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In recent years, the drowsiness detection is widely
applied to the driver alerting or distance learning.
The drowsiness recognition system is constructed on
the basis of the recognition of eye states. The
conventional methods for recognizing the eye states
are often influenced by the illumination variations
or hair/glasses occlusion. In this project, we
propose a new image feature called * least correlated
LBP histogram (LC-LBPH)" to generate a high
discriminate image features for establishing a robust
eye states recognition system. Then, the method of
independent component analysis (ICA) is used to
derive the low-dimensional and statistical
independent feature vectors. Finally, support vector
machines (SVM) is trained to identify the eye states.
Furthermore, we design four rules to recognize three
eye transition patterns which define the normal
(consciousness), drowsiness, and sleeping situations.
Experimental results show that the eye-state
recognition rate is about 0.08 seconds per frame and
the drowsiness recognition accuracy approaches 98%.
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In recent years, the drowsiness detection is widely applied to the driver alerting
or distance learning. The drowsiness recognition system is constructed on the basis of
the recognition of eye states. The conventional methods for recognizing the eye states
are often influenced by the illumination variations or hair/glasses occlusion. In this
project, we propose a new image feature called “least correlated LBP histogram
(LC-LBPH)” to generate a high discriminate image features for establishing a robust
eye states recognition system. Then, the method of independent component analysis
(ICA) is used to derive the low-dimensional and statistical independent feature vectors.
Finally, support vector machines (SVM) is trained to identify the eye states.
Furthermore, we design four rules to recognize three eye transition patterns which
define the normal (consciousness), drowsiness, and sleeping situations. Experimental
results show that the eye-state recognition rate is about 0.08 seconds per frame and the
drowsiness recognition accuracy approaches 98%.

Keywords: drowsiness recognition, eye state, LC-LBPH, ICA, support vector
machine
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Figure 1 The left side indicate the training phase for the eye state classifier and the
right side indicate the recognition phase for the drowsiness recognition.
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Figure 2 (a) Face and mouth regions are detected in a video sequence. (b) Eyes position is
located according to the rules in Eq. (1). (c) The eye region is cropped from the face region.
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Figure 92 Test images for analyzing the least correlated LBPH features.

Table 1. The various kinds of parameter combinations for constructing the least correlated

LBPH.
Mode 1 2 | 3 ] 4 ] 5 | 6
Scanningblock 9*4P13*6D 1x1 pixel
type 19*9[ HYPERLINK\I
§ "XuC08" 14]
= Image no decimation 2x2 2x2 4x4 2x2 2x2
S decimation
g Block Moving Half block-size 0 pixel
s Distance
% Mask Moving 1 pixel 2 pixel | 1 pixel | 1 pixel | 1 pixel | 2 pixel
4 Distance
LBP Type LBPY? LBPY? | LBPY? | LBPyZ | LBPY2 | LBP2
Correlation 0.5341 0.4996 | 0.4820 | 0.4760 | 0.4649 | 0.4300
coefficients
Table 2. Interpretation of the correlation coefficients
Correlation None Small Medium Large (strong)
Positive 0.0 ~0.09 0.1~0.3 0.3~05 05~1.0
Negative -0.09~0.0 -0.3~-0.1 -0.5~-0.3 -1.0~-0.5
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Figure 10 Training samples are selected from the 300 training set.
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Figure 31 Accuracy analysis of the ICA features for LC-LBPH.

Table 3 Dimensionality analysis of ICA feature vector.

ICA feature vector with 5 dimensions
Confusion matrix | True Positive (open)Rate | True Negative (close) Rate
False Positive Rate 0.8947 0.1053

False Negative Rate 0.0099 0.9901
Accuracy Rate 0.9122
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ICA feature vector with 10 dimensions
Confusion matrix | True Positive (open)Rate | True Negative (close) Rate

False Positive Rate 0.9496 0.0504
False Negative Rate 0.0264 0.9736
Accuracy Rate 0.9616

ICA feature vector with 15 dimensions
Confusion matrix | True Positive (open)Rate | True Negative (close) Rate

False Positive Rate 0.8999 0.1001
False Negative Rate 0.0363 0.9637
Accuracy Rate 0.9116

ICA feature vector with 20 dimensions
Confusion matrix | True Positive (open)Rate | True Negative (close) Rate

False Positive Rate 0.8487 0.1513
False Negative Rate 0.0594 0.9406
Accuracy Rate 0.8655
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Table 4 Confusion matrix for eye state recognition

True Positive(close) Rate True Negative Rate
False Positive Rate 0.9736 0.0264

False Negative(open) Rate 0.0504 0.9496

Accuracy Rate : 0.9616
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Figure 12 The waveform for showing the eye state transitions for drossiness and sleep.
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Table 5 Accuracy-rate comparison of Eye-state recognition

Method Number of test video Accuracy Rate
Flores's method [1] 5 95.59%
LC-LBPH + SVM 5 98.63%
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Table 6 Accuracy comparisons for drowsiness detection

Method Accuracy Rate
PCA + HMM 76%

PCA + LDA 81%
Fan’s method | [11] 91%
Fan’s method II[11] 96%

LC LBPH + SVM 98%
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Figure 14 Method comparisons for drowsiness detection and fatigue monitoring [11]
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Figure 15 Demonstration of drowsiness recognition.
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Figure 16 (a) System recognizes the drowsiness state. (b) Drowsiness is recognized under the

non-uniform illumination.
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Surf-Badge-Based Target Tracking

Cheng-Chang Lien, Shin-Ji Lin, Cheng-Yang Ma, and Yu-Wer Lin

Abstract—With the great demand for constructing a safe and
security environments, video surveillance becomes more and more
important. In order to detect each individual target under serious
occlusions, we propose a SURF-badge-based target tracking method
to overcome the occlusion problem. First, the blob-based object
detection and verification is used to initialize the object tracking
scheme. Second, the moving object region is segmented mfto three
portions for locating the SURF feature points as the badge of moving
object. Finally. the dynamic updating of the SURF feature points is
applied for the purpose of robust target tracking. The experimental
results show that the accuracy of individual tracking under serious
occlusions can be higher than 90% and the efficiency can approach
10-12 fps.

Keywords—Video surveillance. occlusion, blob-based-detection,
target tracking, SURF.

I INTRODUCTION

ECENTLY, with the rapid development of wvideo

processing technologies, some new visual applications are
emerging, e.g.. video content searching [1]. video indexing [2].
video classification [3], and intelligent video surveillance [4-3].
Especially. in the mtelligent video surveillance [4]. human are
tracked and their activities are recognized and monitored.

In the conventional blob-based object detection svstems.
some typical methods are applied to extract the moving objects,
e.g.. background subtraction [6], optical flow [7-9]. frame
difference analyses [10]. and codebook model [11]. In [6]. the
regions of moving objects may be acquired precisely by using
the method of background subtraction but it is extremely
sensitive to the illumination and the background vanations. In
[7-9]. the optical flow method 15 used to independently track
each object with the low-level feature. Applying frame
differencing method [10] may be adaptive to the illununation
changes, but the moving objects are extracted incompletely
when the objects move slowly. In [11]. the codebook method
can overcome the problems of background or illununation
variations. but this method is difficult to detect and track the
targets in the situation of partial occlusion.

Hence. conventional video surveillance systems [12-13]
often may face the following problems. First, target detection
can’t be accurate under the light vanation environment or
clustering background. Especially, the lght reflection.
back-lighted and shadow problems can influence the target
detection seriously. Second, multiple targets tracking become
difficult on a crowd scene because the split and merge or
occlusions among the tracked targets occur frequently and
irregularly. Third, 1t 15 difficult partition the tracked targets

C. C. Lien, 5.-J. Lin. C-Y. Ma, and Y.-W. Lin are with the Computer
Science & Information Engineering Department, Chung Hua University.
Tarwan, ROC (e-mail: cclien/@chu edu tw).

from a merged image blob and then the target tracking may fail.
Finally, the traclkang efficiency and precision are reduced by the
wnaccurate foreground detection.

In the novel video surveillance application. one of the most
challenging problems 1s the target tracking under the serious
occlusion condition shown i Fig. 1. Generally, serious
occlusions  make the conventional blob-based target
detection/tracking methods failed. For example, the tracked
person can be partially occluded by other persons and only part
of region can be served as a cue for continuous tracking. Hence.
target tracking may face the problems of frequent partial
occlusions that can make the target segmentation very difficult.
Therefore, m this study, the SURF-badge-based target tracking
method 15 proposed to tackle the occlusion problems.

B i ——

=

Fig. 1 Target occlusion situations (a) People are walking crossover, (b)
People is occluded by the tree, (c) People is occluded by the car
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The block diagram of the proposed system 1s shown in Fig. 2.
In Fig. 2. the blob-based foreground detection is applied to
detect the candidate object regions and then the object
verification scheme with the moving trajectory length is
utilized to extract the real objects. In the following. the
SURF-badge-based target tracking is activated to track each
individual object. In the target tracking. the object region 1s
divided into three equal portions. In each portion, the SURF
feature points are detected as the badge of tlus object and
recorded for object tracking under the partially occluded
conditions. Finally, the matchmg and dynamic updating for the
SURF feature points are continuously applied for the purpose
of robust target tracking.

Tracking

Elob-based-
= Tjesen ™| T
New
Viden foreground
detection
T _,| SURF-badge-
© ™ based tracking

Fig. 2 The block diagram of the SURF-badge-based target tracking
system

II. OBJECT DETECTION AND SURF BADGE LOCATING

In this section. the method of target tracking consists of two
phases. First, the moving objects will be detected with the
blob-based object detection method. Second. the SURF feature
points served as the badge for each moving object are located
for continuous object tracking. Fig. 3(a) shows that a moving
object 15 detected by the blob-based object detection method
and Fig. 3(b) shows that the SURF feature points are detected
and located m the moving object.

(a)

Fig. 3 (a) Example of blob-based object detection, (b) SURT feature
points (red dots) are located in the object region.

A. Blob-Based Object Detection

All tables and figures you insert in your document are only to
help you gauge the size of your paper, for the convenience of
the referees. and to malke it easy for you to distribute preprints.

Given an image sequence captured by a fixed camera over a
time period. the intensity varation for each pixel can be
modeled by the Gaussian distribution function. Furthermore, by
the carefully observation. the intensity variations of the pixels
in the regions of moving objects may be modeled by the flat

Gaussian  distnbution  functions. Hence. the muxture of
Gaussians (MOG) [14]. [16] may be used to model the intensity
variation for each pixel that may belong to the backgrounds or
the moving objects over a time period. The blob-based
foreground detection is illustrated in Fig. 4.

A

(@) ()
Fig_ 4 Example of blob-based object detection (a) Original image, (b)
The detected objects

B. Badge Locating

In general. the blob-based object detection methods [13] can
extract the moving objects on the less crowded scene. However,
when the moving objects are frequently partially occluded the
conventional blob-based methods are difficult to track each
individual object because of the inaccurate segmentation of
each indmvidual object. To overcome this problem, the SURF
badge 1s located on the detected objects for continnous and
robust tracking of each moving object.

There are three typical point-based features which are
Kanade-Lucas-Tomas:1 (KLT) [7]. Scale Invariant Feature
Transform (SIFT) [8] and Speeded-Up Robust Features
(SURF) [9]. The KLT does not address the issue of scale,
translation, and rotation invariant feature description when
tracking in the image sequences. Therefore, we don’t use the
KLT feature as the target badge. Both descriptors in SIFT and
SURF have the properties of rotation. translation and scaling
wvariants. Based on the SIFT algonthm, the SURF improve the
efficiency by box filtering and integral image calculation for
the Hessian matrix and Haar wavelets. In this study, we apply
the SURF to develop the point-based target tracking scheme.
There are three main processes in the SURF algonithm. which
are:

1. Given a poit p=(x, vJ in an image I, the Hessian matrx

Hip,c) at the scale G is defined as:

[L.(p.o) Ly(p.o) o

Hip-) T Ly(p.0) Ly(p.o) )

where the elements in A denote the convolutions of the
Gaussian second order demvatives guw(G). Zx(G). Zw(T).
and g.(q) with the image I at the point p. In contrast to
SIFT method wlich approximates Laplacian of Gaussian
(LoG) with the Difference of Gaussians (DoG), SURF
approximates the second order Gaussians dervatives [17]
with the box filters (mean or average filter). The locations
and scales of interest points are selected based on the
determunant of the Hessian matrix. The interest points are
detected by applying the non-maximum suppression in a
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3%3%3 neighboring space and searching the local extremes
in the different scale spaces.

2. In the SURF algorithm, a circular region around the
detected interest points 1s constructed to compute a unique
orientation for gainmg the rotation invariance property.
With the dominant orientation, the SURF descriptor is
constructed by extracting square regions around the
interest points. The region is split up regularly into smaller
4x4 sub-regions. In each sub-region, the Haar wavelet
responses in both honizontal and vertical directions d, and
dy are used to extract the underlying intensity pattern (first
derivatives)  described by a  feature  wector
=z 4.5 d}_‘z|afx|_ zlﬁ?ﬂ_|:|. Finally. the SURF descriptor

with length 64 is constructed.
3. The matching process 1s performed by finding the nearest
neighbor of each descriptor. The Euclidean distance used

to measure the disstnulanty between two SURF
descriptors 1s defined as:
Dist(p. p) |7 -7 |, @

Let F={p". p,". .. "} and F={ p\". p,"..... p} represent
SURF feature points sets of the query and current mmages
respectively. For a feature ;1 in F. the matching point 1s found
when the ratio of dissimilarity measure between its nearest and
second nearest feature points m F; 1s satisfied with the criteria
in(3).

Dist(pf. pi
—1.5 (p; p‘:‘,) < Threshold- (3)
Dist(pf. pZ)
The example of SURF feature points matching is shown in
Fig. 5. The matched SURF feature points are served as the
badge of the detected object.

Fig. 5 SURF feature points matching between the successive images

IIT. TARGET TRACKING WITH THE SURF BADGE

In this section. a novel target tracking scheme with the SURF
badge 15 proposed which aums at improving the tracking
robustness when the objects are partially occluded. The system
block diagram of the proposed target tracking scheme 1s shown
in Fig. 6. In Fig. 6. the left side denotes the blob-based object
detection and verification and right side denotes the target
tracking scheme with the SURF badge. It is obvious that both
the blob-based and point-based methods are mteractive and

corporative in our proposed system. The detail descriptions are
given in the following sections.

Video
Sequence Input

L~

(" SURF-Badge-Based Tracking

Setting

= T e

Background
Tt poinls

#=Tinnmea

L% 1 T p— ‘

Target Trocking
| — /

Trucare =0 = Tt
= T miscr
Mo w Yes
+ - +
eeping
U"d"lc.'ffs""'m previous feature
b painis

L

Fig. 6 The flowchart of the target tracking scheme with the SURF
badge

A. Object Detection and Verification

In our system framework., we firstly detect the foreground
area with the blob-based object detection method Each
foreground area is described by a vector with four components:
the center, width and height of the region, which is represented
as: {0} = [x. v. w. h]". =1, N} where ¢ denotes the time
information (frame number) and NV denotes the total number of
blob-based object detection at frame .

If the object area 1s detected and classified as a single moving
object [16]. this object will be tracked for a certain time mterval
to verify whether 1t 1s a true moving object or not. First. we
calculate the trajectory length of the moving object O)'. Second.
if the length of the trajectory is larger than a threshold Trrgecory.
then O/ is identified as a true moving object shown in Fig. 7.

Fig. 7 Blue rectangle denotes the object region O, Red line denotes
the trajectory of the moving object
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SURF feature poiats on different body portions. It is obvious
that although the SURF feature points on the low portions are
missing. the moving object can be still tracked successfully
based on the SURF point matching on the upper portion. Fig.
13 shows the SURF matching process. The dynamic updating
of the SURF feature points described i (4) 15 applied for the
robust tracking. In Fig. 13. the SURF feature points are
matched between the successive umages with the formula in (3).
The threshold in (3) 1s set as 0.6.

(©) (d)
Fig. 10 Object moves with partial occlusion (a) Moving object
is occluded by the ee. (b) Two people are partially occluded. (c) The

image blob for (a). (d) The image blob for (b). Blue rectangle denotes
the candidate object region O}

Fig. 11 Target racking using the proposed scheme are illustrated on
frames 34, 46, 49 and 35. In these frames. white rectangle denotes the
blob-based object detection result, yellow dots denote the SURF
matching feature points, and red rectangle denotes the final trackmg
results

IV.EXPERIMENTAL RESULTS

In the experiments. the proposed algorithm is executing on
the PC with core 2. First, the SURF badge locating 1s used to
identify the moving targets. Second. the SURF-badge-based
target tracking method is used to track the detected targets. All
the test videos are recorded within the open space in
Chung-Hua University.

A. SURF Feature Points Detection on the Moving Objects

We detect the SURF feature points on the moving object by
using SURF algorithm. The detected SURF feature points form
a set F that 15 used to serve as the badge of the detected object.
In Fig. 12, we illustrate that the detected SURF feature points
are located on the moving object within the successive frames.
In these figures. red. green and blue dots denote the detected
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Fig. 12 Feature points detection on the moving object under normal or
occluded conditions (a) Target is occluded by the tree. (b) Target is
occluded by the car

[

83

newe

(©

Fig. 13 The SURF feature points matching between successive frames

B. Aecuracy Analysis for the Target Tracking Using the
SURF-Badge-Based Method

In order to evaluate the accuracy of the proposed method, we
compare the proposed method to the blob-based method in
[16]. The test video sequence is shown in Fig. 15. Table I shows
the accuracy analysis for the method in [16] and ours. It can be
seen that the tracking accuracy outperforms the blob-based
method in [16]. Fig. 14 illustrates the tracking accuracy
comparison between the blob-based and surf-badge-based
metheds. When the tracked targets occluded each other. the
blob-based method can’t segment the individual object within
the merged image blob. On the contrary, the occlusion problem
can be overcome with the aids of SURF badges. In Fig. 15, we
can see that each individual target can tracked successfully
under the partial occlusion situation. The tracking accuracy is
analyzed with the Euclidean distance for the center position of
tracked target and ground truth position. The experimental
results show that the proposed SURF-badge-based method can
track the target with higher accuracy than the conveational
methods. The efficiency of the proposed algorithm can
approach 10-12 frames per second with the resolution of
640x480.

TABLEI
THE TRACKING ACCURACY ANALYSIS BETWEEN THE BLOB-BASED AND
SURF-BADGE-BASED METHODS

Method | Blob-Based-tracking | Our proposed Method
Ground truth 203 203
Correct 268 275
Correct Rate 91% 03%
=~
( -~ = - Blob-Based

o Proposed

"y

7

= ~yd

2 (I

-

2 +—t

2 I

! |

W AW

Frame Number

L J

Fig. 14 Tracking accuracy analysis.
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Fig. 13 Video sequence used to test the racking accuracy

V.CoNCLUSION

In this paper, we propose a SURF-badge-based target
tracking method fo cvercome the cccluston problem. First, the
blob-based object detection and verification 15 used to initialize
the obyject tracking scheme. Secend, the moving object region is
segmented into three portions for locating the SURF feature
points as the badge of moving object. Finally, the dynamic
vpdating of the SURF feature points 1s applied for the robust
tracking. The experimental results show that the accuracy of
individual tracking under sericus ceclusion can be higher than
90% and the efficiency can approach 10-12 fps. The future
works focus on the refining the tracking accuracy for the
multiple targets’ segmentation and tracking.
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