Impact of hydrogen dilution on optical properties of intrinsic hydrogenated amorphous silicon films prepared by high density plasma chemical vapor deposition for solar cell applications Huai-Yi Chen, Yao-Jen Lee, Chien-Pin Chang, Horng-Show Koo, 賴瓊惠 Electronics Engineering Engineering chlai@chu.edu.tw

Abstract

P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg. The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.

Keyword: high density plasma chemical vapor deposition; hydrogenated amorphous silicon; thin film solar cell;