行政院國家科學委員會專題研究計畫 成果報告

在隨機需求下損耗性商品之整合性供應鏈存貨模式

<u>計畫類別</u>: 個別型計畫 <u>計畫編號</u>: NSC92-2218-E-216-003-<u>執行期間</u>: 92 年 11 月 01 日至 93 年 07 月 31 日 執行單位: 中華大學資訊管理學系

<u>計畫主持人:</u> 吳玫瑩

報告類型: 精簡報告

<u>處理方式:</u>本計畫可公開查詢

中 華 民 國 93年9月13日

行政院國家科學委員會專題研究計畫成果報告

在隨機需求下損耗性商品之整合性供應鏈存貨模式

Integrated Supply Chain Inventory Model for Deteriorating Item with Random

Demand

計畫編號: NSC 92-2218-E-216-003-執行期限: 92 年 11 月 1 日 至 93 年 7 月 31 日 主持人: 吳玫瑩 中華大學資訊管理系

摘要

本研究發展一套損耗性商品在隨 機需求下整合性政策之供應鏈存貨模 式,供應鏈的成員包括:零售商、製 造商及供應商。透過數學模式的發展 獲得最佳的生產與訂購批量以及最佳 運送次數,以達到整體供應鏈的聯合 總成本最小化。經由數學例題的結果 顯示,由整合性的觀點所獲得的最佳 解可以比單獨觀點所獲得的最佳解之 聯合總成本低。最後,利用變異數分 析探討一些關鍵因子如:服務水準、 標準差、前置時間及損耗率對於最佳 解的影響。本研究的結果可以協助供 應鏈中的採購管理者在類似的情況下 作出正確的決策,以達到整體供應鏈 的聯合總成本最小化。

關鍵詞:供應鏈管理,隨機需求,損 耗性商品,整合性政策

Abstract

This study develops a random demand inventory model for deteriorating items in an integrated supply chain with three parties: the buyer, the producer and the supplier. A mathematical model is derived for minimizing the joint total cost of three parties with the optimal lot size and the number of deliveries. A numerical example shows that the integrated policy results in an impressive cost-reduction compared with any independent decision. Finally, an

analysis of variance is performed to illustrate how the key factors: service level, standard deviation of demand, lead time, and deterioration rate affect the optimal solution. This study could help a supply chain purchasing manager at that situation decide on how much to order as well as obtain the minimum joint total cost.

Keywords: Supply chain management, Random demand, Deteriorating items, Integrated policy

1. Introduction

According to studies of Tersine (1994), when demand was treated as continuous, the most frequently used distribution was the normal distribution. Liao and Shyu (1991) first presented a probabilistic inventory model in which the demand during lead time followed a normal distribution. Ben-Dava and Raouf (1994) extended Liao and Shyu's model and considered both order quantity and lead time as decision variables to minimize the sum of the total cost, where the shortages were neglected. Later, Ouyang et al. (1996) extended Ben-Daya and Raouf's model to consider the issue of shortages and allowed backorders or lost-sales. Moon and Choi (1998) improved Ouvang et al.'s (1996) model by simultaneously optimizing both order quantity and reorder point. Later, Ouvang et al. (2002) extended Moon and Choi's model to take quality-related cost into account in

determining the optimal ordering policy.

In a highly competitive market, the minimum joint total cost could be achieved if all the partners are willing to co-operate. In some of the literature, models have been established for optimizing supply chain operations by minimizing the joint total cost. Kim and Ha (1997) developed an integrated inventory model to derive the minimal joint total cost between the buyer and the vendor where the deterioration issue was neglected. In real life situation, the inventory models are considered in which inventory is depleted not only by demand but also by decay. Thus studying the deteriorating inventory is becoming very important. In the literature, Ghare and Schrader (1963) were the first researchers to consider exponentially decaying inventory for a constant demand. Yang and Wee (2000) extended the Kim and Ha's (1997) model consider inventorv to deterioration and the integration of vendor and buyer. Later, Rau et al. (2003) and Wu et al. (2003) extended the integrated model consider to multi-echelon inventory system for different deteriorating items with demand assumptions.

From the above literature review, we find that this study might be the first simultaneously to consider the case of demand with random а normal distribution and integrated multi-echelon inventory model for deteriorating items. The result in this study has shown that the integrated viewpoint is more economical compared with an independent viewpoint.

2. Assumption and notations

The mathematical model developed in this study is based on the following assumptions:

- (1) The demand rate is random with a normal distribution.
- (2) The production rate is deterministic and constant.

- (3) The deterioration rate is deterministic and constant.
- (4) The planning period is known.
- (5) The lead time is allowed.
- (6) Single buyer, producer and supplier with one type of item are considered.
- (7) Multiple lot-size deliveries per order are considered.
- (8) The delivery quantity is constant for each delivery.

In order to establish the inventory model, the following notations are used:

Т	Planning period
N	Number of deliveries per
	planning period T
t	Period of the replenishment
	cycle
LT	Lead time of the replenishment
t_P	Period of the finished goods
	per production
q_B	Lot-size of finished goods per
	delivery from the producer to
	the buyer
Ss	Safety stock at the buyer in
	period t
q_P	Lot-size of finished goods for
	production during period t_P
q_{PW}	Lot-size of raw materials per
	delivery from the supplier to
	the producer's warehouse
Q_{PW}	Lot-size of raw materials per
	delivery from the second tier
	supplier to the supplier
$I_B(t')$	Finished goods inventory level
T (1)	at time t' for the buyer
$I_P(t')$	Finished goods inventory level
T (1)	at time t' for the producer
$I_{PW}(t')$	Raw materials inventory level
	at time t for the producer's
T (1)	warehouse
$I_{S}(t)$	Raw materials inventory level
TC	Total cost for the huver
TC_B	Total cost for the graduate
IC_{PP}	roduction
TC	Total cost for the producer's
$I C_{PW}$	warehouse
TC	Total post for the producer that
IC_P	Total cost for the producer, that

	is, $TC_P = TC_{PP} + TC_{PW}$
TC_S	Total cost for the supplier
TC	Joint total cost with TC_B , TC_P
	and TC_S
A	Ordering cost of finished goods
	per order for the buyer
F_B	Receiving cost of finished
	goods per receiving for the
	buyer
H_B	Holding cost of finished goods
	per unit for the buyer
P_B	Deteriorated cost of finished
	goods per unit for the buyer
α_R	Overstock cost of finished
	goods per unit for the buyer
β_B	Stockout cost of finished goods
, -	per unit for the buyer
θ_{B}	Deterioration rate for the
2	buyer's finished goods
Р	Production rate for the
	producer
S_P	Setup cost per setup for the
	producer
F_P	Delivery cost of finished goods
	per deliver for the producer
H_P	Holding cost of finished goods
	per unit for the producer
P_P	Deteriorated cost of finished
	goods per unit for the producer
β_P	Finished goods stockout cost
	per unit for the producer
θ_P	Deterioration rate for the
	producer's finished goods
F_{PW}	Receiving cost of raw materials
77	per receive for the producer
H_{PW}	Holding cost of raw materials
	per unit for the producer's
D	warehouse
P_{PW}	Deteriorated cost of raw
	materials per unit for the
0	Deterioretica actor (1
θ_{PW}	Deterioration rate for the
G	producer's raw materials
3	order cost of raw materials per
F	Delivery cost of row motorial
F _S	Derivery cost of raw materials
11	Holding cost of row motorials
Π_S	materials
	nor unit for the summisse

P_S	Deteriorated cost materials per unit supplier	of for	raw the
$ heta_S$	Deterioration rate supplier's raw material	for s	the

3. The inventory model development

The supply chain system under this study is illustrated in Fig.1, and the inventory level for deteriorating item for each party in the supply chain is depicted in Fig.2. In order to fulfill each demand, the supplier delivers raw materials to the producer's warehouse at a fixed period; the producer withdraws raw materials from his own warehouse and processes them into finished goods, then delivers finished goods to the buyer at a replenishment cycle.

3.1. The finished goods inventory model for the buyer

In this study, the demand is treated as a normal distribution with mean Dand standard deviation σ . When a deteriorating item with an exponential distribution for its deterioration is considered, the lot size of q_B is obtained as follows:

$$q_{B} = \frac{D}{\theta_{B}} \left(e^{\theta_{B}(t+LT)} - 1 \right) + \frac{Z\sigma\sqrt{(t+LT)}}{e^{-\theta_{B}(t+LT)}}$$
(1)

Under a random demand environment, when the lot size of q_B is ordered, a firm might faces overstock or stockout. Then, the expected overstock and stockout cost can be derived as follows:

Expected overstock =
$$q_B F_i \left(\frac{q_B - x}{\sigma \sqrt{(t + LT)}} \right) - \left(x F_i \left(\frac{q_B - x}{\sigma \sqrt{(t + LT)}} \right) - \sigma \sqrt{(t + LT)} \right) f_i \left(\frac{q_B - x}{\sigma \sqrt{(t + LT)}} \right) \right)$$

= $(q_B - x) F_i \left(\frac{q_B - x}{\sigma \sqrt{(t + LT)}} \right) + \sigma \sqrt{(t + LT)} f_i \left(\frac{q_B - x}{\sigma \sqrt{(t + LT)}} \right)$
Expected stockout = $(x - q_B) + q_B F_i \left(\frac{q_B - x}{\sigma \sqrt{(t + LT)}} \right) - \left(x F_i \left(\frac{q_B - x}{\sigma \sqrt{(t + LT)}} \right) - \sigma \sqrt{(t + LT)} f_i \left(\frac{q_B - x}{\sigma \sqrt{(t + LT)}} \right) \right)$
= $(x - q_B) \left(1 - F_i \left(\frac{q_B - x}{\sigma \sqrt{(t + LT)}} \right) \right) + \sigma \sqrt{(t + LT)} f_i \left(\frac{q_B - x}{\sigma \sqrt{(t + LT)}} \right)$
(3)

Thus, the buyer's total cost of finished goods per period T can be

expressed as the sum of the order cost, receiving cost, holding cost, deteriorating cost, overstock cost and stockout cost, that is: $T_{C_n} = \{\underline{A}\}_+ \{\underline{F_n}^{*n}\}$

$$\begin{split} &_{B} = \left\{ \frac{T}{T} \right\} + \left\{ \frac{B}{T} \right\} \\ &+ \left\{ \frac{\left(\frac{\min(q_{B}, q_{P}) - D(t + LT) - ss}{\theta_{B}} \right)^{*} H_{B} * n}{T} \right\} + \left\{ \frac{\left(\min(q_{B}, q_{P}) - D(t + LT) - ss} \right)^{*} P_{B} * n}{T} \right\} \\ &+ \left\{ \frac{\left\{ \left(\min(q_{B}, q_{P}) - x \right)^{*} F_{S} \left(\frac{\min(q_{B}, q_{P}) - x}{\sigma \sqrt{(t + LT)}} \right) \right\} + \sigma \sqrt{(t + LT)} * f_{S} \left(\frac{\min(q_{B}, q_{P}) - x}{\sigma \sqrt{(t + LT)}} \right) \right\} * \alpha_{B} * n}{T} \right\} \\ &+ \left\{ \frac{\left\{ \left(x - \min(q_{B}, q_{P}) \right)^{*} \left(1 - F_{S} \left(\frac{\min(q_{B}, q_{P}) - x}{\sigma \sqrt{(t + LT)}} \right) \right) \right\} + \sigma \sqrt{(t + LT)} * f_{S} \left(\frac{\min(q_{B}, q_{P}) - x}{\sigma \sqrt{(t + LT)}} \right) \right\} * \beta_{B} * n}{T} \right\} \\ &+ \left\{ \frac{\left\{ \left(x - \min(q_{B}, q_{P}) \right)^{*} \left(1 - F_{S} \left(\frac{\min(q_{B}, q_{P}) - x}{\sigma \sqrt{(t + LT)}} \right) \right) \right\} + \sigma \sqrt{(t + LT)} * f_{S} \left(\frac{\min(q_{B}, q_{P}) - x}{\sigma \sqrt{(t + LT)}} \right) \right\} * \beta_{B} * n}{T} \right\} \\ &+ \left\{ \frac{\left\{ \left(x - \min(q_{B}, q_{P}) \right)^{*} \left(1 - F_{S} \left(\frac{\min(q_{B}, q_{P}) - x}{\sigma \sqrt{(t + LT)}} \right) \right) \right\} + \sigma \sqrt{(t + LT)} * f_{S} \left(\frac{\min(q_{B}, q_{P}) - x}{\sigma \sqrt{(t + LT)}} \right) \right\} * \beta_{B} * n}{T} \right\}$$

Where $(\underbrace{\min(q_B, q_P) - D(t + LT) - ss}_{\theta_P})$ is the total

holding quantity of finished goods during period (t+LT), and $(\min(q_B,q_P)-D(t+LT)-ss)$ is the total deteriorating quantity of finished goods during period (t+LT).

3.2. The inventory model for the producer

3.2.1. The producer's finished goods inventory model

When $t_P > t$, the producer is unable to satisfy the buyer's demand during period *t*, and results in a shortage. Hence, q_P can be written as the following relationship:

 $q_{p} = \begin{cases} q_{B} & \text{, if } t_{p} \leq t, \text{ then no stockout for the producer} \\ \frac{P}{\theta_{p}}(1 - e^{-\theta_{d}}) & \text{, if } t_{p} > t, \text{ then stockout for the producer} \end{cases}$ (5)

The total cost of finished goods for the producer per period T can be expressed as the sum of the setup cost, delivery cost, holding cost, deteriorating cost, and stockout cost, is:

$$TC_{PP} = \left\{\frac{S_P * n}{T}\right\} + \left\{\frac{F_P * n}{T}\right\} + \left\{\frac{\left(\frac{P * \min(t, t_P) - \min(q_B, q_P)}{\theta_P}\right) * H_P * n}{T}\right\} + \left\{\frac{\left(P * \min(t, t_P) - \min(q_B, q_P)\right) * P_P * n}{T}\right\} + \left\{\frac{\max(q_B - q_P, 0) * \beta_P * n}{T}\right\}$$

$$(6)$$

Where $\left(\frac{P*\min(t,t_P)-\min(q_B,q_P)}{\theta_P}\right)$ is the total holding quantity of finished goods

during period t, and $(P*\min(t,t_P)-\min(q_B,q_P))$ is the total deteriorating quantity of finished goods during period t.

3.2.2. *The producer's warehouse inventory model*

The total cost for the producer's warehouse of raw materials per period T can be expressed as the sum of the receiving cost, holding cost, and deteriorating cost, i.e.

$$TC_{PW} = \left\{\frac{F_{PW} * n}{T}\right\} + \left\{\frac{\left(\frac{q_{PW} - P * \min(t, t_P)}{\theta_{PW}}\right)^* + H_{PW} * n}{T}\right\} + \left\{\frac{\left(q_{PW} - P * \min(t, t_P)\right)^* + P_{PW} * n}{T}\right\}$$

$$(7)$$
Where $\left(\frac{q_{PW} - P * \min(t, t_P)}{\theta_{PW}}\right)$ is the total holding quantity of raw materials during

holding quantity of raw materials during period *t*, and $(q_{PW} - P * \min(t, t_P))$ is the total deteriorating quantity of raw materials during period *t*.

Then, the producer's total cost,
$$TC_P$$
 is:
 $TC_P = TC_{PP} + TC_{PW}$ (8)

3.3. The inventory model for the supplier

Assume supplier's opening inventory to be Q_{PW} , and the ending inventory after period *t* to be q_{PW} . Then, total cost of raw materials for the supplier per period *T* can be expressed as the sum of the order cost, delivery cost, holding cost, and deteriorating cost, i.e.

$$TC_{s} = \left\{\frac{S}{T}\right\} + \left\{\frac{F_{s} * n}{T}\right\} + \left\{\frac{\underline{\mathcal{Q}_{PW}(1 - \theta_{s})' - \underline{\mathcal{Q}_{PW}}}{\ln(1 - \theta_{s})} * H_{s} * n}{T}\right\} + \left\{\frac{(\underline{\mathcal{Q}_{PW} - q_{PW}}) * P_{s} * n}{T}\right\}$$
(9)

Where $(Q_{PW} - q_{PW})$ is the total deteriorating quantity of raw materials during period *t*.

3.4. The integrated inventory model

The integrated joint total cost TC for the buyer, the producer and the supplier is the sum of TC_B , TC_P and TC_S , and can be written as:

$$TC = TC_B + TC_P + TC_S \tag{10}$$

4. Numerical example

Let us consider the following numerical example: *T*=1 week. The buyer's parameter data: *D N*(12,000, 500^2), *SL* = 90%, *LT* = 0.01, *A* = \$300, *F_B*= \$25, *H_B* = \$15, *P_B*= \$110, θ_B = 0.08, α_B = \$15, β_B = \$110. The producer's parameter data: *P* = 24,000 units, *S_P* = \$500, *F_P* = \$150, *F_{PW}* = \$20, *H_P* = \$12, *H_{PW}* = \$10, *P_P* = \$90, *P_{PW}* = \$85, θ_P = 0.095, θ_{PW} = 0.09, β_P = \$90. The supplier's parameter data: *S* = \$250, *F_S* = \$125, *H_S* = \$8, *P_S* = \$75, θ_S = 0.1.

Substituting the above parameter's data into the model, then the optimal solution can be derived as shown in Tables 1 and 2.

In Tables 1 and 2, for each viewpoint, the optimal lot size and delivery number is obtained where the total cost is minimized. The joint total cost from the integrated viewpoint is \$109,225, which results in an impressive joint total cost reduction compared with any independent viewpoint from the buyer, the producer or the supplier. This result suggests that the partners in the supply chain could develop a mutual agreement in order to benefit from the lowest joint total cost. Besides, in Table 2, because the demand is random, it is necessary to consider the safety stock to prevent stockout. The phenomenon results in the buyer's holding cost, deterioration cost, and overstock cost to be increased noticeably, hence the buyer's total cost TC_B is much more than the producer and the supplier's total cost.

5. Analysis of variance

In order to study how various key factors affect the buyer's total cost, the producer's total cost, the supplier's total cost, and the joint total cost, a analysis of variance for key factors of service level, standard deviation, lead time, and deterioration rate is performed. The experiment is performed as shown in Table 3. Then we conduct an analysis of variance with statistical software SPSS, and the main result is summarized in Table 4.

The main purpose of this section is to study the relationship between the total costs (TC_B , TC_P , TC_S , TC) and factors (SL, σ , LT, θ). Table 4 indicates some conclusions from this analysis. In the analysis, we use the significance level, $\alpha = 5\%$. Thus, we see that the main factors of SL, σ , LT and θ significantly affect the total costs of TC_B , TC_P , TC_S and TC. Besides, in the factor interaction, we see that σ^*LT , $\sigma^*\theta$ and $LT^*\theta$ has a significance, which indicates significant interaction between these factors. However, SL^*LT and $SL^*\theta$ has a little significance. which indicates no significant interaction between these factors.

6. Conclusions

In a competitive environment, the cooperation is especially important in the supply chain. The result in this study has shown that the integrated viewpoint is more economical compared with an independent viewpoint.

This study has also performed an analysis of variance to show that how various key factors for the random demand affect various total costs for the partners in a supply chain. The key factors include service level, standard deviation, lead time, and deterioration rate. When the demand is random, in order to have a higher service level, the safety stock must be increased in order to prevent stockout; but sometime it turns into overstock. In this study, adopting the most economic service level is suggested, instead of the perfect service level, and this adoption can obtain the lowest joint total cost, buyer's total cost, producer's total cost, and supplier's total cost.

References

- Ben-Daya, M., Raouf, A., 1994. Inventory models involving lead time as decision variable. Journal of the Operational Research Society 45(5), 579-582.
- Chopra, S., and Meindl, P., 2001. Supply chain management. Printice-Hall, Inc., Upper Saddle River, New Jersey 07458, 179-257.
- Ghare, P.M., Schrader, G.F., 1963. A model for exponentially decaying inventory. The Journal of Industrial Engineering 14(5), 238-243.
- Kim, S.L., and Ha, D., 1997. Implementation of JIT purchasing: an integrated approach. Production Planning and Control 2, 152-157.
- Liao, C.J., Shyu, C.H., 1991. An analytical determination of lead time with normal demand. International Journal of Operations Production Management 11, 72-78.
- Moon, I., Choi, S., 1998. A note on lead time and distributional assumptions in continuous review inventory models. Computers and Operations Research 25(11), 1007-1012.
- Ouyang, L.Y., Yeh, N.C., Wu , K.S., 1996. Mixture inventory model with backorders and lost sales for variable lead time. Journal of the Operational Research Society 47, 829-832.
- Ouyang, L.Y., Chen, C.K., Chang, H.C., 2002. Quality improvement, setup cost and lead-time reductions in lot size reorder point models with an imperfect production process. Computer and Operations Research 29, 1701-1717.
- Rau, H., Wu, M.Y., Wee, H.M., 2003. Integrated inventory model for deteriorating items under а multi-echelon supply chain environment. International Journal Production Economics 86(2), 155-168

Tersine, R.J., 1994. Principles of

inventory and materials management. Englewood Cliffs, New Jersey, 204-272.

- Wu, M.Y., Rau, H., Wee, H.M., 2003. Exponentially varying demand for integrated inventory model with varying production of deteriorating item. Journal of Statistics and Management Systems 6(2), 217-227.
- Yang, P.C., Wee, H.M., 2000. Economic order policy of deteriorated item for vendor and buyer: an integrated approach. Production Planning and Control 11(5), 474-480.

Fig. 1. The supply chain system

Fig .2. Inventory level of the supply chain

Viewpoint	n	<i>t</i> _P	SS	q_B	q_P	q _{PW}	Q_{PW}
Buyer	7	0.0878	253	2,099	2,099	2,116	2,148
Producer	14	0.0486	184	1,164	1,164	1,169	1,178
Supplier	42	0.0219	118	524	524	525	527
Integrated	13	0.0517	190	1,237	1,237	1,243	1,253

Table 1 Quantity for various viewpoints

Viewpoint	п	TCB	TC _P	TCs	ТС
Buyer	7	58,381	29,429	35,028	122,838
Producer	14	64,189	24,547	20,666	109,403
Supplier	42	105,309	37,345	13,864	156,519
Integrated	13	62,900	24,609	21,716	109,225

Table 2 Total cost for various viewpoints

Table 3 The related data for experiment result

SL	σ	LT	θ	TCB	TC_P	TC_S	ТС
		0.01	-4%	8,947	20,621	11,651	41,219
	0		4%	11,521	25,304	15,071	51,896
	0	0.05	-4%	24,193	30,371	18,996	73,560
50%		0.03	4%	34,777	40,392	26,817	101,985
5070		0.01	-4%	235,405	28,431	40,979	304,816
	2 000	0.01	4%	266,572	34,448	51,625	352,645
	2,000	0.05	-4%	237,202	44,341	60,435	341,978
		0.05	4%	280,559	54,326	74,380	409,265
		0.01	-4%	8,947	20,621	11,651	41,219
	0	0.01	4%	11,521	25,304	15,071	51,896
	0	0.05	-4%	24,193	30,371	18,996	73,560
70%			4%	34,777	40,392	26,817	101,985
/0/0	2,000	0.01	-4%	168,232	33,566	39,787	241,585
			4%	197,371	39,672	46,386	283,429
		0.05	-4%	178,130	49,670	55,158	282,958
			4%	220,537	61,416	63,888	345,840
	0	0.01	-4%	8,947	20,621	11,651	41,219
			4%	11,521	25,304	15,071	51,896
90%		0.05	-4%	24,193	30,371	18,996	73,560
			4%	34,777	40,392	26,817	101,985
	2,000	0.01	-4%	149,204	44,520	42,090	235,814
			4%	173,411	56,586	52,457	282,455
		0.05	-4%	162,776	64,239	56,190	283,205
		0.05	4%	199,932	86,625	70,630	357,187

Table 4

Dependent			Degree			
Factor	variable	Sum of square	of	Mean square	F test	Significance
	variable		freedom			
SL	TC_B	7638746669.08	2	3819373334.54	574.87	.000
	TC_P	552971599.00	2	276485799.50	54.00	.000
	TC_{S}	32926025.33	2	16463012.67	9.19	.007
	$\frac{TC}{2}$	5313122763.08	2	2656561381.54	279.60	.000
σ	TC_B	207393202262.04	• 1	207393202262.04	31215.53	.000
	TC_P	2558039424.00	1	2558039424.00	499.56	.000
	TC_S	7935206666.67	1	7935206666.67	4427.29	.000
	TC	354098897867.04	· 1	354098897867.04	37268.98	.000
LT	TC_B	1741607325.38	1	1741607325.38	262.14	.000
	TC_P	1631982352.67	1	1631982352.67	318.71	.000
	TC_S	1129293204.17	1	1129293204.17	630.07	.000
	TC	13394382768.38	1	13394382768.38	1409.76	.000
θ	TC_B	2540127777.04	1	2540127777.04	382.32	.000
	TC_P	526575280.17	1	526575280.17	102.84	.000
	TC_S	403850104.17	1	403850104.17	225.32	.000
	TC	8731428685.04	· 1	8731428685.04	918.99	.000
SL*σ	TC_B	7638746669.08	2	3819373334.54	574.87	.000
	TC_P	552971599.00	2	276485799.50	54.00	.000
	TC_S	32926025.33	2	16463012.67	9.19	.007
	TC	5313122763.08	2	2656561381.54	279.60	.000
SL*LT	TC_B	39122196.75	2	19561098.38	2.94	.104
	TC_P	14218858.33	2	7109429.17	1.39	.298
	TC_S	7763420.33	2	3881710.17	2.17	.171
	TC	51648800.25	2	25824400.13	2.72	.119
SL*0	TC_B	11907245.58	2	5953622.79	.90	.442
	TC_P	25807708.33	2	12903854.17	2.52	.135
	TC_{S}	7319324.33	2	3659662.17	2.04	.186
	TC	16291406.58	2	8145703.29	.86	.456
σ^*LT	TC_B	29404134.38	1	29404134.38	4.43	.065
	TC_P	99552266.67	1	99552266.67	19.44	.002
	TC_{S}	104516960.67	1	104516960.67	58.31	.000
	TC	218400633.38	1	218400633.38	22.99	.001
$\sigma^* \theta$	TC_B	1175426070.04	1	1175426070.04	176.92	.000
	TC_P	24389568.17	1	24389568.17	4.76	.057
	TC_{S}	40052000.67	1	40052000.67	22.35	.001
	$\frac{TC}{2}$	2074997470.04	· 1	2074997470.04	218.39	.000
LT*θ	TC_B	162432457.04	1	162432457.04	24.45	.001
	TC_P	53826140.17	1	53826140.17	10.51	.010
	TC_S	21481768.17	1	21481768.17	11.99	.007
	TC	610858690.04	· 1	610858690.04	64.29	.000
Error	TC_B	59795191.54	9	6643910.17		
	TC_P	46085365.50	9	5120596.17		
	TC_S	16131050.00	9	1792338.89		
	TC	85510517.04	9	9501168.56		
Total	TC_B	533903078249.00	24			
	TC_P	43524836546.00	24			
	TC_{S}	41385799554.00	24			
1	TC TC	11243873266641 00	24			

The main result for analysis of variance

計畫成果自評:

本計畫主要發展一套損耗性商品在隨機需求下整合性供應鏈之存貨模式, 透過數學模式的推導獲得最佳的生產與訂購批量以及最佳運送次數,達到整體 供應鏈的聯合總成本最小化。經由數學例題的結果證明:由整合性的觀點所獲得 的最佳解可以比單獨觀點所獲得的最佳解之聯合總成本低。最後,利用變異數 分析探討一些關鍵因子對於最佳解的影響。根據原計畫的預期目標分述如下:

- (1) 發展供應商、製造商及零售商的損耗性商品之隨機需求存貨模式
- (2) 應用電腦程式的撰寫求出供應鏈中的供應商、製造商及零售商的聯合總 成本
- (3) 藉由數學例題證明由整合性的觀點可獲得使聯合總成本最低的最佳解
- (4) 利用變異數分析探討一些關鍵因子對於最佳解的影響

本研究已遵照原計畫執行完成以上目標,並將內容說明於正文中,透過正 文的內容可知,本研究已達到原計畫書中所提出的預期目標與成果,此成果 亦可提供學界及業界的人士參考。

- (1) 以學術而言: 在供應鏈中損耗性商品的存貨政策常常被忽略,因此透過本計畫,可提升學界人士對此相關議題之興趣與重視。
- (2) 對業界而言:在現實的環境中,有許多隨機需求的損耗性商品存在於 生鮮超市中,本計畫成果可以協助供應鏈中的管理者在採購、生產及 物流決策上之參考,以達到整體供應鏈的聯合總成本最小化。

最後,提供數個議題作為未來研究之方向:

- (1) 採取彈性數量政策,以使採購及生產更符合實際需求,減少存貨過剩 或不足的現象。
- (2) 利用供應商管理庫存方式(vendor managed inventory, VMI),透過買 賣雙方彼此的合作協調,降低供應鏈的整體成本。
- (3) 增加損耗性商品之殘值,以提高供應鏈整體利潤之提升。