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(一)中英文摘要及關鍵詞: 
中文摘要 

本研究使用混合座標旋轉原理設計及製作直接數位頻率合成器。此一設計之架構為無乘法器，包含小

量之唯獨記憶體( -位元)以及疊流資料路徑，所產生無寄生動態範圍超過84.4 dBc。系統晶片由台

積電

416×
m. μ180 1P6M CMOS製程設計，並且在Xilinx陣列處理器上實體模擬。證明此一以混合座標旋轉原

理為基礎之直接數位頻率合成器適合由超大型積體電路製作，在硬體成本，功率消耗以及無寄生動態

範圍上都有具備優勢。 

關鍵詞: 直接數位頻率合成器，混合座標旋轉原理，系統晶片，陣列處理器，無寄生動態範圍。 

 
 

英文摘要 
This research presents a hybrid COordinate Rotation DIgital Computer (CORDIC) algorithm for designs and 
implementations of the direct digital frequency synthesizer (DDFS). The proposed multiplier-less architecture 
with small ROM ( -bit) and pipelined data path provides a spurious free dynamic range (SFDR) of more 
than 84.4 dBc. A SoC (System on Chip) has been designed by

416×
m. μ180 1P6M CMOS, and then emulated on the 

Xilinx FPGA. It is shown that the hybrid CORDIC-based architecture is suitable for VLSI implementations of 
the DDFS in terms of hardware cost, power consumption, and SFDR. 
Key-Words: - DDFS, hybrid CORDIC, SoC, FPGA, SFDR. 
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(二) 報告內容: 

1. Introduction 
The direct digital frequency synthesizer (DDFS) plays a key role in many digital communication systems. Fig. 
1 depicts the conventional DDFS, which consists mainly of phase accumulator, sine/cosine generator, 
digital-to-analog converter, and low-pass filter. The sine/cosine generator as the core of DDFS is usually 
implemented by using a ROM lookup table; with high spurious free dynamic ranges (SFDR) comes a large 
ROM lookup table [1]. In order to reduce the size of the lookup table, many techniques were proposed [1]-[4]. 
The quadrant compression technique can reduce the ROM size by 75% [2]. The Sunderland architecture is to 
split the ROM into two smaller ones [3], and its improved version known as the Nicholas architecture results 
in a higher ROM-compression ratio (32:1) [4]. In [5], the polynomial hyperfolding technique with high order 
polynomial approximation was used to design DDFS. In [6]-[10], the angle rotation algorithm was used to 
design quadrature direct digital frequency synthesizer/complex mixer (QDDSM). 

COordinate Rotation DIgital Computer (CORDIC) is a well known arithmetic algorithm, which evaluates 
various elementary functions including sine and cosine functions by using simple adders and shifters only. 
Thus, CORDIC is suitable for the design of high-performance chips with VLSI technologies. Recently, the 
CORDIC algorithm has received a lot of attention to the design of high-performance DDFS [11]-[14], 
especially for the modern digital communication systems. 

In this research, we propose a hybrid CORDIC algorithm for the VLSI implementation of DDFS. The 
remainder of this paper proceeds as follows. In section 2, the proposed hybrid CORDIC algorithm is 
presented. In section 3, the hardware implementation of DDFS is described. The performance analysis is 
given in section 4. Conclusion can be found in section 5 
2. The Hybrid CORDIC Algorithm 

In this section, the hybrid CORDIC algorithm is proposed, and based on which, a low-power and 
high-SFDR DDFS can be developed. 

2.1 The modified scaling-free CORDIC algorithm 
In order to reduce the number of CORDIC iterations, the input angle can be divided into encoded angles 

by using the modified Booth encoding (MBE) method [15]. Specifically, let ψ  denote the input angle 
represented by 

)1()1( 2)1(....2)1(2)0( −−+−− −+++= wpp wfffψ                   (1) 
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iiiziz −−=+ 2)()()1( ρ                                       (6) 
Fig. 2 shows the proposed architecture for the modified scaling-free CORDIC arithmetic, in which, eight 
shifters, two CSAs, two CLAs, two latches, and four MUXs are used; the shifters and MUXs are to 
determine )(iρ .  
2.2 The modified scaling-free radix-8 CORDIC Algorithm 

By using the modified angle recoding method [15]-[16], the input angle ψ  can be divided as follows. 
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iiiziz −−−=+ 2tan)()()1( 1φ                             (9) 
Let . By using the Taylor series expansion, the absolute difference between  
and  is given by 
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where is the remaining terms of the difference between and . Thus, we have Λ )2(tan )3(1 cn−−− )2(tan2 31 nc −−
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For -bit operands, w ς  can be ignored in the following sense 
w−≤ 2ς                                               (12) 

Based on equations (11) and (12), we have 
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As a result, when 
3
wi > , three consecutive terms of equation (7) can be integrated into a single term as 

follows: 
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It can be shown that the scaling factor turns out to be equal to 1 when the input angle is less than , and 
moreover, if the input angle is less than , equation (18) can be rewritten as [19] 

2/2 w−

3/2 w−

iiiziz 32)()()1( −−=+ ϕ                            (21) 
Fig. 3 depicts the proposed architecture for the modified scaling-free radix-8 CORDIC arithmetic. In which, 

six shifters, two CSAs, two CLAs, and two latches are used; the shifters and switches are to determine the 
radices for computations. Note that the number of processors is reduced, and system throughput is increased 
at the cost of hardware complexity. 
2.3 The proposed hybrid CORDIC Algorithm 

The input angle  can be decomposed into a higher-angle Ω HΩ  and a lower-angle  represented as 
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where w is the word length with the first u bits being the most significant bits;  and  are computed 
by using the modified scaling-free CORDIC algorithm and the modified scaling-free radix-8 CORDIC 
algorithm, respectively. For computation efficiency, the determination of u is as follows: 1) u must be an odd 

number to satisfy the MBE method, and 2) 
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Based on the above equation, the minimum iteration number of the proposed hybrid CORDIC algorithm 
can be obtained as shown in Fig. 4. The computations of  and  are therefore as follows. )(ix )(iy
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3. Hardware Implementation of the Proposed DDFS 
In this section, the DDFS implemented by using the hybrid CORDIC algorithm is presented. Fig. 5 shows 
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the 16-bit DDFS architecture consisting mainly of phase accumulator, phase calculator, and sine/cosine 
generator, which is different from the conventional architecture. It is noted that the accumulated error in the 
sine/cosine generator is to be corrected by using the 164× -bit correction table. Take into account DAC 
technology, hardware cost and practical applications, the word length of the propose DDFS is set to 16-bit. 

The hybrid CORDIC-based sine/cosine generator with recursively accumulated angle inϑ  is given by 
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where 162
2πϑ accin Δ= , and is an integer number.            (29) accΔ

For convergence, the input angle of the scale-free CORDIC algorithm is restricted as follows: 

8
12

1

4
≅<∑

−
−

w
i

inϑ                                                           (30) 

From the above two equations, we have 
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The architecture for the sine/cosine generator is shown in Fig. 5. In which three modified scaling-free 
CORDIC arithmetic units (MCORDIC-Type A) and two modified scaling-free radix-8 CORDIC arithmetic 
units (MCORDIC-Type B) are used.  

The chip is synthesized by the TSMC 0.18 mμ 1P6M CMOS cell libraries [17]. The layout view of the 
proposed DDFS is shown in Fig. 6. The core size obtained by the Synopsys® design analyzer is . 
The power consumption obtained by the PrimePower® is 6.05 mW with a clock rate of 100MHz at 1.8V. The 
tuning latency is 8 clock cycles. All the control signals are internally generated on-chip. The chip provides 
both high throughput and low gate count. 

2612612 mμ×

4. Performance Analysis of the Proposed DDFS 
The number of correcting points versus the SFDRs with different ’s in the proposed DDFS is 

shown in Fig. 7. Due to trade-off between hardware cost and system performance, the correcting circuit with 
16 points is implemented in the proposed DDFS. In case of 16-bit word length, as shown in Fig. 8, the 
high-frequency SFDR is 169.7 dBc, respectively. The mid-frequency SFDR of sine and cosine is 122 dBc, as 
shown in Fig. 9, respectively. The low-frequency SFDR of sine and cosine is 85.06 dBc, as shown in Fig. 10, 
respectively. As a result, the SFDR is above 85 dBc. Table 1 shows various comparisons of the proposed 
DDFS with other methods in [11] and [13]. As one can see, the proposed DDFS is superior in terms of SFDR, 
hardware cost, and power consumption. 

)/( os FF

5. Conclusion 
The hybrid CORDIC-based multiplier-less DDFS architecture with small ROM and pipelined data path 

has been implemented. A SoC designed by 1P6M CMOS has been emulated on Xilinx XC2V6000 FPGA. For 
16-bit DDFS, the SFDR of sine and cosine using the proposed architecture are more than 85.06 dBc. 
Simulation results show that the hybrid CORDIC-based approach is superior to the traditional approach to the 
design and implementation of DDFS, in terms of SFDR, power consumption, and hardware cost. The 16-bit 
DDFS is a reusable IP, which can be implemented in various processes with efficient uses of hardware 
resources for trade-offs of performance, area, and power consumption. 
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Table I Comparison with previous works 

 

CORDIC Based DDFS Madisetti [11]  1999 Swartzlander [13] 2006 
This work 

[Sung, Hsin & Ko]
Process ( mμ ) 1.0 0.13 0.18 

Core Area (mm2) 0.306 0.176 0.35 0.15 0.375 

Maximum Sampling Rate (MHz) 80.4 85.7 1018 1052 100 

Power Consumption (mw) 40.602 20.8251 350 143 6.056 

 Power Consumption (mw/MHz) 0.505 0.243 0.343 0.134 0.06 

SFDR (dBc) 81 62.1 90 60 85.06 

Output Resolution (bits) 16 16 16 11 16 

Tuning Latency  (clock cycles) 16 16 --  --  8 
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Fig. 1 The conventional DDFS architecture 
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Fig. 6 The layout view of the proposed DDFS

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
-220

-200

-180

-160

-140

-120

-100

-80

-60

X: 4
Y: -89.69

X: 4
Y: -168.6

X: 4
Y: -84.42

Correction Points log2(N)

S
FD

R
 (d

B
c)

Fs/Fo=32768
Fs/Fo=16384
Fs/Fo=128

0 5 10 15 20 25 30

-200

-150

-100

-50

0

X: 17
Y: -169.7

Normalizrd Frequency

S
FD

R
 (D

B
)

Fig. 7 Plot of the number of correcting points versus SFDRs with different ’s )/( os FF
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Abstract: - In this paper, the high-efficient and reconfigurable lined-based architectures for the 9/7-5/3 discrete 
wavelet transform (DWT) based on lifting scheme are proposed. The proposed parallel and pipelined 
architectures consist of a horizontal filter (HF) and a vertical filter (VF). The critical paths of the proposed 
architectures are reduced. Filter coefficients of the biorthogonal 9/7-5/3 wavelet low-pass filter are quantized 
before implementation in the high-speed computation hardware In the proposed architectures, all multiplications 
are performed using less shifts and additions. The proposed reconfigurable architecture is 100% hardware 
utilization and ultra low-power. The proposed reconfigurable architectures have regular structure, simple control 
flow, high throughput and high scalability. Thus, they are very suitable for new-generation image compression 
systems, such as JPEG-2000. 
 
Key-Words: - Reconfigurable architecture, 9/7-5/3 discrete wavelet transform (DWT), horizontal filter (HF), 
vertical filter (VF), lifting scheme. 
 
1   Introduction 
In the field of digital image processing, the 
JPEG-2000 standard uses the scalar wavelet 
transform for image compression [1]; hence, the 
two-dimensional (2-D) discrete wavelet transform 
(DWT) and IDWT has recently been used as a 
powerful tool for image coding/decoding systems. 
Two-dimensional DWT/IDWT demands massive 
computations, hence, it requires a parallel and 
pipelined architecture to perform real-time or on-line 
video and image coding and decoding, and to 
implement high-efficiency application-specific 
integrated circuits (ASIC) or field programmable 
gate array (FPGA). At the kernel of the compression 
stage of the system is the DWT. 

Swelden proposed using the biorthogonal 9/7 
wavelet based on lifting scheme for lossy 
compression [2]. The symmetry of the biorthogonal 
9/7 filters and the fact that they are almost orthogonal 
[2] make them good candidates for image 
compression application. Gall and Tabatai proposed 
using the biorthogonal 5/3 wavelet based on lifting 
scheme for lossless compression [3]. The goal of the 
proposed architectures is to embed the 5/3 DWT 
computation into the 9/7 DWT computation.  The 
coefficients of the filter are quantized before 
hardware implementation; hence, the multiplier can 

be replaced by limited quantity of shift registers and 
adders. Thus, the system hardware is saved, and the 
system throughput is improved significantly. 

In this paper, we proposed a high-efficient 
architecture for the even and odd parts of 1-D DWT 
based on lifting scheme. The advantages of the 
proposed architectures are 100% hardware- 
utilization, multiplier-less, regular structure, simple 
control flow and high scalability. 
The remainder of the paper is organized as follows. 
Section 2 presents the lifting-based 2-D discrete 
wavelet transform algorithm, and derives new 
mathematical formulas. In Section 3, the 
high-efficient and reconfigurable architecture for the 
lifting-based 2-D DWT are proposed. Finally, 
comparison of performance between the proposed 
reconfigurable architecture and previous works is 
made with conclusions given in section 4. 
 
 
2   The Lifting-Based 2-D DWT 
Algorithm 
Usually the Lifting-based DWT requires less 
computation compared to the convolution-based 
approach. However, the savings depend on the length 
of the filters. During the lifting implementation, 
no-extra memory buffer is required because of the 
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in-place computation feature of lifting. This is 
particularly suitable for the hardware implementation 
with limited available on-chip memory. Many papers 
proposed the algorithms and architectures of DWT 
[3]-[11], but they require massive computation. In 
1996, Sweldens proposed a new lifting-based DWT 
architecture, which requires half of hardware 
compared to the conventional approaches [2]. 
 
2.1 The 9/7 2-D DWT Algorithm 
The 9/7 discrete wavelet transform factoring into 
lifting scheme is represented as [12]: 
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where γβα ,, and δ are the coefficients of lifting 
scheme, and ζ and ζ/1 are scale normalization 
factors. 

The architecture based on lifting scheme 
consists of splitting module, two lifting modules and 
scaling modules. The architecture of 9/7 1-D DWT 
based on lifting scheme is shown in Figure 1. 
The 9/7 2-D DWT is a multilevel decomposition 
technique. According to the architecture of 9/7 1-D 
DWT based on lifting scheme, the architecture of 
modified 9/7 2-D DWT based on lifting scheme can 
be derived and shown in Figure 2.  
 
2.2 The modified 9/7 2-D DWT Algorithm 
According to equation (1), the transform matrix of 
the 9/7 DWT based on lifting scheme is modified as 
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where α/1=A , αβ/1=B , βγ/1=C , γδ/1=D , 
αβγδζ=0K  ,and ζαβγ /1 =K . 

2.3 The 5/3 2-D DWT Algorithm 
The data flow of 5/3 1-D DWT based on lifting 
scheme is shown in Figure 3. 

The 5/3 2-D DWT is a multilevel decomposition 
technique; that decomposes into four subbands such 
as HH, HL, LH and LL. The data flow of 5/3 2-D 
DWT based on lifting scheme can be derived and 
shown in Figure 4. The 5/3 discrete wavelet 
transform factoring into lifting scheme is represented 
as [10]: 
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3   The High-Efficient and 
Reconfigurable Architectures for 9/7 
and 5/3 Lifting-Based 2-D DWT 
The proposed reconfigurable architecture for 5/3 and 
9/7 lifting based 2-D DWT including horizontal filter 
(HF) and vertical filter (VF) is shown in Figure 5. In 
this reconfigurable architecture, the architecture of 
horizontal filter and the architecture of vertical filter 
are shown in Figure 6 and 7, respectively. The 
proposed reconfigurable architecture for modified 
horizontal filter (HF) consists of eleven delay units, 
seventeen multiplexers and two processing elements 
(PEs). The PE(A/B/E) performs O1 for data output 
5/3(1) and PE(C/D/F) performs O2 for data output 
9/7(1). The architecture of PE(A/B/E) and the 
architecture of PE(C/D/F) are shown in Figure 8 and 
9, respectively. The architecture of scaling 
normalization (SN) is shown in Figure 10. Filter 
coefficients of the biorthogonal 9/7 and 5/3 wavelet 
low-pass filter are quantized before implementation 
in the high-speed computation hardware. In the 
proposed architecture, all multiplications are 
performed using shifts and additions after 
approximating the coefficients as a Booth binary 
recoded format (BBRF). The constant multiplier 
shown in Figure 11 consists of two carry-save-adders 
(CSA(4,2)) , a Carry Lookahead Adder (CLA) , and 
six hardwire shifters and replaces conventional 
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multiplier )(⊗  in PE(A/B/E), PE(C/D/F) and SN. 
Figure 12 shows architectures of line delays LD, LD1, 
LD2 and LD3 in vertical filter. We handle borders by 
the symmetric extension method [10]. Hence, the 
quality of reconstructed images can be improved.  
The proposed reconfigurable architectures for 9/7 
and 5/3 DWT reduce the critical path [13]-[19]. 
In NN × 2-D DWT, it requires 

)
4
11(

3
4)

2
11(109 2

JJ NNJ −+−+  computation 

cycles (addition operations) with NN 94/2 +  
memories to perform 9/7 2-D DWT, where J is 
number of levels. It requires 

)
4
11(

3
2)

2
11(24 2

JJ NNJ −+−+  computation 

cycles (addition operations) with NN 5.34/2 +  
memories to perform 5/3 2-D DWT, where J is 
number of levels. Both of two architectures are 100% 
hardware utilization.  
 
 
4   Conclusion 
Filter coefficients are quantized before 
implementation using the biorthogonal 9/7 and 5/3 
wavelet. The hardware is cost-effective and the 
system is high-speed. The proposed architecture in 
9/7 DWT reduces power dissipation by m compared 
with conventional architectures in m-bit operand 
(low-power utilization). 

The proposed architecture in 5/3 DWT with 
24-bit fixed point operations had been applied to 

512512× original images Lena is shown in Figures 
13(a) and the reconstructed images Lena is shown in 
Figure 13(b), respectively. The PSNRs of the 
reconstructed images Lena is 32.554dB. Hence, the 
proposed reconfigurable architecture has been 
applied to image compression with great satisfaction. 

In this paper, the high-efficient and low-power 
reconfigurable architecture for 2-D DWT has been 
proposed. The proposed reconfigurable architecture 
performs compression in 

aJJ TNNJ ⋅−+−+ ))
4
11(

3
4)

2
11(109( 2  computation 

time for 9/7 DWT and 

aJJ TNN ⋅−+− ))
4
11(

3
2)

2
11(

2
3( 2  for 5/3 DWT, 

where the time unit  (Ta is time of addition operation). 
The critical paths are aT3  for 9/7 DWT and aT2  for 
5/3 DWT, and the output latency time are aT49  for 
9/7 DWT and aT11 for 5/3 DWT.  Buffer sizes 
are NN 94/2 +  for 9/7 DWT and NN 5.34/2 +  for 

5/3 DWT. The control complexity is very simple.  
The comparisons between previous works [13] 

[18] and this work are shown in Table 1 for 9/7 DWT 
and Table 2 for 5/3 DWT. 

The advantages of the proposed reconfigurable 
architecture are 100% hardware utilization and ultra 
low-power. The architecture has regular structure, 
simple control flow, high throughput and high 
scalability. Thus, it is very suitable for 
new-generation image compression systems, such as 
JPEG-2000. The proposed reconfigurable DWT is a 
reusable IP, which can be implemented in various 
processes and combined with an efficient use of 
hardware resources for the trade-offs of performance, 
area, and power consumption. 
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Table 1 Comparison between previous works and 
this work (9/7 DWT architecture with single input, 

mT : multiplication time, aT :addition time and 

dT : latency delay ) 

Table 2 Comparison between previous works 
and this work (5/3 DWT architecture with dual 
input, mT : multiplication time and aT :addition 
time) 
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Fig. 1. The architecture of 9/7 1-D DWT 
based on lifting scheme( P1=α(1+z) , 
U1=β(1+z-1 ) , P2=γ(1+z) and 
U2=δ(1+z-1 )) 

Fig. 2. The architecture of modified 9/7 2-D 
DWT based on lifting scheme 

Fig. 3. The data flow of 5/3 1-D DWT based 
on lifting scheme    

Fig. 4. The data flow of 5/3 2-D DWT based 
on lifting scheme 

Fig. 5. The proposed reconfigurable 
architecture for 5/3 and 9/7 2-D DWT based 
on lifting scheme 

Fig. 6 The architecture of horizontal filter (HF) 
in the proposed reconfigurable architecture 

Fig. 7 The architecture of vertical filter (VF) in 
the proposed reconfigurable architecture 
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Fig. 8 The architecture of PE(A/B/E) in the 
proposed reconfigurable architecture  

Fig. 9 The architecture of PE(C/D/F) in the 
proposed reconfigurable architecture 

Fig. 10 The architecture of scaling normalization 
(SN) in the proposed reconfigurable architecture 

Fig. 11 The constant multiplier replaces 
conventional multiplier )(⊗  in PE(A/B/E), 
PE(C/D/F) and SN 

Fig. 12 The architectures of line delays LD, 
LD1, LD2 and LD3 in vertical filter 

(a)                                (b) 
Fig. 13 512512× Lena (a) Original image (b) 
Reconstructed image (5/3 DWT with 5-level) 
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Abstract: - In this paper, the high-efficient and reconfigurable architectures for the 9/7-5/3 discrete wavelet 
transform (DWT) based on convolution scheme are proposed. The proposed parallel and pipelined architectures 
consist of a high-pass filter (HF) and a low-pass filter (LF). The critical paths of the proposed architectures are 
reduced. Filter coefficients of the biorthogonal 9/7-5/3 wavelet low-pass filter are quantized before 
implementation in the high-speed computation hardware. In the proposed architectures, all multiplications are 
performed using less shifts and additions. The proposed reconfigurable architecture is 100% hardware 
utilization and ultra low-power. The proposed reconfigurable architectures have regular structure, simple control 
flow, high throughput and high scalability. Thus, they are very suitable for new-generation image compression 
systems, such as JPEG-2000. 
 
Key-Words: - Folded reconfigurable architecture, 9/7-5/3 discrete wavelet transform (DWT), high-pass filter 
(HF), low-pass filter (LF), convolution scheme. 
 

1   Introduction 
In the field of digital image processing, the 
JPEG-2000 standard uses the scalar wavelet 
transform for image compression [1]; hence, the 
two-dimensional (2-D) discrete wavelet transform 
(DWT) and IDWT has recently been used as a 
powerful tool for image coding/decoding systems. 
Two-dimensional DWT/IDWT demands massive 
computations, hence, it requires a parallel and 
pipelined architecture to perform real-time or on-line 
video and image coding and decoding, and to 
implement high-efficiency application-specific 
integrated circuits (ASIC) or field programmable 
gate array (FPGA). At the kernel of the compression 
stage of the system is the DWT. 

Daubechies proposed using the JPEG2000 
standard biorthogonal 9/7 wavelet based on 
convolution scheme for lossy compression [2]. The 
symmetry of the biorthogonal 9/7 filters and the fact 
that they are almost orthogonal [2] make them good 
candidates for image compression application. Le 
Gall proposed using the JPEG2000 standard 
biorthogonal 5/3 wavelet based on convolution 
scheme for lossless compression [2]. The goal of the 
proposed architectures is to embed the 5/3 DWT 
computation into the 9/7 DWT computation.      The 
---------------------------------------------------------------  
The National Science Council of Taiwan, under Grant NSC98-2221-E- 
216-037 and Chung Hua University, Taiwan under Grant CHU-NSC98- 
2221-E-216-037, supported this work. 

  coefficients of the filter are quantized before 
hardware implementation; hence, the multiplier can 
be replaced by limited quantity of shift registers and 
adders. Thus, the system hardware is saved, and the 
system throughput is improved significantly. 

In this paper, we proposed a high-efficient 
architecture for the even and odd parts of 1-D DWT 
based on lifting scheme. The advantages of the 
proposed architectures are 100% hardware- 
utilization, multiplier-less, regular structure, simple 
control flow and high scalability. 

The remainder of the paper is organized as 
follows. Section 2 presents the 2-D discrete wavelet 
transform algorithm, and derives new mathematical 
formulas. In Section 3, the high-efficient and 
reconfigurable architecture for the 2-D DWT are 
proposed. Finally, comparison of performance 
between the proposed reconfigurable architecture 
and previous works is made with conclusions given 
in section 4. 
 
 

2  The 2-D DWT Algorithm 
The 2-D DWT is a multilevel decomposition 
technique. The mathematical formulas of 2-D DWT 
are defined as follows [3]-[4]: 
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where ,0 n jNm  , ),(0 nmLL  is the input image, 
K denotes the length of filter, )(il denote the impulse 
responses of the low-pass filter, and )(kh  denote the 
impulse responses of the high-pass filter, which is 
developed from )( KK  -tap filters, and 

),( nmLLj , ),( nmLH j , ),( nmHLj , and 
),( nmHH j denote respectively the coefficients of 

low-low, low-high, high-low and high-high subbands 
produced at the decomposition level j (also 
represented by jLL , jLH , jHL , and jHH ). 

jj NN  denotes samples of jLL . 
According to the mathematical formulas (1), 

(2), (3) and (4), the decomposition is produced by 
four 2-D convolutions followed by the decimation 
both in the row and in the column dimension for each 
level. In the three-level analysis for 2-D DWT, the 
data set 1jLL  having 11   jj NN  samples is 

decomposed into four subbands ,,, jjj HLLHLL and 
jHH each having jj NN   (equals to 

)2/()2/( 11   jj NN ) samples. 

Let )2( nLLj
m , )2()( klil , )2()( khil , )2()( klih  

and )2()( khih be 1-D DWT consisting of the 
even-numbered samples, and jNn 0 ; 

2/0 Kk  .Moreover,  let )12( nLLj
m , 

)12()( klil , )12()( khil , )12()( klih and
)12()( khih be 1-D DWT consisting of the 

odd-numbered samples, and 
jNn 0 ; 2/0 Kk  . 
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im , )(, nHLj
im ,and )(, nHH j

im can be 
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The above equations imply that )(, nLLj
im , )(, nLH j

im , 

)(, nHLj
im  and )(, nHH j

im can be computed as the sum 
of two 1-D convolutions performed independently on 
the even part )22(1

2 knLLj
im 
 and the odd part 

)122(1
2 

 knLLj
im . 

 
 
2.1 The 2-D DWT Algorithm 
The proposed architecture performs parallel and 
pipelined processing. Each analysis level involves 
two stages: stage 1 performs row filtering, and stage 
2 performs column filtering. After stage 1, the input 
image of size is decomposed into two subbands (L 
and H) of size. And stage 1 performs  result is stored 
in the memory. The L subbund inputted first of stage 
2 performs. Second is H subbund.In a one-level filter 
bank for 2-D DWT computation. At the first level, 
the size of the input image is NN  , and the size of 
the output of each of the three subbands LH, HL and 
HH is )2/()2/( NN  . At the second level, the input 
is the LL subband whose size is )2/()2/( NN  , and 
the size of the output of each of the three subbands 
LLLH, LLHL and LLHH is )4/()4/( NN  . At the 
third level, the input is the LLLL subband whose size 
is )4/()4/( NN  , and the size of the output of each 
of the four subbands LLLLLL, LLLLLH, LLLLHL and 
LLLLHH is )8/()8/( NN  ,and so on. Figure 1 shows 
1-level 2-D DWT.      

The coefficients of the low-pass filter and the 
high-pass filter have been derived in the biorthogonal 
9/7 and 5/3 wavelet [2]. The 9/7 wavelet coefficients 
are quantized before hardware implementation. We 
assume that the low-pass filter has nine tapes: 

9/ 7 (0)h , 9/ 7 (1)h , 9/7(2)h , 9/ 7 (3)h  and 9/7 (4)h , 
and the high-pass filter has seven tapes: 
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9 / 7 (0)g , 9/ 7 (1)g , 9/ 7 (2)g  and 9/ 7 (3)g . The 5/3 
wavelet coefficients are quantized before hardware 
implementation. We assume that the low-pass filter 
has five tapes: 5/3 (0)h , 5/3 (1)h  and 5/3(2)h , and the 
high-pass filter has three tapes: 5/3(0)g , 5/3 (0)g . 
 
 
3   The High-Efficient and 
Reconfigurable Architectures for 5/3 
and 9/7 2-D DWT 
The proposed reconfigurable architecture for 5/3 and 
9/7 convolution based 2-D DWT including hing-pass 
filter (HF) and low-pass filter (LF) is shown in Figure 
2[5][6]. In this reconfigurable architecture, the input 
architecture are show in Figure 3,4,5 and 6,the 
multiplexers architecture are show in Figure 7,the 
architecture of hing-pass filter (HF) and the 
architecture of low-pass filter (LF)are shown in 
Figure 8 and 9, respectively. The proposed 
reconfigurable architecture for hing-pass filter (HF) 
consists of one delay units, twenty-eight multiplexers, 
six adders (It doesn’t include carrry save adder 
(CSA)) and four 9/7 wavelet coefficients processing 
elements (PEs).The proposed reconfigurable 
architecture for low-pass filter (LF) consists of 
5 5N  delay units, seventy-eight multiplexers, 
seven adders (It doesn’t include carrry save adder 
(CSA)),five 9/7 wavelet coefficients and one 5/3 
wavelet coefficients processing elements (PEs).Filter 
coefficients of the biorthogonal 9/7 and 5/3 wavelet 
low-pass filter are quantized before implementation 
in the high-speed computation hardware. In the 
proposed architecture, all multiplications are 
performed using shifts and additions after 
approximating the coefficients as a Booth binary 
recoded format (BBRF). The constant multiplier 
shown in Figure 10 consists of two carry-save-adders 
(CSA(4,2)), a Carry Lookahead Adder (CLA) , and 
six hardwire shifters and replaces conventional 
multiplier )(  in processing elements (PEs). Figure 
11 shows architectures of line delay (LD) for Vertical 
filter in 2-D DWT [7]. 

The proposed reconfigurable architectures for 
9/7 and 5/3 DWT reduce the critical path [5][6]. 
In NN  2-D DWT, it requires 

219 1 4 12 (1 ) (1 )
2 2 3 4J J

J N N     computation 

cycles (addition operations) with 14)2/25(2  NN  
memories to perform 5/3 and 9/7 2-D DWT, where J 
is number of levels. Both of two architectures are 
100% hardware utilization. 
 

4   Conclusion 
Filter coefficients are quantized before 
implementation using the biorthogonal 9/7 and 5/3 
wavelet. The hardware is cost-effective and the 
system is high-speed. The proposed architecture in 
9/7 DWT reduces power dissipation by m compared 
with conventional architectures in m-bit operand 
(low-power utilization). 

Three standard images have been used for the 
test: “ Lenna ”  256 256 (I=1), “ Barbara ” 

512 512 (I=2)and “ Boat ”  512 512 (I=3). The 
number of wavelet decomposition levels (L) has been 
varied from 1 to 3 for 256 256 images and from 1 to 
4 for 512 512  image. Table 1 shows the 
peak-signal-to-noise ratios (PSNRs) comparison 
among different 9/7 wavelet implementations for 
multiple images(I) and decomposition levels(L). 
A-Open-jpeg, B-Low-complexity, C-This work[5][6]. 
The proposed architecture in 9/7 and 5/3 DWT with 
20-bit fixed point operations had been applied to 

512512 original images Lena is shown in Figures 
12(a) and 13(a)and the reconstructed images Lena is 
shown in Figure 12(b) and 13(b), respectively. The 
PSNRs of the reconstructed images Lena are 
55.701dB and 42.625dB, respectively. Hence, the 
proposed reconfigurable architecture has been 
applied to image compression with great satisfaction. 
In this paper, the high-efficient and low-power 
reconfigurable architecture for 2-D DWT has been 
proposed. The proposed reconfigurable architecture 
performs compression in 

219 1 4 1(2 (1 ) (1 ))
2 2 3 4 aJ J

J N N T     computation 

time for 9/7 DWT and 5/3 DWT, respectively. where 
the time unit  (Ta is time of addition operation). The 
critical paths are 2 aT  for 9/7 and 5/3 DWT, and the 
output latency time are aT49  for 9/7 and 5/3 DWT.  
Buffer sizes are 14)2/25(2  NN  for 9/7 and 5/3 
DWT, respectively. The control complexity is very 
simple. The comparisons between previous works [6] 
[8] and this work are shown in Table 2 for 9/7 DWT. 
The advantages of the proposed reconfigurable 
architecture are 100% hardware utilization and ultra 
low-power. The architecture has regular structure, 
simple control flow, high throughput and high 
scalability. Thus, it is very suitable for 
new-generation image compression systems, such as 
JPEG-2000. The proposed reconfigurable DWT is a 
reusable IP, which can be implemented in various 
processes and combined with an efficient use of 
hardware resources for the trade-offs of performance, 
area, and power consumption. 
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I L A[dB] B[dB] C[dB] 

1 49.41 49.35 65.27 

2 49.16 48.79 59.27 

 
1 

3 49.26 48.48 55.77 

1 49.57 49.48 66.01 

2 49.25 49.07 60.01 

3 49.21 48.80     56.50 2 

4 49.21 48.53     56.50 

1 49.42 49.45 64.42 

2 49.11 48.92     58.41 

3 49.06 48.72     54.90 
3 

4 49.06 48.58     54.90 

Architecture Performance 
Multiplier : 4K 

adder : 4K 
Memory Size: 

KKNN 4/2  

Computation Cycle: 

mTN  )3/2( 2  

Wu [8]  
2005 

(Dual-input)

Reconfigurable architecture: NO 
adder : 19 

Memory Size: 
-- 

Computation Cycle: 

m
JJ TNN   ))21(2)21(16( 22  

Martina [6] 
2007 

(Single-input)

Reconfigurable architecture: YES 
adder : 33 

Memory Size: 

14)2/25(2  NN  
Computation Cycle: 

a
JJ TNNJ   ))21()3/4()21()2/19(2( 22

This work
(Single-input)

Reconfigurable architecture: YES 

Fig. 2. The proposed reconfigurable architecture 
for 9/7 and 5/3 2-D DWT based on lifting scheme 

Table 2 Comparison between previous works and 
this work (9/7 DWT architecture with two input, 

aT :addition time and K : filter length) 

Table 1 Performance comparison among different 
9/7 wavelet implementations for multiple images(I) 
and decomposition levels(L). Fig. 1. 1-level 2-D DWT 
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Fig. 3. The inputs architecture of horizontal filter  

Fig. 4. The inputs architecture of vertical filter 

Fig. 5. The inputs architecture of high-pass filter (HF) 

Fig. 6. The inputs architecture of low-pass filter (LF) 

Fig. 8. The architecture of high-pass filter (HF) 

Fig. 10 The constant multiplier replaces conventional 
multiplier )(  in processing elements (PEs) 
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               (a)                                   (b) 
Fig. 12 512512 Lena (a) Original image (b) 
Reconstructed image (9/7 DWT with 4-level)

(a)                                (b) 
Fig. 13 512512 Lena (a) Original image (b) 
Reconstructed image (5/3 DWT with 4-level)

Fig. 7. The architecture of multiplexers (Mux) 
 (a)~(f) for 1-D or 2-D DWT. 

Fig. 9. The inputs architecture of low-pass filter (LF) 

Fig. 11. Line delay(LD) for Vertical filter in 2-D DWT
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Abstract: - Discrete cosine transform (DCT) and inverse DCT (IDCT) have been widely used in many image 
processing systems. In this paper, a novel linear-array of DCT and IDCT is derived from the data flow of 
subband decompositions representing the factorized coefficient matrices in the matrix formulation of the 
recursive algorithm. For increasing the throughput as well as decreasing the hardware cost, the input and output 
data are reordered. The proposed 8-point DCT/IDCT processor with four multipliers, simple adders, and less 
registers and ROM storing the immediate results and coefficients, respectively, has been implemented on FPGA. 
The linear-array DCT/IDCT processor with the computation complexity )8/5( NO and hardware complexity 

)2/(NO  is fully pipelined and scalable for variable length DCT/IDCT computations. 
 
Key-Words: - DCT/IDCT, subband decomposition, linear-array, pipelined, scalable. 
  

1   Introduction 
Discrete cosine transform (DCT) is one of the major 
operations in various image/video compression 
standards [1]. Though fast Fourier transform (FFT) 
can be used to implement DCT, it requires 
complex-valued computations; and moreover, 
N-point DCT by FFT contains )12(log NO stages. 
The conventional DCT architectures using 
distributed arithmetic involve complex hardware 
with a great number of registers [2-6]. Other 
commonly used DCT architectures with matrix 
formulation and distributed memory [7-8] are 
however not suited for VLSI implementation because 
the hardware complex is proportional to the length of 
DCT, which leads to the scalability problem of 
variable length DCT computations. In this paper, we 
propose a novel linear-array architecture for scalable 
DCT/IDCT implementation. 

The remainder of this paper proceeds as follows. 
In section 2, we propose the fast DCT/IDCT 
algorithm based on subband decomposition. In 
section 3, a programmable and reconfigurable 
FPGA-based implementation with low hardware cost 
is proposed for the fast DCT/IDCT computation. The 
performance comparison with conclusions can be 
found in section 4. 

 
__________________________________________ 
The National Science Council of Taiwan, under Grant 
NSC98-2221-E-216-037, and the Chung Hua University, Taiwan, 
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2  Fast DCT/IDCT Algorithm 
For a N-point signal, ][nx , the discrete cosine 
transform (DCT) [1] is defined as 
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where ,1,....,0  Nk  N/1]0[  , and 
Nk /2][  for 0k . Let ][nxL  and ][nxH  

denote the low-frequency and high-frequency 
subband signals of ][nx , respectively, which are 
defined as 

]}12[]2[{
2
1][  nxnxnxL                   (2) 

]}12[]2[{
2
1][  nxnxnxH                    (3) 

where 1)2/(,....,2,1,0  Nn . 
As one can see, the DCT of ][nx  can be 
rewritten as 
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where ][kCL  and ][kSH  are the subband DCT and 
DST (discrete sine transform) of ][nx , respectively. 
 
2.1 Fast DCT Algorithm Based on Subband 

Decomposition 
Without loss of generality, the 8-point fast DCT 
algorithm based on subband decomposition is 
proposed for the widely used JPEG and MPEG-1/2 
standards, which can be easily extended to variable 
length DCT computations. The vector form of 
8-point DCT can be written as 

18
888,_8,_8 ][
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DSTSBDCTSB x
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where TCC ]]7[]0[[8  C , T
LLL xx ]]3[]0[[  x , 

T
HHH xx ]]3[]0[[  x , and 8,_ DCTSBT  and 8,_ DSTSBT  

denote the 48 matrices of subband DCT and 
subband DST, respectively, which can form 
orthonormal bases for the two orthogonal subspaces 
of 8R . 

The data flow of computing the 2-point subband 
DCT: 2,LLC  and subband DST: 2,LHC  for the 8-point 
DCT is shown in Fig. 1. As one can see, data flow of 
computing 2,HLC  and 2,HHC  can be obtained in a 
similar way, and therefore is not shown in Fig. 1. All 
of the 2-point subband DCT and DST are given by 
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where 8x Txx ]]7[]0[[    is the original signal, 
and 
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Similarly, we have the following 
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Fig. 2 depicts the relationship between 4,
ˆ

LLC  and 

2,LLC , which can be obtained by the following: 

2,4,_4,
ˆ

LLDCTSBLL xTC                      (14) 

2LLTC ,22, xLL                                (15) 
where 2T  is the 22 transform matrix of 
the conventional 2-point DCT. Hence, 
equation (14) can be rewritten as 

2,
1

24,_4,
ˆ

LLDCTSBLL CTTC                                     (16) 

The relationship between 4,
ˆ

LHS and 2,LHC  
shown in Fig. 3 is based on the following. 

2,4,_4,
ˆ

LHDSTSBLH xTS                              (17) 

2LTC ,22, HLH x                               (18) 
Thus, we have 

2,
1

24,_4,
ˆ

LHDSTSBLH CTTS                    (19) 
Similarly, based on equation (5) and the 
following equations: 

4,44, LTC xL                                                         (20) 

4,44, HH xTC                                                      (21) 
where 4T  is the 44  transform matrix of the 
conventional 4-point DCT. We have 

4,
1

48,_

4,8,_8,
ˆ

LDCTSB

LDCTSBL

CTT

xTC






                (22) 

4,
1

48,_

4,8,_8,
ˆ

HDSTSB

HDSTSBH

CTT

xTC






                (23) 

Fig.4 depicts data flow of computing 4,LC  and 

4,HC  using 4-point subband DCT and DST. Fig. 5 

depicts data flow of computing 8,
ˆ

LC  and 4,LC  based 
on subband decomposition. Data flow of computing 

8,
ˆ

HS  and 4,HC  based on subband decomposition is 
shown in Fig. 6. Data flow of computing 8C  using 
8-point subband DCT and DST is shown in Fig. 7. In 
other words, 8C  can be obtained by 

8,8,8
ˆˆ

HL SCC                                                         (24) 
Base on eqs. (12), (13), (16), (19), (22) and (23), 

we have 
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LL ][ 2,2,2,2,88 CCCCFC      (25) 

where 
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According to equations (27) ~ (30), we have 
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Finally, the proposed 8-point DCT computation 
based on subband decomposition is as follows: 

8888
ˆ xRFC                                                        (32) 

where 
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 (33) 

Fig. 8 shows block diagram of the proposed DCT 

computation; one of the advantages is that 8R  is 
orthogonal, and all of the sub-matrices of 8F̂  are 
orthonormal. 
 
2.2  Fast IDCT Algorithm Based on Subband 

Decomposition 
According to eq. (31), IDCT can be obtained 
by 

8
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8
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      (36) 

As 8R  is orthogonal and all of the sub-matrices of 

8F̂  are orthonormal, the inverse of 8R  and 8F̂  can 
be obtained easily. In addition, it takes only twenty 
multiplication operations for both DCT and IDCT. 
 
 
3   A Linear Array for DCT and IDCT 
Based on the proposed approach to fast DCT 
computation shown in Fig. 8, an efficient architecture 
for implementing the fast DCT/IDCT processor is 
thus presented in this section. Recall that the DCT of 
a signal, 8x , can be efficiently obtained by 

8888
ˆ xRFC  . Let 888 xRy  , then we have 

888
ˆ yFC  . The matrix-vector multiplication of 

88 xR  , in which six CSA(3,2)s (carry-save-adder 
(3,2)) and one CLA (carry-look-ahead-adder) [9-10] 
are utilized, and therefore four simple-addition time 
and one CLA computation time is required to 
compute each element of 8y . The multiplier-array 
(MA) consisted of four multipliers and the 
CLA-array (CA) consisted of eight CLAs, 
respectively, which are used to compute the 
matrix-vector computation of 88

ˆ yF  ; thus, only one 
multiplication time with one CLA computation time 
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is needed to compute each element of 8C , i.e. the 
DCT coefficient. Fig. 12 depicts data flow of the 
proposed fast DCT processor with pipelined 
linear-array architecture [11]. As a result, only five 
multiplication cycles with five addition cycles are 
needed to compute 8-point DCT. In general, for 
N-point DCT, the computation time and hardware 
complexity of the proposed fast DCT processor are 

)8/5( NO  and )2/(NO , respectively. 
Figure 13 shows data flow of the proposed fast 

IDCT algorithm [11], where 8C  is the DCT of an 
8-point signal 8x ; 8

1
88

ˆ CFz   , and 8
1

88 zRx    . 
The so-called full-CSA(4,2)  (FCSA(4,2)) consisted 
of two CSA(3,2) and one CLA for the computation of 

8z  [21-22]. It is noted that the CLA-array consisted 
of eight CLAs can also be used for the computation of 

8x . As shown in Fig. 13, only five multiplication 
cycles with three addition cycles are needed to 
compute 8-point IDCT. As one can see, the 
computation time and hardware complexity of the 
proposed fast IDCT architecture are the same as that 
of the proposed fast DCT architecture. In addition, 
only 16-word RAM/registers and 10-word ROM are 
required to store the intermediate results and 
constants, respectively; and the latency time is only 
5-multiplication-cycle. 

Fig. 15 shows system block diagram of the 
proposed fast DCT/IDCT architecture. The platform 
for architecture development and verification has 
been designed as well as implemented in order to 
evaluate the development cost. It is noted that the 
throughput can be improved by using the proposed 
architecture while the computation accuracy is the 
same as that obtained by using the conventional one 
with the same word length. Thus, the proposed 
programmable DCT/IDCT architecture is able to 
improve the power consumption and computation 
speed significantly. The proposed DCT/IDCT 
processor used to compute 64/32/16/8 -point 
DCT/IDCT are composed mainly of the 8-point 
DCT/IDCT core; the computation complexity using a 
single 8-point DCT/IDCT core is )8/5( NO  for 
extending N-point DCT/ IDCT computation. 
Moreover, the reusable intellectual property (IP) 
DCT/IDCT core has also been implemented in 
Matlab® for functional simulations. The hardware 
code written in Verilog® is running on a workstation 
with the ModelSim® simulation tool and Xilinx® ISE 
smart compiler.  
     
 
4   Conclusion 

By taking advantage of subband decomposition, a 
high-efficiency architecture with pipelined structures 
is proposed for fast DCT/IDCT computation. 
Specifically, the proposed DCT/IDCT architecture 
not only improves throughput by more than two 
times that of the conventional architectures [2-6], but 
also saves memory space significantly [1]. Table 1 
shows comparisons between the proposed 
architecture and the conventional architectures [2-6]. 
Table 2 shows comparisons with other commonly 
used architectures [1], [7-8]. In addition, the 
proposed fast DCT/IDCT architecture is highly 
regular, scalable, and flexible. The DCT/IDCT 
processor designed by using the portable and 
reusable Verilog® is a reusable IP, which can be 
implemented in various processes; combined with 
efficient use of hardware resources for trade-offs of 
performance, area and power consumption; and 
therefore is much suited to the JPEG and MPEG-1/2 
applications. 
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Fig. 1 Data flow of computing the 2-point subband 
DCT 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Data flow of computing 4,

ˆ
LLC  and 2,LLC  based 

on subband decomposition 
 
 
 
 
 
 
 
 
 
Fig. 3 Data flow of computing 2,LHC  and 

4,
ˆ

LHS  based 
on subband decomposition. 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Data flow of computing 4,LC and 4,HC  using 
4-point subband DCT and DST 
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Table 2 Comparisons of the proposed architecture 
and other commonly used architectures 
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Fig. 5 Data flow of computing 8,

ˆ
LC  and 4,LC  based 

on subband decomposition 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Data flow of computing 8,

ˆ
HS  and 4,HC  based 

on subband decomposition 
 
 
 
 
 
 
 
Fig. 7 Data flow of computing 8C  using 8-point 
subband DCT and DST 
 
 
 
 
 
 
 
Fig. 8 Block diagram of the proposed (8-point) fast 
DCT algorithm based on subband decomposition 
 
 
 
 
 
 
Fig. 11 System block diagram of the proposed 
DCT/IDCT architecture  
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Fig.9 Data flow of the proposed fast DCT processor with 
pipelined linear-array architecture (Add._: addition-cycle, 
Mul._: multiplication-cycle) 
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高無寄生動態範圍及無乘法器之直接數位頻率合成器

High-SFDR and Multiplierless Direct Digital Frequency Synthesizer

中華大學 宋志雲

使用混合座標旋轉原理設計及製作直接數位頻率合成器。此一設計之架構為無
乘法器，包含小量之唯獨記憶體(16X4 -位元)以及疊流資料路徑，所產生無寄
生動態範圍超過84.4 dBc。系統晶片由台積電 1P6M CMOS製程設計，並且在
Xilinx陣列處理器上實體模擬。證明此一以混合座標旋轉原理為基礎之直接數
位頻率合成器適合由超大型積體電路製作，在硬體成本，功率消耗以及無寄生
動態範圍上都有具備優勢。
本合成器於高頻條件下,有更高之無寄生動態範圍，達到169.7dBc。比較現存的
直接數位頻率合成器，其有非常好的無寄生動態範圍。

This research presents a hybrid COordinate Rotation DIgital Computer
(CORDIC) algorithm for designs and implementations of the direct
digital frequency synthesizer (DDFS). The proposed multiplier-less
architecture with small ROM (16X4 -bit) and pipelined data path
provides a spurious free dynamic range (SFDR) of more than 84.4 dBc.A
SoC (System on Chip) has been designed by 1P6M CMOS, and then
emulated on the Xilinx FPGA. It is shown that the hybrid CORDIC-based
architecture is suitable for VLSI implementations of the DDFS in
terms of hardware cost, power consumption, and SFDR. In case of 16-
bit word length, the high-frequency SFDR is 169.7 dBc.As one can see,
the proposed DDFS is superior in terms of SFDR, hardware cost, and
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