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計畫中文摘要 

 
完整且有系統的瞭解信用違約的傳染對於國家風險之評估是非常重要的。透

過2001年阿根廷信用危機為研究背景，探討拉丁美洲國家間是否產生高度的信用

違約相依性。其中阿根廷、巴西、墨西哥及委內瑞拉的信用違約交換日資料透過

CreditTrade 資料庫取得。研究方法乃採copula，以利拉丁美洲國家間信用相依性

結構之呈現。研究結果如下：（1）在阿根廷信用危機期間，拉丁美洲國家間的

信用違約相依性大為提高；（2）並且這些信用相依性結構可能屬非對稱性；（3）
國家的信用評等等級將影響/決定其受信用危機波及之程度。本研究亦討論相關

的發現對於政府政策制定、國際貨幣基金及銀行、基金經理人的意涵及應用。 

 

計畫英文摘要 

Using the eruption of Argentina debt crisis in 2001 as a natural experiment, we 
investigated the correlated default at the sovereign level for some Latin American 
countries. Daily closing market quotes for sovereign credit default swaps (CDS) of 
Argentina, Brazil, Mexico and Venezuela were obtained from CreditTrade database. 
Using copula approach, we observed increased dependences among sovereign CDS 
markets during the crisis period. Their dependence structures were found to be 
asymmetric. Moreover, the degree of credit contagion was related to the 
creditworthiness of the country. This study also discussed the implications of these 
findings for policymakers. 

 
Keywords: Credit contagion; Sovereign credit default swaps; Copula 
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1. Introduction 

In a world of increasing economic interdependencies the issue of credit contagion is of critical 

concern, particularly in the presence of economic distress. (Gelos and Wei , 2005; Bekaert, et al., 

2005; Elkinawy, 2005; Caporale, et al, 2005; Forbes, 2004; Han et al., 2003). Credit contagion 

refers to the credit deterioration of one country that indirectly leads to similar deterioration of 

other countries (Avellaneda and Wu, 2001). The propagation of this distress is accompanied by a 

sudden jump in sovereign spreads, reflecting the market re-assessment of all countries affected by 

the default.  

In order to characterize the comovements that may exist among sovereign bonds during a 

financial crisis, we collected data on sovereign CDS spread for some Latin American markets and 

used copula method to analyze the nature of credit contagion in that region. Embrechts et al. (1999) 

first discussed the dangers of using linear correlation in studying dependence. Copula method 

overcomes the problem that data is non-normal and non-linear, and provides robust measures of 

dependence structures. It contains all the information that researchers need to know about the 

dependence structures between variables. Furthermore, it offers the modeling flexibility due to 

the separation of marginals from dependence in its functional form. 

Recent literature has shown evidence of contagion in equity markets (Jondeau and Rockinger, 

2006; Bekaert et al., 2005; Longin and Solnik, 2001; Forbes and Rigobon, 2002). Relatively few 

studies focus on bond and credit derivative markets (Kan, 1998; Beattie, 2000; Copeland and 

Jones, 2001; Han et al., 2003; Sander and Kleimeier, 2003; Yang, 2005). Ene and Vlad (2002) 

pointed out that credit derivatives are largely used to protect against sub-grade debts, so they have 

gained popularity in the emerging market, which tend to be more volatile. Neftci et al. (2005) 

argues that in emerging markets financial crises are never caused by market risk. Instead, they are 

precipitated by events such as currency devaluation or sovereign bond default. Compared with the 

cases in equity, foreign exchange, and domestic money markets, comovement in bond markets, 

particularly for sovereign bonds, is strongest during times of distress. According to the findings of 

Kaminsky and Reinhart (2002), there is a great degree of international comovement among 

sovereign bond markets, which often share common lenders and foreign investors. This 

phenomenon appears to be increasing. As Mauro et al. (2002) have found, sovereign spreads across 

emerging markets commove significantly more than they did historically (1870-1913).  

In this context, it is important to understand how dependence between sovereign bond 

markets can be measured. A thorough understanding of correlated defaults at sovereign level is of 

critical importance. First, mutual fund managers require higher premiums to compensate their 

exposures to correlated sovereign risk. If there is a credit contagion, the sovereign bond spread 

which reflects the country risk premium may be affected. Kraay et al. (2004) take sovereign risk 

into account when modeling net foreign asset positions, and empirically show that modest amounts 

of sovereign risk can lead to substantial reductions in both bond price and flow of foreign 

investments. From the bank’s perspective, higher credit premiums are required in order to offset 

potential losses caused by correlated default.  
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In addition, the likelihood of a contagious sovereign debt crisis should influence the monetary 

policies. Because credit default swaps reflect the sovereign risk
1
 and because they are used by 

investors to assess a country’s economic and political fundamentals, the increased joint default 

probabilities in sovereign credit default swaps may imply a forthcoming financial crisis. We think 

that the comovement in sovereign credit default swaps can serve as an important indicator of 

financial crises and can be used to supplement other indicators, many based on fundamental 

variables, which have been criticized for poor predictive power (Berg and Patillo, 1999; Edison, 

2003). For example, IMF can use it to predict the possibility of a forthcoming contagious crisis.   

The rapid growth in Latin American bond market is frequently affected by financial crises 

(Bustillo and Velloso, 2000). Compared with Asia, Europe, and G-7countries, Latin America 

exhibits the most significant comovement in bond markets (Kaminsky and Reinhart, 2002). The 

2001 Argentina crisis provided a unique opportunity to design a natural study of the effect of 

correlated default among Latin American countries, since Argentina debts represented from 

one-fifth to one-quarter of tradable issues in the emerging bond markets at that time, and,  

according to IMF, a loss of confidence in Argentina can rapidly become contagious.  

In this study, we first test whether dependences in sovereign CDS market increase during the 

crisis period. We hypothesize that countries whose sovereign CDS spread exhibited a high degree 

of dependence with that of Argentina would be more vulnerable to contagion during crisis. A 

copula-based measure is used to specify the structure of dependence as well as the degree of 

dependence, which would not only take the non-linear property into account but would also allow a 

more comprehensive understanding of correlated default. Genius and Strazzera (2008), Turgutlu 

and Ucer (2007) and Hu (2006) all showed that the copula approach is especially beneficial under 

strong departures from normality assumption, which is the case for our sample data.  

Second, we examine whether the dependence structures during the crisis were asymmetric or 

not. Copula can efficiently capture the tail dependence arising from the extreme observations 

caused by asymmetry. Longin and Solnik (2001) and Bae, et. al. (2003) have emphasized the 

relationship between the tails of CDS spread distributions. However, the top- and bottom-tail, 

which are coexceedances in their models, were arbitrarily identified and separately estimated, 

thereby not able to provide consistent results.  

Finally, we explore whether the degree of credit dependence is related to the credit quality of 

the sovereign bonds. Higher ratings can attract more confident investors, so the magnitude of 

credit contagion in such countries may be reduced.  

Our results show that dependence in sovereign CDS spread is increased among sample 

countries during the debt crisis. The sudden default by Argentina accelerated the degree of 

comovement in Latin America. Before the crisis, there was no tail dependence between Argentine 

CDS spreads and those of other countries. However, we observed right tail dependences with 

Brazil and Venezuela during that crisis, indicating that once the contagion happened, impact on 

Brazil and Venezuela might have been more severe than it was on Mexico. The degree of this 

                                                 

1
 For example, as mentioned in Ene and Vlad (2002), two months before the actual news of the collapse of Enron 

was out, the default swaps market had already begun pricing it. 
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dependence is probably related to a sovereign’s creditworthiness. As a result, Mexico, whose 

credit rating was higher at that time, seemed immune to the impact of contagion from the 2001 

Argentina crisis.  

The rest of the paper is organized as follows. Section 2 describes the data and methodology. 

Empirical results are analyzed in Section 3. Finally Section 4 concludes.  

2. Data and methodology 

The trading of credit derivatives in Latin America accounts for 50-60% of the overall market 

shares for emerging countries (Ranciere, 2002). According to a 2005 survey
2
 by The Federal 

Reserve Bank of New York, sovereign single-name credit default swaps are the most liquid credit 

derivative instruments. A single-name sovereign CDS is a contract that provides protection against 

the default risk of a sovereign entity. The protection buyer makes periodic payments, i.e., the CDS 

spread, to the protection seller until the contract matures or a credit event occurs. In return, the 

protection seller must buy the bonds at its par when a credit event occurs before the CDS contract 

matures. 

We collected the daily closing mid market quotes in the year of 2001 for sovereign CDS with 

a two-year maturity from CreditTrade database. Due to liquidity consideration, we only consider 

those of Argentina, Brazil, Mexico and Venezuela. Sovereign CDS markets in other Latin 

American countries are much less liquid to provide reliable results. We chose only CDS with the 

same maturity to make it easier to compare across countries. Although these sovereign CDS are 

popular with investors and are relatively liquid, large withdrawals of deposits from Argentine 

banks in July 2001 caused the sales of CDS stopped temporarily until the government announced 

a “zero-deficit” plan, a measure that was endorsed by the IMF. We therefore divided our 2001 

sample period into: (1) the pre-crisis period, which covered the time period from March to June 

2001 and (2) the crisis period, which covered the period from August to October, 2001. After 

October no trading was being done of Argentine CDS, since very few protection sellers would sell 

in a market in which the default risk was so high. By mid-November, due to the severe losses of 

foreign exchange reserves, the IMF finally refused to lend any more financial support. The 

Argentine default was officially announced in December, 2001.  

Dealing with the possible misspecification of the dependence relationship
3
 for non-normal 

data, we used the copula technique to provide robust measures of dependence structures based on 

the joint distributions of variables. The structure rather than the degree of dependence gives a more 

comprehensive understanding for relationship between these variables. Moreover, copula can 

more readily capture the tail dependence arising from the asymmetric extreme observations.  

Recent researchers have been concerned over the methodology used to identify the effects of 

contagion (Forbes and Rigobon, 2002; Longin and Solnik, 2001). Longin and Solnik (2001) have 

                                                 

2
 See Dages et al. (2005), an overview of the emerging market credit derivatives market, Federal Reserve Bank 

of New York Working Paper. 

3
 Correlations calculated with equal weights assigned to small and large returns are not appropriate for evaluation 

of return dependence on which extreme values may have different impacts. 
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suggested that the Extreme Value Theory (EVT) be used to study the dependence structure of 

international equity markets. In this method, the tails of the distribution need to be identified first 

before the dependence structure of extreme observations can be estimated. Choosing an optimal 

threshold to identify the extreme values can be difficult
4
. The dependence function used to 

estimate the threshold may not be well defined. And another problem is the number of parameters 

in the dependence structures
5
. Typically, logistic function is used to make the estimations, though 

this solution is less than ideal. For example, Bae et al. (2003) develop a multinomial logistic 

regression model for Asian markets to measure the joint occurrences of large returns. The extreme 

returns in their model are arbitrarily defined as 5
th

 and 95
th

 quantiles of return distribution. 

However, they found it difficult to apply to other markets like in Latin America. 

In the present study, we fit the joint distribution of sovereign CDS spreads with various 

copulas in order to find the best dependence structure to describe their relationship. Specifically, 

three different copula types were examined: Gaussian, Student’s t, and Gumbel copula. Of these, 

the Student’s t copula was used to catch the fat-tailed phenomena, and the Gumbel copula, an 

Archimedean-form copula, to capture the right tail dependence. The Gaussian copula served as the 

benchmark. The functional forms of these copulas are described as follows: 

Bivariate Gaussian Copula 

 𝐶𝐺𝑎𝑢  𝑢, 𝑧 = Φ𝜌𝐺𝑎𝑢
 Φ−1 𝑢 ,Φ−1 𝑧     

                    =   
1 

2𝜋 1−𝜌𝐺𝑎𝑢
exp{

− x2−2ρGau xy +y2 

2 1−ρGau
2  

}
Φ−1 𝑧 

−∞

Φ−1 𝑢 

−∞
𝑑𝑥𝑑𝑦 (1) 

where 𝑢, 𝑧  are standard uniform variables,  𝜌𝐺𝑎𝑢  is the correlation coefficient and Φ−1 𝑢  

denotes the inverse of the  cumulative normal distribution function.  

Bivariate Student’s t Copula 

 𝐶𝑡 𝑢, 𝑧 = 𝑇𝜌𝑡 ,𝑣 𝑡
−1 𝑢 , 𝑡−1 𝑧     

                       =   
1 

2𝜋 1−𝜌𝑡
2
 1 +

𝑥2+𝑦2−2𝜌𝑡𝑥𝑦

𝑣 1−𝜌𝑡
2 

 
−

𝑣+2

2𝑡−1 𝑧 

−∞

𝑡−1 𝑢 

−∞
 (2) 

where 𝜌𝑡  is the correlation coefficient, 𝑣 is the degrees of freedom and 𝑡−1 𝑢  denotes the 

inverse of the cumulative student’s t distribution function. 

Gumbel Copula 

 𝐶𝜃
𝐺𝑢𝑚  𝑢, 𝑧 = 𝜑−1 𝜑 𝑢 + 𝜑(𝑧) = exp  −  − 𝑙𝑛 𝑢 𝜃 +  − 𝑙𝑛 𝑧 𝜃  

1/𝜃
  (3) 

                                                 

4
 Choosing a high value of threshold leads to few observations of return exceedances, and implies inefficient 

parameter estimates with large standard errors. On the other hand, choosing a low value of threshold leads to many 

observations of return exceedances, though it induces biased parameter estimates. Hence, Longin and Solnik (2001) 

applied Monte Carlo simulation to determine the optimal threshold values. 

5
 For bivariate model in the EVT, there are typically seven parameters to be estimated: two tail probabilities, two 

dispersion parameters, two tail indexes, and the dependence parameter.  
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where 𝜃 ∈ [1, ∞)  measures the degree of dependence between u and z. 𝜃 = 1 implies an 

independent relationship while 𝜃 → ∞ represents perfect dependence. 

Tail dependence refers to the relationship between random variables resulting from extreme 

observations from the upper and lower quadrants of the joint distribution function. Much evidence 

indicates that high level of dependence tends to happen during the period of feverish financial 

market. We expect similar phenomenon for correlated defaults in the sovereign CDS markets.  

To measure this dependence, suppose (𝑋, 𝑌) is a bivariate vector of continuous random 

variables with marginals 𝐹𝑋  and 𝐹𝑌. The coefficient of upper tail dependence, 𝜆𝑈 , is defined as: 

 𝜆𝑈 = lim𝑢→1 Pr[𝑌 > 𝐹𝑌
−1(𝑢)|𝑋 > 𝐹𝑋

−1(𝑢)], (4) 

provided that the limit 𝜆𝑈 ∈ [0,1] exists, and the coefficient of lower tail dependence, 𝜆𝐿, is: 

 𝜆𝐿 = lim𝑢→0 Pr[𝑌 ≤ 𝐹𝑌
−1(𝑢)|𝑋 ≤ 𝐹𝑋

−1(𝑢)], (5) 

provided that the limit 𝜆𝐿 ∈ [0,1] exists. The coefficient of tail dependence can be calculated for 

each tail of the distribution specified by a certain copula function. We summarize below the 

relevant propositions that can be used to evaluate how the correlated defaults among Latin 

American countries are related to the Argentina crisis. 

Proposition 1: For bivariate Gaussian copula with linear correlation,𝜌𝐺𝑎𝑢 , as described in equation 

(1), the coefficient of tail dependence is null. 

Proposition 2: For continuously distributed random variables with t copula 𝑇𝜌𝑡 ,𝑣 as described in 

equation (2), the coefficient of tail dependence is given by 

 𝜆𝑈 = 𝜆𝐿 = 𝜆𝑡 = 2 − 2𝑡𝑣+1( 𝑣 + 1 
1−𝜌𝑡

1+𝜌𝑡
) (6) 

Proposition 3: For continuously distributed random variables with Gumbel copula 𝐶𝜃
𝐺𝑢𝑚  as 

described in equation (3), the coefficient of upper tail dependence is given by
6
  

 𝜆𝑈 = 2 − 2
1

𝜃  (7) 

To estimate and calibrate the parameters in the copula models, we apply Canonical Maximum 

Likelihood (CML) estimation taking into account the computational efficiency and the 

non-normality in our data set. Using empirical transformation, these parameters can be estimated 

without specifying the marginals. The sample data can be transformed into uniform variables that 

can then be used to estimate copula parameters.  

The CML method is implemented in two stages. First, we transform the sample data into 

uniform variables using empirical marginal transformation: 

 𝑢 𝑖𝑡 = 𝐹  𝑖 𝑥𝑖𝑡 =
1

𝑇+1
 𝐼 𝑥𝑖𝑗 < 𝑥𝑖𝑡              ∀t, i=1,………,n𝑇

𝑗=1  (8) 

where I{.} is an indicator function and 𝑥𝑖𝑗  is the CDS spread for the sovereign bond i at time j. 

The CDS spreads can be transformed into uniform variables, {𝑢 𝑖𝑡} , and then empirical 

                                                 

6
 Gumbel copula has upper tail dependence only.  
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marginals,  𝐹  𝑖 𝑥𝑖𝑡  , can be obtained. Second, we estimate the copula parameter,  𝛿  , by 

maximizing a pseudo log-likelihood function. 

 𝛿 = arg max  ln 𝑐 𝐹 1 𝑥1𝑡 ,𝐹 2 𝑥2𝑡 ,……𝐹 𝑛 𝑥𝑛𝑡  ; δ T
t=1  (9) 

3. Empirical results 

For each of the sample countries, we first summarized their sovereign CDS spreads for the 

periods before and during the Argentina crisis. As can be seen in the descriptive statistics shown in 

Table 1, before the crisis, the highest CDS spread was for Argentina. During the crisis, all 

sovereign CDS spreads increased simultaneously while Argentina’s remained the highest. We also 

calculated the ratios of changes in sovereign CDS spreads over the crisis period for sample 

countries. Argentina was found to have the greatest change, followed by Brazil. Mexico changed 

the least. Hence, markets observed higher sovereign risk during the crisis and requested more 

credit spreads, presumably because the number of protection buyers exceeded the number of 

protection sellers in the CDS market. A simultaneous increase in all sovereign CDS spreads 

indicates the higher possibility of joint defaults. In particular, the large increase in Brazil and 

small increase in Mexico reflect the relationships described in dependence structures we found, 

which will be discussed below. 

[Insert Table 1here] 

To study the relationship of CDS spreads between Argentina and other sovereigns, their 

scatter diagrams were plotted in Figure 1. We observed two relevant findings. First, before the 

crisis period, the relationship of spreads between Argentina and Brazil was almost linear, while no 

clear relationship was seen between Argentina and Mexico or Venezuela. Second, we found that 

during the crisis period there was tail dependence for CDS spreads, no matter which country was 

paired with Argentina. The clusters appeared in both right and left tails. This finding is consistent 

with results from the non-linear contagious models recently developed by Longin and Solnik 

(2001), Bae et. al. (2003), Dungey and Tambakis (2003). 

[Insert Figure 1here] 

We performed Jarque-Bera test to access the normality of distribution of the CDS spread 

(Table 1). Our samples were found to have non-normal distributions, consistent with the result of 

previous studies. Because we observed both non-normal and non-linear properties, we calculated 

Pearson’s rho
7
, Kendall’s tau and Spearman’s rho to further analyze the biases (Table 2). Pearson’s 

rho, compared with the other two measures, seems to overstate all the correlations during the crisis 

period, indicating possible misspecifications of the dependence structures. Meanwhile, the 

association between Argentine CDS spreads and those of any other country was higher during the 

                                                 

7
 We understand that Pearson correlation indicates the strength of a linear relationship between two variables. Its 

value alone is not sufficient to evaluate the relationship in our dataset. We use it to enquire whether correlations are 

under- or overstated, if data are nonlinear. Similarly, the nonparametric rank correlations, Kendall and Spearman 

measures, are less sensitive to the observations in the tails. We calculate all these measures as preliminary tests of 

correlations and mainly for the purpose of comparison. It strengthens the need for copula analysis. 
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crisis than before it, supporting Forbes and Rigobon’s (2002) argument that contagion exists if 

cross-market comovement increases significantly after the shock. 

[Insert Table 2 here] 

Because of the non-normal property of our data, we used the semi-parametric Canonical 

Maximum Likelihood (CML) procedure to estimate and calibrate the parameters in copula models. 

Both before and during the crisis, all three models had positive copula parameters (Panel A Table 

3), suggesting that sovereign CDS spreads of Argentina positively comoved with those of other 

countries in Latin America. Furthermore, the degree of this association increased more during the 

crisis period than before. For example, 𝜌𝐺𝑎𝑢 of the Gaussian copula increased from 0.579 to 

0.729 for Argentina with Brazil, from 0.174 to 0.701 with Mexico and from 0.293 to 0.772 with 

Venezuela. Results were similar when the Student’s t or the Gumbel copula was used. 

[Insert Table 3 here] 

Financial integration and mutual trading among Latin American countries may be the reason 

for the strong comovement during the crisis. Most of the effects of the Argentine debt crisis were 

transmitted through financial channels, because these countries have common lenders and foreign 

investors (Kaminsky and Reinhart, 2002). The default of Argentine sovereign bond may have 

caused correlated defaults of other sovereign bonds. Once the crisis occurred in Argentina, the 

investors started adjusting their holdings in other related countries to respond to changes in 

liquidity and asset quality.  

As a result, sovereign CDS spreads can serve as one of the leading indicators for 

externally-induced financial crisis. Therefore, this spread can be used by policymakers to prepare 

their countries for imminent turmoil and mitigate it. The IMF need consider the impact of credit 

contagion when assessing the effectiveness of interventions for a particular country. It can also be 

expected that banks and fund managers will ask higher credit premiums to compensate for 

potential correlated default.   

Moreover, regardless of the sample periods and copula functions, estimated parameters of 

dependence for Brazil are larger than those for Mexico or Venezuela, meaning that Brazil would 

be more vulnerable to credit contagion from Argentina. During the crisis period, the Brazilian 

currency devaluation against the dollar accelerated. The Brazilian real fell 2.3 percent in June, 5.5 

percent in July and 10 percent in late September. Although there were five increases of interest rate 

that occurred during 2001, the Brazilian real fell by 23 percent. The big drop in exchange rate 

devastated Brazil’s dollar-denominated debt. Hence, Brazil’s vulnerability during the financial 

crisis was very similar to that of Argentina.  

In contrast, Mexico was better able to maintain its overall economic growth since it is related 

to the United States more through the North American Free Trade Agreement than to other 

countries in Latin America. This link has made its economy the brightest in the Latin American 

region. Our results showed that Mexico stayed on the sideline of turbulence. Regardless of the 

copula functions used, the estimated parameter of dependence appeared to be the smallest for 

Mexico during the crisis period.  

Moody’s rating of Mexico’s sovereign credit was upgraded to Baa3 in early 2000. Since that 

time, comovements between Mexico’s sovereign bonds and those of other Latin American 
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countries were less correlated (Rigobon, 2002). Actually, investors could have expanded their 

Mexican holdings for portfolio reasons
8
 despite the shocks in Argentina. Due to this relative 

immunity to the contagion from Argentine crisis,
 
three rating agencies rated Mexico’s long-term 

foreign currency sovereign debt as investment grade in 2002
9
.   

The choice of the best fit of copula function is based on the value of Akaike information 

criterion (AIC)
10

. From the maximized log-likelihood values (lnL) in Panel A of Table 3, we 

compute the AIC for each copula, and then rank the copula models accordingly. Panel B of Table 3 

shows the AIC values for three chosen copulas. For the sample period before the crisis, we found 

that the Gaussian copula showed the lowest AIC value for each pair of dependences. They were 

-42.217, -9.877 and -7.226, respectively, indicating that the Gaussian copula was the best fitting 

model before the crisis, and that there was no tail dependence between CDS spreads of Argentina 

and those of other countries. During the crisis period, however, the Gumbel copula represented the 

lowest AIC value for Brazil and Venezuela, but not for Mexico. The consistent results can also be 

found using Schwartz Bayesian Criteria (SBC). The evidence suggests that the right tail 

dependence is presented for Brazil and Venezuela. The sovereign CDS of Brazil and Venezuela 

were found to be significantly dependent on those of Argentina with such extreme increases in 

Argentina’s sovereign spread.  

In contrast, for Mexico where the Gaussian was still the best model, there was no tail 

dependence with Argentina, even during that crisis. The right tail dependences we observed for 

Brazil and Venezuela indicate that once contagion happens, these two countries will be more 

severely affected than Mexico. The impact will be underestimated if only Pearson correlation or 

OLS regression are used. The insignificant spillover from Argentina to Venezuela found in 

Chan-Lau (2003) may be caused by such conventional methods.  

To further examine the dependence in the tails, we compared the coefficients of tail 

dependence in the Student’s t and the Gumbel copulas computed based on proposition 2 and 3. 

Since the t distribution was symmetric, its estimated coefficients capture the tail dependence on 

both sides. The coefficients from the Gumbel copula, on the other hand, represent only the upper 

tail dependence. As shown in Table 4, tail dependences were not significant before the crisis. 

However, during the crisis, we found remarkable Gumbel coefficients of 0.629 and 0.541 for 

Brazil and Venezuela, respectively. We conjecture that sovereign bond investors perceive these 

countries as a group when crisis occurs.  

[Insert Table 4 here] 

                                                 

8
 Investment-grade rating promotes holdings from investors such as mutual funds or pension funds with restricted 

investment policies. 

9
 Fitch first upgraded Mexican sovereign bond from double B plus to triple B minus in January 2002, while Moody’s 

upgraded it from Baa3 to Baa2 in February 2002. S&P reacted promptly the next day after Moody’s announcement. 

10𝐴𝐼𝐶 = −2𝐿 𝜃  ; 𝑥 + 2𝑞. where q is the number of parameters needed to be estimated in each specific model. Both 

the Gaussian and the Gumbel copulas need to estimate one parameter, i.e., 𝜌𝐺𝑎𝑢 and 𝜃, respectively, while the 

Student’s t copula has two correlation parameters 𝜌𝑡  and degree of freedom 𝒗. 
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Given the estimated copula parameters, the surface of the copula densities can be expressed by 

equation (1), (2) and (3). Comparing the densities for Argentina and Brazil before the crisis 

(Figure 2) and during the crisis (Figure 3), we could clearly observe their joint probability 

distributions and dependence structures. For all copula densities, there were no tail dependences 

before the crisis. However, remarkable spikes in the right tails for all copulas were observed during 

the crisis. As can be seen in Figure 4, where the Gumbel copula for each pair of countries is 

plotted, there was notable right tail dependence for Brazil, whereas, as we have expected, none for 

Mexico. 

[Insert Figure 2 here] 

[Insert Figure 3 here] 

[Insert Figure 4 here] 

4. Conclusion 

Research on sovereign CDS has important implications for a better understanding of 

sovereign risk behavior. Because default expectation can be extracted from CDS spreads, their 

dependence structures help us specify how sovereign risks are correlated. Increasing integration of 

international markets makes credit contagion more common than before, especially in times of 

financial crisis. In this study, we measured the dependence structure of sovereign defaults using 

the copula method, a method able to consider the non-linear relationship and evaluate the 

different impacts from extreme observations. Our results should be useful for policymakers, 

foreign investors as well as the international bankers. 

Using daily closing quotes of sovereign CDS of Argentina, Brazil, Mexico and Venezuela for 

the periods before and during the crisis, we found that dependences between sovereign CDS 

spreads increased significantly during the crisis period. Before the crisis, there was no tail 

dependence between Argentina and other countries, making the Gaussian copula the best fitting 

model for that period. However, during the crisis, the Gumbel copula performs best for Brazil and 

Venezuela, but not for Mexico, reflecting the different credit risk relationship. The right tail 

dependence we observed indicated Brazil and Venezuela was more seriously impacted by the 

Argentina crisis than Mexico once contagion started. This effect would have been underestimated 

had it been specified by the linear correlation. The difference in credit dependence among these 

countries is related to sovereign’s creditworthiness. The higher the credit ranking the country has, 

the milder the contagion effect it suffers.  

Understanding the correlated default at sovereign level is important in pricing sovereign bond, 

designing sovereign risk derivatives, managing country risk, analyzing portfolio allocations, and 

supervising financial markets. Besides the nature of correlation, how is the credit relationship 

affected? What are the factors determining this dependence structure? How long does this 

contagious effect take place? These are interesting issues left to be explored in future studies. 
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Table 1. Summary statistics of CDS spreads before and during the crisis 

 

 Argentina Brazil Mexico Venezuela 

 
Pre-crisis 

period 

Crisis 

period 

Ratio of 

change 

Pre-crisis 

period 

Crisis 

period 

Ratio of 

change 

Pre-crisis 

period 

Crisis 

period 

Ratio of 

change 

Pre-crisis 

period 

Crisis 

period 

Ratio of 

change 

Min 470 1288 1.740  140 655 3.679  80.5 142.5 0.770  557.5 612.5 0.099  

Q1
a
 1050 1999 0.904  438.8 691.3 0.575  162.5 155 -0.046  572.5 710.6 0.241  

Median 1121 1999 0.783  512.5 751.9 0.467  175 158.8 -0.093  590 715 0.212  

Mean 1150 2548 1.216  479.3 812.7 0.696  164.5 178.6 0.086  587.8 734.4 0.249  

Q3
b
 1263 3325 1.633  572.5 917.5 0.603  175 200 0.143  595 813.4 0.367  

Max 2025 3775 0.864  720 1046 0.453  175 246.3 0.407  662.5 815 0.230  

p-valuec 0 0.02  0 0.01  0 0.005  0.004 0.596  

                                                 

a
 Q1 represents the first and the third quantiles of CDS spread distribution 

b
 Q3 represents the first and the third quantiles of CDS spread distribution 

c
 p-value is for normality test in CDS spread distribution of each country. 
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Table 2. Measures of association between pair countries before and during the 

crisis 

 

   Pre-crisis Period   Crisis Period 

Paired  Argentina v.s.  Argentina v.s. 

countries  Brazil Mexico Venezuela  Brazil Mexico Venezuela 

Pearson ρa
  0.556 0.205 0.303  0.883 0.900 0.889 

Kendall τb
  0.443 0.267 0.188  0.671 0.570 0.723 

Spearman ρc
  0.587 0.336 0.267  0.800 0.758 0.840 

                                                 

a
 Pearson’s rho is a  measure of linear dependence 

b
 𝜏 = 4  𝐶 𝑢1, 𝑢2 𝑑𝐼2 𝐶 𝑢1, 𝑢2 − 1 

c
 𝜌 = 12  𝑢1𝑢2𝐼2 𝑑𝐶 𝑢1, 𝑢2 − 3 
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Table 3. Parameter estimations and goodness-of-fit test for copula functions 

 

 Pre-Crisis Period  Crisis Period 

Paired Argentina v.s.  Argentina v.s. 

countries Brazil Mexico Venezuela  Brazil Mexico Venezuela 

Panel A: Copula estimation      

Gaussian        

𝜌𝐺𝑎𝑢
a
 

0.579  

(0.0000) 

0.174 

(0.0005)  

0.293 

(0.0024) 
 

0.729 

(0.0000)  

0.701 

(0.0101)  

0.772 

(0.0023)  

ln 𝐿 22.108  5.939  4.613   28.292  23.767  36.544  

Student's t        

𝜌𝑡
b
 

0.443 

(0.0005)  

0.267 

(0.0023)  

0.188 

(0.0471)  
 

0.671 

(0.0000)  

0.570 

(0.0041)  

0.723 

(0.0014)  

𝑣 114 114 114  5 86 86 

ln 𝐿 19.818  3.952  3.845   28.689  21.278  35.645  

Gumbel        

𝜃c
 

1.427 

(0.0002)  

1.054 

(0.099)  

1.070 

(0.654)  
 

2.198 

(0.0000)  

1.615 

(0.0052) 

1.834 

(0.0013)  

ln 𝐿 14.483  3.991  0.501   38.067  13.661  37.517  

Panel B: Goodness-of-fit test (AIC)
d
     

Gaussian -42.217  -9.877  -7.226   -54.584  -45.535  -71.088  

Student's t -35.637  -3.905  -3.691   -53.379  -38.556  -67.290  

Gumbel -26.967  -5.982  0.998   -74.134  -25.321  -73.034  

Panel C: Goodness-of-fit test (SBC)
e
 

Gaussian -39.479 -7.141 -4.489  -52.129 -43.079 -68.633 

Student's t -34.899 -3.167 -2.953  -52.923 -38.101 -66.835 

Gumbel -24.229 -3.245 3.734  -71.679 -22.867 -70.579 

                                                 

a
  𝜌𝐺𝑎𝑢  is the correlation parameter of Gaussian copula.  

b
  𝜌𝑡  is the correlation parameter of Student’s t copula. 𝑣is the degree of freedom of the Student’s t 

copula.  

c
 𝜃 is the dependence parameter of Gumbel copula. 

d
 The choice of the best fit in Panel B is based on the value of Akaike information criterion (AIC), 

𝐴𝐼𝐶 = −2𝐿 𝜃  ; 𝑥 + 2𝑞, where q is the number of parameters to be estimated in each specific model. 

e
 The choice of the best fit in Panel C is based on the value of Schwartz Bayesian criterion (SBC), 

𝑆𝐵𝐶 = −2𝐿 𝜃  ; 𝑥 + 𝑞ln𝑇, where q is the number of parameters to be estimated in each specific model 

and T is the sample size. 
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Table 4. Coefficients of tail dependence 

 

 Pre-Crisis Period   Crisis Period 

Paired Argentina v.s.  Argentina v.s. 

countries Brazil Mexico Venezuela  Brazil Mexico Venezuela 

Student's t 𝜆𝑡
a
 0.000 0.000 0.000  0.319 0.000 0.000 

Gumbel 𝜆𝑈
b
 0.375 0.070 0.089  0.629 0.464 0.541 

 

                                                 

a
 𝜆𝑡 = 2 − 2𝑡𝑣+1( 𝑣 + 1 

1−𝜌𝑡

1+𝜌𝑡
) 

b𝜆𝑈 = 2 − 2
1

𝜃 , where 𝜃 is its dependence parameter. If 𝜆𝑈 > 0 , Gumbel copula has upper tail 

dependence 



 

 

Figure 1. Scatter plots for pairs of sovereign CDS spreads 

(A). Pre-Crisis period (B). Crisis period 

 

 

 
Fig. 1(A) shows the relationship of CDS spreads between Argentina and other sovereigns during 

pre-crisis period, while Fig. 1(B) shows their relationships during the crisis period.  



 

 

Figure 2. Copula density plots for the pre-crisis period

 

Fig. 2 is a three dimensional figure which contains Argentine empirical marginals in X axis, Brazilian 

empirical marginals in Y axis, and their joint default probabilities, specified by the Gaussian, Student’s 

t and Gumbel copulas, respectively, in Z axis for the pre-crisis period.  



 

 

Figure 3. Copula density plots for the crisis period

 

Fig. 3 is a three dimensional figure which contains Argentine empirical marginals in X axis, Brazilian 

empirical marginals in Y axis, and their joint default probabilities, specified by the Gaussian, Student’s 

t and Gumbel copulas, respectively, in Z axis for the crisis period.  



 

 

Figure 4. Tail dependence display from the Gumbel copula (crisis period) 

 

Fig. 4 focuses on the Gumbel copula in the crisis period where Argentine empirical marginals in X axis, 

other sovereigns’ empirical marginals in Y axis, and their joint default probabilities in Z axis. 
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Abstract 

This study emphasizes the dynamic dependence between the Chinese financial 

market and other major markets in the world as China is being influential and 

integrated with the global economy. We provide a comprehensive analysis of the 

dynamic market dependence for the period 2002-2007 by estimating time-varying 

copula models between indices of those stock markets and the findings are further 

interpreted. It will provide more implications for portfolio diversification, risk 

management and international asset allocation than those based on a static model.  

 

Keywords: International finance; Dependence structure; Copula; GARCH 
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1. Introduction 

The integration and dependence of financial markets has been an issue of interest 

for both financial economists in academia and investment practitioners in industry 

(Bartram and Dufey, 2001) Research on dependence of financial markets has gained 

wide response in literatures because of its implications on international diversification as 

well as market integration. Recent studies have shown evidence of contagion in equity 

markets (Jondeau and Rockinger, 2006; Bekaert et al., 2005; Poon et al., 2004; Longin 

and Solnik, 2001; Forbes and Rigobon, 2002). However, these researches have mainly 

emphasized the developed countries such as U.S., U.K., Germany, France and Japan. 

Relatively few studies have investigated the financial market of China for its role in the 

international dependence. 

By the end of year 2006, the total market capitalization in China remarkably 

increased from US$2,028 million by 1991 to US$ 786 billion, the largest of all emerging 

markets. 1,517 companies had been listed in the stock markets of China by the end of 

September 2007, and the volume of equity market capitalization ranked fourth in the 

world. According to a recent IMF report1, China may replace German to be the third 

largest in near future. The dramatic growth of China’s stock market has allured the 

                                                 

1
 Global Economic Outlook 2007, IMF 
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attention of speculators, investors as well as the scholars, notwithstanding the worries of 

the sensitive stock market crash driven by panics or underlying economic factors. 

Chinese stock market took a major hit on Feb 27, 2007. The Shanghai Stock 

Exchange’s Composite Index unexpectedly dropped 8.8%, the largest one-day decline in 

10 years. The same day, the Dow Jones Industrial Average tumbled 3.3% and the 

NASDAQ declined 3.9%, the sharpest falls since 911 crisis. This may be an evidence of 

the integration of China’s financial markets into the world and indicates that an event in 

China might trigger reactions around the world. 

China’s growing economy has attracted huge foreign investment. A crash in the 

stock market may prompt the investors for abrupt withdrawals from China. As a 

consequence, financial contagion may be erupted. Our study especially concerns about 

the relationship between the Chinese market and other major markets of the world. It 

can provide implications for portfolio diversification, risk management and international 

asset allocation. 

To demonstrate the market correlation between China and other countries, we 

provide a comprehensive analysis of the market dependence during the period 

2002-2007 by estimating time-varying copula dependence models between indices of 

these stock markets. In a time-varying copula setting, the dependence parameters in the 
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copula function are modeled as a dynamic process conditional on currently available 

information to allow non-linear, time dependant relationship. 

Our study makes two contributions. First, although the capital market of China has 

noticeably grown and it has significant impact on other financial markets, few studies 

have focused on the role of China in the international dependence. By and large, 

researches are confined to its regional roles (Cheng, H., Glascock, 2005; Cheng, H., 

Glascock, 2006; Baur, 2007; Chang et al., 2000). Since its production and trade also 

have significant global influence, the regional constraint should be extended world-wide. 

Moreover, Bekaert et al. (2005) and Goetzmann et al. (2005) find a positive causality 

from market integration to market dependence. Does China integrate into international 

financial market with higher dependence after opening its market to world? 

The second contribution is to show how a conditional copula model can be applied. 

In fact, a copula-based measure can specify the structure and the degree of dependence 

to examine correlations, which takes the non-linear property into account and allows a 

more comprehensive understanding as well. In particular, using an extended 

time-varying copula model with the conditional joint distribution, we can obtain 

conditional means, variances and correlations, as well as the time paths of other 

dependence measurements such as rank correlation or tail dependence (Patton, 2006a). 

Patton(2006a) is the first to apply a time-varying copula to exchange rate dependence. 
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Bartram et al. (2007) use the same method to examine the Euro and European financial 

market dependence, but they do not explore any time-varying tail dependence. Our 

copula model investigates both conditional dependence structures and conditional tail 

dependences between stock market of China and other stock markets. 

The daily stock indices for MSCI China, MSCI Japan, MSCI Unite States, MSCI 

Europe, MSCI emerging markets, MSCI world and MSCI AcWorld are collected over 

the period 2002 - 2007. We consistently find that, irrespective of the assumed copula 

function; the emerging, the Pacific and the Japanese markets experience a higher 

degree of dependence persistence with the Chinese market. The Rotated Gumbel 

copula is the best fitting model, thus existence of time-varying lower tail dependence in 

each pair is evident. Given that the bubbles in Chinese stock market are pricked, higher 

probability of a joint market crash in Japan, in Pacific and in the emerging countries 

could be conjectured. 

The remainder of this paper is structured as follows: Section 2 discusses our 

empirical methodology of a time-varying copula model. Section 3 reports the data and 

summary statistics. Empirical results are presented and discussed in Section 4, while 

Section 5 is the conclusion. 

2. Empirical methodology 
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It is evident that multivariate normality is not suitable for measuring the 

dependence structure of equity returns (Lognin and Solnik, 2001; Poon et al., 2004). 

Researchers are concerned about the methodology used to specify comovement or 

contagion effect, especially for their asymmetric part, between the stock markets. 

Lognin and Solnik (2001) and Poon et al. (2004) have suggested the Extreme Value 

Theory (EVT) for the study of the dependence structure between international equity 

markets. However, choosing an optimal threshold to identify the extreme values may be 

difficult.2 The dependence function used for estimating the threshold may not be well 

defined3. Further, the determination of the number of parameters in the dependence 

structures4 is also a problem. 

Kroner and Ng(1998), Engle(2002) and Cappiello et al.(2006) have developed 

GARCH models with time-varying covariances and correlations. Engle(2002) provides 

a univarite GARCH model which is capable of allowing conditional asymmetries in 

both volatilities and correlations. Cappiello et al.(2006) extend Engel’s (2002) model to 

                                                 

2
 Choosing a high value of threshold leads to few observations of return exceedances, and implies 

inefficient parameter estimates with large standard errors. On the other hand, choosing a low value of 

threshold can provide many observations of return exceedances, but it induces biased parameter 

estimation. Hence, Longin and Sonik (2001) have applied Monte Carlo simulation to determine the 

optimal threshold values. 

3
 Typically, logistic function is used to make this estimation, though the solution is not good. 

4
 For bivariate model in the EVT, there are typically seven parameters to be estimated: two tail 

probabilities, two dispersion parameters, two tail indexes, and the dependence parameter.  
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two dimensional environments. Both contribute a computational advantage over 

multivariate GARCH models by providing a two-step estimation procedure - the 

univariate GARCH estimation followed by the correlation estimation. Intuitively, the 

aim is to separate the modeling of variances from that of correlations. 

Recently, copula method has been emphasized because of its capability of 

modeling the contemporaneous interdependence between either univariate time series or 

innovations of univariate parametric time series models. It is being more and more 

popular because it can analyze dependence structure beyond linear correlation and 

provide a higher degree of flexibility in estimation by separating marginal and joint 

distributions. Furthermore, it can be extended to a time-varying specification in order to 

capture changes in the dependence structure. Patton (2006a,b) introduces the method of 

time-varying copula and applies it to measure conditional asymmetries in the exchange 

rate dependence. Bartram et al. (2007) employ it to measure dependences between some 

European stock indices. Following their settings, our empirical time-varying copula is 

modeled as below. 

2.1. The models for the marginal distribution 

In this study, the marginal distribution for each index return is assumed to be 

characterized by an AR(1)-GARCH(1,1) model. Let 𝑅𝑖,𝑡 and ℎ𝑖 ,𝑡 denote index i’s 



8 

 

return and its conditional variance for period 𝑡, respectively. The AR(1)-GARCH(1,1) 

model for the index return is: 

𝑅𝑖,𝑡 = 𝑢𝑖 + ∅𝑖𝑅𝑖,𝑡−1 + 𝜀𝑖 ,𝑡  

ℎ𝑖,𝑡 = 𝜔𝑖 + 𝛽𝑖ℎ𝑖,𝑡−1 + 𝛼𝑖𝜀𝑖,𝑡
2  

 𝜀𝑖,𝑡 |Ω𝑡−1~N(0,ℎ𝑖 ,𝑡)  (1) 

Fisher(1932) and Rosenblatt(1952) showed that random variable 𝑈𝑖 ,𝑡 =

𝐹𝑖,𝑡 𝜀𝑖,𝑡|Ω𝑡−1  has Uniform(0,1) distribution, regardless what unconditional 

distribution is. Thus, the value of the random variable from conditional marginal 

distribution Fi ,t εi ,t|Ω𝑡−1  should be between zero and one. Typically, the technique of 

“probability integral transform5” for conditional random variables, 𝜀𝑖,𝑡|Ω𝑡−1, can be 

applied to satisfy this requirement.  

2.2. The models for the copula 

Equity returns have been found exhibiting more joint negative extremes than joint 

positive extremes, leading to the observation that stocks tend to crash together but not 

to boom together (Poon et al., 2004;Longin and Solnik, 2001; Bae et al.,2003). 

Accordingly, dependence structure should be examined in either direction of the return 

distribution. We therefore employ the Gaussian, the Gumbel and the Rotated Gumbel 

copula for specification and calibration, all with and without time variation. The 

Gaussian copula is generally viewed as a benchmark for comparison, while the 

                                                 

5
 𝑢 𝑖,𝑡 = 𝐹  𝑖 𝑥𝑖,𝑡 =

1

𝑇+1
 𝐼 𝑥𝑖,𝑗 < 𝑥𝑖,𝑡             ∀t, i=1,……….n𝑇
𝑗=1 . where I{.} is an indicator function. 
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Gumbel and the Rotated Gumbel copula are used to capture the upper and lower tail 

dependence, respectively. 

The Gaussian copula function is the density of joint standard uniform 

variables  𝑢𝑡 , 𝑧𝑡 , as the random variables  𝑅𝑖,𝑡  are bivariate normal with a 

time-varying correlation, ρt. Moreover, let 𝑥𝑡 = 𝛷−1(𝑢𝑡) and 𝑦𝑡 = 𝛷−1(𝑧𝑡) , where 

𝛷−1(.) denotes the inverse of the cumulative density function of the standard normal 

distribution. The density of the time-varying Gaussian copula can be shown as  

𝑐𝑡
𝐺𝑎𝑢  𝑢𝑡 , 𝑧𝑡|Ω𝑡−1 =

1

 1−𝜌𝑡
𝑒𝑥𝑝  

2𝜌𝑡 𝑥𝑡𝑦𝑡−𝑥𝑡
2−𝑦𝑡

2

2 1−𝜌𝑡
2 

+
𝑥𝑡

2 +𝑦𝑡
2

2
  (2) 

Tail dependence captures the behavior of random variables during extreme events. 

In our study, it measures the probability of a simultaneous market crash in various 

countries given that the bubbles in Chinese stock markets are pricked. The Gumbel and 

the Rotated Gumbel copula can efficiently capture the tail dependence arising from the 

extreme observations caused by asymmetry. The density of the time-varying Gumbel 

copula is  

𝐶
𝛿𝑡
𝑈
𝐺𝑢𝑚  𝑢𝑡 , 𝑧𝑡|Ω𝑡−1 =

 − ln𝑢𝑡 
𝛿𝑡
𝑈−1 − ln𝑧𝑡 

𝛿𝑡
𝑈−1

𝑢𝑡𝑧𝑡
  exp  –   − ln𝑢𝑡 

𝛿𝑡
𝑈−1 +  − ln 𝑧𝑡 

𝛿𝑡
𝑈−1 

1

𝛿𝑡
𝑈
  

 −  − ln𝑢𝑡 
𝛿𝑡
𝑈−1 +  − ln𝑧𝑡   

𝛿𝑡
𝑈−1 

 
1−𝛿𝑡

𝑈

𝛿𝑡
𝑈  

2

+  𝛿𝑡
𝑈 − 1   − ln𝑢𝑡 

𝛿𝑡
𝑈−1 +  − ln𝑧𝑡 

𝛿𝑡
𝑈−1 

 
1−2𝛿𝑡

𝑈

𝛿𝑡
𝑈  

  (3) 

where δt
U ∈ [1,∞) measures the degree of dependence between 𝑢𝑡 and 𝑧𝑡 . δt

U = 1 

implies an independent relationship and δt
U → ∞ represents perfect dependence. 
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Cherubini et al. (2004) show that the Gumbel family has upper tail dependence, with 

λt
U = 2− 21/δt

U
. Rotated Gumbel copula has a similar density function to that of 

Gumbel copula and its time-varying version is  

𝑐
𝛿𝑡
𝐿
𝑅.𝐺𝑢𝑚   1− 𝑢𝑡 ,1 − 𝑧𝑡 = 

 − ln(1 −𝑢𝑡) 
𝛿𝑡
𝐿−1 − ln(1 − 𝑧𝑡) 

𝛿𝑡
𝐿−1

(1 −𝑢𝑡)(1− 𝑧𝑡)
  exp  –   − ln(1− 𝑢𝑡 )

𝛿𝑡
𝐿−1 +  − ln(1 − 𝑧𝑡) 

𝛿𝑡
𝐿−1 

1

𝛿𝑡
𝐿
  

 −  − ln(1 −𝑢𝑡) 
𝛿𝑡
𝐿−1 +  − ln(1− 𝑧𝑡  ) 

𝛿𝑡
𝐿−1 

 
1−𝛿𝑡

𝐿

𝛿𝑡
𝐿  

2

+  𝛿𝑡
𝐿 − 1   − ln(1− 𝑢𝑡) 

𝛿𝑡
𝐿−1 +  − ln(1 −

𝑧𝑡) 
𝛿𝑡
𝐿−1 

 
1−2𝛿𝑡

𝐿

𝛿𝑡
𝐿   

  (4) 

The lower tail dependence measured by the Rotated Gumbel copula is λt
L = 2− 21/δt

L
 

2.3. Parameterizing time-varying copula model 

In reality, time-invariant dependence seems unreasonable. So, a conditional 

copula with a time-varying dependence parameter is prevalent (Patton, 2006a; Patton, 

2006b; Bartram et al., 2007; Jondeau and Rochinger, 2006; Rodriguez, 2007). 

Following the studies of Patton(2006a) and Bartram et al.(2007), we assume that the 

dependence parameter is determined by the past information such as its previous 

dependence and the historical absolute difference between cumulative probabilities of 

two index returns. 

For a time-varying Gaussian copula, its conditional dependence parameter can be 

modeled as an AR(1)-like process because autoregressive parameters over lag one are 
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rarely different from zero (Bartram et al.6, 2007; Samitas et al., 2007). The dependence 

process of Gaussian copula is therefore: 

𝜌𝑡 = 𝛬(𝛽𝜌𝑡−1 + 𝜔 + 𝛾 𝑢𝑡−1 − 𝑧𝑡−1 ) (5) 

The conditional dependence, 𝜌𝑡  , depends on its previous dependence, 𝜌𝑡 −1 , and 

historical absolute difference, |𝑢𝑡−1 − 𝑧𝑡−1| . In this way the persistence and the 

variation in the dependence process can both be captured.  𝛬 𝑥  is defined as 

 1 − 𝑒−𝑥  1 + 𝑒−𝑥 = 𝑡𝑎𝑛ℎ  
𝑥

2
 , which is the modified logistic transformation to 

keep 𝜌𝑡  in (-1,1) at all time (Patton, 2006a). The estimation of copula parameters, 

𝜃𝑐 =  𝛽,𝜔,𝛾 ′ , will be discussed in Section 2.4 

 Both conditional Gumbel dependence and Rotated Gumbel dependence are 

assumed to follow an AR(1)-like process as well. We propose the time-varying 

dependence process for the Gumbel copula and the Rotated Gumbel copula as follows: 

𝛿𝑡
𝑈 = 𝛽𝑈𝛿𝑡−1

𝑈 + 𝜔 + 𝛾|𝑢𝑡−1 − 𝑧𝑡−1|  (6) 

𝛿𝑡
𝐿 = 𝛽𝐿𝛿𝑡−1

𝐿 + 𝜔 + 𝛾|𝑢𝑡−1 − 𝑧𝑡−1|  (7) 

where 𝛿𝑡
𝑈 ∈ [1,∞) measures the degree of dependence in the Gumbel copula and has 

a lower bound equal to one which indicates an independent relationship, while 

𝛿𝑡
𝐿 ∈ [1,∞) measures the degree of dependence in the Rotated Gumbel copula. After 

                                                 

6
 Bartram et al. (2007) assume that the time-varying dependence process follows an AR(2) model. 
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estimating the Gumbel copula parameters 𝜃𝑐 =  𝛽𝑈 ,𝜔,𝛾 ′, the conditional upper tail 

dependence coefficents, {λt
U |Ω𝑡−1}, are obtained by 

𝜆𝑡
𝑈 = Ψ(2− 2

1

𝛿𝑡
𝑈

)  (8) 

where Ψ ≝  1 + 𝑒−𝑥 −1 is the logistic transformation to keep 𝜆𝑡
𝑈  in (0,1) at all time. 

Similarly, the conditional lower tail dependence coefficients, {𝜆𝑡
𝐿 |𝛺𝑡−1}, are obtained 

by the same way.  

2.4. Estimating and calibrating copula models 

Calibrating copula parameters using real market data has involved much interest 

in recent statistical literatures (Meneguzzo and Vecchiato, 2004; Mashal and Zeevi, 

2002; Dias and Embrechts, 2003; Galiani, 2003). Exact Maximum Likelihood Method 

(EML) is a well-known parametric method for estimation. However, the EML need to 

estimate the parameters of the marginals and copula functions simultaneously. As the 

power of a copula model is to express a joint distribution by separating the marginal 

distributions from their dependence, the estimations of copula models are naturally 

decomposed into two steps: the first for the marginals and the second for the copula, 

which is the concept of Inference function for Margins method (IFM). IFM improves 

EML because the latter is computationally intensive, especially for estimations of 

higher dimensions. IFM can be performed by estimating parameters of marginal 

distributions prior to those of copula functions. The efficiency is therefore enhanced.  
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𝜃 𝑖 = arg max ln 𝑓𝑖 (𝑥𝑖𝑡 |𝛺𝑡−1 ,𝜃𝑖 )
T
t=1   (9) 

𝜃 𝑐
𝐼𝐹𝑀 = arg max ln 𝑐 𝐹1 𝑥1𝑡 𝜃 1 ,𝐹2 𝑥2𝑡 𝜃 2 ,……𝐹𝑛  𝑥𝑛𝑡  𝜃 n |𝛺𝑡−1 ,𝜃 𝑖 

T
t=1  (10) 

3. Data and summary statistics 

The daily stock indices provided by Morgan Stanley Capital International (MSCI) 

are obtained from Datastream database over the period from1 January 2002 to 30 June 

2007. 1433 daily observations for each index are collected. Maghyereh (2004) states 

the reasons why MSCI indices are better than other local stock indices. For country’s 

level, MSCI China, MSCI United States, MSCI Japan indices are selected. In order to 

specify which regional stock market is more correlated to China’s, possibly due to their 

geographic ties or trade relationship, we use MSCI Europe and MSCI Pacific. To 

detect whether emerging markets have severer impacts than developed markets do, 

both MSCI world index and MSCI emerging markets index are collected. MSCI world 

index contains market indices of 23 developed countries, while MSCI emerging market 

index includes market indices of 25 emerging countries. Moreover, MSCI AcWorld 

index, which combines market indices of 48 developed and developing countries, is 

collected to measure the worldwide-level dependence.  

The summary statistics of each index return are reported in Table 1. Table 2 shows 

the Pearson, Spearman and Kendall correlations for each index return paired with 

China’s. Pearson correlation is a measurement of linear association, which implies that 
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it is neither robust for heavily tailed distributions nor adequate for a non-linear 

relationship. However, the nonparametric rank correlations, Kendall’s tau and 

Spearman’s rho, are less sensitive to the observations in the tails. As shown in Table 2, 

no matter which measurement is used, China-Emerging pair has the greatest 

correlation, followed by China-Pacific pair and China-Japan pair. The parameters of 

the marginal distributions for each index return are estimated and presented in Table 3. 

They are assumed to be characterized by an AR(1)-GARCH(1,1) model given by 

equation (1). As shown in Table 3, most parameters are at least significant at 5 percent 

level. Furthermore, the residual series pass the goodness-of-fit test for all index returns.  

[Insert Table 1 here] 

[Insert Table 2 here] 

[Insert Table 3 here] 

4. Empirical results 

4.1. Results of unconditional copula models 

For comparison, results of unconditional copula model are presented in Table 4. 

Since marginal distributions are assumed to be an AR(1)-GARCH(1,1) model, Table 4 

reports the estimated parameters and results of goodness-of-fit test for static Gaussian, 

Gumbel and Rotated Gumbel copula functions. As shown in Panel A of Table 4, all 
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copula functions have positive parameters, indicating that index return of China 

positively commoves with all index returns. We can consistently find that, irrespective 

of assumed copula function, the dependence between index return of an emerging 

market and market of China is the highest, followed by China-Pacific pair and 

China-Japan pair. Bekaert et al. (2005) and Goetzmann et al. (2005) claim that capital 

market integration and increased trade are embedded with a prediction about the 

dependence between markets. Therefore, we contend that an emerging market has a 

severer impact on dependence than a developed market7 does. This may be attributed 

to the high trade frequency since the emerging countries are usually key suppliers of 

China for energy, mine, cropper and various commodities. Once the growth of Chinese 

economy is unexpectedly decayed, emerging markets may suffer severely. Also, the 

high degree dependence between China and Pacific or Japan may be attributed to their 

geographic ties and trade frequencies. Furthermore, this finding will be more evident 

as China proposes to join ASEAN Free Trade Area (AFTA) in 2010 to strengthen their 

cooperative and competitive abilities through eliminating tariffs and non-tariff barriers.  

                                                 

7
 Which is measured by MSCI world index 
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The choice of the best fit of copula function is based on the value of Akaike 

information criterion (AIC)8. From the maximized log-likelihood values (lnL) in Panel 

A of Table 4, we compute the AIC for each copula, and then rank the copula models 

accordingly. Panel B of Table 4 shows the AIC values for three chosen copulas. The 

lowest AIC value from the Rotated Gumbel copula indicates that the it is the best fitting 

model and the lower tail dependence exists in each pair. This finding is consistent with 

the literature that equity returns have been found exhibiting more joint negative 

extremes than joint positive extremes, leading to the observation that stocks tend to 

crash, but not to boom, together. 

[Insert Table 4 here] 

4.2. Results of conditional copula model 

Given that the marginal distributions follow an AR(1)-GARCH(1,1) model, the 

estimated parameters of time-varying correlations in the Gaussian copula are reported 

in the Panel A of Table 5. The time-varying dependence model in equation (5) is 

estimated and calibrated for each pair of index returns. The parameter, β, captures the 

degree of persistence in the dependence and γ  captures the adjustment in the 

dependence process. The initial value of the dependence, measured by ρ1, is esimated 

                                                 

8
 𝐴𝐼𝐶 = −2𝐿 𝜃  ;𝑥 + 2𝑞, where q is the number of parameters needed to be estimated in each specific 

model.  
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as well. It can be seen in the Panel A of Table 5 that the emerging, the Pacific and the 

Japanese markets experience a higher degree of dependence persistence with the 

Chinese market. Meanwhile, the log-likelihood functions for these areas are higher 

than those for others. Figure 1 depicts the implied time path of conditional correlations 

for each pair of index returns across sample period. Obviously, China-Pacific pair, 

China-Japan pair and China-emerging-markets pair all demonstrate greater conditional 

correlation, which is consistent with that of unconditional model. 

[Insert Table 5 here] 

4.3. Results of conditional tail dependence 

Panel B and C of the Table 5 report the estimated parameters of time-varying tail 

dependence specified by the Rotated Gumbel and the Gumbel copula, respectively. It 

can be seen in both tables that the emerging, the Pacific and the Japanese markets show 

higher degrees of dependent persistence with the Chinese market. Both time-varying 

lower and upper tail dependences can be obtained by employing equation (8) where 

estimated conditional dependences, 𝛿𝑡
𝑈and 𝛿𝑡

𝐿 , are from equation (6) and (7). In 

Figure 2 and 3 we present the plots of conditional lower and upper tail dependence 

specified by the time-varying Rotated Gumbel and Gumbel copula model, respectively. 

Overall, the value of the copula log-likelihood function of the Rotated Gumbel is the 

highest and that of the Gaussian is the lowest, indicating that the Rotated Gumbel 
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copula is the best fitting model, and time-varying lower tail dependence exists in each 

pair. This finding is consistent with the unconditional model and the literature as well. 

Especially, the emerging, the Pacific and the Japanese markets experience higher 

degrees of lower tail dependent persistence with the Chinese market. Therefore, if the 

bubbles in Chinese stock markets burst, the probability of a joint market crash in Japan, 

in Pacific and in the emerging countries will be high. 

[Insert Figure 1 here] 

[Insert Figure 2 here] 

[Insert Figure 3 here] 

5. Conclusions  

Researches of international dependence have mainly focused on the developed 

markets. Relatively few have enquired the role of China despite of its noticeable growth 

in its capital market and distinctive impacts on global economy. In this study, we 

emphasize the dynamic dependence between the Chinese financial market and other 

major markets of the world. By estimating time-varying copula models between indices 

of these stock markets, we provide a comprehensive analysis of the time-varying market 

dependence for the period 2002-2007. 
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Regardless of the assumed copula functions, we consistently find that the Chinese 

market experiences a higher degree of dependence with markets in Japan, in the Pacific, 

and in the emerging countries. Geographic ties and close trading relationship may be 

attributed to this high dependence. The implication of this finding is that the 

probability of joint crashes will be high for markets in these areas once bubbles burst in 

China. As China proposes to join ASEAN Free Trade Area, this threat will be 

strengthened further. With this understanding, some decisions on international 

diversification, portfolio allocation and risk management should be reconsidered. 
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Table 1 Summary statistics 

This table shows summary statistics of the returns of MSCI China, MSCI World, MSCI U.S., MSCI Europe, MSCI 

Japan, MSCI AcWorld, MSCI Pacific and MSCI Emerging. The sample period covers 1 January 2002 to 30 June 

2007. 1433 daily observations for each index are collected. 

 Mean Standard 

Deviation 

Skewness Kurtosis 

China 0.00092 0.01375 -0.24097 1.88839 

World 0.00022 0.00812 0.06665 4.01935 

U.S. 0.00018 0.00982 0.19883 3.52405 

Europe 0.00020 0.01078 -0.13120 4.20785 

Japan 0.00038 0.01133 -0.25321 1.23256 

AcWorld 0.00025 0.00797 0.06665 3.87711 

Pacific 0.00042 0.00920 0.02574 1.52761 

Emerging 0.00070 0.00832 -0.64147 2.36938 
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Table 2 Association measurement 

This table shows the Pearson, Spearman and Kendall correlations for each index return paired with China’s. 

China 

versus 

Pearson 

Correlation 

Spearman 

Correlation 

Kendall 

Correlation 

World 0.26387 0.26792 0.18310 

U.S. 0.10788 0.11032 0.07409 

Europe 0.26673 0.25095 0.17222 

Japan 0.44507 0.41799 0.29013 

AcWorld 0.29341 0.29720 0.20407 

Pacific 0.58330 0.55533 0.39476 

Emerging 0.67998 0.63421 0.46171 
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Table 3 Estimated parameters for AR(1)-GARCH(1,1) marginal distributions 

This table shows the estimated parameters of the marginal distributions for each index return. They are assumed to 

be characterized by an AR(1)-GARCH(1,1) model given by equation (1). The numbers in brackets ( ) are p-values. 

 AR(1) GARCH constant Lagged variance Lagged residual 

China 0.0906 

(0.0006) 

4.277e-06 

(0.00261) 

0.9249 

(0.0000) 

0.05202 

(0.0000) 

World 0.1059 

(0.0001) 

5.683e-07 

(0.00035) 

0.9275 

(0.0000) 

0.06087 

(0.0000) 

U.S. -0.0544 

(0.0397) 

7.631e-07 

(0.00011) 

0.9418 

(0.0000) 

0.04731 

(0.0000) 

Europe -0.0193 

(0.4653) 

1.358e-06 

(0.00010) 

0.8938 

(0.0000) 

0.08985 

(0.0000) 

Japan 0.0273 

(0.3009) 

2.383e-06 

(0.00127) 

0.9023 

(0.0000) 

0.08109 

(0.0000) 

AcWorld 0.1209 

(0.000) 

5.858e-07 

(0.00036) 

0.9233 

(0.0000) 

0.06458 

(0.0000) 

Pacific 0.0411 

(0.1204) 

2.067e-06 

(0.00050) 

0.8952 

(0.0000) 

0.08209 

(0.0000) 

Emerging 0.2008 

(0.0000) 

2.034e-06 

(0.00052) 

0.8866 

(0.0000) 

0.08338 

(0.0000) 
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Table 4 Parameter estimations and goodness-of-fit test for unconditional copula model  

This table reports the estimated results of unconditional copula model in the Panel A.  ρ is the correlation 

parameter of Gaussian copula. δU and δL are dependence parameters of Gumbel and Rotated Gumbel copula, 

respectively. λU is the coefficient of upper tail dependence, while λL  is the coefficient of lower tail dependence. 

Relevant results of goodness-of-fit test for static Gaussian, Gumbel and Rotated Gumbel copula functions are 

shown in the Panel B. 𝐴𝐼𝐶 = −2𝐿 𝜃  ;𝑥 + 2𝑞, where q is the number of parameters to be estimated in each 

specific model. 

Unconditional Copula Model 

Paired China v.s. 

Indices World U.S. Europe Japan AcWorld Pacific Emerging 

Panel A: Copula estimation      

Gaussian        

ρ 0.282 0.111 0.286 0.434 0.314 0.576 0.667 

ln L 58.624 8.691 60.141 147.631 73.418 273.776 405.782 

Gumbel        

δU 1.184 1.050 1.190 1.348 1.214 1.559 1.758 

λU  0.204 0.065 0.210 0.328 0.230 0.440 0.517 

ln L 45.670 5.701 50.149 126.326 58.664 252.248 375.204 

R.Gumbel         

δL 1.206 1.071 1.205 1.369 1.237 1.583 1.797 

λL  0.223 0.090 0.222 0.341 0.249 0.451 0.529 

ln L 60.415 9.568 61.433 147.402 75.783 274.907 406.959 

Panel B: Goodness-of-fit test (AIC)     

Gaussian -115.248 -15.382 -118.282 -293.262 -144.836 -545.552 -809.564 

Gumbel -89.34 -9.402 -98.298 -250.652 -115.328 -502.496 -748.408 

R.Gumbel -118.83 -17.136 -120.866 -292.804 -149.566 -547.814 -811.918 
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Table 5 Estimated parameters of time-varying dependences in the chosen copulas  

This table shows the estimated parameters of time-varying dependences in the chosen copulas. The time-varying 

dependence models in equation (5), (6), (7) are estimated and calibrated for each pair of index returns. The 

parameter, β, captures the degree of persistence in the dependence and γ captures the adjustment in the 

dependence process. The initial value of the dependence is estimated as well. LLF(c) is the maximum of the copula 

component of the log-likelihood function. 

China versus β ω γ Initial value LLF(c) 

Panel A: Gaussian copula 

World 0.31945 0.13538 0.22749 0.60793 60.75699 

U.S. 0.56739 0.01781 0.09516 0.87929 10.08956 

Europe 0.34985 0.16647 0.09658 0.39344 60.55184 

Japan 0.99990 0.05737 -0.10777 0.77259 149.3346 

AcWorld 0.27147 0.181184 0.21209  0.59932 75.2125 

Pacific 0.99990 0.12581 -0.21283 0.63262 281.2017 

Emerging 0.99990 0.17462 -0.19900 0.80974 409.1492 

Panel B: Rotated Gumbel copula 

World 0.38781 0.68741 0.18189 1.95735 62.30450 

U.S. 0.37218 0.64788 0.07926 3.69468 11.13930 

Europe 0.42159 0.67766 0.06901 1.44933 61.78139 

Japan 0.92767 0.12652 -0.11190 1.50332 150.61170 

AcWorld 0.35824 0.74466 0.18093 1.96737 77.45485 

Pacific 0.95300 0.11094 -0.16929 1.39997 283.0431 

Emerging 0.96375 0.09432 -0.15127 1.20698 414.9552 

Panel C: Gumbel copula 

World 0.19345 0.90657 0.17268 1.29830 47.05787 

U.S. 0.43248 0.58589 0.03316 2.51917 6.76919 

Europe 0.55675 0.51727 0.03869 1.00000 50.47848 

Japan 0.89806 0.16567 -0.11484 1.44770 128.61650 

AcWorld 0.16640 0.96713 0.16552 1.28228 59.81751 

Pacific 0.93504 0.14005 -0.17935 1.29072 258.90430 

Emerging 0.95090 0.12672 -0.21067 1.23979 384.14260 
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Figure 1 Conditional correlation estimation from the Gaussian copula 
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Figure 2. Conditional lower tail dependence estimation from the Rotated Gumbel copula 
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Figure 3. Conditional upper tail dependence estimation from the Gumbel copula  
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Re-investigating the international financial market dependence: 

The role of China 

 

 

Yi-Hsuan Chena*, Kehluh Wangb  

a Department of Finance, Chung Hua University, No. 707, Sec. 2, WuFu Rd., Hsinchu 300, Taiwan 

 b
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Abstract 

This study emphasizes the dynamic dependence between the Chinese financial 

market and other major markets in the world as China is being influential and 

integrated with the global economy. We provide a comprehensive analysis of the 

dynamic market dependence for the period 2002-2007 by estimating time-varying 

copula models between indices of those stock markets and the findings are further 

interpreted. It will provide more implications for portfolio diversification, risk 

management and international asset allocation than those based on a static model.  

 

Keywords: International finance; Dependence structure; Copula; GARCH 
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1. Introduction 

The integration and dependence of financial markets has been an issue of interest 

for both financial economists in academia and investment practitioners in industry 

(Bartram and Dufey, 2001) Research on dependence of financial markets has gained 

wide response in literatures because of its implications on international diversification as 

well as market integration. Recent studies have shown evidence of contagion in equity 

markets (Jondeau and Rockinger, 2006; Bekaert et al., 2005; Poon et al., 2004; Longin 

and Solnik, 2001; Forbes and Rigobon, 2002). However, these researches have mainly 

emphasized the developed countries such as U.S., U.K., Germany, France and Japan. 

Relatively few studies have investigated the financial market of China for its role in the 

international dependence. 

By the end of year 2006, the total market capitalization in China remarkably 

increased from US$2,028 million by 1991 to US$ 786 billion, the largest of all emerging 

markets. 1,517 companies had been listed in the stock markets of China by the end of 

September 2007, and the volume of equity market capitalization ranked fourth in the 

world. According to a recent IMF report1, China may replace German to be the third 

largest in near future. The dramatic growth of China’s stock market has allured the 

                                                 

1
 Global Economic Outlook 2007, IMF 
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attention of speculators, investors as well as the scholars, notwithstanding the worries of 

the sensitive stock market crash driven by panics or underlying economic factors. 

Chinese stock market took a major hit on Feb 27, 2007. The Shanghai Stock 

Exchange’s Composite Index unexpectedly dropped 8.8%, the largest one-day decline in 

10 years. The same day, the Dow Jones Industrial Average tumbled 3.3% and the 

NASDAQ declined 3.9%, the sharpest falls since 911 crisis. This may be an evidence of 

the integration of China’s financial markets into the world and indicates that an event in 

China might trigger reactions around the world. 

China’s growing economy has attracted huge foreign investment. A crash in the 

stock market may prompt the investors for abrupt withdrawals from China. As a 

consequence, financial contagion may be erupted. Our study especially concerns about 

the relationship between the Chinese market and other major markets of the world. It 

can provide implications for portfolio diversification, risk management and international 

asset allocation. 

To demonstrate the market correlation between China and other countries, we 

provide a comprehensive analysis of the market dependence during the period 

2002-2007 by estimating time-varying copula dependence models between indices of 

these stock markets. In a time-varying copula setting, the dependence parameters in the 
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copula function are modeled as a dynamic process conditional on currently available 

information to allow non-linear, time dependant relationship. 

Our study makes two contributions. First, although the capital market of China has 

noticeably grown and it has significant impact on other financial markets, few studies 

have focused on the role of China in the international dependence. By and large, 

researches are confined to its regional roles (Cheng, H., Glascock, 2005; Cheng, H., 

Glascock, 2006; Baur, 2007; Chang et al., 2000). Since its production and trade also 

have significant global influence, the regional constraint should be extended world-wide. 

Moreover, Bekaert et al. (2005) and Goetzmann et al. (2005) find a positive causality 

from market integration to market dependence. Does China integrate into international 

financial market with higher dependence after opening its market to world? 

The second contribution is to show how a conditional copula model can be applied. 

In fact, a copula-based measure can specify the structure and the degree of dependence 

to examine correlations, which takes the non-linear property into account and allows a 

more comprehensive understanding as well. In particular, using an extended 

time-varying copula model with the conditional joint distribution, we can obtain 

conditional means, variances and correlations, as well as the time paths of other 

dependence measurements such as rank correlation or tail dependence (Patton, 2006a). 

Patton(2006a) is the first to apply a time-varying copula to exchange rate dependence. 
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Bartram et al. (2007) use the same method to examine the Euro and European financial 

market dependence, but they do not explore any time-varying tail dependence. Our 

copula model investigates both conditional dependence structures and conditional tail 

dependences between stock market of China and other stock markets. 

The daily stock indices for MSCI China, MSCI Japan, MSCI Unite States, MSCI 

Europe, MSCI emerging markets, MSCI world and MSCI AcWorld are collected over 

the period 2002 - 2007. We consistently find that, irrespective of the assumed copula 

function; the emerging, the Pacific and the Japanese markets experience a higher 

degree of dependence persistence with the Chinese market. The Rotated Gumbel 

copula is the best fitting model, thus existence of time-varying lower tail dependence in 

each pair is evident. Given that the bubbles in Chinese stock market are pricked, higher 

probability of a joint market crash in Japan, in Pacific and in the emerging countries 

could be conjectured. 

The remainder of this paper is structured as follows: Section 2 discusses our 

empirical methodology of a time-varying copula model. Section 3 reports the data and 

summary statistics. Empirical results are presented and discussed in Section 4, while 

Section 5 is the conclusion. 

2. Empirical methodology 



6 

 

It is evident that multivariate normality is not suitable for measuring the 

dependence structure of equity returns (Lognin and Solnik, 2001; Poon et al., 2004). 

Researchers are concerned about the methodology used to specify comovement or 

contagion effect, especially for their asymmetric part, between the stock markets. 

Lognin and Solnik (2001) and Poon et al. (2004) have suggested the Extreme Value 

Theory (EVT) for the study of the dependence structure between international equity 

markets. However, choosing an optimal threshold to identify the extreme values may be 

difficult.2 The dependence function used for estimating the threshold may not be well 

defined3. Further, the determination of the number of parameters in the dependence 

structures4 is also a problem. 

Kroner and Ng(1998), Engle(2002) and Cappiello et al.(2006) have developed 

GARCH models with time-varying covariances and correlations. Engle(2002) provides 

a univarite GARCH model which is capable of allowing conditional asymmetries in 

both volatilities and correlations. Cappiello et al.(2006) extend Engel’s (2002) model to 

                                                 

2
 Choosing a high value of threshold leads to few observations of return exceedances, and implies 

inefficient parameter estimates with large standard errors. On the other hand, choosing a low value of 

threshold can provide many observations of return exceedances, but it induces biased parameter 

estimation. Hence, Longin and Sonik (2001) have applied Monte Carlo simulation to determine the 

optimal threshold values. 

3
 Typically, logistic function is used to make this estimation, though the solution is not good. 

4
 For bivariate model in the EVT, there are typically seven parameters to be estimated: two tail 

probabilities, two dispersion parameters, two tail indexes, and the dependence parameter.  
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two dimensional environments. Both contribute a computational advantage over 

multivariate GARCH models by providing a two-step estimation procedure - the 

univariate GARCH estimation followed by the correlation estimation. Intuitively, the 

aim is to separate the modeling of variances from that of correlations. 

Recently, copula method has been emphasized because of its capability of 

modeling the contemporaneous interdependence between either univariate time series or 

innovations of univariate parametric time series models. It is being more and more 

popular because it can analyze dependence structure beyond linear correlation and 

provide a higher degree of flexibility in estimation by separating marginal and joint 

distributions. Furthermore, it can be extended to a time-varying specification in order to 

capture changes in the dependence structure. Patton (2006a,b) introduces the method of 

time-varying copula and applies it to measure conditional asymmetries in the exchange 

rate dependence. Bartram et al. (2007) employ it to measure dependences between some 

European stock indices. Following their settings, our empirical time-varying copula is 

modeled as below. 

2.1. The models for the marginal distribution 

In this study, the marginal distribution for each index return is assumed to be 

characterized by an AR(1)-GARCH(1,1) model. Let 𝑅𝑖,𝑡 and ℎ𝑖 ,𝑡 denote index i’s 
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return and its conditional variance for period 𝑡, respectively. The AR(1)-GARCH(1,1) 

model for the index return is: 

𝑅𝑖,𝑡 = 𝑢𝑖 + ∅𝑖𝑅𝑖,𝑡−1 + 𝜀𝑖 ,𝑡  

ℎ𝑖,𝑡 = 𝜔𝑖 + 𝛽𝑖ℎ𝑖,𝑡−1 + 𝛼𝑖𝜀𝑖,𝑡
2  

 𝜀𝑖,𝑡 |Ω𝑡−1~N(0,ℎ𝑖 ,𝑡)  (1) 

Fisher(1932) and Rosenblatt(1952) showed that random variable 𝑈𝑖 ,𝑡 =

𝐹𝑖,𝑡 𝜀𝑖,𝑡|Ω𝑡−1  has Uniform(0,1) distribution, regardless what unconditional 

distribution is. Thus, the value of the random variable from conditional marginal 

distribution Fi ,t εi ,t|Ω𝑡−1  should be between zero and one. Typically, the technique of 

“probability integral transform5” for conditional random variables, 𝜀𝑖,𝑡|Ω𝑡−1, can be 

applied to satisfy this requirement.  

2.2. The models for the copula 

Equity returns have been found exhibiting more joint negative extremes than joint 

positive extremes, leading to the observation that stocks tend to crash together but not 

to boom together (Poon et al., 2004;Longin and Solnik, 2001; Bae et al.,2003). 

Accordingly, dependence structure should be examined in either direction of the return 

distribution. We therefore employ the Gaussian, the Gumbel and the Rotated Gumbel 

copula for specification and calibration, all with and without time variation. The 

Gaussian copula is generally viewed as a benchmark for comparison, while the 

                                                 

5
 𝑢 𝑖,𝑡 = 𝐹  𝑖 𝑥𝑖,𝑡 =

1

𝑇+1
 𝐼 𝑥𝑖,𝑗 < 𝑥𝑖,𝑡             ∀t, i=1,……….n𝑇
𝑗=1 . where I{.} is an indicator function. 
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Gumbel and the Rotated Gumbel copula are used to capture the upper and lower tail 

dependence, respectively. 

The Gaussian copula function is the density of joint standard uniform 

variables  𝑢𝑡 , 𝑧𝑡 , as the random variables  𝑅𝑖,𝑡  are bivariate normal with a 

time-varying correlation, ρt. Moreover, let 𝑥𝑡 = 𝛷−1(𝑢𝑡) and 𝑦𝑡 = 𝛷−1(𝑧𝑡) , where 

𝛷−1(.) denotes the inverse of the cumulative density function of the standard normal 

distribution. The density of the time-varying Gaussian copula can be shown as  

𝑐𝑡
𝐺𝑎𝑢  𝑢𝑡 , 𝑧𝑡|Ω𝑡−1 =

1

 1−𝜌𝑡
𝑒𝑥𝑝  

2𝜌𝑡 𝑥𝑡𝑦𝑡−𝑥𝑡
2−𝑦𝑡

2

2 1−𝜌𝑡
2 

+
𝑥𝑡

2 +𝑦𝑡
2

2
  (2) 

Tail dependence captures the behavior of random variables during extreme events. 

In our study, it measures the probability of a simultaneous market crash in various 

countries given that the bubbles in Chinese stock markets are pricked. The Gumbel and 

the Rotated Gumbel copula can efficiently capture the tail dependence arising from the 

extreme observations caused by asymmetry. The density of the time-varying Gumbel 

copula is  

𝐶
𝛿𝑡
𝑈
𝐺𝑢𝑚  𝑢𝑡 , 𝑧𝑡|Ω𝑡−1 =

 − ln𝑢𝑡 
𝛿𝑡
𝑈−1 − ln𝑧𝑡 

𝛿𝑡
𝑈−1

𝑢𝑡𝑧𝑡
  exp  –   − ln𝑢𝑡 

𝛿𝑡
𝑈−1 +  − ln 𝑧𝑡 

𝛿𝑡
𝑈−1 

1

𝛿𝑡
𝑈
  

 −  − ln𝑢𝑡 
𝛿𝑡
𝑈−1 +  − ln𝑧𝑡   

𝛿𝑡
𝑈−1 

 
1−𝛿𝑡

𝑈

𝛿𝑡
𝑈  

2

+  𝛿𝑡
𝑈 − 1   − ln𝑢𝑡 

𝛿𝑡
𝑈−1 +  − ln𝑧𝑡 

𝛿𝑡
𝑈−1 

 
1−2𝛿𝑡

𝑈

𝛿𝑡
𝑈  

  (3) 

where δt
U ∈ [1,∞) measures the degree of dependence between 𝑢𝑡 and 𝑧𝑡 . δt

U = 1 

implies an independent relationship and δt
U → ∞ represents perfect dependence. 
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Cherubini et al. (2004) show that the Gumbel family has upper tail dependence, with 

λt
U = 2− 21/δt

U
. Rotated Gumbel copula has a similar density function to that of 

Gumbel copula and its time-varying version is  

𝑐
𝛿𝑡
𝐿
𝑅.𝐺𝑢𝑚   1− 𝑢𝑡 ,1 − 𝑧𝑡 = 

 − ln(1 −𝑢𝑡) 
𝛿𝑡
𝐿−1 − ln(1 − 𝑧𝑡) 

𝛿𝑡
𝐿−1

(1 −𝑢𝑡)(1− 𝑧𝑡)
  exp  –   − ln(1− 𝑢𝑡 )

𝛿𝑡
𝐿−1 +  − ln(1 − 𝑧𝑡) 

𝛿𝑡
𝐿−1 

1

𝛿𝑡
𝐿
  

 −  − ln(1 −𝑢𝑡) 
𝛿𝑡
𝐿−1 +  − ln(1− 𝑧𝑡  ) 

𝛿𝑡
𝐿−1 

 
1−𝛿𝑡

𝐿

𝛿𝑡
𝐿  

2

+  𝛿𝑡
𝐿 − 1   − ln(1− 𝑢𝑡) 

𝛿𝑡
𝐿−1 +  − ln(1 −

𝑧𝑡) 
𝛿𝑡
𝐿−1 

 
1−2𝛿𝑡

𝐿

𝛿𝑡
𝐿   

  (4) 

The lower tail dependence measured by the Rotated Gumbel copula is λt
L = 2− 21/δt

L
 

2.3. Parameterizing time-varying copula model 

In reality, time-invariant dependence seems unreasonable. So, a conditional 

copula with a time-varying dependence parameter is prevalent (Patton, 2006a; Patton, 

2006b; Bartram et al., 2007; Jondeau and Rochinger, 2006; Rodriguez, 2007). 

Following the studies of Patton(2006a) and Bartram et al.(2007), we assume that the 

dependence parameter is determined by the past information such as its previous 

dependence and the historical absolute difference between cumulative probabilities of 

two index returns. 

For a time-varying Gaussian copula, its conditional dependence parameter can be 

modeled as an AR(1)-like process because autoregressive parameters over lag one are 
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rarely different from zero (Bartram et al.6, 2007; Samitas et al., 2007). The dependence 

process of Gaussian copula is therefore: 

𝜌𝑡 = 𝛬(𝛽𝜌𝑡−1 + 𝜔 + 𝛾 𝑢𝑡−1 − 𝑧𝑡−1 ) (5) 

The conditional dependence, 𝜌𝑡  , depends on its previous dependence, 𝜌𝑡 −1 , and 

historical absolute difference, |𝑢𝑡−1 − 𝑧𝑡−1| . In this way the persistence and the 

variation in the dependence process can both be captured.  𝛬 𝑥  is defined as 

 1 − 𝑒−𝑥  1 + 𝑒−𝑥 = 𝑡𝑎𝑛ℎ  
𝑥

2
 , which is the modified logistic transformation to 

keep 𝜌𝑡  in (-1,1) at all time (Patton, 2006a). The estimation of copula parameters, 

𝜃𝑐 =  𝛽,𝜔,𝛾 ′ , will be discussed in Section 2.4 

 Both conditional Gumbel dependence and Rotated Gumbel dependence are 

assumed to follow an AR(1)-like process as well. We propose the time-varying 

dependence process for the Gumbel copula and the Rotated Gumbel copula as follows: 

𝛿𝑡
𝑈 = 𝛽𝑈𝛿𝑡−1

𝑈 + 𝜔 + 𝛾|𝑢𝑡−1 − 𝑧𝑡−1|  (6) 

𝛿𝑡
𝐿 = 𝛽𝐿𝛿𝑡−1

𝐿 + 𝜔 + 𝛾|𝑢𝑡−1 − 𝑧𝑡−1|  (7) 

where 𝛿𝑡
𝑈 ∈ [1,∞) measures the degree of dependence in the Gumbel copula and has 

a lower bound equal to one which indicates an independent relationship, while 

𝛿𝑡
𝐿 ∈ [1,∞) measures the degree of dependence in the Rotated Gumbel copula. After 

                                                 

6
 Bartram et al. (2007) assume that the time-varying dependence process follows an AR(2) model. 
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estimating the Gumbel copula parameters 𝜃𝑐 =  𝛽𝑈 ,𝜔,𝛾 ′, the conditional upper tail 

dependence coefficents, {λt
U |Ω𝑡−1}, are obtained by 

𝜆𝑡
𝑈 = Ψ(2− 2

1

𝛿𝑡
𝑈

)  (8) 

where Ψ ≝  1 + 𝑒−𝑥 −1 is the logistic transformation to keep 𝜆𝑡
𝑈  in (0,1) at all time. 

Similarly, the conditional lower tail dependence coefficients, {𝜆𝑡
𝐿 |𝛺𝑡−1}, are obtained 

by the same way.  

2.4. Estimating and calibrating copula models 

Calibrating copula parameters using real market data has involved much interest 

in recent statistical literatures (Meneguzzo and Vecchiato, 2004; Mashal and Zeevi, 

2002; Dias and Embrechts, 2003; Galiani, 2003). Exact Maximum Likelihood Method 

(EML) is a well-known parametric method for estimation. However, the EML need to 

estimate the parameters of the marginals and copula functions simultaneously. As the 

power of a copula model is to express a joint distribution by separating the marginal 

distributions from their dependence, the estimations of copula models are naturally 

decomposed into two steps: the first for the marginals and the second for the copula, 

which is the concept of Inference function for Margins method (IFM). IFM improves 

EML because the latter is computationally intensive, especially for estimations of 

higher dimensions. IFM can be performed by estimating parameters of marginal 

distributions prior to those of copula functions. The efficiency is therefore enhanced.  
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𝜃 𝑖 = arg max ln 𝑓𝑖 (𝑥𝑖𝑡 |𝛺𝑡−1 ,𝜃𝑖 )
T
t=1   (9) 

𝜃 𝑐
𝐼𝐹𝑀 = arg max ln 𝑐 𝐹1 𝑥1𝑡 𝜃 1 ,𝐹2 𝑥2𝑡 𝜃 2 ,……𝐹𝑛  𝑥𝑛𝑡  𝜃 n |𝛺𝑡−1 ,𝜃 𝑖 

T
t=1  (10) 

3. Data and summary statistics 

The daily stock indices provided by Morgan Stanley Capital International (MSCI) 

are obtained from Datastream database over the period from1 January 2002 to 30 June 

2007. 1433 daily observations for each index are collected. Maghyereh (2004) states 

the reasons why MSCI indices are better than other local stock indices. For country’s 

level, MSCI China, MSCI United States, MSCI Japan indices are selected. In order to 

specify which regional stock market is more correlated to China’s, possibly due to their 

geographic ties or trade relationship, we use MSCI Europe and MSCI Pacific. To 

detect whether emerging markets have severer impacts than developed markets do, 

both MSCI world index and MSCI emerging markets index are collected. MSCI world 

index contains market indices of 23 developed countries, while MSCI emerging market 

index includes market indices of 25 emerging countries. Moreover, MSCI AcWorld 

index, which combines market indices of 48 developed and developing countries, is 

collected to measure the worldwide-level dependence.  

The summary statistics of each index return are reported in Table 1. Table 2 shows 

the Pearson, Spearman and Kendall correlations for each index return paired with 

China’s. Pearson correlation is a measurement of linear association, which implies that 
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it is neither robust for heavily tailed distributions nor adequate for a non-linear 

relationship. However, the nonparametric rank correlations, Kendall’s tau and 

Spearman’s rho, are less sensitive to the observations in the tails. As shown in Table 2, 

no matter which measurement is used, China-Emerging pair has the greatest 

correlation, followed by China-Pacific pair and China-Japan pair. The parameters of 

the marginal distributions for each index return are estimated and presented in Table 3. 

They are assumed to be characterized by an AR(1)-GARCH(1,1) model given by 

equation (1). As shown in Table 3, most parameters are at least significant at 5 percent 

level. Furthermore, the residual series pass the goodness-of-fit test for all index returns.  

[Insert Table 1 here] 

[Insert Table 2 here] 

[Insert Table 3 here] 

4. Empirical results 

4.1. Results of unconditional copula models 

For comparison, results of unconditional copula model are presented in Table 4. 

Since marginal distributions are assumed to be an AR(1)-GARCH(1,1) model, Table 4 

reports the estimated parameters and results of goodness-of-fit test for static Gaussian, 

Gumbel and Rotated Gumbel copula functions. As shown in Panel A of Table 4, all 
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copula functions have positive parameters, indicating that index return of China 

positively commoves with all index returns. We can consistently find that, irrespective 

of assumed copula function, the dependence between index return of an emerging 

market and market of China is the highest, followed by China-Pacific pair and 

China-Japan pair. Bekaert et al. (2005) and Goetzmann et al. (2005) claim that capital 

market integration and increased trade are embedded with a prediction about the 

dependence between markets. Therefore, we contend that an emerging market has a 

severer impact on dependence than a developed market7 does. This may be attributed 

to the high trade frequency since the emerging countries are usually key suppliers of 

China for energy, mine, cropper and various commodities. Once the growth of Chinese 

economy is unexpectedly decayed, emerging markets may suffer severely. Also, the 

high degree dependence between China and Pacific or Japan may be attributed to their 

geographic ties and trade frequencies. Furthermore, this finding will be more evident 

as China proposes to join ASEAN Free Trade Area (AFTA) in 2010 to strengthen their 

cooperative and competitive abilities through eliminating tariffs and non-tariff barriers.  

                                                 

7
 Which is measured by MSCI world index 
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The choice of the best fit of copula function is based on the value of Akaike 

information criterion (AIC)8. From the maximized log-likelihood values (lnL) in Panel 

A of Table 4, we compute the AIC for each copula, and then rank the copula models 

accordingly. Panel B of Table 4 shows the AIC values for three chosen copulas. The 

lowest AIC value from the Rotated Gumbel copula indicates that the it is the best fitting 

model and the lower tail dependence exists in each pair. This finding is consistent with 

the literature that equity returns have been found exhibiting more joint negative 

extremes than joint positive extremes, leading to the observation that stocks tend to 

crash, but not to boom, together. 

[Insert Table 4 here] 

4.2. Results of conditional copula model 

Given that the marginal distributions follow an AR(1)-GARCH(1,1) model, the 

estimated parameters of time-varying correlations in the Gaussian copula are reported 

in the Panel A of Table 5. The time-varying dependence model in equation (5) is 

estimated and calibrated for each pair of index returns. The parameter, β, captures the 

degree of persistence in the dependence and γ  captures the adjustment in the 

dependence process. The initial value of the dependence, measured by ρ1, is esimated 

                                                 

8
 𝐴𝐼𝐶 = −2𝐿 𝜃  ;𝑥 + 2𝑞, where q is the number of parameters needed to be estimated in each specific 

model.  
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as well. It can be seen in the Panel A of Table 5 that the emerging, the Pacific and the 

Japanese markets experience a higher degree of dependence persistence with the 

Chinese market. Meanwhile, the log-likelihood functions for these areas are higher 

than those for others. Figure 1 depicts the implied time path of conditional correlations 

for each pair of index returns across sample period. Obviously, China-Pacific pair, 

China-Japan pair and China-emerging-markets pair all demonstrate greater conditional 

correlation, which is consistent with that of unconditional model. 

[Insert Table 5 here] 

4.3. Results of conditional tail dependence 

Panel B and C of the Table 5 report the estimated parameters of time-varying tail 

dependence specified by the Rotated Gumbel and the Gumbel copula, respectively. It 

can be seen in both tables that the emerging, the Pacific and the Japanese markets show 

higher degrees of dependent persistence with the Chinese market. Both time-varying 

lower and upper tail dependences can be obtained by employing equation (8) where 

estimated conditional dependences, 𝛿𝑡
𝑈and 𝛿𝑡

𝐿 , are from equation (6) and (7). In 

Figure 2 and 3 we present the plots of conditional lower and upper tail dependence 

specified by the time-varying Rotated Gumbel and Gumbel copula model, respectively. 

Overall, the value of the copula log-likelihood function of the Rotated Gumbel is the 

highest and that of the Gaussian is the lowest, indicating that the Rotated Gumbel 



18 

 

copula is the best fitting model, and time-varying lower tail dependence exists in each 

pair. This finding is consistent with the unconditional model and the literature as well. 

Especially, the emerging, the Pacific and the Japanese markets experience higher 

degrees of lower tail dependent persistence with the Chinese market. Therefore, if the 

bubbles in Chinese stock markets burst, the probability of a joint market crash in Japan, 

in Pacific and in the emerging countries will be high. 

[Insert Figure 1 here] 

[Insert Figure 2 here] 

[Insert Figure 3 here] 

5. Conclusions  

Researches of international dependence have mainly focused on the developed 

markets. Relatively few have enquired the role of China despite of its noticeable growth 

in its capital market and distinctive impacts on global economy. In this study, we 

emphasize the dynamic dependence between the Chinese financial market and other 

major markets of the world. By estimating time-varying copula models between indices 

of these stock markets, we provide a comprehensive analysis of the time-varying market 

dependence for the period 2002-2007. 
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Regardless of the assumed copula functions, we consistently find that the Chinese 

market experiences a higher degree of dependence with markets in Japan, in the Pacific, 

and in the emerging countries. Geographic ties and close trading relationship may be 

attributed to this high dependence. The implication of this finding is that the 

probability of joint crashes will be high for markets in these areas once bubbles burst in 

China. As China proposes to join ASEAN Free Trade Area, this threat will be 

strengthened further. With this understanding, some decisions on international 

diversification, portfolio allocation and risk management should be reconsidered. 
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Table 1 Summary statistics 

This table shows summary statistics of the returns of MSCI China, MSCI World, MSCI U.S., MSCI Europe, MSCI 

Japan, MSCI AcWorld, MSCI Pacific and MSCI Emerging. The sample period covers 1 January 2002 to 30 June 

2007. 1433 daily observations for each index are collected. 

 Mean Standard 

Deviation 

Skewness Kurtosis 

China 0.00092 0.01375 -0.24097 1.88839 

World 0.00022 0.00812 0.06665 4.01935 

U.S. 0.00018 0.00982 0.19883 3.52405 

Europe 0.00020 0.01078 -0.13120 4.20785 

Japan 0.00038 0.01133 -0.25321 1.23256 

AcWorld 0.00025 0.00797 0.06665 3.87711 

Pacific 0.00042 0.00920 0.02574 1.52761 

Emerging 0.00070 0.00832 -0.64147 2.36938 
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Table 2 Association measurement 

This table shows the Pearson, Spearman and Kendall correlations for each index return paired with China’s. 

China 

versus 

Pearson 

Correlation 

Spearman 

Correlation 

Kendall 

Correlation 

World 0.26387 0.26792 0.18310 

U.S. 0.10788 0.11032 0.07409 

Europe 0.26673 0.25095 0.17222 

Japan 0.44507 0.41799 0.29013 

AcWorld 0.29341 0.29720 0.20407 

Pacific 0.58330 0.55533 0.39476 

Emerging 0.67998 0.63421 0.46171 
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Table 3 Estimated parameters for AR(1)-GARCH(1,1) marginal distributions 

This table shows the estimated parameters of the marginal distributions for each index return. They are assumed to 

be characterized by an AR(1)-GARCH(1,1) model given by equation (1). The numbers in brackets ( ) are p-values. 

 AR(1) GARCH constant Lagged variance Lagged residual 

China 0.0906 

(0.0006) 

4.277e-06 

(0.00261) 

0.9249 

(0.0000) 

0.05202 

(0.0000) 

World 0.1059 

(0.0001) 

5.683e-07 

(0.00035) 

0.9275 

(0.0000) 

0.06087 

(0.0000) 

U.S. -0.0544 

(0.0397) 

7.631e-07 

(0.00011) 

0.9418 

(0.0000) 

0.04731 

(0.0000) 

Europe -0.0193 

(0.4653) 

1.358e-06 

(0.00010) 

0.8938 

(0.0000) 

0.08985 

(0.0000) 

Japan 0.0273 

(0.3009) 

2.383e-06 

(0.00127) 

0.9023 

(0.0000) 

0.08109 

(0.0000) 

AcWorld 0.1209 

(0.000) 

5.858e-07 

(0.00036) 

0.9233 

(0.0000) 

0.06458 

(0.0000) 

Pacific 0.0411 

(0.1204) 

2.067e-06 

(0.00050) 

0.8952 

(0.0000) 

0.08209 

(0.0000) 

Emerging 0.2008 

(0.0000) 

2.034e-06 

(0.00052) 

0.8866 

(0.0000) 

0.08338 

(0.0000) 
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Table 4 Parameter estimations and goodness-of-fit test for unconditional copula model  

This table reports the estimated results of unconditional copula model in the Panel A.  ρ is the correlation 

parameter of Gaussian copula. δU and δL are dependence parameters of Gumbel and Rotated Gumbel copula, 

respectively. λU is the coefficient of upper tail dependence, while λL  is the coefficient of lower tail dependence. 

Relevant results of goodness-of-fit test for static Gaussian, Gumbel and Rotated Gumbel copula functions are 

shown in the Panel B. 𝐴𝐼𝐶 = −2𝐿 𝜃  ;𝑥 + 2𝑞, where q is the number of parameters to be estimated in each 

specific model. 

Unconditional Copula Model 

Paired China v.s. 

Indices World U.S. Europe Japan AcWorld Pacific Emerging 

Panel A: Copula estimation      

Gaussian        

ρ 0.282 0.111 0.286 0.434 0.314 0.576 0.667 

ln L 58.624 8.691 60.141 147.631 73.418 273.776 405.782 

Gumbel        

δU 1.184 1.050 1.190 1.348 1.214 1.559 1.758 

λU  0.204 0.065 0.210 0.328 0.230 0.440 0.517 

ln L 45.670 5.701 50.149 126.326 58.664 252.248 375.204 

R.Gumbel         

δL 1.206 1.071 1.205 1.369 1.237 1.583 1.797 

λL  0.223 0.090 0.222 0.341 0.249 0.451 0.529 

ln L 60.415 9.568 61.433 147.402 75.783 274.907 406.959 

Panel B: Goodness-of-fit test (AIC)     

Gaussian -115.248 -15.382 -118.282 -293.262 -144.836 -545.552 -809.564 

Gumbel -89.34 -9.402 -98.298 -250.652 -115.328 -502.496 -748.408 

R.Gumbel -118.83 -17.136 -120.866 -292.804 -149.566 -547.814 -811.918 
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Table 5 Estimated parameters of time-varying dependences in the chosen copulas  

This table shows the estimated parameters of time-varying dependences in the chosen copulas. The time-varying 

dependence models in equation (5), (6), (7) are estimated and calibrated for each pair of index returns. The 

parameter, β, captures the degree of persistence in the dependence and γ captures the adjustment in the 

dependence process. The initial value of the dependence is estimated as well. LLF(c) is the maximum of the copula 

component of the log-likelihood function. 

China versus β ω γ Initial value LLF(c) 

Panel A: Gaussian copula 

World 0.31945 0.13538 0.22749 0.60793 60.75699 

U.S. 0.56739 0.01781 0.09516 0.87929 10.08956 

Europe 0.34985 0.16647 0.09658 0.39344 60.55184 

Japan 0.99990 0.05737 -0.10777 0.77259 149.3346 

AcWorld 0.27147 0.181184 0.21209  0.59932 75.2125 

Pacific 0.99990 0.12581 -0.21283 0.63262 281.2017 

Emerging 0.99990 0.17462 -0.19900 0.80974 409.1492 

Panel B: Rotated Gumbel copula 

World 0.38781 0.68741 0.18189 1.95735 62.30450 

U.S. 0.37218 0.64788 0.07926 3.69468 11.13930 

Europe 0.42159 0.67766 0.06901 1.44933 61.78139 

Japan 0.92767 0.12652 -0.11190 1.50332 150.61170 

AcWorld 0.35824 0.74466 0.18093 1.96737 77.45485 

Pacific 0.95300 0.11094 -0.16929 1.39997 283.0431 

Emerging 0.96375 0.09432 -0.15127 1.20698 414.9552 

Panel C: Gumbel copula 

World 0.19345 0.90657 0.17268 1.29830 47.05787 

U.S. 0.43248 0.58589 0.03316 2.51917 6.76919 

Europe 0.55675 0.51727 0.03869 1.00000 50.47848 

Japan 0.89806 0.16567 -0.11484 1.44770 128.61650 

AcWorld 0.16640 0.96713 0.16552 1.28228 59.81751 

Pacific 0.93504 0.14005 -0.17935 1.29072 258.90430 

Emerging 0.95090 0.12672 -0.21067 1.23979 384.14260 
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Figure 1 Conditional correlation estimation from the Gaussian copula 
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Figure 2. Conditional lower tail dependence estimation from the Rotated Gumbel copula 
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Figure 3. Conditional upper tail dependence estimation from the Gumbel copula  
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