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Hedged Portfolio Value-at-Risk Estimation using a Time-varying
Copula: An Hlustration of Model Risk

1. Introduction

Value-at-risk (VaR) has become one of the most popular tools for risk
measurement. However, it is subject to model risk, which involves the choice of
models, parameters, and their implementation. Previous studies have generally
discussed potential estimation biases and model risk in the VaR model (Jorion, 1996;
Kupiec, 1999; Rich, 2003; Miller & Liu, 2006; Brooks & Persand, 2002). This paper
assesses the potential loss of accuracy in hedged portfolio value—at-risk (HPVaR) due
to estimation risk and shows that model risk in HPVaR can be attributed to
inappropriate use of the correlation coefficient and normal joint distribution®. Jorion
(1996) first indicated that VaR estimates was themselves affected by their sampling
variation or “estimation risk”. Brooks and Persand (BP) (2002) investigated a number
of statistical modeling issues in determining market-based capital risk requirements.
They highlighted several potential pitfalls in commonly applied methodologies and
concluded that model risk could be serious in VaR calculation®. The above analysis
considered univariate distribution only. This study, however, addresses this issue for
bivariate distributions. Similar to that of Christoffersen and Goncalves (CG) (2005),
this study employs the bootstrap resampling technique to quantify ex ante the
magnitude of estimation risk by constructing confidence intervals around point
HPVaR estimates.

This paper also reexamines whether a more accurate HPVaR estimate under the
alternative copula-based joint distributions could be derived using the fifth percentile
(5%) instead of the first percentile (1%), as currently adopted by the Basle
Committee®. BP (2002) found that standard errors could be more severe for the first

! The correlation coefficient only measures the “degree” or “level” of dependence, which reflects the
overall strength of the relation. However, it fails to model the “structure” of dependence, which
describes the manner in which two assets are correlated. In addition, it is neither robust enough for
heavily tailed distributions nor adequate for non-linear relationships.

2 They found that when the actual data is fat-tailed, using critical values from a normal distribution in
conjunction with a parametric approach can lead to a substantially less accurate VaR estimate than
using a nonparametric approach.

® An important issue in risk management practice is the coverage rate that should be required by the
minimum capital risk requirements (MCRRs). To ensure adequate coverage, the Basle Committee

chose to focus on the first percentile (1%) of return distributions. In other words, risk managers are
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percentile of normal return distribution. They suggested that the closer the quantile
was to the mean of the distribution, the more accurately VaR could be estimated. Thus,
to ensure covering virtually all probability losses, the use of a smaller coverage rate
(say, 95% instead of 99%) combined with a larger multiple was preferred. If the
estimation error under the 99 % coverage rate is larger than that of the 95% coverage
rate, the BP argument is supported in our study. From the univariate VaR to the
bivariate HPVaR, we inquire whether the superiority of 95% coverage rate is
consistent and persistent.

Copulas enable the modeler to construct flexible multivariate distributions
exhibiting rich patterns of tail behavior, ranging from tail independence to tail
dependence, and different kinds of asymmetry. For modeling financial risks, they are
an alternative measure of correlation (Embrechts et al., 1999). This paper employs
single-parameter conditional copula to represent the dependence between index
futures and spot returns, conditional on historical information provided by a previous
pair of index futures and spot returns. The parameter of the conditional copula, which
is time-varying, depends on conditional information. This study also models the
dependence structure as a mixture of different copulas with parameters changing over
time. Using the hybrid copula, parametric or nonparametric marginals with quite
different tail shapes* can then be combined in a joint risk distribution to preserve the
original characteristics of the marginals (Rosenberg & Schuermann, 2006)°. By
applying a time-varying copula approach, our conditional HPVaR model easily passes
associated criticisms and avoids a biased estimation in HPVaR.

Based on the results of three backtests (unconditional and conditional coverage
test, the dynamic quantile test, the distribution and tail forecast test), this study
demonstrates that, under all significance levels (95% and 99%), the copula-based
HPVaR model exhibits performance superior to the conventional constant conditional
correlation (CCC) GARCH model (Bollerslve (1990)) and dynamic conditional
correlation (DCC) GARCH model (Tse and Tsui (2002)). From the bootstrapped
evidence, this study also finds that the closer the quantiles are to the mean of the
distribution, the smaller the estimation error will be for both copula-based and
conventional models. Our findings support and extend that of BP (2002), that is, the
superiority under 95% coverage rate is confirmed for both univariate and multivariate
VaR estimations.

required to hold sufficient capital to absorb all but 1 percent of expected losses, rather than the 5
percent level used by Risk Metrics in the J.P. Morgan approach (1996).
* In general, marginal distributions are estimated separately.

® Mixtures of copulas are also copulas. See Nelsen (1999) for details.
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2. Methodology

2.1. Conditional copula model
We assume that the marginal distribution for each portfolio asset return (index

and its corresponding futures) is characterized by a GJIR-GARCH(1,1)-AR(1)-t model
since the asymmetric information impact is a well-known effect with financial assets®.
Similar to the appendix in Patton (2006a), we perform a marginal distribution
specification test. The test results suggest that the models for the conditional means of
the spot and futures returns are AR(1). Let R;, and hﬁt denote asset i’s return (spot
(s) or futures (f)) and its conditional variance for period t, respectively. Q;_;
denotes a previous information set. The GJR-GARCH(1,1)-AR(1)-t model for asset
return i is defined by”:

Ry =u+OiRirq+ & (1a)
hiz,t = w; + ,Bihiz,t—1 + ai,15i2,t—1 + ai,ZSi,t—lgiz,t—l (1b)
Zi |21 = /hiz_t(Vi—Z) g  Zipe~lid ty, (1c)
i€{s f}

with s;,_; =1 when ¢;,_, is negative and otherwise s;,_; = 0. v; is the degree
of freedom.

Cherubini et al. (2004) claimed that copula functions with upper (or lower) tail
dependence are suggested in VaR applications, and a time-varying copula is quite
capable of calculating portfolio VaR. We thus employ the Gaussian, the Gumbel and
the Clayton copula for specification and calibration. The Gaussian copula is generally
viewed as a benchmark for comparison, while the Gumbel and the Clayton copula are
used to capture upper and lower tail dependence, respectively. The Clayton copula is
especially pertinent because the evidence indicates that equity returns exhibit more
joint negative extremes than joint positive extremes, leading to the observation that
stocks tend to crash together but not boom together (Poon et al., 2004; Longin &

® The conditional densities of equity index returns are leptokurtic, and their variances are asymmetric
functions of previous returns (Nelson, 1991; Engle and Ng, 1993; Glosten et al., 1993)

" In Enders (2004), the Eq. (1c) can be alternatively expressed as &it| Qg ~t,; (0, hip).
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Solnik, 2001; Bae et al., 2003)®. Appendix A illustrates the bivariate copula densities
used in this study.

Since a portfolio with time-invariant dependences among its components seems
unreasonable in reality, a conditional copula with a time-varying dependence
parameter has become prevalent in the literature (Patton, 2006a,b; Bartram et al., 2007;
Jondeau & Rochinger, 2006; Rodriguez, 2007). Following the studies of Patton
(2006a) and Bartram et al.(2007), we assume that the dependence parameter is
determined by previous information such as its previous dependence and the historical
absolute difference between cumulative probabilities of portfolio asset returns®. A
conditional dependence parameter can be modeled as an AR(1)-like process because
autoregressive parameters over lag one are rarely different from zero (Bartram et al.’?,
2007; Samitas et al., 2007). The dependence process of a Gaussian copula is
therefore:

pr = A(Bpe—1+ ® +y|ugy —veq|) (2)
where  u, = Fy,(z5¢|2—1) and v, = Fr((z|-1) in Appendix A. The
conditional dependence, p;, depends on its previous dependence, p;_,, and historical
absolute difference, |u;—; — v4—1|. u; and v, are two time-varying cumulative
distribution functions of random variables, as defined in appendix A. This formulation
captures both the persistence and the variation in the dependence process. A(x) is

defined as (1—e‘x)(1+e‘x)=tanh(§), which is the modified logistic

transformation to keep p; in (-1,1) at all times (Patton, 2006a). Time-varying
dependence processes for the Gumbel copula and the Clayton copula are described as
Eq. (3) and (4), respectively.

0t = Pubi—1 + w +y|usmq — Veq| (3)

O = BLOi—1 + 0 +y|ugg — V| 4)
where §; € [1,00) measures the degree of dependence in the Gumbel copula and has
a lower bound equal to 1, indicating an independent relationship, whereas 6, €

® The general theory of copulas is described by Joe (1997) and Nelsen (1999) and finance applications
are emphasized by Cherubini et al. (2004). Important conditional theory has been developed and
applied to financial market data by Patton (20064, b).

® There are different ways of capturing possible time variation in a conditional copula. This paper
assumes that the functional form of the copula remains fixed over the sample whereas the parameters
vary according to some evolution equation, as in Patton (2006a).

10 Bartram et al. (2007) assumed that the time-varying dependence process follows an AR(2) model.
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[—1,00) measures the degree of dependence in the Clayton copula. Boundaries of
parameters are set up in the estimation software.

2.2. Hybrid method: A mixture of copulas
To find the copula that best estimates the HPVaR, we also consider some

possible mixtures of different copulas. As indicated by Rosenberg and Schuermann
(2006), integrated risk management requires a method, such as a mixture of copulas,
to incorporate realistic marginal distributions. Combining realistic marginal
distributions enables us to capture essential empirical features of various risks (market,
credit, and operational)11. Hu (2006) pointed out that empirical applications so far
have been limited to using individual copulas; however, there is no single copula that
applies to all situations. A mixed model is better able to generate dependence
structures that do not belong to one particular existing copula family. By carefully
choosing the component copulas in the mixture, a model that is simple yet flexible
enough to generate most dependence patterns in financial data can be constructed12.
Beyond Hu’s study, we propose a “time-varying mixture copula” (or conditional
mixture copula) to generate more flexible dependence structures than existing copula
families.

To capture all possible dependence structures, our time-varying mixture copula is
comprised of a conditional Gaussian copula, a conditional Gumbel copula, and a
conditional Clayton copula. The mixture copula can be defined as

CtMixmre (ue, velpe, 8¢, 0¢)

= WtClathClay(ut’ Ve]0p) + wit I (g, v |6) + (1 — Wtaay — Wi CE (ug, velpe) (5)
where wo'® is the time-varying weight of the conditional Clayton copula, and
wiUm js the time-varying weight of the conditional Gumbel copula. Let

wl wlum e [0,1] and wi'®+w8U™ < 1. These weights reflect the structures of

! Regardless of the initial risk source in financial collapses (such as the outbreaks of subprime
markets), all portfolios composed of an index and its corresponding futures are subject to at least two
types of risk: market, credit and operational risk. The distributional shape of each risk type varies
considerably. Market risk typically generates portfolio value distributions that are nearly symmetric and
often approximated as normal. Credit (and especially operational) risk generates more skewed
distributions because of occasional extreme losses.

2 Hu (2006) suggests some implications for risk management. First, the use of multivariate normality
and correlation coefficients to measure dependence may significantly underestimate the downside risk,
while that computed using a mixed copula is much more realistic. Second, in risk measurement, the

valuation model should include both the structure and the degree of dependence.
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dependence and capture changes in tail dependencel3. For instance, after an increase
in W:Zlay' the copula assigns more probability mass to the left tail. Compared to the
models of Hu (2006), Li (2000), and Lai et al. (2007), our mixture copula model is not
restricted to static weights as theirs, but extends to a time-varying version to flexibly

capture the dynamics of dependence structures.

2.3. Data and HPVaR estimation with the time-varying copula
The Monte Carlo simulation is widely used to generate draws from stochastic

models. In particular, the copula framework makes it easy to simulate portfolio
returns from a general multivariate distribution (Meneguzzo & Vecchiato, 2004).
Given a chosen copula function and its estimated time-varying parameter in the
previous section, the multivariate random variables {u;,v.}can be generated. For
each copula function, we generate 200 pairs of {u;,v:|p: 8: 6:} conditional on
dynamic dependence coefficients p;, 6;, or 8,. Therefore, at time t, conditional joint
distributions such as c(u; , v¢|ps), c(us,ve| 6;) and c(u;,v| 6;) can be obtained.

The next step is to convert conditional uniform random variables
{u;,v¢lps, 8¢, 0 3, generated from conditional joint distributions, to portfolio
component returns by constructing empirical distributions for each sample day. We
use historical data from the previous sixty and ninety trading days and roll them over.
Thus, given the estimated conditional joint distribution of asset returns, replicated
samples can be drawn for the portfolio components.

To demonstrate the application of this time-varying copula in HPVaR estimation,
we constructed a hedged portfolio comprised of the S&P 500 index and its index
futures. The sample period covers Januaryl, 2004 to October 29, 2007, including the
outbreak period of the U.S. subprime market collapse from August to October 2007. A
total of 998 daily observations for the index and index futures are obtained. Hsu et al.
(2008) proposed copula-based GARCH models for estimating optimal hedge ratio,
and found that they perform more effectively than other dynamic hedging models. We
intuitively employ copula-based GARCH models to form hedged portfolios since
conditional joint distributions of portfolio components in this study are specified as
the Gaussian, Gumbel and Clayton copulas. On the other hand, assuming the optimal
weight of the hedged portfolio as its conditional minimum-variance hedge ratio keeps

3 Hu (2006) defined these weights as shape parameters to reflect dependence structures.
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all variables under a time-varying version**. In this way, the conditional
variance-covariance matrix of residual series from (&g, &) in (l1a), is denoted by

_ hg,t hsf,t
Var(ese & ¢|Qe-1) = hpe |
sf, :

The optimal conditional minimum-variance hedge ratio, {H;|Q._1}, can then be
defined as

* h f,
Ht = Esz - (6)
fit

and

iisf,t = hs,thf,t fjooo fjooo Zs,th,t(Pt(Zs,th,tl-Qt—l) dzdzy

where @(zszs¢| Q-1 )is @ bivariate conditional joint density function of zg, and
zf,t.15 We therefore obtain the distributions of portfolio returns, {p;|H;}, conditional
on dynamic hedge ratios. Using a quantile of the conditional portfolio distributions
as the conditional HPVaR estimates, HPVaRs conditional on time-varying
dependences between portfolio components are estimated for each sample day.

3. Empirical results of HPVaR estimation

3.1. Estimation results of the time-varying copula models

Table 1 reports summary statistics for the S&P 500 index returns and its futures
returns. Table 2 shows estimated parameters of the marginal distributions
characterized by a GJR-GARCH(1,1)-AR(1)-t model given by Eqg. (1). As Table 2
indicates, most of the parameters are at least significant at the 5 percent level.

The Inference Function for Margins (IFM) method is implemented by estimating
the marginal distribution parameters prior to the copula function parameters to
enhance estimation efficiency. Joe and Xu (1996) pointed out that the IFM method
makes inference for many multivariate models computationally feasible. It allows one
to compare models for the dependence structure and make a sensitivity analysis of the
models. In addition, it is more robust against outliers or perturbations of the data than
the maximum likelihood method. Given that the marginal distributions are estimated,
the parameters of time-varying correlations in the Gaussian copula are calibrated and
reported in Panel A of Table 3. Appendix B describes the parameter estimation of the
conditional copula. In Eqg. (2), the parameter [3 captures the degree of persistence in

 The minimum variance hedge ratio (MVHR), which is the ratio of futures contracts to a specific spot
position that minimizes variance of hedged portfolio returns, has been broadly used as a futures
hedging strategy.

5 According to the Sklar theorem, the joint distribution can be represented as a copula function.
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the dependence and y captures the adjustment in the dependence process. Panels B
and C in Table 3 report the estimated parameters of time-varying asymmetric
dependences specified by the Gumbel and the Clayton copula, respectively. Equations
(3) and (4) are their time-varying dependence processes. As suggested by Joe and Xu
(1996), we apply the jackknife method to estimate the standard errors of the
parameters. Appendix B describes the detail for implementing the IFM method with
the jackknife for estimating standard errors.

Table 4 reports summary statistics of the weight estimates of conditional mixture
copulas. These weights are estimated by MLE according to Eq. (5). Panel A reports
the weight estimates across the entire sample period, while Panel B focuses on the
period of the U.S. subprime market crash from August to October 2007. The statistics
of weight estimates in the conditional Clayton copula generally are only marginally
higher than those in the conditional Gumbel and around four to five times higher than
those in the conditional Gaussian copula, indicating the conditional mixture copulas
allocate more weights on left tail dependence to reflect the fact that markets are more
likely to crash together than to boom together, especially during the U.S. subprime
market crash. Figure 1 depicts a time series plot of the time-varying weight estimates
of conditional mixture copulas.

3.2. Statistical results of conditional HPVAR estimates

Implementing the Monte Carlo simulation generates replicated samples for the
index and futures returns given the estimated parameters of the time-varying
dependence models in each sample day. As the optimal weight of a hedge portfolio is
assumed to be its conditional minimum-variance hedge ratio in Eq. (6), conditional
distributions for portfolio returns are generated for each sample day. Furthermore, 1%
and 5 % quantiles of the conditional portfolio distributions are used to estimate the
conditional HPVaR. Table 5 summarizes the statistics of the conditional HPVaR
across the sample period. D60 and D90 are the rolling horizons, and indicate that the
empirical distributions are constructed using historical data from the previous sixty
and ninety trading days, respectivelyl6. Accordingly, 998 empirical distributions
across sample period are obtained. As Table 5 shows, regardless of the significance
level or the rolling horizon, the conditional HPVaR estimates specified by the Clayton
copula are the most strict for each statistic, whereas the Gaussian copula produces the
most tolerant estimates.

A violation occurs if the actual portfolio return is worse than the HPVaR estimate.
Violation numbers measure the frequency of violation, and mean violation refers to

18 The empirical distributions are constructed by previous sixty and ninety trading days to convert

uniform variables from marginal distributions to simulated index and futures returns.
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the average loss in excess of the HPVaR estimates. The violation frequency is the
largest in the Gaussian copula. Since the portfolio assets exhibit asymmetric
dependence, especially for lower tail dependence, the stricter HPVaR estimate of the
Clayton copula should be used. Table 5 shows that conditional HPVaR estimates from
the Clayton copula have fewer violations and exceed by less than other copulas. The
number of violations in the mixture copula is lowest, and its statistics are more
modest than others.

For comparison, Figure 2 shows the time series plots of conditional HPVaR
estimates with different significance levels (99% and 95%) and different rolling
horizons (60 and 90 trading days). In general, the conditional HPVaR estimates from
the Clayton copula are more strict than others, as was quite evident during the U.S.
subprime market crash period. Note that the time series for the HPVaR estimates of
the mixture copula are also less volatile.

4. Conclusion

The conventional HPVaR estimation method commonly used in current practice
exhibits considerable biases due to model specification errors. This study uses HPVaR
estimation to illustrate that model risk is attributable to inappropriate use of the
correlation coefficient and normal joint distribution. We improve the HPVaR
estimation and reduce its model risk by relaxing the conventional assumption of
normal joint distribution and developing an empirical model of time-varying HPVaR
conditional on time-varying dependencies between portfolio components. To
demonstrate the dynamic hedging version of time-varying HPVaR comparisons, both
single-parameter conditional copulas and copula mixture models are applied to form
flexible joint distributions.

HPVaR estimates for optimal hedged portfolios are computed from various copula
models, and backtesting diagnostics indicate that the copula-based HPVaR outperforms
the conventional HPVaR estimator at the 99% and 95% significance level. Our results
also demonstrate that estimation risk is more severe under nominal coverage
probability of 99 percent than with 95 percent. In other words, due to estimation risk,
the HPVaR point estimate with 99 percent coverage rate is quite uncertain. The
copula-based model is acceptable even with estimation risk, whereas the GARCH
models are absolutely invalid.

Our findings have significant implications for regulators. First, the benefit of
applying the copula model to HPVaR estimation is identified after considering model
risk. Second, to reduce estimation risk, HPVaR estimation using a smaller nominal
coverage rate (say, 95% instead of 99%) is preferred.
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commonly used in current practice exhibits considerable biases due to model
specification errors. This study improves HPVaR estimation by relaxing the
conventional assumption of normal joint distribution and developing an empirical
model of time-varying HPVaR that is conditional on time-varying dependences among

portfolio components.




