve the
classification accuracy. Experiments conducted on ISMIR 2004
music dataset have shown that our proposed approach can
achieve higher classification accuracy than other approaches
with the same experimental setup.

Keywords- Mel-frequency cepstral coefficients, modulation
spectral analysis, music genre classification, normalized audio
spectrum envelope, octave-based spectral contrast.

1. INTRODUCTION

The music genre classification problem is defined as genre
labeling of music tracks. In general, automatic music genre
classification plays an important and preliminary role in a
music organization or music retrieval system. A new album or
music track can be assigned to a proper genre in order to place
it in the appropriate section of an online music store or music
database. Thus, a number of supervised classification
techniques have been developed for automatic classification of
unlabeled music tracks [1-9].

To determine the music genre of a music track, some
discriminating audio features have to be extracted through
content-based analysis of the music signal. In general, short-
term feature is first computed for each short-time frame. Then,
the short-term features extracted from several consecutive
frames are aggregated to from long-term features. Short-term
features, typically describing the timbral characteristics of
audio signals, are usually extracted from every short time
window (or frame) during which the audio signal is assumed
to be stationary. The timbral characteristics generally exhibit
the properties related to instrumentations or sound sources

This research was supported in part by the National Science Council of
R.O.C. under contract NSC-99-2221-E-216-048.

978-1-4244-9306-7/11/$26.00 ©2011 IEEE

such as music, speech, or environment sounds. The most
widely used timbral features include zero crossing rate (ZCR),
spectral centroid, spectral bandwidth, spectral flux, spectral
rolloff, Mel-frequency cepstral coefficients (MFCC), discrete
wavelet transform coefficients [2, 10], octave-based spectral
contrast (OSC) [3, 4], MPEG-7 normalized audio spectrum
envelope (NASE) [11], etc.

Generally, music genres not only correspond to the timbre
of the music but also to the temporal structure of the music.
That is, the time evolution of music signals will provide some
useful information for music genre discrimination. To
characterize the temporal evolution of a music track, long-
term features can be generated by aggregating the short-term
features extracted from several consecutive frames within a
time window. The methods developed for aggregating
temporal features include statistical moments [1, 5, 8, 12],
entropy or correlation [12, 13], nonlinear time series analysis
[12], autoregressive (AR) models or multivariate
autoregressive (MAR) models [7], modulation spectral
analysis [5, 8, 9, 12], etc

Once the features are extracted from a music track, a
classifier will be employed to determine the music genre of
the given music track. Several learning techniques, such as K-
nearest neighbor (KNN) [1, 2], linear discriminant analysis
(LDA) [2], Gaussian mixture models (GMM) [1, 2, 4], hidden
Markov models (HMM) [10], Adaboost [14], and support
vector machines (SVM) [2, 15], have been employed for audio
classification.

In this paper, modulation spectral analysis [16] of MFCC
[17], OSC [3, 4] and MPEG-7 NASE [11] will be employed to
characterize the time-varying behavior of music signals. A
modulation spectrogram corresponding to the collection of
modulation spectra of MFCC/OSC/NASE will be constructed.
The modulation spectrum is then decomposed into several
logarithmically spaced modulation subbands. For each
modulation subband, a new set of modulation spectral features
will be computed for music genre classification: modulation
spectral peak, modulation spectral valley, modulation spectral
energy, modulation spectral centroid, and modulation spectral
flatness.

II. PROPOSED MUSIC GENRE CLASSIFICATION SYSTEM

The proposed music genre classification system consists of
two phases: the training phase and the classification phase.

<©IEEE
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The training phase is composed of four main modules:
modulation spectral feature extraction, principal component
analysis (PCA) [18, 19], multiple prototype vectors generation,
and linear discriminant analysis (LDA) [18, 19]. The
classification phase consists of four modules: modulation
sepctral feature extraction, PCA transformation, LDA
transformation, and classification. A detailed description of
each module will be described below.

A.  Modulation Spectral Feature Extraction

1) Frame-based feature extraction: In this paper, the frame
based feature vectors used to describe an audio frame include
MFCC, OSC, and NASE. The feature vectors used to represent
the #-th audio frame can be summarized as follows:

XM =[MFCC,(0), MFCC,(1),---, MFCC,(L-1)]" (1)
x?%¢ =[0SC,(0),0SC,(1),---,0SC,(2B,-D)]" )
x5 =[R, NASE,(0), NASE,(1),-+, NASE,(B,, +1)]" (3)

where L is the length of MFCC feature vector, By is the
number of octave scale filters, By is the number of logarithmic
subbands and R is the RMS-norm gain value computed from
the audio spectral envelope ASE;,(b) of all subbands:

R= | S (4SE,0) 4)

2) Modulation spectral analysis: The frame-based features
can’t characterize the variations of a sound within a long-time
analysis window. In this study, we will apply long-term
modulation spectral analysis to MFCC, OSC, and NASE to
capture the time-varying behavior of the music signals.

Without loss of generality, let X, = [x,(1), x,(2), ..., x,(D)]"
denote the feature vector extracted from the n-th audio frame of
a music signal, where D is the length of the feature vector. The
feature vector x,, can be the frame based MFCC/OSC/NASE
feature vector, or a combination of these feature vectors by
concatenating them together. By applying FFT on each feature
value along the time trajectory within a texture window of
length W, we can get the modulation spectrogram:

Wl —J ﬂlm
Mmd)=3 Xppn(@e’ 7", 0sm<W0<d<D  (5)
n=0

where M(m, d) is the modulation spectrogram for the #-th
texture window, m is the modulation frequency index. In this
study, the window length W is 512 with 50% overlapping
between two neighboring texture windows. By time averaging
the magnitude modulation spectrograms of all texture
windows, the representative modulation spectrogram of a
music track can be derived as follows:

T
M(md)z%Z\M,(m,d), 0<m<W,0<d<D (6)
=1

where T is the total number of texture windows in the music
track.

3) Modulation spectral feature extraction: The averaged
modulation spectrum of each feature value will be decomposed

into J logarithmically spaced modulation subbands (in this
paper, J = 8), Table I shows the frequency interval of each
modulation subband. For each feature value, modulation
spectral contrast (MSC) [9], modulation spectral valley (MSV)
[9], as well as modulation spectral energy (MSE), modulation
spectral centroid (MSCEN), and modulation spectral flatness
(MSF) within each modulation subband are then evaluated:

MSP (j,d)= max (M(m,d)) @)
MSV(j,d)=_ min (M(m,d)) ®)
(bhh
MSE(j.d)=10log,(1+ Y. (M (m,d))) ©)
m=®,;,
Py
ZM (m,d)xm
. m=o (10)
MSCEN (j,d)="""——
> M (m,d)
m=¢/_,
(phh _
DD, +1 HM(m,d) 0
MSF(]’d) _ 1 m=¢,_(; h ( )
M (m,d)
D)=, +1 mgp:,.,

where @;; and ®,, are respectively the low modulation
frequency index and high modulation frequency index of the j-
th modulation subband, 0 <; < J. The MSPs correspond to the
dominant rhythmic components, MSVs the non-rhythmic
components, MSEs express the power of each modulation
subband, MSCENSs indicate the mass center of each modulation
subband, and MSFs represent the modulation frequency
distribution within a modulation subband. Further, the
difference between MSP and MSV will reflect the modulation
spectral contrast distribution:

MSC(j,d)=MSP(j,d)— MSV(j,d) (12)

TABLE 1. FREQUENCY RANGE OF EACH MODULATION SUBBAND.

Modulation Modulation Modulation
subband index frequency index range  frequency range (Hz)
0 [0, 3) [0,0.5)

1 [3,6) [0.5,0.1)
2 [6,12) [1,2)

3 [12, 24) [2,4)

4 [24 48) [4,8)

5 [48, 96) [8,16)

6 [96 192) [16, 32)

7 [192, 256) [32,42.24)

As a result, all MSCs (MSVs, MSEs, MSCENs or MSFs)
will form a DxJ matrix. To derive a compact feature vector, the
mean and standard deviation along each row (and each
column) of the MSC, MSV, MSE, MSCEN, and MSF matrices
will be computed. Let the modulation spectral feature values
derived from the d-th (0 < d < D) row of the MSC matrix be

notated u (d) and o (d) - Thus, for a music track the

modulation spectral feature vector derived from the D rows of
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the_ MSC matrix is of size 2D and can be represented as
follows:

fiise = [Ugse (0), 035 (0), -+, uyise (D = 1), o5 (D= D] (13)

Similarly, the modulation spectral feature values can also be
derived from each column of the MSC modulation feature
matrix. Thus, the modulation spectral feature vector derived
from the J columns of the MSC matrix can be represented as
follows:

fAcxtosIC = [u;f;;c (0), O-;;SIC 0),---, ”;;slc -0, O-I(\./ID_SI'C - 1)]T (14)

In this paper, these two modulation spectral feature vectors,
fov and £ | are concatenated together to yield the MSC

MSC MSC 2
modulation spectral feature vector of a music track, which is of
size (2D+2J):

frse =[( fAi/aswC Ty(fAC;sIc )T]T (15)

Similarly, the modulation spectral feature vectors derived from
the MSV, MSE, MSCEN, and MSF matrices can be
represented as follows:

fusr =[(fis )" (Fis )" T (16)
fuse = (s )" (15 )1 17)
Fuscen =[(Fitseon )" (Figeen )1 (18)
fusr =[(fr5: )" (£ )T (19)

4) Feature vector normalization: Since the dispersion is not
identical for each feature value, a linear normalization will be
employed to make the range of each feature value between 0
and 1:

J(m) = [ (M) (20)
S nax (1) = [ (M)
where F(m) denotes the normalized m-th feature value, fi..(m)

and fi(m) denote respectively the maximum and minimum of
the m-th feature values of all training music tracks.

F(m)=

B. Principal Component Analysis (PCA)

PCA has been a widely used technique for dimensionality
reduction [18, 19]. PCA is defined as the orthogonal projection
of the data onto a lower dimensional vector space such that the
variance of the projected data is maximized. First, the K-
dimensional mean vector and KxK covariance matrix are
computed for the set of K-dimensional training vectors X = {x;,

Jj=1,...,N}:

2 = %Z@f —w(x, -w' (22)

Second, the eigenvalues and corresponding eigenvectors of the
covariance matrix are computed and sorted in a decreasing
order of the eigenvalues. Let the eigenvector v; be associated
with eigenvalue 4;, 1< i < D. The first d eigenvectors having the

largest eigenvalues will form the columns of the Kxd
transformation matrix Apc4:

Apca=[V1, V2, ..., V4l (23)

The number of selected eigenvectors d can be determined by
finding the minimum integer that satisfies the following
criterion:

S A zanS A, (24)
= j=1

where opc,y determines how many percentage of information
need to be preserved. The projected vector can be computed
according to the transformation matrix Apc4:

Xpca = A1TJCA (x—p) (25)

C. Multiple Prototype Vectors Generation

In general, the characteristics of the music tracks of the
same genre might differ significantly. That is, the feature
vectors extracted from the music tracks of identical music
genre will reveal many isolated manifolds in the feature space.
As a result, modeling each music genre with a single feature
vector is bound to fail. A better approach that takes into
account such a situation is to model each music genre with a
number of representative prototype vectors. These prototype
vectors can be obtained by classifying all music tracks derived
from identical music genre into some subclasses such that
music tracks with similar feature vectors are clustered
together. In this paper, the c-means clustering algorithm [18,
19] will be used to automatically divide all training feature
vectors belonging to identical music genre into some
subclasses. Each subclass consists of several similar feature
vectors and its prototype vector is defined as their mean
vectors.

Let C denote the total number of music genre in the
database. In this paper, the c-means clustering algorithm will
classify each music genre into K subclasses. Thus, the total
number of subclass is N,. = KxC.

D. Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) [18, 19] aims at
improving the classification accuracy at a lower dimensional
feature vector space. LDA deals with the discrimination
between various classes rather than the representation of all
classes. The objective of LDA is to minimize the within-class
distance while maximize the between-class distance. In LDA,
an optimal transformation matrix that maps an A-dimensional
feature space to an A-dimensional space (4 < H) has to be
found in order to provide higher discriminability among
various music classes.

Let Sw and Sg denote the within-class scatter matrix and
between-class scatter matrix, respectively. The within-class
scatter matrix is defined as:

N,
Sw =,

s
c=1 n

=

x,, = X)X, — X)), (26)

where X, is the n-th feature vector labeled as class ¢, x, is the
mean vector of class ¢, N, is the total number of music
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subclasses, and &, is the number of training vectors labeled as
subclasses c. The between-class scatter matrix is given by:

Sp = 3 NG - DE -9, @7

where x is the mean vector of all training vectors. The most
widely used transformation matrix is a linear mapping that
maximizes the so-called Fisher criterion Jr defined as the ratio
of between-class scatter to within-class scatter:

J(A)=tr((A"SyA) ' (ATS,A)). (28)

From the above equation, we can see that LDA tries to find a
transformation matrix that maximizes the ratio of between-
class scatter to within-class scatter in a lower-dimensional
space. In this study, a whitening procedure is integrated with
LDA transformation such that the multivariate normal
distribution of the set of training vectors becomes a spherical
one [19]. First, the eigenvalues and corresponding
eigenvectors of Sy are calculated. Let @ denote the matrix
whose columns are the orthonormal eigenvectors of Sy, and A
the diagonal matrix formed by the corresponding eigenvalues.
Thus, Sw® = ®A. Each training vector x is then whitening
transformed by ®A™:

X" = (@A H'x (29)

It can be shown that the whitened within-class scatter
matrix 8% =(®A?)'S,, (PA?) derived from all the

whitened training vectors will become an identity matrix I.
Thus, the whitened between-class scatter  matrix
Sy =(®PA"*)"S,(PA™?) contains all the discriminative

information. A transformation matrix ¥ can be determined by
finding the eigenvectors of §};. Assuming that the eigenvalues

are sorted in a decreasing order, the eigenvectors
corresponding to the (N,—1) largest eigenvalues will form the
column vectors of the transformation matrix W. Finally, the
optimal whitened LDA transformation matrix Ay;p, is defined
as:

A = DAY (30)

WLDA

Aprpg Will be employed to transform each H-dimensional
feature vector to be a lower A-dimensional vector. Let x denote
the H-dimensional feature vector, the reduced /-dimensional
feature vector can be computed by:

y= A;/FVLDAXPCA (3D

E.  Music Genre Classification

In the classification phase, let yvmrcc, Ymosc, YMNASE
respectively denote the modulation spectral feature vectors
extracted from MFCC, OSC, and NASE modulation
spectrograms. At the stage of feature level fusion, a new
combined feature vector yycomp is obtained by concatenating
Ymmrces Ymosc, and yunase together:

(32)

T T T T
Yucoms = [Ymmrco Ymose: Yamnasel

The same linear normalization using (20) is applied to
each feature value. Each type of normalized feature vector is

then transformed to be a lower-dimensional feature vector by
using PCA transformation matrix Apcy, and LDA
transformation matrix Ay;zpy. The classifier is then employed
to compute the distances between the transformed feature
vector and the representative feature vectors of all music
classes. The distance between the input music track and the c-
th music genre in terms of modulation MFCC feature is
defined as follows:

A sirces Y umarects k) (33)

d c)= min
rec(€) 1<i<C, 1sk<K

where Yomrce and Yanrecls k) are the modulation MFCC

feature vectors of the input music track and the k-th prototype
vector of the i-th music genre, respectively. The distance
between the input music track and every music genre in terms
of modulation OSC, NASE, and combined feature (denoted by
dMOSC(C)a dMNASE(C)a and dMCOMB(C)) can be Computed in a
similar way. The overall distance evaluated for the c-th (1 < ¢
< C) music genre is defined as the sum of each individual
distance [20]:

d(©) = dyppcd©) + dyos€) + dypasi(€) + dyrcons(€) (34)

Thus, the subject code s that denotes the identified music
genre is determined by finding the music class that has the
minimum overall distance:

s = arg l1311<ré d(c) (35)

III. EXPERIMENTAL RESULTS

A. Datasets

The dataset used in the ISMIR2004 Music Genre
Classification Contest [21] will be employed for performance
comparison. This dataset consists of 1458 music tracks in
which 729 music tracks are used for training and the other 729
tracks for testing. The audio file format is 44.1 kHz, 128 kbps,
16-bit, stereo MP3 files. In this study, each stereo MP3 audio
file was first converted into a 44.1 kHz, 16-bit, mono audio
file before classification. These music tracks are classified into
six classes: Classical, Electronic, Jazz/Blue, Metal/Punk,
Rock/Pop, and World. In summary, the music tracks used for
training/testing include 320/320 tracks of Classical, 115/114
tracks of Electronic, 26/26 tracks of Jazz/Blue, 45/45 tracks of
Metal/Punk, 101/102 tracks of Rock/Pop, and 122/122 tracks
of World music genre. Since the music tracks per class are not
equally distributed, the overall classification accuracy is
defined as follows:

CA= Y P.xCA, (36)
1=csC
where P. is the probability of appearance of the c-th music
genre, CA, is the classification accuracy for the c-th music
genre.

B. Classification Results

Table II compares the classification accuracy of different
modulation spectral feature vectors derived from modulation
spectral analysis of MFCC, OSC, and NASE: MMFCC,
MOSC, MNASE, and their combination MCOMB using
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different number of prototype vectors and LDA as the
classifier. The results indicated that the best result is obtained
when all feature vectors (MMFCC, MOSC, and MNASE) as
well as the concatenated feature vector MCOMB are
integrated with a classification accuracy is 89.99% when the
PCA threshold cpcy = 0.99.

Table III shows the comparison with the results from the
ISMIR2004 Music Genre Classification Contest as well as
other approaches [8, 9, 22] with the same experimental setup.
From this table, we can see that our proposed approach
performs the best and achieves higher classification accuracy
(89.99%) than the winner of the contest with a classification
accuracy of 84.07%.

TABLE II. CLASSIFICATION ACCURACY (%) OF DIFFERENT MODULATION
SPECTRAL FEATURES USING DIFFERENT NUMBER OF PROTOTYPE VECTORS (K)
AND LDA AS THE CLASSIFIER.

K
Olpca Feature Set 2 3 7y 3 3 7 3 9

MMEFCC 82.44 83.95 82.58 84.77 83.68 84.36 84.50 84.09

MOSC 80.93 82.99 81.07 82.99 82.99 82.58 83.13 83.13

0.98 MNASE 81.34 82.30 82.72 83.40 82.85 83.68 83.54 82.72

MCOMB 87.93 87.79 88.61 88.20 87.93 88.61 88.34 87.79
MMFCC+MOSC+

MNASE+MCOMB 88.89 88.89 89.30 89.03 89.30 89.71 89.16 89.44

MMEFCC 83.68 83.54 83.68 85.1984.22 85.60 85.46 84.09

MOSC 83.26 83.68 83.54 82.7283.13 84.36 84.50 85.46

0.99 MNASE 81.89 82.72 83.40 84.22 84.09 83.95 84.50 83.81

MCOMB 88.20 87.24 88.48 88.48 87.79 88.20 88.75 87.79
MMFCC+MOSC+

MNASE+MCOMB 88.34 88.61 89.03 89.16 89.03 89.03 89.85 89.99

TABLE III. COMPARISON WITH THE RESULTS FROM THE ISMIR2004 MUSIC
GENRE CLASSIFICATION CONTEST AND APPROACHES WITH THE SAME
EXPERIMENTAL SETUP (50:50 TRAINING/TESTING SET SPLIT).

References CA
Our proposed approach 89.99%
(MMFCC+MOSC+MNASE+MCOMB) 7
C.H. Lee et al. [9] 86.83%
Y. Song et al. [22] 84.77%
T. Lidy & A. Rauber [8] 79.70%
E. Pampalk (winner) 84.07%
K. West (2nd rank) 78.33%
G. Tzanetakis (3rd rank) 71.33%
T. Lidy & A. Rauber (4th rank) 70.37%
D. Ellis & B. Whitman (5th rank) 64.00%

IV. CONCLUSIONS

A new set of modulation spectrum feature sets derived from
long-term modulation spectral analysis of MFCC, OSC, and
NASE features is proposed for music genre classification.
Experiments conducted on ISMIR 2004 music dataset have
shown that our proposed approach can achieve higher
classification accuracy than other approaches with the same
experimental setup.
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ABSTRACT

In recent years, the demand for a content-based 3D
model retrieval system becomes an important issue. In
this paper, the cylindrical projection descriptor (CPD)
will be proposed for 3D model retrieval. To derive
better retrieval results, the CPD will be combined with
the radial distance descriptor (RDD). The experiments
are conducted on the Princeton Shape Benchmark (PSB)
database. Experiment results show that our proposed
method is superior to others.

1. INTRODUCTION

Recent development in advanced techniques for
modeling, digitizing and visualizing 3D models has
made 3D models as plentiful as images and video.
Therefore, it is necessary to design a 3D model
retrieval system which enables the users to efficiently
and effectively search interested 3D models. The
primary challenge to a content-based 3D model
retrieval system is how to extract the most
representative features to discriminate the shapes of
various 3D models [1].

Vranic et al. applied Fourier transform to the sphere
with spherical harmonics to generate embedded
multi-resolution 3D shape features [2]. To be rotation
invariant, pose normalization must be conducted prior
to feature extraction. Therefore, Funkhouser et al.
proposed a modified rotation invariant shape descriptor
based on the spherical harmonics in which no pose
normalization is needed [3].

Some features to represent the 3D models are based
on the histograms of geometric statistics. Ankerst et al.
tried to search similar 3D models using shape
histograms which characterize the area of intersections
of a 3D model with a collection of concentric shells and
sectors [4]. The MPEG-7 shape spectrum descriptor
(SSD) [5] calculates the histogram of the curvatures of
all points on the 3D surface. SSD represents the
distribution of geometric characteristics and is robust to
tessellation of 3D polygonal models. Osada et al. [6]
proposed five features, A3, D1, D2, D3, and D4, to

978-0-7695-4236-2/10 $26.00 © 2010 IEEE
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represent 3D models by the probability distributions of
geometric properties computed from a set of randomly
selected points located on the surface of the model. For
instance, D2, the best feature among these five features,
is the distribution of distances between two random
points. However, these features are invariant to
tessellation of 3D polygonal models. Thus, Shih et al.
[7] proposed grid D2 (GD2) to improve D2. A 3D
model is first decomposed into a voxel grid. The
distribution of distances between any two randomly
selected valid grids is measured to represent a 3D
model.

The 3D models also can be described by its 2D
silhouettes from different views. Users can find similar
3D models by 2D shape features. Super and Lu [8]
exploit 2D silhouette contours for 3D object
recognition. Curvature and contour scale space are
extracted to represent each silhouette. Chen et al. [9]
proposed the LightField descriptor (LFD) to represent
3D models. The LFD is computed from 10 silhouettes.
Each silhouette is represented by a 2D binary image.
The Zernike moments and Fourier descriptors are
employed to describe each binary image. In fact, 2D
silhouettes represented by binary images can not
describe the altitude information of the 3D model from
different views. Shih et al. [10] proposed the elevation
descriptor (ED) to represent the altitude information of
a 3D model from six views. However, LFD and ED
represent only the exterior shape of 3D model without
capturing the interior shape information.

Kuo and Cheng [11] proposed a 3D shape retrieval
system based on the principal plane analysis. First, by
projecting the 3D model onto its principal plane, a 3D
model can be transformed into a 2D binary image. The
feature vectors are then extracted from the binary shape
image. However, using only one 2D binary image can
not represent a complex 3D model well. Therefore,
Shih et al. [12] proposed the principal plane descriptor
(PPD) to describe a 3D model with three 2D binary
images by projecting it on the principal, second and
third planes. The proper feature vectors can be
extracted from three binary images to do 3D model
retrieval.
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computer
psoue

ty



Novotni and Klein proposed a 3D shape retrieval
method using 3D Zernike moments, which is naturally
an extension of spherical harmonics based descriptors
[13]. Ricard et al. [14] presented a 3D shape descriptor,
the 3D Angular Radial Transform (3D-ART) for 3D
model retrieval. First, the 3D models are represented in
spherical coordinates. Next, a Principal Components
Analysis (PCA) is applied to align the 3D models along
the z-axis. Then, the 3D extension of MPEG-7’s ART
[15] is applied to extract feature vectors.

Mademlis et al. [16] decomposed 3D models into
meaningful parts and an attributed graph was
constructed based on the connectivity of the parts. Then,
the 3D Distance Field Descriptor (3D-DFD) was
computed and associated to the corresponding graph
nodes for partial and global 3D model retrieval.

Papadakis et al. [17] proposed two shape descriptors
for 3D model retrieval. The 3D model was first aligned
by continuous PCA (CPCA) or normal PCA (NPCA).
In CPCA, the traditional one, the principal component
is analyzed based on the covariance matrix computed
from the coordinate vectors of the vertices, whereas in
NPCA the covariance matrix is computed from the unit
normal vectors of the mesh surfaces. The spherical
harmonics was then applied on the filled 3D model to
extract two feature vectors from the CPCA and NPCA
aligned models separately. Vranic and Saupe proposed
a modified PCA which used the corresponding triangle
areas as weighting factors for covariance matrix
computation [18]. The directions of 20 vertices on
dodecahedron and the distances computed from the
center point to the farthest intersections were used as
features to index similar 3D models.

Zarpalas et al. [19] proposed a 3D model retrieval
method using 240 (12x20) 2D gray-level projection
images, which are obtained by projecting a 3D model
onto the 240 planes rendered from the 12 vertices of 20
icosahedrons with different radii. Features were
extracted from these gray-level images and combined
to improve the performance. Another 3D model
retrieval system used 20 depth images rendered from
the 20 vertices of a dodecahedron [20]. The depth
information of a pixel in each depth image was
encoded as a 5-level character. Each row (depth line) in
the depth image is then represented as a sequence of
depth information. Dynamic programming was then
used to compute the distance between two depth line
descriptors.

In this paper, the cylindrical projection descriptor
(CPD) will be proposed for 3D model retrieval. To
derive better retrieval results, the CPD will be
combined with the radial distance descriptor (RDD)
[21]. The rest of the paper is organized as follows. In
Section 2, the proposed 3D model retrieval method will
be described. In Section 3, gives the experimental
results to show the effectiveness of the proposed
features. Finally, conclusions are given in Section 4.
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2. THE PROPOSED 3D MODEL RETRIEVAL
METHOD

In this study, two descriptors, including the radial
distance descriptor (RDD) [21] and the cylindrical
projection descriptor (CPD) are used for 3D model
retrieval. Before extracting the feature vectors, the 3D
model is aligned according to the principal plane [12].

2.1 Radial Distance Descriptor(RDD)

The main steps for computing the radial distance
descriptor [21] are described as follows:

(1) 3D model is aligned by it’s the principal plane [12].
The principal plane is defined as the symmetric
plane on which the sum of distance of all points
projected is minimal.

(2) The bounding cube is then decomposed into a voxel
grid of size 100x100x100 (see Fig. 1). A voxel
located at coordinates (x, y, z) will be defined as an
opaque voxel, notated as Voxel(x, y, z) = 1, if there
is a mesh located within this voxel; otherwise, the
voxel is defined as a transparent voxel, notated as
Voxel(x, y, z) = 0. To normalize for translation and
scale, the object’s mass center, is moved to the
point (0, 0, 0) and the average distance from
non-zero voxels to the mass center is scaled to 25.

(3) Six projection planes (see Fig. 1), which describe
the radial distance from the 3D model surface to the
mass center (see Fig. 2), are derived to represent a
3D model. Each projection plane is represented by a
gray level image in which the gray value denotes
the distance from an opaque voxel to the mass
center (see Fig. 3). Let the six projection planes be
notated as [;, k=1, 2,...,6. Then ,the gray value of
each pixel on these images is defined as follows:

]l (xyZ) = lrna)%(R(xsya Z)Voxel(xsysz))y
<ys<5

for —50 < x,z £ 50,

]2 (x,y) = ]Inagg(R(x: y»Z)Voxel(xa y»Z)),
for—50 < x,y <50,

]3(%2) = lrn_as)%(R(xaysz)voxel(-x’yaz))’
for —50 < y,z <50,

14 (X,Z) = 51(1)1<3X1(R(X,y, Z)Voxer9y7 Z)):

—50<y<—

for—50<x,z <50,

]5 (xay) = Srglax 1(1{()@ ya Z)VOXel()C, ya Z)),
for —50 < x,y <50,

]6 (y>Z) = Srglax I(R(xayaz)voxel(xsyaz))>
for—50<y,z<50,

where R(x,y,z)=x>+y> +2°.
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Fig. 1 The six views of 3D racing car model.

Fig. 2 The PO,QO, and RO represent the radial
distance from the 3D model surface to the mass center

Fig. 3 3D racing car model and its six gray-level
projection planes. (a) The front plane /; and the rear
plane 7,. (b) The top plane I, and the bottom plane Is.
(c) The right plane /; and the left plane /.

(4) The MPEG7’s angular radial transformation (ART)
[15] is used to extract the feature vector from each
projection plane. The ART descriptor consists of
the magnitudes of all complex ART coefficients. In
the MPEG-7 standard, the suggested ART

descriptor consists of 35 coefficients, |f A (n, m)| ,
for0<n<2and 0 <m <11, excluding » = 0 and

m = 0. In summary, the radial distance descriptor
(RDD) is defined as:

rdd =[(rrd,)",(rrd,)", ..., (rrd)" ">
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where rdd;, 1<k<6,is the ART feature vector
extracted from the k-th projection plane:
rdd, =[rrd, (1),rrd,(2),...,rrd, (35),]"

= [/ D, | £, (0, 1D] | £, (1, 0)
S LIDL]£, (2,00 .oy | £ (2, 1DT
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2.2 The Cylindrical Projection Descriptor (CPD)

The main steps for computing the cylindrical
projection descriptor (CPD) are described as follows:
(1) 3D model is aligned by it’s the principal plane [12]

as Sec 2.1.1.

(2) A cylindrical projection can unfold a portion of the

surface of a sphere into a flat plane. (see Fig. 4).

As shown in Fig. 5, and 6, the three gray-level

images F;, F,, F;, can be obtained by mapping the

PO value on the flat planes by three directions: x,

y, and z.

Fig. 4 The cylindrical projection.

(3) 2D-FFT (Fast Fourier Transform) is used to extract
the feature vector from three 256x128 projection
images (see Fig. 6). The FFT descriptor consists of
the magnitudes of the first 32x32 FFT coefficients.
In this paper, the FFT descriptor consists of 1024

coefficients, |ko” (u, v)| ,for0<u<3land0<v<

31. In summary, the cylindrical
descriptor (CPD) is defined as:

cpd =[(cpd,)", (epd,)",(cpd,)" T’
where cpdy, 1 < k <3, is the feature vector extracted

projection

from the k-th projection.
cpd, =[cpd, (1),cpd, (2),....cpd, (1024),1"
=[]/, (0,0) (0,31, £, (1,0)
£ (L3D),|/,3L0), ..., |/, BL3D|T".

RS i i
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Fig. 5 The cylindrical projection descriptor. PO
represent the distance from the 3D model surface to the
mass.

Fig. 6 The three gray-level image F), F,, and F3, are
obtained by the cylindrial projection.

2.3 Distance Computation

Let rdd=[(rdd,)",(rdd,)",...,(rdd,)"]" and

rdd’ =[(rdd})", (rdd})", ..., (rdd})"]"
RDD of a query model and the b-th matching model in
the database, respectively. The distance between the
query model and the b-th matching model is defined as
follows:

denote  the

Dis’y, = Z"rdd —rddb”
RDD k=1
ZZ”rdd (i) - rddb(z)"
RDD k=1 i=1

where Ny, =6x36 CPD is defined as:

[(cpd))".(cpd,)", (cpd;)']"  and
cpd =[(cpd))", (cpd5)", (epd’)']" denote the CPD
of a query model and the b-th matching model in the

database, respectively. The distance between the query
model and the b-th matching model is defined as

follows:
Z"cpd —cpd "

CPD k=1

Let cpd=

b
Dis (e, =

1024

Zzncpd (i) = cpd; ()

CPD k=l i=l

where Ny, =3x1024. Finall we use three kinds of

similarity measure methods to combine RDD and
CPD:

Disypp + Dis(pp
2) Use the Borda Count Algorithm [34] to combine
the RDD and CPD:

1

Sim} = > >
Rankyp, + Rank/pp

where. Rankl,, and Rankl,, are the retrieval

rank values of the b-th matching model for the
RDD and CPD, respectively.

3. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed
method for different 3D models, some experiments
have been conducted on the Princeton Shape
Benchmark (PSB) database [23]. The PSB database
contains 1814 models (161 classes) which are divided
into 907 training models (90 classes) and 907 test
models (92 classes). Note that in this database the
number of models is different for each class. Since the
number of models in each class is different in the PSB
database, the recall value (Re/) for the j-th query

model in the i-th class is defined as follows:
Re! =N/ /N,,
where N,-j denotes in the retrieval list the number of

models labeled as class i and N; is the total number of
models in class i. The average recall values is defined

as follows:
92 T

153 re

S i=l j=1
where T, = T, + T, + ... + To. The Discounted
Cumulative Gain (DCG) [28], will also be employed to
compare the performance of different approaches. DCG
at the k-th rank is recursively defined as follows:

L,
DCG, ,+———., k=2
DCG, = log2 k)’ ,

L, k=1
where L;=1 if the k-th retrieval model and the query
one belong to the same class; otherwise, L,=0. The
overall DCG score for a query model g is defined as
DCG, ,where k,,, is the total number of models in

the database. DCG is clear that if the top-ranked
models and the query one are of the same class,
DCG, will be larger than the retrieval result with

similar models appearing in the bottom of the retrieval
list.

In our experimental, each model in database is
presented as a query one. Table 1 compares the



retrieval results of the proposed method with other
descriptor. It also shows that the combination of RDD
and CPD outperforms other descriptors in terms of the
average recall value and DCG. The combination of
RDD and CPD using the second similarly measure,
Simy,, has the best recall and DCG values. Moreover,
we compare the retrieval performance of our proposed
method with another state-of-the-art descriptors in
Table 2. We can also see that the proposed method
outperforms these descriptors in terms of DCG.

4. CONCLUSION

With the development of computer graphics and
virtual realities, the demand for a content-based 3D
retrieval system becomes urgent. In this study, two
features, the radial distance descriptor (RDD) and the
cylindrical projection distance (CPD) are combined for
3D model retrieval. The experiments have been
conducted on the Princeton Shape Benchmark (PSB)
database. Experiment results show that the proposed
methods are superior to others.
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Table 1. Comparison of the proposed and other
descriptors on the PSB database in terms of the recall
value(%) and DCG(%). N; denotes the number of
retrieval models.

Re Re
Method DCG
e (N=T) | (N,=4T)

RDD 41.71 62.05 71.60
CPD 36.91 55.59 67.59
RDD+CPD Simy 43.53 62.27 72.05
Sim, 42.75 61.75 71.15

ED[22] 35.48 56.03 67.04
AED [24] 38.61 6029 | 70.29
DED[22] 36.19 55.87 66.92
CED[22] 37.32 57.80 68.04
PPD [12] 34.23 55.35 65.86
SH [3] 27.06 41.02 | 5835
SSD [5] 15.87 26.64 48.07
GD2 [7] 28.30 47.61 60.91
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Table 2. Comparison of the proposed method and other
descriptors on the PSB database in terms of DCG(%).
(Note that the approaches marked with * are
implemented by Akgul et al. and originally appeared in

[28])

Method DCG Method DCG
RDD+CPD | Sim, | 72.05 | DSR [27]* 66.50
EGI [25] 43.80 | DBF [28] 65.90
CRSF [17] 66.80 | DSR+DBF [28] | 70.20
LF [9] 64.30 | SWD [29]* 65.40
SH-GEDT [26] 58.40 | SIL [27]* 59.70
DBI [27]* 66.30 | 3DHT [30]* 57.70
RISH [11]* 58.40 | CAH [31]* 4330
SHIST [13]* 54.50 | REXT [32]* 60.10

AVC [33] 60.20
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