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A significant increase in the use of CMOS current-
mode technology for the realization of analog
circuits has been observed. In most applications,
high accuracy result and large input dynamic range
are required. Therefore, how to design a large input
dynamic-range circuit becomes an important issue.

In this project, we will use a multi-segments
method to fit a function with a large input dynamic
range and high accuracy result. We use a divide-and-
conquer algorithm, according to the curvature of a
function, to construct a binary tree. In each
divided segment, we approximate the segmented
function using a second-order polynomial which 1is
suited for simple circuit and good for accurate
result.

We implement a current-mode comparator, using a
modified voltage-mode comparator based on a
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differential amplifier, to divide a function. The
segmented function is constructed by a pair of PMOS
and NMOS. We can properly use the scale of current-
mirror and add a current source to make a second-
order polynomial form of ax2 + bx + c.

In this project, we design and implement chips to
verify a large input dynamic range and a high
accuracy result. We also compare measurement results
with corresponding simulations.

CMOS current-mode circuit, input dynamic range,
current-mode comparator, differential amplifier,
segmented function, quadratic circuit, curve fitting.
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Abstract

A significant increase in the use of CMOS curremtde technology for the realization of analog
circuits has been observed. In most applicatioigh accuracy result and large input dynamic ranmge a
required. Therefore, how to design a large inpuiaghyic-range circuit becomes an important issue.

In this project, we will use a multi-segments hoet to fit a function with a large input dynamiage
and high accuracy result. We use a divide-and-cenalgorithm, according to the curvature of a fiorgt
to construct a binary tree. In each divided sedimea approximate the segmented function using a
second-order polynomial which is suited for simgleuit and good for accurate result.

We implement a current-mode comparator, usingodiiled voltage-mode comparator based on a
differential amplifier, to divide a function. Thegmented function is constructed by a pair of PMD&
NMOS. We can properly use the scale of currentoniand add a current source to make a second-order
polynomial form of aX + bx + c.

In this project, we design and implement chipsvéoify a large input dynamic range and a high
accuracy result. We also compare measurementsesitiit corresponding simulations.

Keywords: CMOS current-mode circuit, input dynamange, current-mode comparator, differential
amplifier, segmented function, quadratic circuitr\e fitting.
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Parameter Spec. Pre-simulation Post- simulatio

Power Supply(V) 1.8 1.8 1.8
Input range(pnA) +400 +400 +400

Input Voltage(V) 0.38 ~ 0.9 0.38 -~ 0.9 0.38 ~ 0.9

Output Voltage(V) <0.85 0.7 ~0.83 0.7 ~0.83

Power Dissipation(mW) <4.3 4.272 4.284

Oscillator Frequency(MHz) <308 308 297
Chip size (mrf) 0.33x0.33 0.32x0.32
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Multi-Point Correction Method in CMOS
Current-Mode Function Design

Kuo-Jen Lin
Department of Electronics Engineering
Chung Hua University
Hsinchu, Taiwan
Email: kuojenlin@chu.edu.tw

Abstract—We propose a multi-point correction method to
design a CMOS current-mode function with high input dynamic
range. The dynamic range is dependent on the number of
correcting circuits. Consider the accuracy, we can properly select
the turn-on current in the correcting circuit. The exponential
circuit for a design example, equipped with six correcting circuits,
has a linearity of 39.5dB for linearity error less than 0.3 dB and
has a large input dynamic range from —60uA to 1281 A.

I. INTRODUCTION

CMOS current-mode circuits are now attracting more atten-
tion in analog circuit design for their bandwidth, large dynamic
range, and simplified circuitry. Most of CMOS current-mode
circuits operate in the saturation region for high speed appli-
cations [1]-[10]. In the region, the square law characteristic
of a MOS can be applied to design different functions such as
exponential circuits [1]-[3], [5], geometric-mean circuits [4],
[6], squarer/divider circuits [4], [6], square-rooter/multiplier
circuits [6], [8], multiplier/divider circuits [4], [6], fuzzy logic
circuit [6], gamma corrector [9], and fraction power circuits
(31, [10].

For realizing some complex functions, several applications
[2], [31, [5], [7], [9], [10] also use the second-order Taylor’s
approximations to approach the functions. However, the input
dynamic range of the second-order Taylor’s approximations
are limited for required linearity and accuracy. Moreover,
CMOS current-mode circuits suffer from the inherent second-
order effects for only using the square-law approaches [4],
[8]-[10].

Therefore, how to improve the accuracy and increase the
input dynamic range are expected. In this paper, we propose
a multi-point correction method to improve the weakness of
designing a CMOS current-mode function.

II. CURRENT-MODE FUNCTION DESIGN

A. Quadratic Function

A quadratic circuit is shown in Fig. 1, which is constructed
by the back-to-back connection of M1 and M2 [1]. Assuming
that M1 and M2 are operating in the saturation region, then
the MOS square-law describes the M1 and M2 drain currents:

I = Kp(vgs - |th‘)2 = K,(Vpbp — Ve — ‘V;fp|)2 ey
IQ = Kn(Vgs - V;fn)Q = Kn(‘/c - V;tn)Q (2)

Chih-Jen Cheng and Jwu-E Chen
Department of Electrical Engineering
National Central University
Taoyuan, Taiwan
Email: 985401005 @cc.ncu.edu.tw

Fig. 1. Basic circuit.

where the transconductance parameters for M1 and M2 are:
Ky, = 1ppCosWi/Ly and K,, = $,CouWa/Ly respec-
tively. Since I, = I, — I;, when K = K, = K,,, we can

derive V_:

ch _ VDD - |‘/tp| + ‘/tn Ix (3)
’ 2K (Vop — [Viul = Vi)
Substituting (3) into (1) and (2) gives:
VDD_‘WP|_‘/;€n Iz )
L1 =K _
1= K( 2 2K (Vpp — [Vip| — W"))(4)
VDD_‘V;P|_V;,71 Iz N
2= K( 2 2K (Vpp — [Vip| — th))(s)
If we set Vp = %ﬂﬂ—"m’ then
1.
=KW= gve) ©)
L= KV2(1+ Iz 2 -
’ 0OV T UKV

We observe that I; and I are the quadratic functions of
I, which means the basic circuit is a current-mode quadratic
circuit. To guarantee that M1 and M2 operate in the saturation
region, the simple constrains are V., > V4, and Vpp — V, >
|Vip|. Therefore, from (3) we have I, > —4KVg and I, <
4K V.

B. Design Example

We design an exponential function for presentation. In
order to reduce the circuit complexity, we approximate an
exponential function using a second order Taylor polynomial.



‘l’ ImS Im7‘lﬁ
N O A
M

Current-mode exponential circuit.

M7
IV
8

Fig. 2.

The second order polynomial for evaluating exp(x) at z =0
is:

1
exp(z) ~1+z+ §x2 (8)
Assume that Iy = K VO2 and I, = Ipx. Equation (6) will be
T
h=1I(1-7)? ©)

and (7) will be

I = Ip(1+ %)2

To realize the exp(x) by using the current-mode circuit shown
in Fig. 2, we could set the possible output (I,,:) as

(10)

1
Ipexp(z) = In(1 + = 4+ ~2?)

11
5 (11)
We can rewrite it as
Inexp(x) = 8Io(1 + %)2 — 3, — 71 (12)
or
I x 11 7
seap(@) =I(1+ > +a) = ol =gl (13)
where Io((1+ %) + ) could be realized by
{1+ 7 +a) =261+ P~ h(1-7)*  (4)

which is the result of (1,7 — Ims) as Lz = 2L0(1 + %)2 and
Ims = Ip(1— %)2. Therefore, we could take mirrors from I,,,5
and I,,6 to I,,7 and I,,g with scale two and one, respectively.
If we take mirrors from I,,; and I,,» with scale %1 to Ing
and I,,19, respectively, then we can realize

11

ImlO - Img = glac (15)
because
11 T T 11
—(Lo(1+ =) —I(1—->)) = —1, 16
3 (Io(1+ 4) of 4) ) 3 (16)

If 1, is set to Z1o, and Lo, = 22 g(2) = I,g(x) ~ I,e”, then

(13) can be rewritten as
Iout :ImY _Im8+lm9 _ImIO _Iv (17)

which is achieved in Fig.2.
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Fig. 3. Correcting points and their corrections.

III. MULTI-POINT CORRECTION METHOD

In the previous circuit design, truncation errors are due
to the Taylor’s expansion; K-match errors are due to the
assumption of (3); nonlinear errors are due to second-order
effects such as channel length modulation, body effect, and
mobility degradation. For reducing the errors, we could take
some strategies as follows.

A. Sizing Strategy

We could tune the size of transistors which construct a
current-mode function circuit to fit a function as possible.
For example, we could size M3 and M4 in Fig.2 to make
the same value of two I,. We can also tune the M7 and
M8 to obtain a good result of (I,,7 — I,,s), which could
really match Io((1+ %)% +z). We also size the M9 and M10
to realize (15). Consequently, we can accurately realize the
Taylor’s approximation circuit for the function of %’exp(m).
However, the input dynamic range is also limited.

B. Multi-Point Correcting Circuit

In the design stage, simulation results could show the error
figures. We could arrange some correcting points to correct
errors. Figure 3 shows the error and correction examples. As
x > P;; shown in Fig.3, we could conduct P;; circuit to
increase the output current. As x > Pgo, we conduct Py
circuit to decrease the output current. As x < P4, we could
conduct P, circuit to decrease the output current. As x < Pjo,
we conduct P;o circuit to increase the output current. The P,
Py, Py, and Pjy circuits are shown in Fig. 4.

Consider accuracy and the input dynamic range, we need
carefully tune the scales of current-mirrors of the correcting
circuits. By using the multi-point correcting circuits, we can
re-design the circuit shown in Fig.2 into the circuit shown in
Fig.5. In Fig.5, three P;; circuits are used for I, > 0 and
two Py circuits and one P;; circuit are used for I, < 0. The
number of correcting circuits is dependent on the accuracy and
the input dynamic range.

IV. SIMULATION RESULTS

To verify the sizing strategy and multi-point correcting
circuit, we initiate a simulation by using the 0.35 ym CMOS
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TSMC technology. The supply voltage Vpp of the circuit in
Fig.5 is set to be 2.5V. If I, is from —120pA to 120uA,
then I should be set to be 40uA for comparing to the input
dynamic range from x = —3 to z = 3. Since the desired

R circuit — f

Multi-point correction circuit for design example.

middle value of the input current range is OuA, the width of
M5 and M6 is designed to be 3.5um and 1.3um, respectively
for making K, = K,, = K at I, = OpA. Consequently, due
to Iy = KV, Iy is tuned to be 41.1uA.

Figure 6 shows the I,,; simulation results. The multi-point
correction method nearly match the ideal exponential function
for I, from —60uA to 128 A. The linearity is about 39.5dB
observed from Fig. 7 for linearity error less than 0.3d B shown
in Fig. 8. The linearity of Taylor approximation is only 9dB.
From Fig.8, we can observe that the correction points are
located at I, = 18uA, I, = 57uA, I, = 93uA, I, = —30uA,
1, —53uA, and I, —57uA. When I, = 18uA,
the P;; circuit-a is on for I, = 18uA, which controls the
linearity error below 0.3 dB. Similarly, I, = 57uA and
I. = 93uA for P; circuit-b and P;; circuit-c, respectively.
When I, = —30uA and I, = —53uA, Py circuit-d and
P,o circuit-e are on for Iy 30puA and I, = BH3uA,
which control the linearity error less than -0.3 dB. When
I, = —57uA, the P;; circuit-f is on for Iy = 57pA, which
controls the linearity error less than -0.3 dB. Obviously, the
most efficient correction points for the exponential function
design are located in the side of I, > 17uA. This side
contributes the input range from 17pA to 128 A. On average,



TABLE I
EXPONENTIAL CIRCUIT COMPARISONS.

Liu et al. Kumngern et al. Kalenteridis et al. proposed circuit
[5] [11]

CMOS technology 0.5um 0.5um 90nm 0.35um

Supply voltage +2.5V 1.5V 1.2V 2.5V

Linearity 15 dB 16.3 dB 17 dB 39.5 dB

Input dynamic range  -0.5V to 0.85V  —11uA to 6.3puA -0.27V to 0.1V —60pA to 128 A

Linearity error 1.35% 1 dB 0.5 dB 0.3 dB

Bandwidth 111.2 MHz 265 MHz 288 MHz
50
120f 3

ideal

—6— correction method
—— Taylor approximation

(L/8)*10%exp(x) (LA)

Fig. 6. Simulation results for Ioy: = %Oexp(a:).

each correcting circuit, constructed by four transistors and one
current source, contributes 37 A. Conversely, the other side
only contributes the input range from —60uA to —28uA.
Each correcting circuit only contributes 11zA on average.
The comparisons of relative circuits are given in Table I. Our
proposed method and [7] adopt current-mode circuit, whereas
[5] and [11] design circuits with voltage-mode. In [7] and [11],
low voltage designs are with attraction. Our proposed circuit
outperforms in linearity, input dynamic range, linearity error,
and bandwidth.

V. CONCLUSION

In this paper, we propose a method to design a CMOS
current-mode function with high input dynamic range. The
sizing strategy contributes on correcting errors in the central
part of a function. The proposed correcting circuits are used to
extend the input dynamic range by decreasing errors from sev-
eral correcting points. In the design example, we successfully
implement an exponential function with a linearity of 39.5dB
for an input range from —60uA to 128 A.
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Abstract—We propose a multi-segment approximation method
to design a CMOS current-mode hyperbolic tangent sigmoid
function with high accuracy and wide input dynamic range. The
dynamic range is dependent on the number of segments and
the accuracy is related to the dividing point. From mathematical
results, we can observe the proposed method outperforms tradi-
tional methods. We implement the multi-segment approximation
circuit to realize the hyperbolic tangent sigmoid function. The
simulation results of the proposed circuit show a wide input
dynamic range from —256pA to 240uA for relative error less
than 3% and a high bandwidth of 138 MHz.

I. INTRODUCTION

In the era of increasingly sophisticated electronic technol-
ogy, to handle complicated applications often must rely on
more complicated functions to assist in the circuit design. The
hyperbolic tangent sigmoid function (tanh), which is used as
the transfer function of the artificial neural network (ANN) for
the input layer and the hidden layer. In the previous literature,
the tanh function is designed by using digital circuits [1],
[2], which occupy a large area and high power consumption.
In [3], authors implement the tanh function by using analog
circuits, which are composed of CMOS circuits operated in
weak inversion. However, the speed, input dynamic range, and
accuracy for these applications are limited. For improving the
speed and the total harmonic distortion (THD), Berg et al.
proposed a floating gate CMOS to implement the tanh function
[4]. CMOS current-mode circuit naturally becomes the most
favorable circuit. Most of CMOS current-mode circuits operate
in the saturation region for high speed applications [5]-[7].
In the region, the square law characteristic of a MOS can
be applied to design different functions such as exponential
circuits [6], [8], geometric-mean circuits [5], [7], and fuzzy
logic circuit [7]. Several applications [6], [8], [9] also use
the second-order Taylor’s approximations to approach the
functions. However, the input dynamic range of the second-
order Taylor’s approximations are also limited for accuracy
requirement.

In this paper, we propose a multi-segment approximation
circuit to realize a tanh function with the characteristics of
high speed, wider input dynamic range, and high accuracy. We

Chung Hua University
Hsinchu, Taiwan
Email: kuojenlin@chu.edu.tw

National Central University
Taoyuan, Taiwan
Email: jechen@ee.ncu.edu.tw

divide the function into four segments. Each segment, we use
the quadratic polynomial approach to reduce the complexity
of the circuit. The dividing point should be dependent on the
required accuracy. The number of segments should relate to
the input dynamic range.

II. MULTI-SEGMENT APPROXIMATION METHOD

The sigmoid function is non-linear, continuous, and differ-
entiable, allowing it to map complex relations and provide a
closed form when weights are updated during training of the
neural network [10]. The tanh(x) could be approximated by
Taylor’s series for the expansion point at z = 0:

3 225 1727

tanh(z) = x 3 + 1 315

In Eq. (1), the 23, 2% and even 27 are very difficult to

implement by using CMOS current-mode circuits. Therefore,

we divide the tanh(z) into four segments which could be

realized by second-order polynomials. We need to re-expand

the tanh(x) at different points a;, the middle value of segment
1, for using the Taylor’s series:

)

7

tanh;(z) ~ pix® + gz +r; 2)

where p; = —sech?(a;)tanh(a;), q¢; = sech?(a;) — 2a;p;,
and r; = tanh(a;) — a;sech?®(a;) + a?p;. When we select
a; = —1.68, aa = —0.56, a3 = 0.56, and a4 = 1.68,
we could approximate the tanh;(z) for different x intervals,
respectively:

tanhy () = 0.1212% + 0.537z — 0.373 (2 < —1.2) (3)

tanhy(x) =~ 0.3772%4+1.164240.026 (—1.2 <2 < 0) (4)

tanhs(z) =~ —0.3772% +1.164x—0.026 (0 <z < 1.2) (5)

tanhy(z) ~ —0.1212% + 0.5372 + 0.373  (z > 1.2) (6)

Mathematical simulation results are shown in Fig.1 for the
four segmented approaches. For relative error less than 3%,
the traditional Taylor’s methods of expansion to the terms of

2%, 25, and 27 have the input dynamic ranges of 1.3, 1.7, and
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Fig. 1. Mathematical simulation results for different approximations.

Fig. 2. Simple current-mode quadratic circuit.

2.0, respectively. The proposed multi-segment approximation
reveals the wide input dynamic range of 5 for relative error
less than 3%. Obviously, our proposed method outperforms
the traditional methods.

III. MULTI-SEGMENT APPROXIMATION CIRCUIT

The simulation result of Fig. 1 gives the good way to imple-
ment the tanh function by using four second-order polynomial
functions. We will illustrate how to realize and control the four
segments by using CMOS current-mode circuits.

A. Quadratic Circuit

We can generate a current-mode quadratic function by using
a simple circuit shown in Fig.2 [11]. From [12], we have two
current-mode functions:

VDD - |V;£p| - ‘/tn

L = K( >
I, 9
+ 7
K Vop — Vgl — Vi) @
I2 _ K(VDD_IV;fp|_VYtn
2
I,

2
_ 8
K (Vop = [Vl = Vi) ®

Mivp
Voutll
Mivn
Fig. 3. Segment controller.
and
Vop — |V Vin I,
ch _ DD | tp| + Wi _ (9)
2 2K(Vpp — [Vip| — Vin)

Obviously, I; and I, are the quadratic functions of I,,. As I,
increases, V. will decrease for observing Eq. (9). If we set
Vp = YoVl Vin ' hen

I
I = KVi(1+ —=5)?

1
VAT (10)
2 193 2
Iy = KVS(1 = 75) (11)
0

If we set Iy = KV02 and I, = 41yz. Equation (10) will be

I = Iy(1 +z)? (12)

and (11) will be

Iy = Ip(1 — x)? (13)

B. Segment Controller

We need to design a control circuit to switch the services
of Egs. (3), (4), (5), and (6). Therefore, we could design the
segment controller shown in Fig.3 based on a differential
amplifier. If I,, > I, we have V, < V;, which make V,,#1
near ground (GN D) and V,,;11 near VDD. Conversely, if
I, < I, we have the results of V41 near VDD and V,,;:11
near GN D. For controlling four segments (s1, s2, s3, and
s4), we need to construct a four-segments controller shown in
Fig. 4. The Vyu11, Voutro, and V,,;3 are controlled by 11, o,
and I3, respectively. A corresponding control table is shown
in Table L.

In Fig. 4, the s1, s2, s3, and s4 segment circuits realize the
Egs. (3), (4), (5), and (6), respectively. The drain current of
Mepl12 is the scale of In(1 + x)?, we could size Mep12 and
tune Iy to make Iptanh;(x) shown in Eq. (3). The s2 segment
circuit also follows the sizing and tuning method. The s3 and
s4 segment circuits will have Iptanhs(z) and Iptanhy(z).
The Iptanhs(x) is made by Aly(1+x)% — Bly(1—x)?, where
A and B are the scale of Mep32 and Men32, respectively,
which are determined by Eq. (5) and tuned by observing the
results of simulation. The similar work should apply on the
generation of Iptanhy(x).
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Fig. 4. Multi-segment approximation circuit for tanh.

IV. SIMULATION RESULTS

To verify the multi-segment approximation circuit, we ini-
tiate a simulation by using the 0.35 um CMOS TSMC tech-
nology. The supply voltage Vpp of the circuit in Fig.4 is set
to be 2.5V. When we set Iy = 30 A, we can observe I, from
—300u.A to 300 A for input dynamic range from x = —2.5 to
x = 2.5. Figure 5 shows the [,,,; simulation results. The multi-
segment approximation method nearly match the ideal tanh
function for I, from —256uA to 240uA with relative error
less than 3%. This range is mapped to x from —2.13 to 2.0.

The total input dynamic range is about 4.13. The measured
frequency response of I,,; is shown in Fig.6. The —3dB
bandwidth is 138 MHz. The THD measurements of I,,; are
shown in Fig. 7 for input DC current of 30 A and 130 A with
sinusoidal signals of amplitude I, from 2pA to 20uA at the
frequency of 100 KHz.

V. CONCLUSION

In this paper, we propose a multi-segment method to design
a CMOS current-mode hyperbolic tangent sigmoid function.



TABLE I

FOUR-SEGMENTS CONTROL TABLE.

Segment sl on s2 on s3 on s4 on
Iz <Ii3) (I3 < Ip <Iy2) (I42 < Iz <Iy1) (I > 1I11)
Vout11 low low low high
Vout12 high high high low
Vout21 low low high high
Vout22 high high low low
Vout31 low high high high
Vout32 high low low low
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Simulation results for current-mode tanh function.
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Fig. 6. Bandwidth measurement of the multi-segment approximation circuit.

The proposed multi-segment approximation circuit has been
verified with wide input dynamic range from —256puA to
240 A for relative error less than 3%, which is wider than
the Taylor’s method of expanding series to the term of 7.
Moreover, we measure —3dB bandwidth of 138 M Hz. The
THD measurements are less than 2.9% for large sinusoid
amplitude.

251 —a— 1 =30pA

—— IX=130pA

0 i i i i i i i i
2 4 6 8 10 12 14 16 18 20

Sinusoidal amplitude Ia (HA)

Fig. 7. THD measurement of the multi-segment approximation circuit.
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A CMOS Current-Mode S-Shape Correction Circuit with

Shape-Adjustable Control

Kuo-Jen LIN', Member, Chih-Jen CHENG *, Hsin-Cheng SU", and Jwu-E CHEN'', Nonmembers

SUMMARY A CMOS current-mode S-shape correction circuit with
shape-adjustable control is proposed for suiting different LCD panel’s char-
acteristics from different manufactures. The correction shape is divided
into three segments for easy curve-fitting using three lower order polyno-
mials. Each segment could be realized by a corresponding current-mode
circuit. The proposed circuit consists of several control points which are
designed for tuning the correction shape. The S-shape correction circuit
was fabricated using the 0.35 um TSMC CMOS technology. The measured
input dynamic range of the circuit is from 0 pA to 220 yA. The -3 dB
bandwidth of the circuit is up to 262 MHz in a high input current region.
key words: TFT-LCD, S-shape correction, current-mode circuit, quadratic
circuit

1. Introduction

In the past decade, with the rapid increase in mobile cam-
eras, mobile phones can now capture and store still images
or moving pictures as digital files. As a result, there is a
significant difference in the color appearance when captured
images are displayed on a mobile LCD. Therefore, real-time
color-matching between mobile camera and mobile LCD in
a mobile phone needs to be considered to ensure a better im-
age quality [1],[2]. The color-correct visualizations of the
LCD displays become more and more important.

The electro-optical transfer function of an LCD display
is called S-shape curve. Previous works [3]-[6] used sev-
eral resistors and operational amplifiers to construct differ-
ent grey scale’s voltage for correcting the S-shape. In [7],
authors proposed an analog compensating S-shape circuit
which is composed of BJTs. Comparing to [3]-[6], the tech-
nology in [7] is more suitable for mobile device due to the
low circuit complexity. In [8], a new model was developed
for the S-shaped electro-optical transfer function of the LCD
device. However, due to different LCD panel’s spectral and
gamma characteristics at different manufacturers [9], one
should make different corrections. In [10], a CMOS current-
mode S-shape correction circuit with four selectable curves
was proposed to meet for four corrections. The authors
adopted a polynomial form to represent an S-shape and gen-
erated different shapes by adjusting two variables. However,
the CMOS current-mode circuit, including a multiplier, a
square circuit, and an approximation fractional-power cir-
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cuit, has weaknesses in power, bandwidth, complexity, and
curvature.

In this paper, we also use the CMOS current-mode
circuits to design the S-shape correction function, because
the current-mode circuit has the advantages of higher band-
width, large dynamic range, and simplified circuitry. We di-
vide a pseudo S-shape correction curve into three segments.
Each segment has a corresponding circuit with adjustable
control points. By adjusting the control points, we can ob-
tain a suitable S-shape correction curve.

2. S-shape Correction Curves

A CRT display and an LCD display have electro-optical
transfer functions shown in Fig. 1, where the transfer func-
tion of an LCD is an S-shaped curve. As same as the
gamma correction curve shown in Fig. 1(a), Fig. 1(b) shows
an S-shape correction curve. Because different manufactur-
ers have different electro-optical characteristics, we can use
Fig. 2(a) to show some examples of different electro-optical
transfer functions. Similarly, Fig.2(b) shows some exam-
ples of S-shape correction curves.

correction curve

~

s-shape curve

~

Brightness
Brightness

)

gammacurve correctioncurve

Input voltage Input voltage

@ (b)
Fig.1 (a) The electro-optical transfer function of a CRT display and its

correction curve. (b) The electro-optical transfer function of an LCD dis-
play and its correction curve.

The curves shown in Fig.2(b) are not mathematical
functions, which are hard to describe by some polynomial
approximations. We observe that these curves rise quickly
on the high voltage part and low voltage part, but slowly on
the middle voltage part. Hence, we can certainly divide the
S-shape correction curves into three segments. Segment A,
B, and C are corresponding to the curve on high, low, and
middle voltage part, respectively. We observe that differ-
ent curves have different segment-curvatures and segment-
lengths. The curvature and length will be the important pa-
rameters for designing the circuit. Moreover, each segment

Copyright © 200x The Institute of Electronics, Information and Communication Engineers
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Fig.2 (a) Different electro-optical characteristics for different LCD
manufacturers. (b) Different S-shape correction curves for different LCD
manufacturers.

could be approximated by using lower order polynomial due
to low curvature.

3. Circuit Design and Simulations

We can generate a current-mode quadratic function by using
a simple circuit shown in Fig.3 [11]. From [10], we have

Fig.3  Simple current-mode quadratic circuit.

two current-mode functions:

VDD - |th| - Vm

Ini = K( B
Iin
- )? (1)
21<(VDD - |th| - th)
Vop = Vipl = Vin
Imz — K( DD |21p| 1
I;

2
2K Vo~ Vgl = Vi) @
Obviously, I,,; and I,, are the quadratic functions of I;,.
As cascading the simple quadratic circuits, we can obtain a
higher order polynomial function which should be used to
generate different curvatures by controlling the bending fac-
tors. In Fig. 4, we create a pseudo S-shape correction curve
to illustrate the characteristic of the correction S-shape. In
addition, we may take some operations such as bending, ro-
tation, condensation, and shifting on the curves in Fig. 4 to
realize an S-shape correction. The proposed circuits were
simulated by using the 0.35 um TSMC CMOS process and
HSPICE. The supply voltage is set to be 3.3 V. The input
current is from 0 pA to 220 pA.
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Fig.4 Three segmented curve with different curvatures.

3.1 Curve Bending Circuit

Figure 5 shows the curve generator of Segment A which
sketched in Fig.4. When [, is small, I,, is large from
Eq.(1). Because I,,, + 1, = 1,5 — 1,1, I,; will be small for
small ;. As I, + 1, is large enough, Mal is forced to op-
erate in cutoff. Therefore, we can use the bias current I, to
control the cutoff point. When I;, is large enough, 7,,, will
be small from Eq. (1), Mal will be on. If [;, increases, then
1,1 and I, will increase. Figure 6 shows the simulation re-
sults of /,,. As we tune the width of Ma3, we can change the
curvature of Segment A. Therefore, Fig. 5 shows the curve
bending circuit of Segment A. The size of Ma3 is the curve
bending factor.

Vout

Fig.5 Curve bending circuit of Segment A.

Figure 7 shows the curve generator of Segment B
which sketched in Fig.4. When I;, is small, we find the
Ly is large. Because I, — I, = Iy — If1, Iy, will be large,
the large amount of I,,;, — I, will drive Mb2 operating in sat-
uration. When I;, increases, I,,;, will decrease, I, and I,
will decrease. If [;, is large enough, then Mb2 will oper-
ate in cutoff. Figure 8 shows the simulation results of —/.
Therefore, when we tune the width of Mb3, we can change
the curvature of Segment B. Consequently, Fig. 7 shows the
curve bending circuit of Segment B. The size of Mb3 is the
curve bending factor.

3.2 Curve Rotating Circuit

Figure 9 shows the linear circuit. It is a simple current-



LIN et al.: A CMOS CURRENT-MODE S-SHAPE CORRECTION CIRCUIT WITH SHAPE-ADJUSTABLE CONTROL

180
1601 1
—e— Ma3=10um
140} —8—Ma3=20um 1
—4A—Ma3=30pum
1201 1
i 1001 1
_% 8of ]
601 1
40, 4
201 1
o8 a & & .
0 50 100 150 200 250

Iy (WA)
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Fig.8 Different curvatures for different widths of Mb3 at Segment B.

mirror. When the outputs of curve bending circuits are com-
bined with the current-mirror, the curves in Fig. 6 and Fig. 8
are rotated. The linear characteristics and their rotating re-
sults are shown in Fig. 10 and Fig. 11, respectively. Fig-
ure 12 is the combined circuit of the bending circuit and the
rotating circuit, where I, = Is, — I + I + I4.. The current
source I, is used in DC level bias. Different size of Mc2
represents different rotation angle. The size of Mc2 is the

rotating factor.

Fig.9  Curve rotating circuit constructed by simple current-mirrors.
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Fig.10  The linear characteristics of curve rotating circuit.
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Fig.11  Rotation results including Segment A and Segment B for differ-
ent widths of Mc3.

3.3 Curve Condensing Circuit

When we tune the width of Mi3 and Mi4 in Fig. 12, we
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could condense or expand the Segment C. Figure 13 shows
the curve condensing results. The size of Mi3 and Mi4 is
the condensing factor.

3.4 Level Shifting Circuit

In the current-mode circuit, we can easily make a level shift
circuit by adding a constant current source I, at the out-
put port shown in Fig. 12. Figure 14 shows the simulation
results of level shift.

100

801
60r
40f
. 20f
El
- 0 [
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- =20t
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_10d ‘ ‘ ‘ ‘
0 50 100 150 200 250
Iin w©A)
Fig.13  Curve condensing results for different widths of Mi3 and Mi4.

3.5 Adjustable S-Shape Correction Circuit

Finally, we design an adjustable S-shape correction circuit

A specified S-shape correction circuit.

120,

100f

80r
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40F
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" 20p
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_80 . . . .
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Fig.14  Level shifting results for different value of /.

shown in Fig. 15. We can tune a correction shape by giving a
proper VDD or GND at the control points which are named
with Cx for x from 1 to n.

4. Experimental Results

We trim the circuit in Fig. 15 into the circuit shown in Fig. 16
for fabricating. In Fig. 16, C1 is used for condensing the
Segment C shown in Fig.4 when C1 connects to VDD. C2
is designed to bend up the curve of Segment A when C2
connects to VDD. C3 and C4 are used to rotate the S-shape
counterclockwise when C3 and/or C4 connect to VDD. As
C5 connects to GND, the curve of Segment B will bend
down. As C6 connects to GND, we can shift down the out-
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Fig.15  An adjustable S-shape correction circuit with control points C1,C2,---,Cn

put current level. The adjustable S-shape correction circuit
was fabricated by using the 0.35um TSMC CMOS process.
The die photograph is shown in Fig. 17. The supply voltage
(VDD) is 3.3 V. Since the available instruments for the mea-
surement are in a voltage-mode, we use HSPICE to measure
the input voltage (V;,) for every input current in the design
stage. Then the input voltage can be applied to the inputs
of the fabricated chip. We measure and record the V,,,, for
the chip. Then we can obtain the I,,; by comparing the V,,,
in the HSPICE. Figure 18 shows the measured results. In
the experiment, we set the combination of (C1, C2, C3, C4,
C5,C6) =(0,1,0, 1,0, 0) as s1, and the combination of
(1,0, 1,0, 1, 1) as 52, where 1 and O represent VDD and
GND, respectively. We observe s1 is more condensed then
s2, and 52 is less bended than s1, which prove the control
functions of (C1, C2, C3, C4, C5, C6). Therefore, if we add
more control points, we can flexibly match different S-shape
from different manufactures by using bending, shifting, ro-
tating, and condensing. Furthermore, we could overcome
the errors due to process variations by adjusting some con-
trol points. For conventional methods like [3]-[6], which
use variable resistors to adjust the S-shape considering the
functions of bending, shifting, and rotating but not includ-
ing the condensing function. Moreover, the mass resistors
in conventional methods increase the chip size. The con-
ventional methods use DACs to express the electro-optical
transfer functions [3]-[6], which are not related to the input

Fig. 17

Die photograph.

dynamic range. The resolution of DAC represents the curve
resolution of S-shape correction. In analog circuit design,
however, it is important for S-shape correction with large in-
put dynamic range which will increase the tuning resolution
of S-shape correction curve. It is observed in Fig. 18, the
input dynamic range of [, is from 0 uA to 220 pA, which is
large in analog electro-optical transfer function for compar-
ing to the voltage-mode range from 1.35 Vto 1.75 Vin [7].

For observing the frequency responses, we add a small
signal 20sin2n fyt (denoted by I;, with an unit of A) to the
input of I;,. By changing fy from 1 KHz to 300 MHz, we
could measure and record the AC output denoted by 1y,,;.
As the amplitudes of /., and I, are denoted by A 7,,, and
Agin, respectively, we can calculate each transfer function of

20 log(%). If the maximum value of 20 log(%) is set to
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Fig.18 The measured results of the S-shape correction circuit. The
shape s1 is the combination of (C1, C2, C3, C4, C5, C6) = (1,0, 1, 0,
1, 1). The shape s2 is the combination of (C1, C2, C3, C4, C5,C6) = (0, 1,
0,1,0,0).
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A trimmed adjustable S-shape correction circuit for fabrication.

be 0 dB, then the bandwidth measurements are plotted in
Fig. 19, where the locations of -3 dB are at 97 MHz, 190
MHz, and 262 MHz for [;,, being 25 uA, 100 pA, and 175
HA, respectively. We observe that the -3 dB bandwidth is
related to the value of I;,. Even though a lower value of
I;, will decrease the bandwidth, the frequency responses in
lower current region are still good for -3 dB bandwidth near
100 MHz when comparing to [7] with -3dB bandwidth of 7
MHz and [12] with -3dB bandwidth of 0.8 MHz.

We utilize the measurement result of S-shape correc-
tion curve s2 shown in Fig. 18 and MATLAB programs to
demo an image correction. We map the output current range
from 5 pA to 195 pA to the grey levels from 0 to 255. Since
each output current responses an input current, we can es-
tablish a correction array, which records the mapping grey-
levels for the input current. If the input current range from
0 pA to 220 pA is divided into 256 segments, then the cor-
rection array can be index by 256 grey levels instead of the
input current. Consequently, a pixel grey level in the input
image can indicate an output grey level through the correc-
tion array. Therefore, the image with an S-shape characteris-
tic shown in Fig. 20(a) will be corrected to the image shown
in Fig. 20(b) by performing the mapping process. The cor-
rected image obviously compress the pixel intensity value
of the bright image to a darkness part from the observation
of the image histogram, which are generated by MATLAB
functions.
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The measured results of S-shape correction. (a) uncorrected im-

age and its histogram. (b) S-shape corrected image and its histogram.

5. Conclusion

In this paper, we have proposed a novel S-shape correction
curve generator based on a CMOS current-mode circuit. In
particular, due to different S-shape LCD manufactures, one
can adjust the shape form by switching the values of control
points. The circuit design and simulation results have been
presented step by step. We can observe that the shape form
generation is very flexible. Furthermore, we have measured
the test data and presented its performance from the fabri-
cated chip. In the future, we could expect the reliability of
generating a shape by setting more control points for com-
pensating process variations.
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Zhuo Chen, Zhensen Wu, Yong Zhang, Jingjing Xue, Wenhua Ye
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Xiang Su, Zhensen Wu, Jiaxuan Lin and Xiaobing Wang
CE0293 Decomposing the Non-Gaussian Surface in Sum of Gaussian Surfaces
Zhangxing Qi, Zhensen Wu, Ziwen Yu, Haiying Li
CE0294 Polarization Properties of Scattered Fields from a Chiral Sphere
Qingchao Shang, Zhensen Wu, Peng Zhao, Zhengjun Li
CEO311 Phase-only Beam Optimization for GaAs Optical Waveguide Phase Array
Yong Zhang
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Tairong Wang, Lu Bai, Zhensen Wu
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Liao
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Abstract—We propose a multi-segment approximation method
to design a CMOS current-mode hyperbolic tangent sigmoid
function with high accuracy and wide input dynamic range. The
dynamic range is dependent on the number of segments and
the accuracy is related to the dividing point. From mathematical
results, we can observe the proposed method outperforms tradi-
tional methods. We implement the multi-segment approximation
circuit to realize the hyperbolic tangent sigmoid function. The
simulation results of the proposed circuit show a wide input
dynamic range from —256pA to 240uA for relative error less
than 3% and a high bandwidth of 138 MHz.

I. INTRODUCTION

In the era of increasingly sophisticated electronic technol-
ogy, to handle complicated applications often must rely on
more complicated functions to assist in the circuit design. The
hyperbolic tangent sigmoid function (tanh), which is used as
the transfer function of the artificial neural network (ANN) for
the input layer and the hidden layer. In the previous literature,
the tanh function is designed by using digital circuits [1],
[2], which occupy a large area and high power consumption.
In [3], authors implement the tanh function by using analog
circuits, which are composed of CMOS circuits operated in
weak inversion. However, the speed, input dynamic range, and
accuracy for these applications are limited. For improving the
speed and the total harmonic distortion (THD), Berg et al.
proposed a floating gate CMOS to implement the tanh function
[4]. CMOS current-mode circuit naturally becomes the most
favorable circuit. Most of CMOS current-mode circuits operate
in the saturation region for high speed applications [5]-[7].
In the region, the square law characteristic of a MOS can
be applied to design different functions such as exponential
circuits [6], [8], geometric-mean circuits [5], [7], and fuzzy
logic circuit [7]. Several applications [6], [8], [9] also use
the second-order Taylor’s approximations to approach the
functions. However, the input dynamic range of the second-
order Taylor’s approximations are also limited for accuracy
requirement.

In this paper, we propose a multi-segment approximation
circuit to realize a tanh function with the characteristics of
high speed, wider input dynamic range, and high accuracy. We

Chung Hua University
Hsinchu, Taiwan
Email: kuojenlin@chu.edu.tw

National Central University
Taoyuan, Taiwan
Email: jechen@ee.ncu.edu.tw

divide the function into four segments. Each segment, we use
the quadratic polynomial approach to reduce the complexity
of the circuit. The dividing point should be dependent on the
required accuracy. The number of segments should relate to
the input dynamic range.

II. MULTI-SEGMENT APPROXIMATION METHOD

The sigmoid function is non-linear, continuous, and differ-
entiable, allowing it to map complex relations and provide a
closed form when weights are updated during training of the
neural network [10]. The tanh(x) could be approximated by
Taylor’s series for the expansion point at z = 0:

3 225 1727

tanh(z) = x 3 + 1 315

In Eq. (1), the 23, 2% and even 27 are very difficult to

implement by using CMOS current-mode circuits. Therefore,

we divide the tanh(z) into four segments which could be

realized by second-order polynomials. We need to re-expand

the tanh(x) at different points a;, the middle value of segment
1, for using the Taylor’s series:

)

7

tanh;(z) ~ pix® + gz +r; 2)

where p; = —sech?(a;)tanh(a;), q¢; = sech?(a;) — 2a;p;,
and r; = tanh(a;) — a;sech?®(a;) + a?p;. When we select
a; = —1.68, aa = —0.56, a3 = 0.56, and a4 = 1.68,
we could approximate the tanh;(z) for different x intervals,
respectively:

tanhy () = 0.1212% + 0.537z — 0.373 (2 < —1.2) (3)

tanhy(x) =~ 0.3772%4+1.164240.026 (—1.2 <2 < 0) (4)

tanhs(z) =~ —0.3772% +1.164x—0.026 (0 <z < 1.2) (5)

tanhy(z) ~ —0.1212% + 0.5372 + 0.373  (z > 1.2) (6)

Mathematical simulation results are shown in Fig.1 for the
four segmented approaches. For relative error less than 3%,
the traditional Taylor’s methods of expansion to the terms of

2%, 25, and 27 have the input dynamic ranges of 1.3, 1.7, and
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Fig. 1. Mathematical simulation results for different approximations.

Fig. 2. Simple current-mode quadratic circuit.

2.0, respectively. The proposed multi-segment approximation
reveals the wide input dynamic range of 5 for relative error
less than 3%. Obviously, our proposed method outperforms
the traditional methods.

III. MULTI-SEGMENT APPROXIMATION CIRCUIT

The simulation result of Fig. 1 gives the good way to imple-
ment the tanh function by using four second-order polynomial
functions. We will illustrate how to realize and control the four
segments by using CMOS current-mode circuits.

A. Quadratic Circuit

We can generate a current-mode quadratic function by using
a simple circuit shown in Fig.2 [11]. From [12], we have two
current-mode functions:

VDD - |V;£p| - ‘/tn

L = K( >
I, 9
+ 7
K Vop — Vgl — Vi) @
I2 _ K(VDD_IV;fp|_VYtn
2
I,

2
_ 8
K (Vop = [Vl = Vi) ®

Mivp
Voutll
Mivn
Fig. 3. Segment controller.
and
Vop — |V Vin I,
ch _ DD | tp| + Wi _ (9)
2 2K(Vpp — [Vip| — Vin)

Obviously, I; and I, are the quadratic functions of I,,. As I,
increases, V. will decrease for observing Eq. (9). If we set
Vp = YoVl Vin ' hen

I
I = KVi(1+ —=5)?

1
VAT (10)
2 193 2
Iy = KVS(1 = 75) (11)
0

If we set Iy = KV02 and I, = 41yz. Equation (10) will be

I = Iy(1 +z)? (12)

and (11) will be

Iy = Ip(1 — x)? (13)

B. Segment Controller

We need to design a control circuit to switch the services
of Egs. (3), (4), (5), and (6). Therefore, we could design the
segment controller shown in Fig.3 based on a differential
amplifier. If I,, > I, we have V, < V;, which make V,,#1
near ground (GN D) and V,,;11 near VDD. Conversely, if
I, < I, we have the results of V41 near VDD and V,,;:11
near GN D. For controlling four segments (s1, s2, s3, and
s4), we need to construct a four-segments controller shown in
Fig. 4. The Vyu11, Voutro, and V,,;3 are controlled by 11, o,
and I3, respectively. A corresponding control table is shown
in Table L.

In Fig. 4, the s1, s2, s3, and s4 segment circuits realize the
Egs. (3), (4), (5), and (6), respectively. The drain current of
Mepl12 is the scale of In(1 + x)?, we could size Mep12 and
tune Iy to make Iptanh;(x) shown in Eq. (3). The s2 segment
circuit also follows the sizing and tuning method. The s3 and
s4 segment circuits will have Iptanhs(z) and Iptanhy(z).
The Iptanhs(x) is made by Aly(1+x)% — Bly(1—x)?, where
A and B are the scale of Mep32 and Men32, respectively,
which are determined by Eq. (5) and tuned by observing the
results of simulation. The similar work should apply on the
generation of Iptanhy(x).
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Fig. 4. Multi-segment approximation circuit for tanh.

IV. SIMULATION RESULTS

To verify the multi-segment approximation circuit, we ini-
tiate a simulation by using the 0.35 um CMOS TSMC tech-
nology. The supply voltage Vpp of the circuit in Fig.4 is set
to be 2.5V. When we set Iy = 30 A, we can observe I, from
—300u.A to 300 A for input dynamic range from x = —2.5 to
x = 2.5. Figure 5 shows the [,,,; simulation results. The multi-
segment approximation method nearly match the ideal tanh
function for I, from —256uA to 240uA with relative error
less than 3%. This range is mapped to x from —2.13 to 2.0.

The total input dynamic range is about 4.13. The measured
frequency response of I,,; is shown in Fig.6. The —3dB
bandwidth is 138 MHz. The THD measurements of I,,; are
shown in Fig. 7 for input DC current of 30 A and 130 A with
sinusoidal signals of amplitude I, from 2pA to 20uA at the
frequency of 100 KHz.

V. CONCLUSION

In this paper, we propose a multi-segment method to design
a CMOS current-mode hyperbolic tangent sigmoid function.



TABLE I

FOUR-SEGMENTS CONTROL TABLE.

Segment sl on s2 on s3 on s4 on
Iz <Ii3) (I3 < Ip <Iy2) (I42 < Iz <Iy1) (I > 1I11)
Vout11 low low low high
Vout12 high high high low
Vout21 low low high high
Vout22 high high low low
Vout31 low high high high
Vout32 high low low low

40 T

20

lour WA)

ideal

—©— multi-segment method

-100 0 100 200 300
L GA)

Simulation results for current-mode tanh function.

Fig. 5.

out

dB (measured at | )

_o1 I I ;
10" 10° 10" 10° 10°
MHz

Fig. 6. Bandwidth measurement of the multi-segment approximation circuit.

The proposed multi-segment approximation circuit has been
verified with wide input dynamic range from —256puA to
240 A for relative error less than 3%, which is wider than
the Taylor’s method of expanding series to the term of 7.
Moreover, we measure —3dB bandwidth of 138 M Hz. The
THD measurements are less than 2.9% for large sinusoid
amplitude.

251 —a— 1 =30pA

—— IX=130pA

0 i i i i i i i i
2 4 6 8 10 12 14 16 18 20

Sinusoidal amplitude Ia (HA)

Fig. 7. THD measurement of the multi-segment approximation circuit.
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