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Edge Number, Decay Number and Betti Deficiency of Graphs
Ming-Chun Tsai

Abstract

Let the decay number of G, ¢(G) (resp. the Betti deficiency, £(G)) be the
minimum number of components (resp. odd size components) of a co-tree of a
connected graph G . In the past years, we study the maximum genus (or Betti
deficiency) and decay number of graphs with given diameter and connectivity. In the
study of this problem, we find that for n=2 or 3, if £ is the minimum number
such that ¢ >2p—k for each (p,q)—graph with connectivity »n and diameter #,
and / is the minimum number such that £(G)<¢(G)</-1 for each graph G
with connectivity n and diameter n, then k=17. On the other hand, Murty and
Skoviera find that k=5 and /=5 for n=2, respectively. Furthermore, we
defined three classes of extremal graphs in the above inequalities and we proved that
they are the same, with the exception of loops added to vertices. This intrigues us to
study the relation among the edge number, decay number and Betti deficiency of
graphs. In this project, we find some properties for the graph G with &£(G) ={(G). In
the further, the lower bound of edge number for the graph G with &£(G) =J(G) is

the direction of our research.
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1. Preliminary

Throughout this report, a graph may have multiple edges or loops, but a simple
graph contains neither multiple edges nor loops. For G connected, let 7 be a
spanning tree of G. Denote by &(G —T7) the number of components with an odd
number of edges of the co-tree G—T . Clearly, £(G) is the minimum value of
E(G-T) over all co-trees of G. The invariant £(G) was introduced in [8] to
calculate the maximum genus 1y, (G) of G by the formula
7, (G)=(B(G)-£&(G))/2, where B(G) is the Betti number. In [9], Skoviera
defined the decay number of G, ¢(G) to be the minimum number of
components of a co-tree of a connected graph G . It is clear that £(G) <¢(G)
for any graph. For G connected, Nebesky[6,7] discovered formulas to calculate

£(G) and ¢(G).
Theorem 1.1(Nebesky[6]) For any connected graph G,
E(G) = max{e(G — A)+b(G — A)—| 4| 1] A< E(G)},

where ¢(G—A) and b(G—A) denote the number of components and the
number of odd Betti number componentsin G- A.

Theorem 1.2(Nebesky [7]) For any connected graph G,
¢(G)=max{2c(G—-A)-|A|-1| A< E(G)}.

In [9], Skoviera gave a tight upper bound on &(G) and ¢(G) for
2-connected graph G of diameter 2.

Theorem 1.3(Skoviera[S]) If G isa 2-connected, diameter 2 graph, then
5(G)<¢(G)<4.

This theorem, together with Theorem 1.2, gives another proof of the following

theorem which was discovered by Murty[5].

Theorem 1.4(Murty[S]) If G isa 2-connected, diameter 2 (p,q)—graph,
then

qg=2p-5.

In the above theorems, we find that there are some relations among edge
number, decay number and maximum genus of graphs. Motivated by this results,

we study the edge number, decay number and maximum genus of graphs.

In [2], Fu, Tsai and Xuong defined three classes of extremal graphs in



Theorem 1.1 and 1.3 and proved that they are the same, with the exception of
loops added to vertices. For 3-connected, diameter 3 graphs, Tsai and Fu proved in
[11] the following theorem:s.

Theorem 1.5(Tsai and Fu[l11]) Let Q be the collection of all 3-connected
diameter 3 graphs. If k is the minimum number such that q>2p—k for
each (p,q)—graph GeQ, and | is the minimum number such that
c(H)<I-1 foreach graph H € Q, then k=1.

In [11], we also proved the following theorem.

Theorem 1.6(Tsai and Fu[6]) If G isa 3-connected, (p,q)—graph of

diameter 3, then
g=2p-11.

By Theorem 1.5 and 1.6, we have that k=/<11 and then
£(G)<¢(G) <10 for any 3-connected diameter 3 graph G .

2. The Main Results

Let G be a connected graph, if 7 is a spanning tree of G with
¢(G)=c(G-T), then T is called a mc-tree (minimum number of components

tree) of G . On the other hand, if 7 is a spanning tree of G with
E(G)=&(G—T),then T iscalled a splitting tree of G .

Theorem 2.1. For any mc-tree T of G, &(G-T)=c(G-T) if and only if
$(G)=<4(G)

Proof. Let &(G—-T)=c¢(G-T) for any mc-tree 7 of G . Assume that
£(G)< £ (G). There exists a splitting tree 7' of G which is not a mc-tree of
G . Then there exist e € E(T'),e; € E(G—T) such that T"=T"\{e} U {e}
with ¢(G-T")<c(G-T") and &(G-T")=&(G-T").1If T" isnot a me-tree of

G , then we can use the same process to find a mc-tree 7~ of G such that

c(G-T)<-<c(G-T")V<c(G-T") and EG-T)=---=EG-T"=&G-T")

§G)=4(G-T)=¢G-T)=c(G-T")=¢(G).
This is a contradiction.
Conversely, let£(G) =4 (G) . If T isamc-tree of G, then

o(G-T)=4(G)=¢(G)<&(G-T),
This implies that £(G-T)=c¢(G-T).
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Corollary 2.2. Let G admits a connected cotree, then ((G)=£E(G) if and only
if B(G) iseven.

In [4], Kundu proved that every 4-connected graph contains two edge disjoint

spanning tree, hence by Corollary 2.2 ,we have the following corollary.

Corollary 2.3. If G is a 4-connected graph, then {(G)=&(G) if and only if
P(G) is even.

Theorem 2.6. [f £(G)=((G), then G—T has no isolated vertex for any
splitting tree T of G.

Proof. Assume that £(G)=¢(G). Let T be a spanning tree of G such that
EG)=¢6(G-T)=c(G-T)=<¢(G) . Since G-T has at least one isolated
vertex,

$(G)=6(G-T)<c(G-T)=¢(G)

This is a contradiction. So we have the proof. [ ]

Corollary 2.7. If £(G)={(G), then G has no cut vertex.

As Figure 1, for the graph G

S(G)<5(G)+¢(Gy) +---+6(G,) <g(G)+6(Gy) +-+4(G,) +1=¢(G-T)
for any spanning tee 7. Thus &£(G) < {(G) for the graph G

L Gi 7—' G,
LG
Figure 1

3. Concluding Remark

In this report, we find some properties for the graph G with &(G) = £(G).
For the graph G with £(G) = (G), we can get its Betti number by finding the

decay number. In the further, the lower bound of edge number for the graph G
with &£(G)=¢(G) is the direction of our research.
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